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ABSTRACT  
 

Tsunamis produce a wealth of quantitative data that can be used to 

improve tsunami hazard awareness and to increase preparedness of the 

population at risk. These data also allow for a performance evaluation 

of coastal infrastructure and observations of sediment transport, erosion 

and deposition. The interaction of the tsunami with coastal 

infrastructures and with the movable sediment bed is a three-

dimensional process. Therefore, for run-up and inundation prediction, 

three-dimensional numerical models must be employed. In this study, 

we have employed Smoothed Particle Hydrodynamics (SPH) to 

simulate tsunami run-up on idealized geometries for validation and 

exploring three-dimensional flow structures in tsunamis. We make use 

of the canonical experiments for long-wave run-up for breaking and 

non-breaking waves. The results of our study prove that SPH is able to 

reproduce the run-up of long waves for different initial and geometric 

conditions. We have also investigated the applicability and the 

effectiveness of different viscous terms that are available in SPH 

literature. Additionally, a new breaking criterion based on numerical 

experiment is introduced and its similarities and differences with 

existing criteria are discussed. 
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INTRODUCTION 
Large traveling water waves over the ocean, usually caused by 

earthquakes, submarine landslides, or volcanic eruptions, are known as 

tsunamis. Tsunamis have been causing considerable widespread 

damage and loss human of lives. Since tsunamis are characterized as 

water waves with long periods and wavelengths, for the research 

application, it is practical to consider them as solitary waves. These 

waves near the coastal area are usually investigated analytically using 

either Boussinesq or shallow-water-wave equation. The Boussinesq 

approximation is valid for weakly-nonlinear and long water waves. The 

set of equations for the later approach can be directly derived from the 

former ones by neglecting the dispersion effects and the vertical 

accelerations. Both sets of equations are characterized by the high wave 

length to water depth ratio. Shallow water waves have been studied 

through laboratory experiments for decades (Synolakis (1987); 

Pedersen & Gjevik (1983)). Also, elegant analytical solutions of the 

shallow water equations were developed by Synolakis (1987) and 

Pedersen & Gjevik (1983). As in the case of any other wave, the 

solitary waves can break. Although breaking and nonbreaking waves 

have been extensively studied in the laboratory (Synolakis (1986, 

1987); Pedersen & Gjevik (1983)), the theoretical understanding of 

breaking solitary waves is incomplete because of the limiting boundary 

and initial conditions that are necessary to find a meaningful analytical 

solution. Even though the shallow-water type of equations can 

incorporated with higher-order derivatives to simulate dispersion and 

other nonlinearities, their results are mainly limited by some critical 

assumptions such as two-dimensionality. In the last two decades, the 

SPH method has become an important tool in outreach efforts and 

testing future engineering designs as well as in tsunami research. 

Extensive SPH simulations have been conducted in order to study the 

dynamic behaviors of such waves (Landrini et al. (2007), Khayyer et al. 

(2008)). Nevertheless, most of the available SPH simulations in 

literature are two-dimensional and the effects of viscosity and/or 

turbulent viscosity are neglected. The simulation of nonbreaking and 

breaking solitary waves with three-dimensional numerical models 

offers an alternative approach to explore the linear and nonlinear 

physical processes occurring during near-shore propagation, run-up and 

withdrawal of solitary waves. Recent developments in computer 

technology and the better understanding of numerical methods have 

provided the opportunity to carry out massively parallel simulations of 

fluid mechanics on a very small scale. Hence, it is possible to solve the 

fully three-dimensional Navier-Stokes equations. Here, we have 

employed a three-dimensional Lagrangian approach to simulate the 

dynamics of breaking and nonbreaking solitary waves thereby 

introducing some new insights about the behavior of these waves.  

 

GOVERNING EQUATIONS 
The governing equations employed in our modeling efforts are the 

conservation of mass and momentum equations, which are written in 

the Lagrangian form as: 
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wherein     is the velocity vector,   is the pressure,   is the time,   is the 

density,    is the gravitational acceleration vector,   is the laminar 



 

kinematic viscosity and                 is the material time 

derivative operator. 

Nonlinearities in fluid flow generate hydrodynamic instabilities that 

cause the generation of coherent structures and other turbulent features. 

To adequately take turbulence and the dissipation of turbulent energy 

across a wide spectrum of spatial scales into account, two avenues can 

be taken, namely, Direct Numerical Simulations (DNS), and averaging 

techniques to dissipate turbulent energy that is of a subgrid spatial size. 

One example for the averaging technique is Large Eddy Simulation 

(LES), which features a filter technique for subgrid turbulence, but is 

capable of resolving larger scale turbulent features. For the SPH 

method, a spatial filter is applied on Eqs. (1) and (2). Then, the 

governing equations for the particle scale (PS) in Lagrangian 

representation (similar to grid scale in Eulerian representation) can be 

introduced as: 
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where the over bar symbol ‘-’ denotes mean or particle scaling 

component, and 

 

           
 

 
          

 

 
    

      
 

(5) 

is the turbulent stress tensor representing the interaction of the 

unresolved small motions or the sub particle scales (SPS) on the 

resolved large particle scales. In Eq. (5),   is the initial particle spacing 

and    is the identity tensor. The eddy viscosity    is calculated from the 

standard Smagorinsky model as  
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in which                  is the local strain rate, and    is the 

deformation rate tensor defined as 
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The    and    are empirical constant with as             and 

        (Blinn et al. (2002); Dalrymple & Rogers (2006)). 

 

SMOOTHED PARTICLE HYDRODYNAMICS 
Being successful in simulating various fluid mechanics applications 

within the last decade, SPH has received increased attention among the 

meshless approaches. Owing to its Lagrangian nature, it has unique 

advantages to deal with fast flow dynamics problems (i.e., no 

convective term in momentum equation). Additionally, being a member 

of meshless particle family, fluid flows with large deformations, 

interfaces and free surfaces can be treated inherently in a relatively easy 

manner (Zainali et al., 2013). In this method, particles refer to 

integration point, which carry all hydrodynamic properties and can 

move freely. The hydrodynamics properties of a given particle are 

calculated from weighted contributions of neighboring particles 

through using a weighting/kernel function. Neighboring particles 

include those that are in the environs of the base particle, called 

compact support domain. The integral estimate or the kernel 

approximation for an arbitrary function        can be introduced as 

(Monaghan, 1992) 
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where         , here after represented by    , is a smoothing or 

kernel function, the angle bracket    denotes the kernel 

approximation and the length   defines the supporting domain of the 

particle of interest. Apparently, the type of kernel function and the 

smoothing length are two important input parameters that control the 

accuracy and computational costs of the SPH method. Here,     is the 

length of the distance vector (     =       ) between the particle of 

interest   and its neighboring particles   and     and     are the position 

vectors for particles   and  , respectively. 

Replacing the integration in Eq. (8) with SPH summation over   

neighboring particles   and setting          , one can write SPH 

interpolation for an arbitrary field    as 
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The SPH approximation for the gradient of the same function can be 

introduced as 
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or in the conservative way as 
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It is noted that the above equation is asymmetric with respect to 

particles   and  . Following the Monaghan (1992), the laminar viscous 

term in the linear momentum balance equation is represented by 
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Throughout the present simulations, the compactly supported three-

dimensional Wendland kernel function is used, which are given in the 

form of (Wendland, 1995) 
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where               for 3-D simulations and   is defined as 

       .  

Applying discrete SPH formulations to the governing equations, the 

continuity and momentum balance equations can be expressed as, 
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The numerical scheme used here is the predictor-corrector scheme 

introduced by Monaghan (1989). In the current work, an open source 

massively parallel computing C + + code, so called GPUSPH, is used. 

GPUSPH (www.gpusph.org) computes the three main components of 

the SPH method, namely, neighbor list construction, force computation, 

and the integration of the equation of motion, on a Graphical 

Processing Unit (GPU) using the Compute Unified Device Architecture 

(CUDA) developed by Nvidia. Further details on the discretization of 

model equations and its CUDA implementation can be found in the 

work of Herault et al. (2010). 

 

 

 

 

http://www.gpusph.org/


 

Table 1: Sensitivity of the numerical solutions to the particle resolution evaluated based on Run-up. 

 very coarse coarse medium fine very fine 

Initial particle spacing,       0.03 0.025 0.02 0.015 0.01 

Total number of particles 24976 40080 75435 164322 505419 

Simulation time (s) 1.88×102 2.76×102 5.47×102 1.67×103 8.15×103 

Maximum relative wave run-up,     0.2775 0.3132 0.3221 0.3287 0.3245 

Error with respect to the last column, %  14.48 3.47 0.77 1.31 - 

Error with respect to the next succeeding column, %  11.41 2.72 2.05 1.31 - 

 
Fig. 1: 2D sketch of three dimensional numerical simulations. 

 

PROBLEM SETUP 
The geometrical setup for the long-wave experiments features a 

constant depth section that is followed by a sloping beach. Fig. 1 

depicts the geometric setting of the long-wave run-up problem. 

Parameter    represents the length of the constant depth part, while    

denotes the projected length of the sloping beach. The slope is  . The 

length of the setup is        . The height is chosen in a way that 

the maximum run-up   does not exceed the height of the setup (the 

run-up is estimated with run-up laws provided later). Length   is a 

function of the slope angle and the water depth  . The width of the 

computational domain is constant for all test cases at         . 
The origin of the coordinate system (   ,     and        ) is 

located at the far left end. Waves are generated by a piston wave 

maker located near the left edge.  

To generate long waves with the shape of 
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(16) 

we employ the wavemaker function: 
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(17) 

which is similar to the one suggested by Goring (1978). Here, 

         ,          , and   is the desired wave 

amplitude.  

Sample position and velocity of the piston for the relative wave 

height         and still-water level of           are shown in 

Fig.2. As can be seen in this figure, the trajectory of the paddle is 

such that it can produce a perfect solitary wave with a desirable wave 

height. 

 

RESULTS 
In this study, the density and the kinematic viscosity of the fluid are 

set to                and              , respectively. The 

gravitational force    acts only in downward direction (  direction) on 

all particles with the numerical value of              . The slope 

  ranges from       to    . The SPS turbulent model is employed in 

all test cases unless stated otherwise.  

 

 
Fig. 2: Sample position (up) and velocity (down) of the paddle. 

 

The boundaries are treated as solid walls, and the no-slip and zero 

pressure gradient boundary conditions are imposed using the 

Monaghan-Kajtar method (Monaghan & Kajtar (2009)). In the SPH 

method, particles may tend to readjust their initial positions giving 

rise to spurious current generally in regions where the kernel is 

truncated, i.e. near solid boundaries and free surfaces 

(Monaghan(1994); Colagrossi et al. (2012)). At initial time steps, this 

situation may result in unwanted disturbances in the water column 

and the free surface. To circumvent such effects, we have waited for 

three seconds before the wave maker starts to move.  

We have performed a limited parameter study comprising more than 

50 individual simulations. To investigate the sensitivity of the 

numerical solutions to the number of particles, the relative maximum 

run-up (   ) for a slope of       with         and   
        is computed for the very coarse (          ), coarse 

(           ), medium (          ), fine (           ) 

and very fine (           ) particle spacing.  In this work, the 

maximum run-up height is defined as the y-position of a particle 

having the largest x-position provided that the particle in question has 

a prescribed number of neighbors thereby excluding free-surface 

particles isolated from the fluid body completely. This predefined 

neighbor number is dependent on simulation parameters such as 

beach angle, wave height, among others (i.e., in this study, it is 

around 10 particles, which is determined through conducting several 

test simulations and visually monitoring the run-up distance).    

 



 

 
Fig. 3: Simulation results for non-breaking waves. 

 

Table 1 shows the convergence study based on relative maximum 

wave run-up. It is found that for a very coarse spacing, the run-up 

over offshore depth ratio,    , has an approximately 15 % error in 

comparison to the one obtained by the very fine particle spacing. This 

error decreases down to 2 % for the medium particle spacing. Also 

given in the table is the amount of time needed to simulate one 

second of real time in the model. There is an order of magnitude 

difference between the very coarse and the finest particle spacing test 

cases. It seems that the medium spacing represents a good trade-off 

between accuracy and computational cost. Therefore, intermediate 

particle number is chosen for numerical simulations presented in this 

study (i.e.           ). It is noted that simulations are performed 

on a single Nvidia Tesla M2075 device with 448 CUDA core and 

Linux (64 bit) operating system.  

For practical reasons, the wave run-up is an important measure for 

solitary waves on a sloping beach. Depending on the water height, 

wave amplitude, and the angle of the sloping beach, the run-up is 

different for breaking and nonbreaking waves. Synolakis (1987) 

derived the following run-up law for nonbreaking waves: 

Table 2: Reported test cases for non-breaking waves. 

                

0.019 2.884 0.31 0.0603 

0.021 2.884 0.2914 0.1246 

0.1 10 0.4 0.3077 

0.15 10 0.4 0.4837 

0.2 10 0.4 0.6637 

0.1 15 0.4 0.2947 

0.15 15 0.4 0.4357 

0.2 15 0.4 0.6012 

0.05 20 0.4 0.1745 

0.1 20 0.4 0.3221 

0.15 20 0.4 0.4582 

0.2 20 0.4 0.6172 

0.25 20 0.4 0.7772 

0.3 20 0.4 0.9063 

0.35 20 0.4 1.1552 

0.4 20 0.4 1.3531 

0.1 20 0.2 0.2781 

0.2 20 0.2 0.4645 

0.3 20 0.2 0.6835 

0.1 25 0.4 0.2861 

0.15 25 0.4 0.4673 

0.2 25 0.4 0.6172 

0.1 30 0.4 0.2583 

0.15 30 0.4 0.4583 

0.2 30 0.4 0.6515 

                             . 

 

(18) 

Fig.3 shows the relative maximum run-up of solitary waves climbing 

up on different beaches versus the normalized wave height. The 

numerical results of the current simulations plotted in this figure are 

summarized in Table 2. Close agreement among the run-up law 

equation (Eq. 18), selected experimental data (originally collected in 

Table T3.2 by Synolakis (1986)), numerical calculations of (Pedersen 

& Gjevik (1983); Heitner & Housner (1970); Kim et al. (1983)) and 

the current simulation results is observed. 

Increasing the wave height changes the regime of flow from the non-

breaking solitary wave to the breaking ones. Pedersen & Gjevik 

(1983) suggested that the waves break when 
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Later, based on nonlinear analysis, Synolakis (1986) developed the 

following weaker restriction 

 

                       . (20) 

 

Eq. (19) differs from Eq. (20) due to the fact that the first one 

indicates the border for the wave height at which a solitary wave 

breaks during the washback while the second criterion shows the 

limit at which a solitary wave first breaks during the run up. Stating 

otherwise, the wave that has not been broken during run up might get 

broken during the washback. However, both criteria indicate that with 

increasing beach angle   and/or still water height  , the system will 

have more non-breaking waves. 

Synolakis (1987), based on laboratory beach findings, reported that 

washback waves break at           and a break during run up 

occurs when          , which are different from the values 

calculated using Eqs. (19) and (20), respectively. The main reason for 

the differences between the theory and experimental results is that the 

analytical solution for modeling run-up is based on shallow-water-

wave formulas that involve several simplifications.  Furthermore, he 

mentioned that the asymptotic result from the run-up law (Eq. (18)) is 

also valid for all waves, which first break during the washback. 

However, for the run-up breaking waves, he reported the correlation  
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(21) 

 

 
Fig. 4: Relative maximum run-up as a function of relative wave 

amplitude for both breaking and non-breaking waves. 

 

 

for the relative maximum run-up. Referring to Fig.4, our numerical 



 

simulations indeed generate a similar behavior as elaborated above, 

but the values of the relative wave amplitude obtained numerically 

for breaking waves are somewhat higher than those of the 

experiment. These values are         and         for the 

waves that break during washback and run-up respectively. These 

discrepancies can be attributed to difference in the angle of sloping 

beach for the experimental and current numerical studies. 

Furthermore, it can be seen from Fig.4 that the numerically calculated 

    values are quite well represented by the run-up law in Eq.(18) 

up to         (recall that the waves with         does not 

break during the run-up). We also found that the correlation  
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(22) 

is well representative for run-up breaking waves (i.e.        ) on 

the numerical beach. Since the current numerical simulations have 

both higher beach angle   and still water height  , they contain more 

non-breaking waves. Therefore, waves for numerical experiments 

first break during the run-up at higher relative wave amplitudes     

confirming the analytical solutions in Eqs. (19) and (20). 

Although a change in slope appears in a higher relative wave 

amplitude    , it can be seen from Fig. 4 that the two correlations 

for the breaking waves (Eqs. (21) and (22)) are almost parallel to 

each other and the curves follow the same behavior meaning that this 

slope change appears at the transition region from the non-breaking 

to breaking waves. Fig.5 illustrates the simulated run-up and 

washback of a solitary wave with the relative wave amplitude of 

         and          . As seen in this figure, as the wave is 

reaching the inclined beach, a fluid jet start to appear on the highest 

part of it (refer to dimensionless times           and    
      ). This jet impinges on the tail of the front wave body and it 

breaks first during the run-up (refer to dimensionless times    
       and          ). At this time step strong transport of 

momentum takes place and turbulent mixing of energy occurs. 

Afterwards fluid continues to run-up. Breaking the waves during the 

run-up and turbulent diffusion of energy due to the eddy viscosity is 

the main reason for the slope change appeared in Fig. 4. Since some 

portions of energy are diffused, the wave has a less energy compared 

to the initial energy induced to the flow by the wave maker, so it 

climbs less height than the run-up law predicts.  

In later times, a steep front develops during the washback (refer to 

dimensionless times           and           ). Due to the high 

kinetic energy, the wash-backed fluid pushes the bulk fluid back near 

the plate and creates a roll up that entraps air inside it and collapses 

after the second impinging (refer to dimensionless times           

and          ). Meanwhile and till the end of the backwash the 

flow feels the intense turbulent mixing of energy (refer to 

dimensionless times           and          ). 

To assess the importance of the turbulent mixing and the eddy 

viscosity dissipation, it is important to investigate the shortcomings 

of the inviscid and/or laminar viscosity formulas if relevant. Table 3 

compares the result of the relative maximum run-up, the maximum 

velocities (      ), and vorticities (     ) obtained using three 

different viscosity formulas, namely SPS turbulence viscosity (SPS-

Vis), artificial viscosity (Art-Vis), and kinematic viscosity (Kin-Vis). 

Here, it should be noted that the vorticity is computed throughout the 

whole computational domain and its maximum value is reported in 

Table 3. For the Kin-Vis model, the values of the flow Reynolds 

number are       ,       , and        for three different 

    values given in Table 3, respectively, which are calculated based 

on the characteristic scales of maximum velocity and the wave 

amplitude as           . It can be seen from the Table 3 that the 

Kin-Vis always produces closer results to SPS-Vis in comparison to 

the Art-Vis in terms of relative maximum run-up. Due to its highly 

diffusive nature, the Art-Vis formulation (Monaghan, 1992) always 

predicts the smallest R/D values even for a very small artificial 

viscosity coefficient (here        is used). However, the Kin-Vis 

appears to be over predicting the values of the maximum velocities 

and the vorticities with respect to the SPS-Vis except the non-

breaking wave (i.e.,        ). This discrepancy comes from the 

fact that in Kin-Vis formulation, there is less amount of dissipation 

compared to the SPS-Vis, which is equal to the turbulent eddy 

viscosity. The discrepancy becomes more evident for the higher 

values of initial relative wave height, especially for those that cause 

air entrainment in the breaking waves. It is noted from the table that 

in comparison to the SPS-Vis, the Art-Vis always underestimates the 

maximum values of velocities and vorticities while Kin-Vis 

overestimates these values. Since the SPS modeling depends more on 

the properties of flow rather than the fluid, unlike Kin-Vis and Art-

Vis, one may expect that this model increase the accuracy of the SPH 

method especially in higher Reynolds number. Finally, it is further 

noted that except values with asterisk *, all maximum velocities and 

vorticities occurred during the backwash step of the wave breaking 

phenomena.  

 

CONCLUSION 
An SPH method GPUSPH has been used to study the long wave run-

up of breaking and non-breaking solitary waves. Three-dimensional 

numerical simulations were performed for numerous beach angle and 

initial dimensionless wave height. Simulation results are observed to 

be in good agreement with those corresponding to analytical solutions 

and experimental data in terms of maximum run-up. Having more 

non-breaking waves, it is illustrated that a change in slope in 

maximum run-up plots appears at higher values for higher beach 

steep angle. Additionally the effect of different viscosity terms is 

investigated. It is further observed that the use of an appropriate 

turbulent modeling in violent flows can improve the accuracy of the 

results especially for higher wave amplitudes and in turn for higher 

Reynolds numbers. 
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SPS-Vis 0.322 0.777 1.817 2.049 3.982 4.793 53.689 120.45 175.18 
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Fig. 5: Time evolution of a breaking wave during run-up (left) and washback (right). Here         . 



 

 


