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Phased Array Antenna Element for Automotive Radar Application 

Keywords: Phased Array Radar, Patch Antenna, Surface Wave, W-band Dielectric 

Measurement, SiGe BiCMOS,  

Abstract 

In this thesis work, a design of reliable antenna front-end for W band automotive radar is 

studied and the problems and considerations associated with phased array antenna design at 

W-band are addressed. Proposed phased array antenna consists of on chip patch antenna 

which has the advantages of being integrated by the active circuitry. A sample of patch 

antenna and patch array are designed and fabricated to be tested for their functionality. 

Printing antenna on Silicon substrate is a compact and cost-effective approach. However, 

antenna on Silicon will have poor gain and will also suffer from surface wave (SW) 

excitation. The reason for this is Silicon high dielectric constant and loss.  Surface wave 

can be easily excited on high dielectric constant substrate which results in gain drop and 

distortion in radiation pattern. To avoid substrate loss, available back etching in foundry 

process is used to remove the silicon under the radiating antenna and improve the gain. To 

kill the surface wave, a type of engineered material- called Electromagnetic Band-Gap 

(EBG)- is designed to filter the SW around the antenna's frequency of operation. To test the 

fabricated antenna, a measurement setup is implemented to do refection coefficient and 

radiation pattern measurement. Measured S parameters show that there is frequency shift in 

response of measured antenna with respect to the simulated one. This shift can be attributed 

to uncertainty about the dielectric constant of Silicon at W-band. To find the exact value of 

Silicon dielectric constant, a measurement setup based on free space method is devised to 

determine the exact value of the silicon dielectric constant at W-Band frequency range.  
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Otomotiv Radar Uygulamaları için Faz Dizinli Anten Elemanı 

Anahtar Kelimeler: Faz Dizinli Radar, Yama Anten, Yüzey Dalgası, W-bant Dielektrik 

Ölçümü, SiGe BiCMOS  

Özet 

Bu tezde, W-bant otomotiv radar için güvenilir bir ön-uç anten tasarımı anlatılmış ve W-

bant’ta faz dizinli anten tasarımlarındaki sorunlara ve önemli noktalara değinilmiştir. 

Önerilen faz dizinli anten, aktif devrelerle entegre edilebilme avantajına sahip olan kırmık 

üstünde yama antenden oluşmaktadır. İşlevselliği test etmek üzere, yama anten ve anten 

dizini örnekeleri tasarlanmış ve üretilmiştir. Antenin silikon substrat üzerine basılması 

kompakt ve masrafızdır. Ancak, silikon üzerindeki antenin kazancı düşük olmakla birlikte, 

aynı zamanda yüzey dalgalarından (SW) da etkilenmektedir. Bunun nedeni, silikonun 

yüksek dielektrik sabiti ve kaybıdır. Yüzey dalgaları, kazancın düşmesine ve radyasyon 

paterninin bozulmasına sebep olan yüksek dielektrik sabitli substratlarda kolayca oluşabilir. 

Bu kayıplardan kurtulmak için, ışıma yapan antenin altındaki silikon, üretim sürceinde ters-

aşındırma ile çıkarılmış ve kazanç artırılmıştır. Yüzey dalgalarından kurtulmak için ise, 

antenin çalışma frekansı etrafındaki SW’yi filtreleyen özel bir Elektromanyetik Bant-

Açıklığı (EBG) tasarlanmıştır. Üretilen anteni test etmek için, yansıma sabiti ve radyasyon 

paterni ölçen bir düzenek kurulmuştur. Ölçülen S-parametreleri incelendiğinde, 

simulasyonlardakine kıyasla, frekans kayması gözlenmiştir. Bu sapma, W-bant’taki 

silikonun dielektrik sabitinin belirsizliğinden kaynaklanmaktadır. W-bant’ta silikonun 

dielektrik sabitinin kesin değerini bulmak için, free-space yöntemine dayanan bir ölçüm 

düzeneği kurulmuştur. 
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1. Introduction 

 

 

 

 

There are increasing application areas for automotive radar devices in cars all around 

the world. These devices are employed in advanced cruise control systems, which can 

actuate a motor vehicle’s accelerator and/or brakes to control its distance separation 

behind another vehicle. It is anticipated that the use of these systems will become 

commonplace in the future, especially the civilian use of millimeter wave radars in 

navigation, road traffic control, safety for highway driving and security [1]. There are 

two bands allocated for automotive radar applications:  24 and 77-GHz band. The 24-

GHz band consist of, one around 24.125GHz with BW of 200MHz, another 24GHz 

with BW of 5GHz for short/mid-range radars. In 77 GHz band, there is a 5 GHz 

bandwidth (76-77-GHz for long-range adaptive cruise control and 77-81-GHz short-

range radar sensors) allocated for application of short range automotive radar for the 

purposes of stop and go, blind side detection, crash avoidance. Radar range resolution is 

inversely proportional to available bandwidth (2 GHz bandwidth corresponds to a 15 

cm range resolution). As the bandwidths are much larger in millimeter wave frequencies 

compared to lower frequencies, for a 4-5 meter size car, 15 cm range resolution seems 

to be enough for detection purposes [2].  Resolution can be easily handled by the 
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already available wide bandwidth of 2 GHz at 77 GHz. RF-front end of radar system 

comprises of array of antenna followed by phase shift mechanism to make beam 

steering possible. The choice of antenna will be dependent on the radar requirements 

such as max distance and cost and ease of fabrication. 

At 77 GHz, the size of the antenna becomes comparable to the chip size (less than 1 

mm), and this creates the opportunity for a single-chip transceiver to be integrated with 

the antenna or antenna arrays. There is extensive research on designing on-chip 

antennas for 77 GHz band including unbalanced type of antennas such as slot and 

microstrip patch type antennas as well as balun circuits feeding balanced antennas like 

dipoles [3].  Planar type antenna like Microstrip patch antennas are good candidate for 

this purpose due to the advantages of low profile, light weight, and low cost [4]. So, 

SiGe foundry process can be used to realize overall radar system circuitry and make 

fabrication easy and more cost effective. However, there would be challenges for 

printing antenna on high dielectric constant substrate like Silicon such as gain drop and 

performance degradation due to unwanted surface wave and Silicon loss. In order to 

tackle the problems caused by surface wave in patch antenna, two approaches have been 

pursued to have a patch antenna with optimum performance on high-dielectric constant 

substrate. First method uses micromachining technology, while the second makes use of 

the concept of electromagnetic band-gap (EBG) structures [5]. In the first approach, part 

of the substrate right under the radiating element is removed to establish a low effective 

dielectric-constant environment for the antenna. Doing so, power loss due to surface-

wave excitation is reduced and efficiency of energy coupling to space waves improves. 

The second approach take advantages of EBG structures: the high-permittivity substrate 

is engineered by putting periodic structure to change the propagation characteristic of a 

surface wave around antenna operative frequency. Various types of periodic loading of 

substrate have been studied [6]. One method is to drill a periodic pattern of holes in the 

substrate or ground plane. Another method is to embed a periodic pattern of metallic 

pads inside the substrate; pads are shorted to the ground plane with vias. In the last one, 

a type of planar or 2-D loading (no vias are required) were proposed which is 

compatible with RFIC integrated circuit fabrication technology (uni-planar 

electromagnetic bandgap (Uni-EBG)). This thesis work will mostly be about developing 
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reliable antenna system for 77GHz radar system and will address the challenges ahead 

of designing and fabricating antenna at W-band.  

There is uncertainty about the dielectric constant of substrates such as silicon at W-band 

frequencies. Silicon dielectric uncertainty effect becomes very important for the design 

and simulations of RF circuits and antennas on silicon substrates. Designing an antenna 

on a substrate with inaccurate value of dielectric constant will change antenna 

performance and shift the resonance frequency in practice which causes large 

discrepancies between simulated and measured results. Simple and applicable methods 

for measuring the permittivity of the substrate are always in great interest of the 

microwave circuit and antenna designers. There are various methods for measuring 

dielectric constant including dielectric waveguide, cavity resonator, open resonator and 

free space [7]. Free space method is more suitable for wideband measurement. In free 

space method, the dielectric constant is measured based on either the transmission 

method or metal backed method [8-9]. This thesis also tries to address this issue. For 

this, two approaches are applied to bring out the real part of silicon dielectric constant 

based on transmission and reflection type measurement method. Only the phase 

information of the transmitted signal is used to determine the real part of the 

permittivity. 

The thesis is organized as follow:  

Chapter 2 studies the automotive radar system requirement regarding antenna and phase 

shifting mechanism and discusses different antenna type that can meet the radar system 

demands.  

Chapter 3 presents the design of sample patch antenna on silicon substrate together with 

discussion of methods that can overcome the challenges of designing antenna on Silicon 

substrate.  

Chapter 3 is about implementation of measurement setup at W band for antenna and 

dielectric constant measurement. Measured and simulated results are also presented in 

this chapter.  
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Chapter 4 presents the design of multiport single element antenna which is a parallel 

research study with this work. Designed antenna could have potential application in 

MIMO system. Finally, chapter five present the conclusion and future work in line with 

this work. 



 

 

5 

 

 

 

 

 

 

2. RADAR SYSTEM REQUIREMENTS AND 

CHOICE OF ANTENNA 

 

 

 

 

Radar Technologies have been in use for defense purposes since World War II. With the 

advance of the solid state technology (CMOS circuits up to 100 GHZ, SiGe Circuits 

reaching to almost 1 THz), we see more civilian use of millimeter wave radar especially in 

safe highway driving, navigation and traffic control. In line with these developments, ETSI 

has developed standards for ‘’short range’’ radar for automotive applications in 24 – 77 

GHz bands. In 77 GHZ band, there is a 2 GHz bandwidth allocated for an application of 

short range automotive radar for the purposes of stop and go, blind side detection, crash 

avoidance, braking if crash cannot be avoided and to keep safe driving distance with the 

traffic ahead [1]. 

Radar range resolution is inversely proportional to available bandwidth (2 GHz bandwidth 

corresponds to a 15 cm range resolution). As the bandwidths are much larger in millimeter 
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wave frequencies compared to lower frequencies, for a 4-5 meter size car, 15 cm range 

resolution seems to be enough for detection purposes [2].  Resolution can be easily handled 

by the already available wide bandwidth of 2 GHz at 77 GHz. One of the critical issues at 

77 GHz band and beyond is the low received signal levels. This is due to both the limited 

power output of the solid state power amplifiers (10-15 dBm) and also the high free space 

loss due to small wavelengths (at 77 GHz, at 1-meter, free space loss is -70 dB). To 

increase the received signal level at the receiver, one can use conventional antenna 

technologies such as high gain phased array design, better design of single element 

antennas and/or higher gain low noise amplifier. Note that at these frequencies, wavelength 

is on the order of a few mms, and all the system including antennas can be made on a 

single-chip. However, the silicon substrate for such an integrated system becomes very 

lossy and for the case of antennas, care should be given to design of these antennas on-chip.  

Radar operating range could be doubled or tripled depending on the gain of the phased 

array system.  

Antenna gain is primary important factor which determines the range of radar system and 

SNR requirement. The higher the gain the higher would be the detectable range and SNR. 

Hand calculation can be done, based on Friis formula (equation 2.1), to determine the range 

and SNR for specific value of gain. For a radar system with BW=1GHz at 77GHz, the SNR 

can be calculated for 5m range as follow. Using antenna in array can increase the gain and 

result in improved SNR. Table.1 shows the link SNR budget for this scenario.  
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Table 1. SNR budget calculation 
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Figure 1 shows the overall topology of proposed phased array system. The radar system 

consists of array 4x1 antenna followed by active circuitry; the number of antenna can be 

increased in array for more gain. Active circuitry consists of W band LNAs and phase 

shifter with power combiner.  
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Fig.  ‎2.1 RF Front End of Automotive Radar System 

The antenna elements that will be used in the design could be a dipole, a bent-dipole and 

Microstrip patch antenna or even planar slot type antenna. The choice of antenna will be 

dependent on radar range and the assembly consideration. The output of the antenna will be 

amplified by a W band two stage LNA circuit. For the antenna pattern steering, a 4x1 array 

will be designed and each antenna line will have a very low loss MEMS based phase 

shifter. Using these MEMS phase shifters, the antenna main beam will be steerable. Also, 

one can appreciate the very low loss phase shifters, since at these frequencies; signal levels 

are already too low. At these frequencies, MEMS based phase shifter is preferred due to 

their low loss. Using IHP MEMS technology, it is already shown that low loss around 0.5 

dB can be obtained. After the antenna, LNA and the phase shifter, a corporate type power 

combiner will be used to combine the signals coming from the four antennas. All the 

antennas, phase shifters, combiner and the LNA will be on the same single chip. 
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2.1  Antenna choice for 77GHz short range radar system  

There is extensive research on designing on-chip antennas for 77GHz band including 

unbalanced type of antennas such as slot and microstrip patch type antennas as well as 

balun circuits feeding balanced antennas like dipoles [3]. The explorations and publications 

on various types of on-chip antennas for upper 60 GHz band show very low or negative 

gain without incorporating them with gain enhancement method like using reflectors. So, 

Conventional design of these antennas on a Silicon substrate at 77 GHz band will not 

generate antennas with much gain due to high silicon substrate loss and also deteriorating 

effect due to Surface wave. Small size of the manufactured device and the substrate effect 

are basic challenges and derives the interest in the methods of feeding, measuring, design 

and fabrication of these types of antennas. However, in our project using IHP integrated 

MEMS technology, substrate will be etched and since this effect is considered for the 

proper design of the antenna, much higher antenna gains can be obtained. Available etching 

technology will make it possible to remove the lossy Silicon substrate right under the 

radiating antenna and create low profile substrate for antenna. For surface wave undesired 

effects a filtering structure can be used to omit the SW around the frequency of interest. 

The choice of antenna will be dependent on the radar range requirement and fabrication and 

assembly consideration. Based on the calculation done in previous section using Friss 

Formula (equation 2.1), an antenna with moderate gain can fulfill the gain requirement of 

short range radar. Moreover, planar type antennas are attractive due to their low profile, 

low cost and ease of integration. Considering these two factors, the antenna elements that 

will be used for 77GHz short range system could be a dipole and microstrip patch antenna 

or even planar slot type antenna. To increase the antenna gains further in dipole case, a 

metal ground can be placed on one side of the dipole and bent dipole antennas to have gain 

around 4-5dB. For single patch antenna a gain of 8dB can be obtained. Further gain 

increase can be obtained by using antenna in array configuration. In this work, design of on 

chip patch antenna is studied. Next section will go through the basic principle of patch 

antenna.     



 

 

10 

 

2.2 Patch antenna's working principle 

Microstrip patch antennas are widely used in wireless communications due to the 

advantages of low profile, light weight, and low cost. Recent applications have pushed the 

frequency into the mm-wave region for application such as automotive radars at the 77 

GHz band [4]. Design of patch antenna is straight forward and there are closed form 

formula based on the frequency of operation and the type of substrate [10]. 

Figure 2.2 shows a microstrip patch antenna which is connected to main feed line by mean 

of microstrip transmission line. The antenna is printed on a substrate of thickness h with 

permittivity εr. The other side of the substrate is ground plane with dimension larger than 

that of patch. Both the patch and the ground plane are made of high conductivity metal and 

their thickness is not important. As shown in figure, the patch length is L, width W. 

Normally, the height of substrate h is should be a small fraction of wavelength of 

operation(λ), but not much smaller than 0.05λ. However, in designing patch antenna on 

high dielectric constant substrate like silicon care should be taken to keep the h as low as 

possible to couple less energy to unwanted mode inside the substrate. This unwanted inside 

the substrate-called surface wave- can degrade the antenna gain, radiation pattern and cross 

polarization.  

http://www.antenna-theory.com/definitions/permittivity.php
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Fig.  ‎2.2 Geometry  of Patch Antenna (Top & Side View) 

The length L of patch antenna determines the frequency of operation and the center 

frequency approximately can be expressed as: 

    
 

     

  
 

         

 
(‎2.1) 

Equation (2.1) shows that the microstrip antenna should have a length equal to one half of a 

guided wavelength. Guided wavelength is the wavelength inside the substrate which is 

smaller than that of air. The width W of the microstrip antenna determine the antenna input 

impedance and also the antenna bandwidth. Typically, input impedance for square patch is 

around 300 Ohms. Increasing the width of antenna, the impedance can be reduced and 

bandwidth can be increased. However, increasing the patch width will make the antenna 

bulky which occupy a lot of space. The width further has effect on antenna's radiation 

pattern. The normalized radiation pattern approximately can be expressed as: 

   
    

          
  

          
 

     
  

 
              (  2.2) 

    
    

          
  

          
 

     
  

 
                      (‎2.3) 
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In the above, k is the free-space wave number, given by 
  

 
. The magnitude of the fields, 

given by: 

          
    

  ( ‎2.4) 

Typical radiation pattern of the microstrip antenna is shown in Figure 2.3. 

 

Fig.  ‎2.3 Normalized Radiation Pattern for Microstrip (Patch) Antenna (a) E plane, (b) 

Hplane 

In Figure 2.3, θ is angle from antenna broadside and the pattern is shown for E & H plane. 

Patch antennas have directivity around 5-7 dB. The antenna is linearly polarized and it is 

possible to have circular polarization by changing the feeding mechanism of the antenna. 

Primary drawback of patch antenna is its small bandwidth and these types of antenna are 

narrowband; the bandwidth of rectangular microstrip antennas is around 3%. However, the 

patch antenna can be modified in a way to have larger bandwidth. The reason why the 

patch antenna is radiating is because of fringing field around the antenna. Figure 2.4 shows 

the side view of a patch antenna. Considering the current distribution on patch, it would be 

zero at the ends (open circuit ends) and the maximum at the center of half-wave patch. So, 

the current at patch input is almost zero and this low current value at the feed explains high 

value of impedance at patch input. Another interpretation is based on voltage distribution 

on patch antenna. Considering patch as open circuited transmission line, the voltage 

http://www.antenna-theory.com/definitions/wavenumber.php
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reflection coefficient will be -1. This means that the current and voltage distribution are out 

of phase with respect to each other. Therefore, the voltage is maximum (say +V volts) at 

patch end and is minimum at the start of patch (-V Volts). By this expression, the fields 

underneath the patch will looks like that of Figure 2.4, which shows the fringing of the 

fields around the edges. 

 

Fig.  ‎2.4 Side View of patch antenna with E-fields Shown Underneath 

Fringing fields at the patch make patch to radiate the EM wave. As shown in Figure 2.4, 

the fringing fields near the surface of the patch antenna are both in the +y direction. So, the 

fringing E-fields on the edge of the microstrip antenna are at the same phase and add up in 

phase and produce the radiation of the microstrip antenna. To understand the radiation 

mechanism of patch it's important to know the fringing fields. The current distribution on 

patch cannot describe the radiation mechanism since the current distribution on patch is 

opposite of current distribution on ground which cancel each other. However, this can 

explain why microstrip transmission line does not radiate. The microstrip antenna's 

radiation is due to the fringing fields, which are due to the advantageous voltage 

distribution; hence the radiation arises due to the voltage and not the current. So, the patch 

antenna can be called "voltage radiator", which is different from wire antenna that radiate 

due to advantageous current distribution. In wire antennas, the currents add up in phase and 

are therefore "current radiators". An example of current radiator is dipole antenna. 
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It also worthwhile to mention that the smaller    is, the fringing fields will extend farther 

away from the patch and make the patch better radiator. In other word, higher dielectric 

constant will more confine the electric field inside the substrate and decrease the radiation. 

Therefore, using a smaller permittivity for the substrate yields better radiation. In contrast, 

for microstrip transmission line, it's desired to have as less as radiation. So, a high value of 

   is desirable for feed line to have less fringing filed and less radiation This is one of the 

trade-offs in patch antenna design. It is possible to use substrate with different permittivity 

for feed line section and patch antenna to improve patch radiation property and reduce that 

of transmission line.   

2.2.1 Feeding method of patch antenna 

Patch antenna can be fed in different ways: Based on the application an appropriate feeding 

method can be applied.  

Inset Feed: as described earlier, patch antenna has high input impedance due to low current 

at the end     
   . It is possible to modify the feed and match the antenna impedance to 

that of 50 Ohms line. The current is low at the open ends of a half-wave patch and increases 

in magnitude toward the center, the input impedance     
    could be reduced if the 

patch was fed closer to the center. One method of doing this is by using an inset feed (a 

distance R from the end) as shown in Figure 2.5. 
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Fig.  ‎2.5 Patch Antenna with an Inset Feed 

Current has a sinusoidal distribution and moving in a distance R from the end will increase 

the current by     
  

 
  - this is just noting that the wavelength is   , and so the phase 

difference is 
   

  
 

  

 
.  The voltage also decreases in magnitude by the same amount that 

the current increases. Hence, using    
  , the input impedance scales as: 

            
  

 
                      ( ‎2.5) 

In the above equation, Zin(0) is the input impedance if the patch was fed at the end. Hence, 

by feeding the patch antenna as shown, the input impedance can be decreased. For 

example, if    
  , then    

  

 
    

 

  
, so that                  . So, a (1/8)-

wavelength inset would decrease the input impedance by 50%. This method can be used to 

have desired value for input impedance which is 50 Ohms in normal case. 

Fed with a Quarter-Wavelength Transmission Line: the microstrip antenna can also be 

matched to a transmission line of characteristic impedance Z0 by using a quarter-

wavelength transmission line of characteristic impedance Z1 as shown in Figure 2.6.  
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Fig.  ‎2.6 Patch antenna with a quarter-wavelength matching section 

The goal is to match the input impedance (Zin) to the transmission line (Z0). If the 

impedance of the antenna is ZA, then the input impedance viewed from the beginning of the 

quarter-wavelength line becomes  

       
  

 

  
 ( ‎2.6) 

This input impedance Zin,  can be equated to Z0 (Zin=Z0) for specific value of Z1 and the 

antenna is impedance matched. The impedance Z1 can be tuned by changing the width of 

the quarter-wavelength strip. To lower the characteristic impedance (Z0) we need to make 

the width of strip larger. 

Coaxial Cable or Probe Feed: Microstrip antennas can also be fed by coaxial cable using 

via that connects the patch to center conductor of patch as shown in Figure 2.7. The outer 

conductor of the coaxial cable is connected to the ground plane in other word is grounded.  
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Fig.  ‎2.7 Coaxial Cable Feed of Patch Antenna 

The position of the feed can be changed to have 50 Ohm input impedance like the case of 

inset feed. Care should be taken about the inductance introduce by the coaxial feed. For this 

a height h of substrate should be considered to be low to neglect the inductance effect. In 

addition, the probe will also radiate, which can lead to radiation in undesirable directions. 

Coupled (Indirect) Feeds: This is non contacting feeding method which is the modified 

version of inset feed. The inset feed can also be stopped just before the patch antenna, as 

shown in Figure 2.8. Moreovere, the probe feed in Figure 2.5 can be trimmed such that it 

does not extend all the way up to the antenna.  

 

Fig.  ‎2.8 Coupled (indirect) Inset Feed 
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The advantage of the coupled feed is that it adds an extra degree of freedom to the design. 

The gap introduces a capacitance into the feed that can cancel out the inductance added by 

the probe feed.  

Aperture Feeds: Another method of feeding microstrip antennas is the aperture feed. In 

this technique, the feed circuitry (transmission line) is shielded from the antenna by a 

conducting plane with a hole (aperture) to transmit energy to the antenna, as shown in 

Figure 2.9.  

 

Fig.  ‎2.9 Aperture Coupled Feed 

This method is good to make patch to radiate efficiently and make the transmission line 

radiation less. For this purpose, the upper substrate can be made with a lower permittivity 

to produce more extended fringing fields, yielding better radiation. The lower substrate can 

be independently made with a high value of permittivity to have more confined field. The 

disadvantage of this method is increased difficulty in fabrication. 
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3.  Patch Antenna Design for 77GHz Radar 

System 

 

 

 

 

This chapter will discuss design of patch antenna at 77GHz and the challenges ahead for 

designing antenna on high dielectric constant substrate like Silicon. As discussed in 

previous chapter, design of patch antenna is straightforward and there are analytical 

formulas for this purpose. However, this formula can be used for patch antenna on 

homogeneous substrate not etched substrate; substrate etching will be used to have low 

profile substrate and improve antenna gain. To design antenna on etched substrate, effective 

dielectric constant should be calculated before using analytical formulas and it is not easy 

to find closed form formula for this purpose. However, it's obvious that the effective 

dielectric constant would be less than that of Silicon. To begin with, dielectric constant can 

be consider 1/8 of Silicon, then full EM simulator like HFSS can be used to numerically 

model the problem. Tuning the parameter, the desired resonance frequency can be obtained 

at 77GHz with specific value of gain.  
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The best way to do the etching is to remove as much as Silicon underneath the radiating 

element to have regarding the available etching technology. IHP SiGe technology allows 

rectangular shape etching with max 700x700mm and minimum of 100x100mm. Figure 3.1 

shows different etching pattern tried for antenna with maximum gain. Simulation shows 

that the last etching pattern is effective one regarding the gain and overall size. 

 

Fig.  ‎3.1 Different pattern of Substrate Etching 

Figure 3.2 shows a simple patch antenna on etched silicon substrate based on the MMIC 

technology available at IHP with etching pattern shown in Figure 3.1d. Feeding 

mechanism is chosen to be inset fed in order to save more area. Overall size of the antenna 

is 2mm
2
. Designed antenna's resonance frequency is at 77GHz and the 10dB bandwidth is 

about 5GHz from 75-80GHz. 
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Fig.  ‎3.2 Patch Antennas over Etched Silicon Substrate 

Figure 3.3 shows the radiation pattern on E and H plane.  

 

 

 

Fig.  ‎3.3 Radiation pattern on E and H plane 

 

5GHz Bandwidth 
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Printing patch antenna on low loss and low dielectric constant substrate like FR4, the 

antenna will have gain of around 8dBi at broadside and undistorted radiation pattern both at 

E & H plane. However, using Silicon as antenna substrate will result in 2-3dB gain drop 

and distorted pattern especially in Eplane. This effect can be attributed to unwanted modes 

of propagation inside the high dielectric substrates called surface wave. The higher the 

dielectric constant, the higher would be the possibility of surface wave excitation. 

Moreover, larger height of substrate will increase the possibility of SW excitation. SW 

results in gain drop, pattern distortion and high cross-polarization. Moreover, the amount of 

energy coupled to SW increase with increase in height of substrate. So, the substrate height 

should be kept as low as possible. Surface wave issue will be addressed elaborately in 

upcoming section.  

For the time being, we will focus on designing antenna system that meets requirements of 

phased array system. Primary requirements are high gain and beam steering capability. 

Designed single patch has realized gain of 5dB. To increase the radar antenna front end 

gain and also make the beam steering possible, array configuration can be used. To verify 

the concept, array of two patch antennas were designed. The beam rotation would be in 

patch H plane since it makes feeding network simple and also benefits from undistorted 

pattern at Hplane. To increase the gain more, the number of element should be increased in 

array. Figure 3.4 shows return loss and mutual coupling of array with two patch elements. 

Mutual coupling is better than -15dB inside the band and can be further improved by 

increasing the spacing between the element. 
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Fig.  ‎3.4 Return Loss and Mutual Coupling of Array of two Patches 

To steer the beam, phase difference should be inserted between antenna elements. In real 

radar system, this task will be handled by phase shifter blocks. But, for simulation purpose, 

HFSS has option to insert phase difference between the excitation ports. Figure 3.5 shows 

the beam rotation for different values of phase shift. For phase difference of 90
0
 between 

exciting ports, the beam rotates by 22
0
 at the H-plane.  
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Fig.  ‎3.5  Beam Rotation at H-Plane 

As described earlier, patch antennas on high dielectric constant substrates are highly 

inefficient radiators due to surface wave losses. This results in a patch antenna with low 

gain, efficiency and distorted pattern as well as high level of cross-polarization and mutual 

coupling within an array environment. Surface waves are of traveling wave nature and they 

can be easily excited inside the silicon substrate. Patch ground plane would be low 

impedance medium for surface wave to propagate. So, SWs easily propagates on the 

ground plane and cause pattern distortion when they diffract from the edges. One 

consequence is that the antenna performance would be dependent on the ground plane size. 

Moreover, increasing the size of substrate will distort the pattern more and more. To see the 

deteriorating effects of SW, a sample patch antenna is simulated in HFSS for different 

ground plane size and also on a larger substrate. Figure 3.6 shows the pattern change at 

Eplane for various ground plane size. To add up, the pattern will be the same for Hplane 

since SW only propagate in parallel plane to Eplane.  
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(a) 

 

(b) 

Fig.  ‎3.6  Radiation pattern change at (a)  Eplane (b) Hplane 

Gain drops 1dB in E & H plane as the ground size enlarges by 3cm in both sides. Pattern 

also become more distorted in Eplnae as the ground plane size become larger. The same 

problem would be the case in array configuration. The problem caused by surface wave 

becomes more sever once the size of substrate grows larger.  To see the effect of SW for 
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larger substrate, a comparative simulation is carried out as shown in Figure 3.7. As it can 

be seen, pattern is many more distorted for patch antenna with larger substrate. 

 

 
 

 

Fig.  ‎3.7  Radiation Pattern (a)Patch with Small Substrate & (b) Patch with Large Substrate 

3.1 Solution for Surface Wave Problem  

Fabricating microstrip-based planar antennas on Silicon (       ) are strongly preferred 

for easy integration with the MMIC/RFIC and RF circuitry. However, as shown in previous 

section, patch antennas on high dielectric constant substrates are highly inefficient radiators 

due to surface wave losses and have very low gains because of localized EM waves. This 
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results in a patch antenna with low gain, efficiency and distorted pattern as well as high 

level of cross-polarization and mutual coupling within an array environment.  

In order to tackle the problems caused by surface wave in patch antenna, two approaches 

have been pursued to have a patch antenna with optimum performance on high-dielectric 

constant substrate. First method uses micromachining technology, while the second makes 

use of the concept of electromagnetic band-gap (EBG) structures [5]. In the first approach, 

part of the substrate right under the radiating element is removed to establish a low 

effective dielectric-constant environment for the antenna. Doing so, power loss due to 

surface-wave excitation is reduced and efficiency of energy coupling to space waves 

improves. The second approach take advantages of EBG structures: the high-permittivity 

substrate is engineered by putting periodic structure to change the propagation 

characteristic of a surface wave around antenna operative frequency. Various types of 

periodic loading of substrate have been studied [6]. One approach is to drill a periodic 

pattern of holes in the substrate or ground plane. Another method is to embed a periodic 

pattern of metallic pads inside the substrate; pads are shorted to the ground plane with vias. 

In the last one, a type of planar or 2-D loading (no vias are required) were proposed which 

is compatible with RFIC integrated circuit fabrication technology (uni-planar 

electromagnetic bandgap (Uni-EBG)). Before choosing a method to mitigate surface wave 

problem, it will be instructive to study a surface wave nature and its characteristics.   

3.1.1 Surface wave:  

Surface waves can occur on the interface between two dissimilar materials, such as metal 

and free space or dielectric coated conductor. They are bound to the interface, and decay 

exponentially into the surrounding materials. At radio frequencies, the fields associated 

with these waves can extend thousands of wavelengths into the surrounding space, and they 

are often best described as surface currents. Grounded dielectric slab can support surface 

waves. These are propagating electromagnetic waves that are bound to the interface 

between slab and free space. If the interface surface is smooth and flat, the surface waves 
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will not couple to external plane waves. However, they will radiate vertically if scattered by 

bends, discontinuities, or surface texture. Surface waves appear in many situations 

involving antennas. On a finite ground plane, surface waves propagate until they reach an 

edge or corner, where they can radiate into free space. The result is a kind of multipath 

interference which can be seen as ripples in the radiation pattern. Moreover, if multiple 

antennas share the same ground plane, surface currents can cause unwanted mutual 

coupling [11].  

Dielectric coated conductor can support both TM and TE modes [12]. The dominant mode 

is TM0 with cutt of frequency of zeros. In other word, it exists in all frequencies. Figure 

3.8 shows the dielectric coated conductor together with electric, magnetic field distribution 

of dominant mode (TM0) and first mode of patch antenna. As it can seen, the TM0 modes 

has the same polarization as that of patch first mode. This shows that TM0 mode can 

interfere with first mode of patch if it becomes excited.  

 

Fig.  ‎3.8 (a) dielectric coated conductor (b) Electric field(solid line) and magnetic field 

distribution of TM0 mode (c) Patch antenna first propagating mode 

The cutt of frequency of modes in coated conductor is as below: 

   
 

            

                             

                                                                   

( ‎3.1 ) 
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As described in previous section, engineered material can be used to filter surface wave and 

stop their propagation around frequency of interest.  

3.1.2 Application of engineered material to filter surface wave 

Metamaterials are engineered structures that exhibit electromagnetic properties not found in 

nature. Early in 1968, V. G. Veselago introduced the concept of left-handed (LH) materials, 

and described their distinct properties, such as a reversed Snell refraction, inversion of the 

Doppler effects, and backward Cherenkov radiation [13]. Metamaterials can be 

synthesized by embedding artificially fabricated inclusions in a specified host medium or 

on a host surface. Electromagnetic waves interact with the inclusions, inducing electric and 

magnetic moments, which in turn affect the macroscopic effective permittivity and 

permeability of the bulk composite “medium.” [14].   

Meta-materials based structure can control the propagation of wave. This is accomplished 

with either a class of Meta-material known as photonic crystals (PC), or another class 

known as left-handed materials (LHM); Photonic crystal concept first introduced in optical 

region but later it enters the Microwave an MM-wave region where they are called 

Electromagnetic band-gap (EBG). Both are a novel class of artificially engineered 

structure, and both control and manipulate the propagation of electromagnetic waves 

(light). In addition, both EBG and LHM can be designed to have electromagnetic band-gap 

at desired frequency. In the EBG structure periodic inclusions inhibit wave propagation due 

to destructive interference from scattering from the periodic repetition. An EBG is a result 

of a Meta-material that functions in the regime where the period is an appreciable amount 

of the wavelength where constructive and destructive interference occur. The band-gap 

property of EBG makes them the EM analog of the electronic semi-conductor crystals [15]. 

Effective permittivity and effective permeability are basic engineering parameters of LHM 

metamaterials which is derived from their sub-wavelength structure. Either Negative 

permittivity or permeability can inhibit wave propagation. Indeed, the propagation constant 

is purely imaginary which result in evanescent mode in structure [16]. 
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Microstrip antenna array on high dielectric constant substrate is of special interest due to its 

compact size. However, the utilization of high dielectric constant substrate can result in 

some drawbacks. One of the severest problems is the inevitable excitation of surface waves, 

which can incur strong mutual coupling among elements. The mutual coupling is one of the 

major sources of degradation in array performance [6]. Therefore, achieving a high degree 

of isolation between elements is an important approach for improving the array 

performance. Both EBG and LHM based structure [4-5], [17] can be applied to stop surface 

wave propagation around antenna's operative frequency. Hence, decrease the mutual 

coupling in the array.  

To study MMs, there are two methods. The first choice might be a direct use (or 

modification) of a standard free-space method widely used in characterization of 

continuous materials. This method involves measurement of the transmission and reflection 

coefficients of a slab sample illuminated by a plane wave emanated from a highly directive 

antenna. One should use a rather large slab (with typical transversal dimensions of 10 

wavelengths) in order to avoid diffraction at the edges. Contrary to the methods with plane-

wave excitation, one may turn to the waveguide methods. The waveguide environment is 

well defined and completely closed, the diffraction is not present, and the testing space is 

rather small, relaxing the requirements on the sample size. Of course, this environment is 

obviously different than free space, and one should be very careful in any interpretation of 

the results, particularly in the case of an anisotropic metamaterial [14]. In this project, the 

second approach is used. 

3.2 Electromagnetic Band-gap Meta-material:  

As described earlier, two approaches will be followed to solve the SW problem in patch 

antenna. First, part of the substrate right under the radiating element is removed to establish 

a low effective dielectric-constant environment for the antenna. Doing so, power loss due to 

surface-wave excitation is reduced and efficiency of energy coupling to space waves 

improves. Second, EBG structure is used to filter SW: the high-permittivity substrate is 
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engineered by putting periodic structure to change the propagation characteristic of a 

surface wave around antenna operative frequency. Various types of periodic loading of 

substrate have been studied [6]. One approach is to drill a periodic pattern of holes in the 

substrate or ground plane. Another method is to embed a periodic pattern of metallic pads 

inside the substrate; pads are shorted to the ground plane with vias. In the last one, a type of 

planar or 2-D loading (no vias are required) were proposed which is compatible with RFIC 

integrated circuit fabrication technology (uni-planar electromagnetic bandgap (Uni-EBG)). 

All in all, there are three type of EBGs reported in literatures which used to control surface 

wave propagation. Before going through detailed design procedure for our desired EBG 

structure, we will look briefly over different EBG structures and study their characteristics. 

3.2.1 Periodic holes:  

These types of EBGs are created by drilling a periodic pattern of holes in substrate or 

etching a periodic pattern of circles in ground plane. To see the band-gap properties of 

EBG, comparative study done for simple mictrostrip transmission line using HFSS 

simulator. As shown in Figure 3.9, drilling periodic holes creates a forbidden frequency 

band for TEM mode in mictrostrip line. However, drilling cylindrical holes could be 

difficult for available foundry process. Moreover, it is possible to drill cubic holes in 

substrate but still fabrication cost and difficulty would be limiting factors not to use this 

type of EBG structure. 
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Fig.  ‎3.9 Microstrip Transmission line with/without EBG 

3.2.2  Bumpy Surfaces 

Surface waves can be eliminated from a metal surface over a finite frequency band by 

applying a periodic texture, such as a lattice of small bumps. As surface waves scatter from 

the rows of bumps, the resulting interference prevents them from propagating, producing a 

two-dimensional electromagnetic band-gap [11]. 

The Sievenpiper mushroom structure is an example of such surfaces. It has been widely 

studied in the microwave engineering field due to its unique properties. The Sievenpiper 

mushroom structure basically consists of a metallic patch connected to ground with a 

shorting post. The general model together with HFSS model is shown in Figure 3.10. 
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Fig.  ‎3.10 Mushroom EBG structure 

It can be used as a high-impedance surface and act like an artificial magnetic conductor. 

The Sievenpiper mushroom structure has also been widely used to realize left-handed 

Meta-materials (negative refractive index) since it can be designed to support a dominant 

quasi-TEM backward wave (i.e. anti-parallel group and phase velocities). It is also evident 

from Figure 3.10c that there is weak backward traveling nature associated with this 

structure. As depicted in Figure 3.10c the slop of ω-β diagram becomes negative for first 

dominant propagation mode. Band-gap property of this type of structure is studied with ω-β 

diagram. Method of analysis and the HFSS modeling of this type of EBGs will be describe 

in more detail in upcoming sections. To realize this EBG structure metal vias needs to be 

inserted inside Silicon substrate after etching is finished and this will make fabrication 

process complex and more expensive.  

3.2.3  Uni-planar Compact photonic Ban-dgap (UC-PBG):  

There is uni-planar compact photonic band-gap (UC-PBG) substrate that has some 

advantages over previous structures. Advantageous features of this crystal substrate include 

simple low-cost manufacturing (no vias are necessary) and compatibility with standard 

monolithic microwave integrated circuits (MMIC’s) fabrication technology. Figure 3.11 

shows examples of such planar structure printed on substrate to create forbidden band. 
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Fig.  ‎3.11 Tripole Metallodielectric Photonic Band-gap (MPBG) and Uni-EBG structure 

This work studies a square type 2-D Uni-EBG structure that is designed specifically to 

enhance the performance of microstrip patch antennas at 77GHz. The filtering mechanism 

of this structure can be explained with that of LC band-pass filter prototype as shown in 

Figure 3.12.  

 

Fig.  ‎3.12 Uni-planar Compact EBG Structure Which realizes a 2D Periodic Network of LC 

Circuits without Introducing Vias 

First, the design procedure of 2-D surface to forbid the propagation of transverse magnetic 

(TM) surface waves in a grounded dielectric substrate around antenna's operative frequency 

elaborated. It is then demonstrated that a substantial improvement in antenna performance 

can be achieved simply by surrounding a microstrip patch antenna with this 2-D Uni-EBG 

surface, resulting in a significant increase in both antenna gain and radiation pattern. 
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3.3 Characterization of the 2-D Uni-EBG structure: 

An EBG substrate is characterized by a dispersion or ω-β diagram. For a periodic structure 

such as the EBG, the field distribution of a surface wave is periodic with a proper phase 

delay determined by the wave number k and periodicity p.  Moreover, the dispersion curve 

for both kx(ω) and ky(ω)  is periodic along the k axis with a periodicity of 2π/ px and 2π/ py : 

0 ≤ kxn ≤ 2π/px, 0 ≤ kyn ≤ 2π/py , which is known as Brillouin zone [18]. Figure 3.13 shows 

the geometry of our 2-D uni-planar EBG surface together with HFSS model for unit cell of 

EBG.  

 

Fig.  ‎3.13 Uni-planar EBG Surface and HFSS Model for unit cell of Uni-Planar EBG 

Surface 

Full wave numerical method (FEM of HFSS) has been used to analyze characteristics of 

EBG structures with PML and periodic boundary conditions. With the utilization of 

periodic boundary conditions (PBCs), only a single cell of the EBG structure needs to be 

modeled in full wave simulation [19]. At low frequencies, the impedance is inductive and 

structure supports TM surface waves, while in upper bands it supports TE surface waves 
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due to capacitive nature of structure. In between there would be a stop-band in which no 

wave propagates. Surface waves with TM nature are responsible for distortion in pattern 

since they have same polarization with patch modes and easily harvest energy from patch 

mode and block the energy coupling to the space wave. So, our primary goal is to keep 

Surface waves with TM nature away from our frequency of interest (77GHz). On the other 

hand, surface wave with TE nature have orthogonal polarity with patch mode, so, for the 

most part, their impact can be ignored. However, their presence will degrade cross-

polarization. Based on the concepts discussed above, we start to characterize the dispersion 

diagram of the Uni-planar EBG structure using the Ansoft HFSS. To see the typical 

dispersion diagram, a unit cell of this structure with a= 600um, l=120um, s=278um, 

t=80um, g=98um, is simulated on 250um thick Silicon dielectric. Figure 3.14 shows the 

dispersion diagram of the surface wave's first three modes for simulated EBG structure. 

 

 

Fig.  ‎3.14 Surface Wave Dispersion Diagram for EBG Structure 

 



 

 

37 

 

Increasing the height of the substrate will increase the probability that the surface wave can 

be excited. Figure 3.15 shows the dispersion diagram once we double the height of 

substrate. Increasing height conceal the semi band-gap region around 70GHz, especially Γ-

X propagation direction. This can be interpreted as increased probability of exciting surface 

wave since in thicker dielectric more energy couples to surface wave. 

 

Fig.  ‎3.15  Surface Wave Dispersion Diagram for EBG Structure with Doubled Size 

An alternative method to model the EBG is by mean of S parameter. To this an ideal 

microstrip line can be surrounded by EBG structure and filtering properties can be studied 

based on obtained S parameter. Below is the two simulation scenario for characterizing the 

EBG structure. 
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Fig.  ‎3.16 Two Different Modeling Scheme of EBG to Derive S Parameter 

 

Below is the result for s parameter modeling of EBG structure.  

 

(a) 



 

 

39 

 

 

(b) 

Fig.  ‎3.17 S11 & S21 for (a) Ideal Microstrip Transmission Line (b) Line Surrounded with 

EBG Substrate 

Figure 3.17 shows not completely but to some extend the filtering property of  the EBG 

structure. From this simulation result it can be decided that the dispersion or ω-β diagram 

characterization yield better result.    

3.4  EBG-Patch Antenna design: 

Once the proper EBG surface has been designed for surface wave suppression, the design 

of an EBG antenna is straightforward. This is done simply by surrounding the antenna with 

EBG surface (Figure 3.19). The EBG surface does not interfere with the near field of the 

antenna, and it just suppresses the surface waves [15]. However, the presence of the EBG 

near the patch drops the resonance frequency which can be removed easily by tuning the 

length of the patch. As discussed earlier based on pattern distortion, in patch antenna, 

surface wave mostly are present at Eplane. So, it enough for designed EBG only to have 

band-gap in this Eplane and filter surface wave with propagation direction in Eplane. Γ-X 



 

 

40 

 

direction of Brillioum zone is correspondence of patch Eplane and characterizes the surface 

wave that exists inside the patch substrate. So, to save computational resources, proposed 

EBG will be characterizing in Γ-X plane. Simulation in HFSS is performed as described 

earlier for an EBG with band-gap around 77GHz. Figure 3.18 shows the dispersion 

diagram of finalized structure with band-gap around our frequency of operation (77GHz). 

The simulation is done considering first five modes. Starting from mode one which is of 

TM nature then the nature of mode change to TE and continue switching between TM and 

TE. The nature of first mode can be attributed to the inductive property of the structure at 

low frequency. Remembering the LC band-pass filter model described earlier, one can 

discern why this structure is inductive at low frequency. Moreover, the mode propagation 

diagram is trimmed by light line since for the propagation constant smaller than that of line 

light the mode will be evanescent. Desired band-region is shown in Figure 3.18 that is 

between 72-77GHz.         

 

Fig.  ‎3.18 Dispersion Diagram for EBG with Band-gap around 77GHz 

Band-gap Region 
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The next step is to surround the patch antenna with proposed EBG Substrate and check for 

it performance. Figure 3.19 shows patch antenna with EBG around together with antenna's 

S11.  

 

 

Fig.  ‎3.19 Designed Antenna with its S11 
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For comparison purposes, another patch antenna designed on a same substrate without EBG 

surface. Figure 3.20 compares the radiation pattern and gain of these antennas, both in the 

E and Hplane. 

 

Fig.  ‎3.20 Radiation pattern for two type of antenna 

Designed antennas are submitted for fabrication and next chapter will provide the 

measurement result. 

3.5 Antenna integration with active circuitry 

As described earlier, radar system RF front end consist of array of antenna with LNAs and 

phase shifter. The output of the antenna will be amplified by LNA circuit. For the antenna 

pattern steering, a 2x1 array is designed and each antenna line has a very low loss MEMS 

based phase shifter. Using these MEMS phase shifters, the antenna main beam will be 

steerable. Also, one can appreciate the very low loss phase shifters, since at these 

frequencies; signal levels are already too low. At these frequencies, MEMS based phase 

shifter is preferred due to their low loss. Using IHP MEMS technology, it is already shown 

that low loss around 0.5 dB can be obtained. After the antenna, LNA and the phase shifter, 
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a corporate type power combiner will be used to combine the signals coming from the two 

antennas. All the antennas, phase shifters, combiner and the LNA will be on the same 

single chip. 

An array of two patch antennas integrated with LNA and phase shifter is submitted to be 

fabricated by IHP.  

 

Fig.  ‎3.21 Layout of Phased Array RF Front-End 

 

Patch Antenna  

 

Patch Antenna 

LNA 

LNA 

MEMS Phase Shifter 
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4. Antenna Fabrication & Measurement Result 

 

 

 

 

Millimeter wave technology brings about many promising feature such as possibility of 

high speed communication, less interference, etc. However, conducting practical 

experiments at this frequency band could be challenging and will require high-tech devices 

and skilled experimenters. First challenge is the high losses which make it necessary to 

consider transmitted power level, proper signal amplification and component spacing. For 

antenna measurement, anechoic chamber can be used up for frequency up to 50GHz. 

However, for 75-110GHz, a setup similar to that of anechoic chamber needs to be 

implemented outside the chamber. Outdoor setup occupies less space and also makes it 

possible to better connect the antenna to measuring probes. Our antenna measurement setup 

at Sabanci University seeks to fulfill these necessities and make reliable measurement 

possible. To do so, our measurement setup follows all the standard procedure in antenna 

measurement. Figure 4.1 shows schematic of outdoor antenna setup block that consists of 

Network analyzer, standard horn antenna, extender, GSG probe and rotatable arms. 



 

 

45 

 

Moreover, waveguide to coaxial adaptor is used in different part for transition purpose. 

Measurement follow the same rule applied in anechoic chamber.  

 

Fig.  ‎4.1 Schematic of Millimeter Wave Antenna Setup 

GSG probe is used to connect the antenna under test (AUT) to signal source. There are 

knobs places on GSG probe for fine adjustment in different direction. GSG probe is 

connected to Network analyzer (NA), with extender block in between. Extender serves the 

purpose of signal frequency up conversion to convert 300MHz-50GHz signal from NA to 

75-110GHz necessary for W-band measurement. To measure the field radiated by AUT, a 

standard horn with known gain is used. This horn is installed on collecting arm capable of 

rotating 180
0
 at elevation plane. Care should be taken to place horn antenna in far field 

region of AUT not too far to lose signal level. Another type of GSG probe is available with 

90
0
 rotations with previous one. This probe make it possible to put AUT in 90

0
 rotated with 

respect to previous case and switch from antenna's E to H plane and vice versa. Besides, the 

standard horn can be rotated in 90
0
 to its original position and make it possible to determine 
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the co- and cross-polarization at E and H plane. This setup enables reflection coefficient, 

gain and far-field radiation pattern measurement. Our antenna under the test (AUT) is 

dipole antenna and simple inset-fed patch antenna surrounded by EBG structure. A sample 

of the antennas has been realized by MMIC technology available at IHP, Germany. Figure 

4.2 shows an implemented setup picture at SUNUM.  

 

Fig.  ‎4.2 Implemented Millimeter Wave Antenna Setup 

4.1 Simulated and measured result: 

At the time of writing this thesis, we were waiting for our patch antenna from IHP to be 

shipped to us. But, to see the functionality of the implemented setup, a sample of dipole 

antenna and patch antenna from previous works has been measured by setup described 
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earlier. Figure 4.3 shows the measured and simulated result for dipole antenna printed on 

etched silicon substrate. As it can be seen, there is a frequency shift in response of the 

measured result. This change can be attributed to uncertainty about exact value of Silicon 

dielectric constant.  There is no reliable reference presenting exact value of silicon 

dielectric constant at W-band. To have correct model of substrate at simulation, dielectric 

constant needs to be determined. So, the next section of this thesis will be about finding 

value of silicon dielectric constant based of available methods. 

 

Fig.  ‎4.3 Simulated and Measured S11 for dipole antenna  

Figure 4.4 shows simulated and measured result for a sample patch antenna from previous 

work.   
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(a) Simulated patch antenna with its reflection coefficient 

 

 

 

 

 

 

(b) Fabricated patch antenna with its reflection coefficient 

Fig.  ‎4.4 Measured and simulated result for sample patch antenna 

4.2 Dielectric constant measurement:  

 There is uncertainty about the dielectric constant of substrates such as silicon at W-band 

frequencies. Silicon dielectric uncertainty effect becomes very important for the design and 
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simulations of RF circuits and antennas on silicon substrates. Designing an antenna on a 

substrate with inaccurate value of dielectric constant will change antenna performance and 

shift the resonance frequency in practice which causes large discrepancies between 

simulated and measured results. Simple and applicable methods for measuring the 

permittivity of the substrate are always in great interest of the microwave circuit and 

antenna designers.  

There are various methods for measuring dielectric constant including dielectric 

waveguide, cavity resonator, open resonator and free space method which is more suitable 

for wideband measurement [7]. In free space method, the dielectric constant is measured 

based on either the transmission method or metal backed method [8-9]. Metal backed 

method is better for very thin dielectric samples. However, some disadvantages such as 

edge diffraction and multiple reflections are associated with the free space method. Edge 

diffraction can be minimized by using spot focus antenna which produce Gaussian beam by 

mean of lens and also taking the sample size large enough, while time domain filtering and 

LRL (line, reflect, line) calibration technique can be used for multiple reflection problem.  

Using amplitude and phase information it is possible to derive both real and imaginary 

parts of dielectric constant. However, it is possible to derive only the real part just using the 

phase information of either transmitted or reflected signal. In this work, two approaches are 

applied to bring out the real part of silicon dielectric constant based on transmission and 

reflection type measurement method. Note that no calibration and time domain filtering is 

utilized in the measurements. The transmitter and receiver antennas which are used in the 

measurement set-up have wide beamwidth far away from Gaussian beam. Only the phase 

information of the transmitted signal is used to determine the real part of the permittivity. 

4.2.1 Theory of dielectric constant derivation 

Travel time of EM wave is different for different Medias and this time difference can be 

interpreted as phase difference in frequency domain. A slab of silicon wafer with dielectric 
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constant of ε1 is placed in the far fields of the two horn antennas as shown in Figure 4.4. 

Thickness of the DUT is supposed to be d1, while d0+d1 is the total distance between the 

two antennas. Impedance variation in the direction of wave propagation will cause multi-

reflections inside the silicon sheet and infinite series of rays with different phase difference 

will be picked up by the receiver antenna (Ant. 2 in Fig. 1). S21 between two antennas can 

be calculated for the configuration of the Figure 4.4 which is confined to the air (ε0) at 

both sides of the DUT.  

 

Fig.  ‎4.5  Schematic of the Measurement Setup 

Analytical relation for S21 is obtained as follow, 
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( ‎4.1) 

where T21 and T12 are transmission coefficients from air to dielectric and vice versa, 

respectively. 

Г12 is reflection coefficient from dielectric to air and is defined as: 
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( ‎4.2) 
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and 

0
, 0 ,1

i i
k i   

 
( ‎4.3) 

which is wave-number in each of the media. 

Accurate measured phase between transceiver antennas will be 
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( ‎4.4) 

which is deduced from relation (4.1). We can use phase of the measured S21 and (4.4) with 

determined d0+d1 and d1 to calculate the permittivity of silicon at the measured frequency. 

In this case, accurate values of measured phase, transceiver antennas spacing and dielectric 

thickness is needed to achieve accuracy in the calculated   . 

In the proposed method, phase of S21 is measured in two cases; 1) Silicon sheet is placed 

between the antennas. 2) Silicon is absent between the antennas. 

Phase difference between two cases can be calculated by subtracting relation in (4.4) when 

the silicon is between the antennas and silicon is replaced by air (by setting εr =1 or Г=0 in 

(4.4)). 
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( ‎4.5) 

The calibrated formula is independent of the spacing between the antennas. If multiple 

reflections are neglected, one can obtain a closed form expression for the solution which is 

given by 
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1 0 1 1
( ) 2 ( 1)

r
k k d fd c      

 
( ‎4.6) 

by replacing Г=0 in (4.5). Although evaluated εr in (4.6) cannot achieve a good 

approximation due to neglect multiple reflections, but, (4.6) can easily be solved for 

relative dielectric constant as given in (4.7). 

2

1
(1 (2 ) )

r
c fd    

 
( ‎4.7) 

To suppress the effect unwanted reflection absorber material can be used to make a 

reflection free environment for measurement. Figure 4.5 shows the implemented setup. 

Two standard horn antenna used as transmit and receive antenna. Absorber material is 

placed in different side to avoid undesired reflections from floor and surrounding objects. 

These reflections can cause error in measured result. Another method to omit unwanted 

reflections is to use time domain gating which is possible with PNA network used in our 

measurement. However, only absorber material is used to get rid of reflections.  The 

measurement is done using the setup implemented as in Figure 4.5. The phase difference 

between Silicon slab with 500um and air is shown in Figure 4.6 and corresponding 

dielectric constant is depicted in Figure 4.7.     
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Fig.  ‎4.6 Implemented Dielectric Setup 
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Fig.  ‎4.7 Measured Phase Difference versus Frequency 
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Fig.  ‎4.8 Calculated dielectric constant 

Calculated dielectric constant for Silicon can be used for later simulation modeling at full 

wave simulators. This will allow avoiding frequency shift in response of simulated and 

measured result.  
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CONCLUSION AND FUTURE WORK 

 

 

 

 

In this thesis a design of reliable antenna system for automotive radar system at 77GHz is 

studied. Various type of antenna including dipole antenna and patch type antenna can be 

used for this purpose. The choice of the antenna is done based on the radar system range 

(gain requirements), ease of fabrication, possibility of integration with other circuitry and 

cost. At 77GHz since the size of antenna is small, it is possible to think about on chip 

antenna design which can integrate the antenna and rest of RF circuitry and make radar 

compact and cost effective. For this purpose, a design of different antenna like patch, 

dipole, slot type antenna on Silicon substrate is studied. Patch antenna is selected for final 

assembly based on the criteria mentioned for 77GHz radar system like gain and fabrication 

consideration. However, the original antenna on silicon substrate suffers from low gain due 

to Silicon loss and gain and pattern distortion due to excitation of surface wave. Two 

approaches is taken to overhaul the problems. First, available etching technique is used to 
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remove the substrate under the radiating antenna to improve the radiation properties. 

Second, Electromagnetic band-gap structure is used to filter the unwanted surface wave 

inside the Silicon substrate. Moreover, further gain improvement is done by array of 

proposed patch antenna. This also gives the radar system the beam steering option. All the 

simulations are carried out by FEM based simulator, HFSS. The accuracy of the simulated 

result is verified with antenna measurement setups implemented at SUNUM laboratory. 

Antenna setup enables us to conduct S parameter, impedance and radiation pattern 

measurement. Conducting measurement at this frequency range is a little bit of challenge 

and requires high tech devices and good practice. A sample of single antenna and antenna 

in array configuration are realized at IHP Company. Measured results for reflection 

coefficient of sample dipole antenna from previous works reveal that there is frequency 

shift between simulated and measured result. This shift can be attributed to the uncertainty 

about dielectric constant of the Silicon at W-band frequency. In simulation, dielectric 

constant is assumed to be 12 (low frequency model) for Silicon. However, the difference 

between simulated and measured result reveals stringent need for knowledge about exact 

value of Silicon dielectric constant at W-band. So, another chapter is devoted to study the 

methods of determining the exact value of the Silicon dielectric constant at W band 

frequency range. Among various techniques, free space method is chosen with two 

standard horn antennas as transmitter and receiver. Propose free space method is based on 

phase information of transmitted signal for different case; the silicon slab between and air. 

From the phase difference between these two measurements, the dielectric constant of 

silicon is derived. Advantage of free space is its wideband operation and simple 

implementation. A dielectric measurement setup is prepared to do the experiment. 

Measured result seems to properly model for silicon. This result is used to accurately model 

Silicon substrate for next simulations.  

Throughout this thesis, we tried to design reliable antenna system for 77GHz radar system 

and the focus was on designing on chip antenna. However, antenna design on substrate like 

Silicon has its own drawbacks. Proposed solutions can mitigate the problems not 

completely but to some extent.  Moreover, the cost of realizing overall chip at foundry is 
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high for moderate size chip and the price keeps increasing exponentially with the size of 

chip. Future research study can be focus on designing on chip antenna by replacing the 

silicon with another low loss, low dielectric constant substrate like FR4. This is possible by 

using wire-bonding techniques to still keep the single chip solution valid for proposed 

circuitry. For example, the active circuitry can be realized by foundry process and antenna 

can be fabricated with low cost printed board technologies. For final assembly, antenna and 

active part can be connected by wire-bonding techniques.          
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