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Müjdat Çetin
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ABSTRACT

We present an Augmented Lagrangian Method (ALM) for
solving image reconstruction problems with a cost function
consisting of multiple regularization functions and a data fi-
delity constraint. The presented technique is used to solve
inverse problems related to image reconstruction, including
compressed sensing formulations. Our contributions include
an improvement for reducing the number of computations re-
quired by an existing ALM, an approach for obtaining the
proximal mapping associated with p-norm based regulariz-
ers, and lastly a particular ALM for the constrained image
reconstruction problem with a hybrid cost function including
a weighted sum of the p-norm and the total variation of the
image. We present examples from Synthetic Aperture Radar
imaging and Computed Tomography.

Index Terms— Augmented Lagrangian Method, Image
Reconstruction, Compressed Sensing, Alternating Direction
Method of Multipliers, Sparsity

1. INTRODUCTION

We consider the problem of image reconstruction using con-
strained optimization techniques. Our technique enables
the successful reconstruction of images containing combi-
nation of sparse and piecewise-constant features. We model
the scene as comprising of sparse and piecewise-constant
features and solve the associated constrained optimization
problem with a hybrid cost function, in a computationally
efficient way thanks to Alternating Direction Method of
Multipliers (ADMM), which is an Augmented Lagrangian
Method (ALM).

ADMM techniques have been applied to signal and im-
age recovery problems with success [1, 2]. ADMM provides
a divide-and-conquer approach by splitting unconstrained
multi-objective convex optimization problems, augmenting
the Lagrangian with a norm-squared error term, and using a
nonlinear block Gauss-Seidel approach on the resultant terms
in the optimization problem. The resulting algorithm exhibits
guaranteed convergence under mild conditions [2].

In this paper, we propose a particular ADMM to solve a
constrained optimization problem with the cost function given
by a weighted sum of the p-norm and the total variation, for
image reconstruction. In addition, we provide an approach
for obtaining the proximal mapping associated with p-norms,
together with an associated iterative reweighting algorithm
within the ALM framework. We also present a computa-
tional improvement on a particular ADMM, called C-SALSA
[2], when measurements are in a unitary transform domain,
such as in Fourier space, as in synthetic aperture radar (SAR)
and computed tomography (CT). We provide examples with
a modified Shepp-Logan phantom simulation and TerraSAR
data [3] to illustrate the benefits of the proposed method.

2. BACKGROUND

2.1. Observation Model

Many imaging problems, including SAR and CT, can be accu-
rately modeled by linear operators in relating the vector con-
taining image pixels to the data vector. Let the image vector
be constructed by sequentially indexed pixel-values x ∈ CN

and the observation kernel by the matrix B ∈ CM×N , which
relates x to the measurement vector y ∈ CM :

y = Bx + n, (1)

where n ∈ CM is the additive noise vector, typically from a
normal distribution. In this paper, the data are assumed to be
in the spatial Fourier domain (on a rectangular grid), therefore
a two-dimensional Fourier transform operator relates the data
vector to the unknown image. For CT, 1-D Fourier transforms
of linear projections through Radon transformation yield the
measurements in the Fourier space on radial lines. Similarly,
spotlight-mode SAR phase history data lie on a polar grid in
the spatial Fourier transform domain. Such data can be inter-
polated to a rectangular grid.



Algorithm 1: C-SALSA [2]
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10. until some stopping criterion is satisfied.

2.2. Image reconstruction with priors

A constrained linear image reconstruction formulation in-
volves solving the optimization problem

minimize
x

φ(x)

subject to ‖Bx− y‖2 ≤ ε
(2)

where φ(x) is the penalty function appropriately selected ac-
cording to the reflectivity characteristics of the image, and the
norm of the error in the data is prescribed to be smaller than a
radius ε, that can be typically estimated from data. Depending
on the selection of the penalty function φ(x), the characteris-
tics of the reconstruction vary. In what follows, we consider
the special cases with the p-norm ‖x‖pp (p ≤ 1) and the total
variation of the image magnitude TV (|x|).

C-SALSA [2] (see Algorithm 1) is an ADMM technique
for image recovery problems that benefits from the Aug-
mented Lagrangian and variable splitting to efficiently solve
problems of the form (2). The steps of C-SALSA include
Moreau proximal mappings

Ψφ(v) = proxφ(·)(v) = arg min
x

φ(x) +
µ

2
‖x− v‖22 (3)

such as those in steps 5 and 6 that are easy to implement,
by soft thresholding for φ(x) = ‖x‖1, Chambolle projec-
tions [7] for total variation φ(x) = TV (x), and orthog-
onal projection ΨιE(ε,I,y)

(s) onto the hypersphere for the
data fidelity constraint, treated in an unconstrained form
as an indicator function ιE(ε,I,y) of the set E(ε, I,y) ={
x ∈ CN : ‖x− y‖2 ≤ ε

}
. For further details, see [2].

3. PROPOSED APPROACH

In this section, we propose an algorithm based on ALMs,
that involves (i) several improvements related to the num-
ber of transforms required in C-SALSA, (ii) proximal map-
pings associated with p-norms as well as an associated iter-
ative reweighting algorithm, and (iii) a hybrid cost function

composed of a weighted sum of p-norm and total variation
regularizers as well as an associated ADMM algorithm.

3.1. Improved C-SALSA for Unitary Transforms

C-SALSA requires several transformations in each iteration.
For many imaging problems including SAR and CT, the data
can be considered as gathered in the spatial frequency do-
main. As such, when the transformation matrix is unitary,
we suggest that the number of transformations necessary for
step 4 of C-SALSA can be further reduced. In such cases, the
matrix B associated with the transformation can be decom-
posed as B = MU, where U is unitary and M represents a
binary masking operator defining which entries are observed
as measurements [2], so that, by Woodbury’s identity [2]:(
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2
UHMHMU. (4)

Following the definition of rk in step 3 of C-SALSA, we have:
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Together with BBH = I, it immediately follows that:
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Again, using BBH = I we arrive at:
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Therefore, using Eq. (7), step 4 of C-SALSA can be solved
using only one Fourier transform. Using Eq. (9), the vec-
tor Bxk+1 can be substituted in steps 6 and 8 of C-SALSA,
without the need for a Fourier transform. The entire algo-
rithm now requires only one 2-D FFT and one 2-D IFFT per
iteration, instead of 4 FFTs suggested in [2] using Eq. (4).

3.2. Iteratively Reweighted Augmented Lagrangian Method
(IRWALM)

Iterative reweighting has been applied in the context of solv-
ing non-convex optimization problems using known and sim-
ple proximal mapping functions [4].

Here, we provide a further refinement to C-SALSA, in-
spired by the effectiveness of p-norms used in the objective



function, as they have the potential to improve sparsity with
p < 1. This general idea was first introduced in [5]. Here
we present an approach for obtaining the proximal map-
ping associated with the p-norms. While the direct use of
p-norms with p < 1 renders (2) non-convex, thus voiding
any guarantees of global optimality; a locally-optimal solu-
tion is found nonetheless. A quasi-Newton method with a
Hessian update scheme has been previously used success-
fully in a feature-enhanced SAR imaging context [6]. Here
we apply the ADMM techniques for (2) with φ(x) = ‖x‖pp,
with an approach we call Iteratively Reweighted Augmented
Lagrangian Method (IRWALM), starting with the proximal
mapping definition:

prox‖·‖p(v) = arg min
x
‖x‖pp +

µ

2
‖x− v‖22 (10)

To solve this equation, we take its derivative with respect to x
and set it equal to 0 to obtain the reweighted mapping as:

prox‖·‖p(v)[i] =
1

w[i]
soft(w[i]× v[i], p/µ). (11)

where v[i] denotes the ith element of the vector v, and w is
the (re-)weighting vector in each iteration. Adding a small
regularizer β to w as w[i] = (v[i] + β)(1−p) is helpful in
practice to avoid numerically unstable divisions [4].

3.3. Hybrid IRWALM

Hybrid cost functions have been employed previously [6,8,9]
with success in the context of sparsity-enhanced / compres-
sive SAR imaging. In this paper, we propose an ADMM to
solve the constrained optimization problem with the hybrid
cost function:
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]
and G = [I; I; B], where

the semicolon ‘;’ denotes vertical stacking, we aim to solve:

minimize
x
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by setting P = G,Q = −I,m = 0, f1(x) = 0, f2(z) =
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ensures that Gx = z, and consequently: x = z(1) =
z(2),Bx = z(3). In the results section, we have chosen φ1(·)
= ‖ · ‖pp and φ2(·) = TV (·). We have worked with problems
involving a unitary transform domain, namely, partial Fourier
observations. To solve the linear system associated with the
x update, we use Woodbury’s identity:

(2I + BHB)−1 =
1

2
(I− 1

3
BHB). (14)

along with the formulation presented in Section 3.1, resulting
in the computational steps provided in Algorithm 2.

Algorithm 2: Hybrid IRWALM
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12. k ← k + 1
13. until some stopping criterion is satisfied.

4. RESULTS

The algorithm is implemented in MATLAB, where the Cham-
bolle projections are called from a mex function. The exper-
iments were conducted on a workstation with Intel Core i5-
3470 CPU and 8 GB of RAM. All values are initialized to zero
except for z

(3)
0 = y. The inner iterations for Chambolle pro-

jections [7] are repeated 5 times per outer iteration. We have
chosen µ as 300, and stopping criterion as ‖z(1)k+1 − z

(1)
k ‖22 <

10−3 and ‖z(2)k+1−z
(2)
k ‖22 < 10−3 or 200 iterations maximum.

In order to study the effect of the hybrid cost function,
we consider an image from TerraSAR [3]. A relative weight-
ing of α1 = 0.8 for p = 0.8-norm and α2 = 0.2 for total
variation of the image magnitude is chosen. Figure 1 shows
the reference image, the binary spectral mask (where the ratio
of available data samples relative to those used for the refer-
ence image is 39%), as well as conventional, p-norm, min-TV,
and hybrid reconstructions. The contrast across piecewise-
constant features are improved by using the hybrid-cost sig-
nificantly relative to the p-norm reconstruction, while better
maintaining super-resolution features compared to the min-
TV solution. Table 1 shows the imaging times of our pro-
posed IRWALM approach compared to Feature Enhanced Re-
construction Method (FERM) [6], which involves another al-
gorithm for solving the sparse optimization problem, for the
TerraSAR example. The computation times and cost func-
tion values given are averages over 20 consequent runs. The
proposed hybrid IRWALM is computationally more efficient,
and bears a potential for parallel implementation.

Next, we provide an example from Computed Tomogra-
phy where the data in the spatial frequency domain are ob-



Fig. 1. Reference TerraSAR image (upper-left); binary mask
in Fourier space (upper-right); and reconstructions: conven-
tional (middle-left), 0.8-norm (middle-right), min-TV (lower-
left), hybrid-cost (lower-right)

tained in pixels on radial lines [10]. The ratio of available
samples in the spatial frequency domain relative to the full
number of samples is 6%. Fig. 2 shows the original image
(Shepp-Logan phantom with added sparse components), the
spectral lines where data are available, conventional recon-
struction with zero-filling, and reconstructions with 1-norm,
min-TV, and hybrid cost functions. Note that the reconstruc-
tion with only total variation as the cost function does not per-
form as well as the reconstructed images with the hybrid cost
function, especially for circular components in the image, and
the 1-norm reconstruction is not as successful either.

5. DISCUSSION

We have proposed an efficient method based on Augmented
Lagrangian Methods for constrained imaging problems with
hybrid cost functions. The suggested improvements over the
C-SALSA technique include the reduction of the number of

Fig. 2. Original phantom (upper-left); binary mask in
Fourier space (upper-right); and reconstructions: conven-
tional (middle-left), 1-norm (middle-right), min-TV (lower-
left), hybrid-cost (lower-right)

FFTs in each iteration, an iterative reweighting enabling the
use of p-norms in the cost function, and an ADMM for hyb-
rid cost functions. Results for SAR and CT imaging exam-
ples demonstrate the desirable performance of our approach
in terms of image reconstruction quality, as well as computa-
tional improvements it provides over another sparsity-based
algorithm.

Mask tFERM tIRWALM
εIRWALM
εFERM

cost(xIRWALM)
cost(xFERM)

Rand (39%) 11.87 s 2.78 s 1.00 0.96
Rand (22%) 15.33 s 2.82 s 1.00 0.96
Rand (12%) 23.01 s 3.55 s 1.00 0.90
Rand ( 6%) 30.20 s 3.35 s 0.99 0.98

Table 1. Computation times, error- and cost-ratios for FERM
and Hybrid IRWALM
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