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Abstract

In order to remedy the possible loss of strategic interaction in non-atomic games
with a societal choice, this study proposes a refinement of Nash equilibrium, strategic
equilibrium. Given a non-atomic game, its perturbed game is one in which every
player believes that he alone has a small, but positive, impact on the societal choice;
and a distribution is a strategic equilibrium if it is a limit point of a sequence of Nash
equilibrium distributions of games in which each player’s belief about his impact on the
societal choice goes to zero. After proving the existence of strategic equilibria, we show
that all of them must be Nash. We also show that all regular equilibria of smooth
non-atomic games are strategic. Moreover, it is displayed that in many economic
applications, the set of strategic equilibria coincides with that of Nash equilibria of
large finite games.

Journal of Economic Literature Classification Numbers: C72

Keywords: Nash equilibrium; Strategic equilibrium; Games with a continuum of players;

Equilibrium distributions

∗This is a revised version of chapter 4 in Barlo (2003). We thank Pedro Amaral, Kemal Badur, Ehud
Kalai, Narayana Kocherlakota, Andy McLennan, Han Ozsoylev, Aldo Rusticini, David Schmeidler, Jan
Werner and, specially, the editor Atsushi Kajii for helpful comments and suggestions. We benefited from
discussions in the Mathematical Economics Workshop at the University of Minnesota. Financial support
from Fundação para a Ciência e a Tecnologia is gratefully acknowledged. All remaining errors are ours.

†Corresponding Author: Faculty of Arts and Social Sciences, Sabanci University, Orhanli, Tuzla,
34956, Istanbul, Turkey; Phone: +90 216 483 9284; Fax: +90 216 483 9250 (CC. M. Barlo); email:
barlo@sabanciuniv.edu.

‡School of Economics, University of Surrey, Guildford, GU2 7XH UK; phone: +44 1483 683475; email:
g.carmona@surrey.ac.uk.

1



1 Introduction

Modeling economic situations featuring a large number of agents with non-atomic games

is especially convenient because the inability of players to affect societal variables provides

significant technical ease. However, this advantageous feature may result in the dismissal of

the strategic behavior desired to be depicted. Although admittedly extreme, the following

example delivers a clear portrait of this point: Consider a game where players’ choices have

to be in {0, 1}, and their payoffs depend only on the average choice. Because that a player’s

action does not affect the average choice and, thus, his own payoff, any player is indifferent

between any of his choices, and as a result any strategy profile is a Nash equilibrium. On

the other hand, the unique plausible Nash equilibrium is one where each player chooses

the highest integer, because this strategy is the unique Nash equilibrium of the finite, but

arbitrarily large, player version of the same game.

Such failure of (lower hemi) continuity of the equilibrium correspondence in non-atomic

games casts some doubts on the usefulness of the continuum model. Indeed, Aumann (1964)

regarded it as a mathematically convenient approximation to the “true” model featuring a

finite number of players. But, unlike the non-atomic model in Aumann (1964) which provides

a clean solution to the core-equivalence problem that would work only in an approximately

way in finite models, the above example shows that, in some games, the continuum model

is not a good approximation to the finite one. Further examples are given in Novshek and

Sonnenschein (1983).

Naturally, this issue has been widely investigated and several reassuring results have

been obtained (see, among many others, Hildenbrand (1974), Postlewaite and Schmeidler

(1978) and Mas-Colell (1983)). However, for the class of games we consider, in general,

Nash equilibria of non-atomic games correspond to limit points of approximate equilibria

of sequences of finite-player games converging to the original (see Carmona and Podczeck

(2011)). In an approximate equilibrium the action played by each one of a large fraction of

players must yield a payoff close to the maximum he or she can achieve. And, in general,

it is not possible to obtain a similar result using exact equilibria of the approximating large

finite games even for regular equilibria. We show this using a notion of regular equilibria

analogous to those of Harsanyi (1973) and van Damme (1991).

Given the above difficulties, the current paper proposes a refinement of Nash equilibrium
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in non-atomic games, strategic equilibrium (henceforth to be abbreviated by SE), designed

to alleviate these problems in a tractable way. In fact, our goal is to develop an equilibrium

concept for non-atomic games that intuitively has the same properties of the limit points of

equilibria of large finite games (the precise meaning of this will be illustrated below) and,

at the same time, its existence is generally guaranteed. Furthermore, the identification of

SE is relatively easier compared with that of limit points of equilibria of large finite games

(henceforth, limit equilibria). In other words, as in Aumann (1964), we want to keep the

analytical convenience of non-atomic games and, at the same time, to focus on equilibria of

non-atomic games that provide a more accurate approximation to the equilibria of finite-

player versions of these games. Perhaps more importantly, we show that in non-atomic games

with finitely many actions and payoff functions, the latter being sufficiently smooth (such

a game is henceforth referred to as a smooth game), every regular equilibrium is a SE. In

this light, SE can be regarded as an extension of regular equilibrium for general non-atomic

games.

This study presents and analyzes the concept of SE for non-atomic games in which the

payoff of each agent depends on what he chooses and on the distribution of actions chosen

by the other players (which we refer to as the societal choice). For any non-atomic game and

ε > 0, we define an ε-perturbed game by requiring each player to imagine that he alone has

an ε impact on the societal choice. Then, the set of SE consists of limits of Nash equilibrium

distributions of ε-perturbed games when ε tends to 0. It needs to be pointed out that in the

ε-perturbed game, players are not rational as in Selten (1975). This is because each player

thinks that he alone has an ε impact on the societal choice, and does not contemplate that

others do the same consideration.

After proving the existence of SE distributions under standard assumptions (e.g., Mas-

Colell (1984)) we show that the SE is a refinement of Nash equilibrium. Moreover, using the

representation results of Khan and Sun (1995), Carmona (2008) and Carmona and Podczeck

(2009), it is established that this analysis can be extended to strategy profiles whenever

either one of the following holds: (1) the action space of every player is countable; or (2) the

set of possible types of players is countable; or (3) the space of players is super-atomless.

The impact of focusing on SE is well illustrated in the above example: In the game where

players choose either 0 or 1, there is only one SE which consists of almost all players choosing

1. Hence, the distribution of actions induced by the SE coincides with the distribution
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induced by the unique Nash equilibrium of the same game when played by a finite number

of players.

A similar strong conclusion holds in the Nash’s mass action game as well: A (finite)

normal-form game is interpreted to consist of a finite number of positions (or islands), each

characterized by a finite action space and a payoff function on the joint action space. One,

then, imagines that the actual players in this game reside on one of those islands, players on

the same island have identical payoffs and are equally likely to be chosen to play the game.

Therefore, starting from the case where there is only one player on each island, we formulate

associated replicas by symmetrically multiplying players on each island and assuming that

each player on an island is equally likely to be selected. Hence, for any k ∈ N, the k-replica

game is one in which there are k players on each island who are equally likely to be selected

to play the original game, and the payoff function and the action set of every player on an

island are identical. It is, then, not difficult to see that for any k ∈ N, a strategy is an

equilibrium of the k-replica game if and only if the vector consisting of the average choices

across players of a given island is a mixed strategy Nash equilibrium of the original game.

However, this equivalence fails to hold in the limit case of a continuum of players on each

island, each of whom are selected according to the Lebesgue measure. Indeed, in this case,

no player can affect the average choice of the island they reside on, and thus, every strategy

is a Nash equilibrium. However, when SE is employed, this equivalence is restored: We

prove that a strategy profile in the non-atomic version is a SE if and only if the vector of

the average choices across players on the same island is a mixed strategy Nash equilibrium

of the original normal-form game.

Similar conclusions are reached in dynamic situations as well. After presenting the no-

tion of strategic subgame perfect equilibrium (henceforth SSPE), we demonstrate that its

use in the optimal taxation game of Levine and Pesendorfer (1995), instead of subgame per-

fect equilibrium (abbreviated by SPE), makes sure that the first-best can be obtained even

with non-atomic players. Indeed, using the concept of SPE in non-atomic optimal taxation

games, e.g. Chari and Kehoe (1989), the government cannot detect (thus, punish) individual

deviations because one single agent cannot affect the societal choice, a phenomenon labeled

as the “disappearance of information” by Levine and Pesendorfer (1995). Even though, the

first-best is uniquely obtained in SPE in finite player versions of the same (extensive-form)

game, it is well known that the second-best, the Ramsey Equilibrium, is the best possible
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with the use of SPE in non-atomic formulations. This, in turn, gives rise to discussions

about whether or not the government may commit in order to achieve this particular payoff.

Besides delivering a sharper conclusion that is not in “paradoxical” terms with that from

finite player cases, this game is also of interest as it involves the use of SE with sequential

rationality.

However, the set of SE does not equal the set of limit equilibria in general. In fact,

we provide an example of a regular equilibrium of a smooth non-atomic game, hence of a

SE, which fails to be a limit equilibrium. On the other hand, in the above examples, the

notion of SE meets our desiderata of always existing and reproducing the (limit) properties

of equilibria of the same game played by a large finite number of players.

It should be emphasized that our analysis is related to, but differs from that of Green

(1980), Sabourian (1990), Levine and Pesendorfer (1995), and Carmona and Podczeck (2011)

who try to justify the set of Nash equilibria of non-atomic games as limits of equilibria of

large finite games with either noisy observations about deviating players or employing the

ε-equilibrium concept. That is, we are not asking “when agents are negligible in large finite

games”, but rather analyzing equilibria of non-atomic games that are limits of equilibria of

games where each player thinks that he alone is not negligible.

Section 2 describes the general framework of non-atomic games. In Section 3 we define

the concept of SE and prove that it exists and is a refinement of Nash equilibrium. Section 4

considers regular equilibria of smooth non-atomic games. Finally, Section 5 involves Nash’s

mass action interpretation while Section 6 formalizes the notion of SSPE and displays its

use in the optimal taxation game of Levine and Pesendorfer (1995).

2 Games with a measure space of players

In this section, we formally describe a class of games with a measure space of players. This

class of games is a particular case of the model in Carmona and Podczeck (2014) although

we follow Mas-Colell’s (1984) distributional approach.

The set of players consists of a finite set T̄ and a probability space (T̂ , Σ̂, ν̂) such that

{t} ∈ Σ̂ for all t ∈ T̂ and T̄ ∩ T̂ = ∅. The set of atomic players is T̄ and the set of atomless

players is T̂ . Let T = T̄ ∪ T̂ .

The action set of each player t ∈ T̄ is denoted by Xt and we let X =
∏

t∈T̄ Xt and also
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X−t =
∏

t′∈T̄\{t} Xt′ . We assume that Xt is a nonempty, compact and convex subset of a

locally convex topological vector space for each t ∈ T̄ .

In order to accommodate general examples, such as the Nash’s mass action game, we

allow players’ payoff functions to depend on the distribution of choices made by a finite

number of subgroups of players in T̂ . Specifically, we consider a finite partition {T̂l}L
l=1 of T̂

such that T̂l is measurable for all l = 1, . . . , L. Players in T̂l have a common action space Al,

assumed to be a nonempty compact metric space.

Let l ∈ {1, . . . , L}. The payoff of each player t ∈ T̂l depends on his choice a ∈ Al, on

the profile of choices x ∈ X and on the vector (π1, . . . , πL) of distributions on A1, . . . , AL

and it is assumed to be continuous. Given a complete separable metric space Y , let M(Y )

denote the space of Borel probability measures on Y endowed with the topology of the weak

convergence of probability measures. For convenience, let M = M(A1) × · · · × M(AL).

Furthermore, let Ul denote the space of real-valued continuous payoff functions defined on

Al ×X ×M endowed with the sup norm. Payoff functions of players in T̂l are described by

a measurable function Ûl : T̂l → Ul.

Similarly, the payoff of each player t ∈ T̄ depends on his choice x ∈ Xt, on the profile of

choices x−t ∈ X−t made by the other players in T̄ and on the vector (π1, . . . , πL) ∈ M. We

let ut denote player t’s payoff function and assume that ut is continuous and also that the

mapping x 7→ ut(x, x−t, π1, . . . , πL) is quasi-concave for each (x−t, π1, . . . , πL) ∈ X−t ×M.

We summarize a game by a list G = (T̄ , (T̂ , Σ̂, ν̂), (Al, Ûl)
L
l=1, (Xt, ut)t∈T̄ ). We say that G

is non-atomic if (T̂ , Σ̂, ν̂) is atomless.

Let G = (T̄ , (T̂ , Σ̂, ν̂), (Al, Ûl)
L
l=1, (Xt, ut)t∈T̄ ) be a non-atomic game and C =

∏L
l=1 M(Ul×

Al). Given a vector of Borel probability measures (τ1, . . . , τL) ∈ C, we denote by τl,Ul
and τl,Al

the marginals of τl on Ul and Al respectively. Given a game G, we say that (x∗, τ1, . . . , τL) ∈
X × C is an equilibrium distribution of G if, for each t ∈ T̄ and xt ∈ Xt,

ut(x
∗, τ1,A1 , . . . , τL,AL

) ≥ ut(xt, x
∗
−t, τ1,A1 , . . . , τL,AL

), (1)

and, for each l = 1, . . . , L,

ν̂(T̂l)τl,Ul
(B) = ν̂({t ∈ T̂l : Ul(t) ∈ B}), (2)

for each Borel measurable B ⊆ Ul and

τl({(u, a) ∈ Ul×Al : u(a, x∗, τ1,A1 , . . . , τL,AL
) ≥ u(a′, x∗, τ1,A1 , . . . , τL,AL

) for each a′ ∈ A}) = 1.

(3)
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Note that the above definition of an equilibrium distribution make sense only in the

case where ν̂ is atomless because in (3) it is assumed that no player t ∈ T̂ can affect the

distribution of actions.

Note also that the above definition allows for the case where T̂ = ∅, in which case

condition (2) holds trivially for any (τ1, . . . , τL) ∈ C and, consequently, neither (2) nor (3)

imposes any meaningful restriction on the vector (τ1, . . . , τL) of payoff-action distributions;

in fact, these distributions play no role. Thus, if, in addition, ut is independent of the vector

of action distributions (π1, . . . , πL) ∈ M for each t ∈ T̄ , then the game G is nothing but a

standard finite-player normal-form game and (1) simply states that x∗ is a Nash equilibrium

of this finite-player normal-form game. In this case, we abuse on our terminology by saying

that x∗ is an equilibrium of G. Overall, the case where T̂ = ∅ and ut is independent of

(π1, . . . , πL) for each t ∈ T̄ is rather special and trivial, but nevertheless it useful to keep it

as a special case of our framework: this allows us to discuss issues regarding the relationship

between SE and limit equilibria in a unified way (see Sections 4 and 5).

An alternative case arises when ν̂(T̂l) > 0 for all l = 1, . . . , L. In this case, it is convenient

to let ν̂l be defined by ν̂l(B) = ν̂(B)/ν̂(Tl) for each Borel measurable B ⊆ T̂l and write (2)

as

τl,Ul
= ν̂l ◦ Û−1

l

for each l = 1, . . . , L.

It is also convenient to consider equilibrium strategies, which are defined as follows.

Let xl : T̂l → Al be measurable for each l = 1, . . . , L. We say that (x∗,x1, . . . ,xL) is

an equilibrium strategy of G if (x∗, ν̂1 ◦ (Û1,x1)
−1, . . . , ν̂L ◦ (ÛL,xL)−1) is an equilibrium

distribution of G.

It is well known that every non-atomic game G as defined above has an equilibrium

distribution (this also follows from Theorems 1 and 2 below). Furthermore, equilibrium

strategies exist if either Al or Ûl(T̂l) (or both) are countable for all l = 1, . . . , L, or if

(T̂ , Σ̂, ν̂) is super-atomless (see, respectively, Khan and Sun (1995), Carmona (2008) and

Carmona and Podczeck (2009)) but may fail to exist otherwise as shown by Khan, Rath,

and Sun (1997).1

1Formally, a measure space (T,Σ, ϕ) is super-atomless if for every E ∈ Σ with ϕ(E) > 0, the subspace of
L1(ϕ) consisting of the elements of L1(ϕ) vanishing off E is non-separable. This notion was first introduced
by Podczeck (2008); see also Podczeck (2009).
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3 Strategic equilibria

As was stressed in the introduction, we wish to consider those equilibria that can be seen

as a limit of equilibria in games in which each non-atomic player imagines that he alone

has a small, yet positive, impact on the distribution of actions (societal choice) of the group

he belongs to. Clearly, the need for a modification arises because for each player t ∈ T̂ ,

ν̂({t}) = 0.

Associating a player with such a weight on his group’s societal choice is done with the

help of the following measures: For each 1 ≤ l ≤ L, ε > 0, and t ∈ T̂l, let δt be the probability

measure on T concentrated at t (i.e. δt({t}) = 1), and define a measure ν̂l,t,ε = εδt +(1−ε)ν̂l.

Thus, under ν̂l,t,ε player t alone is an atom in group l with mass ε. In other words, in the

game described by ν̂l,t,ε, t believes that he alone has an ε impact on the societal choice of

group l. In fact, for all strategies xl : T̂l → Al,

ν̂l,t,ε ◦ x−1
l = εδxl(t) + (1− ε)ν̂l ◦ x−1

l . (4)

In order to construct a game where each player imagines that he, but no other player,

has an ε impact on the distribution of the choices of the type he belongs to, we define the

ε-perturbed game by altering players’ payoff functions using the above measures.

Given a game G = (T̄ , (T̂ , Σ̂, ν̂), (Al, Ûl)
L
l=1, (Xt, ut)t∈T̄ ), define, for all ε > 0, 1 ≤ l ≤ L,

t ∈ T̂l, a ∈ Al, x ∈ X and π = (πj)
L
j=1 ∈M,

Ûl,ε(t) (a, x, π) = Ûl(t) (a, x, (εδa + (1− ε)πl, π−l)) . (5)

We have that, for each l = 1, . . . , L, Ûl,ε : T̂l → Ul is measurable and that Ul,ε(t) is continuous

for each t ∈ T̂l (see Section A.1). We then define the ε-perturbed game Gε of G as Gε =

(T̄ , (T̂ , Σ̂, ν̂), (Al, Ûl,ε)
L
l=1, (Xt, ut)t∈T̄ ). Note that the ε-perturbed game Gε has the same

players and action spaces as the original non-atomic game G but different payoff functions

for the players in T̂ , namely those defined in (5). Therefore, Gε is a non-atomic game as

defined in Section 2.

Definition 1 We say that (x∗, τ ∗1 , . . . , τ ∗L) ∈ X × C is a strategic equilibrium in distri-

bution of G if there exists a sequence {εk}∞k=1 ⊆ (0, 1) decreasing to zero and a sequence

{(xk, τ k
1 , . . . , τ k

L)}∞k=1 ⊆ X × C converging to (x∗, τ ∗1 , . . . , τ ∗L) such that (xk, τ k
1 , . . . , τ k

L) is an

equilibrium distribution of Gεk
, for every k ∈ N.
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In words, a strategic equilibrium in distribution (henceforth, to be abbreviated by the

SED) can be approximated as a limit point of equilibrium distributions of games where each

non-atomic player’s belief about his sui generis ability to affect the societal choice converges

to zero.

Theorem 1 establishes the existence of SED (see Section A.2 for its proof).

Theorem 1 Every non-atomic game has a SED.

Next, we show that any SED is an equilibrium distribution (see Section A.3 for its proof).

Theorem 2 Every SED of a non-atomic game is an equilibrium distribution.

We have achieved so far some of our goals, namely to define an equilibrium concept

for games having a non-atomic (sub)set of players (i) without replacing it with a discrete

approximation, (ii) such that it generally exists and (iii) refines the standard notion of an

equilibrium distribution. In Sections 5 and 6.1 we show our other goal of having it in line

with limit equilibria also holds in some interesting examples.

In general, working with equilibrium strategies in non-atomic games instead of equilib-

rium distributions is more intuitive and easier to formalize as such an approach involves an

immediate generalization of finite player cases. Indeed, it has been employed by Schmeidler

(1973), the initial paper to formalize non-atomic games. However, in general settings, the

existence of an equilibrium strategy is not guaranteed (see Khan, Rath, and Sun (1997)) due

to measurability constraints. For this reason, as Mas-Colell (1984) have shown, it is con-

venient to focus on equilibrium distributions as this approach eliminates the measurability

problems involved in establishing the existence of an equilibrium strategy. Nevertheless, un-

der some additional assumptions, equilibrium strategies do exist. As we will show, strategic

equilibrium in strategies also exist under the same additional conditions.

The notion of a strategic equilibrium in strategy is as follows.

Definition 2 A strategy (x,x1, . . . ,xL) is a strategic equilibrium in (behavioral) strategy of

G if there exists a sequence {εk}∞k=1 ⊆ (0, 1) decreasing to zero and a sequence of strategies

{(xk,xk
1, . . . ,x

k
L)}∞k=1 such that (xk,xk

1, . . . ,x
k
L) is an equilibrium strategy of Gεk

for every

k ∈ N and ν̂l ◦ (Ûl,εk
,xk

l )
−1 converges to ν̂l ◦ (Ûl,xl)

−1 for each l = 1, . . . , L.

This definition requires that the distribution on actions implied by a strategic equilibrium

in strategy (henceforth, to be abbreviated by the SES) must coincide with a limit distribution
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on actions associated with a sequence of equilibrium distributions of games where each non-

atomic player’s belief about his sui generis ability to affect the societal choice converges to

zero.

It is often more convenient to consider, in the above definition and for each l = 1, . . . , L,

the sequence {ν̂l◦(Ûl,x
k
l )
−1}∞k=1 instead of {ν̂l◦(Ûl,εk

,xk
l )
−1}∞k=1 as the former does not require

changes in the payoff functions of the players in T̂ . Theorem 3 shows that such replacement

causes no change to the definition of a SES (see Section A.4 for its proof). Furthermore,

it also shows that SED and SES are equivalent in the case where either Al is countable or

Ûl(T̂l) is countable for all l = 1, . . . , L, or (T̂ , Σ̂, ν̂) is super-atomless – these are the cases

where existence results for equilibrium strategies are known to hold.

Theorem 3 Let G be a non-atomic game. Then the following conditions are equivalent:

(a) (x,x1, . . . ,xL) is a SES.

(b) There exists a sequence {εk}∞k=1 ⊆ (0, 1) decreasing to zero and a sequence of strategies

{(xk,xk
1, . . . ,x

k
L)}∞k=1 such that (xk,xk

1, . . . ,x
k
L) is an equilibrium strategy of Gεk

for

every k ∈ N and ν̂l ◦ (Ûl,x
k
l )
−1 converges to ν̂l ◦ (Ûl,xl)

−1 for each l = 1, . . . , L.

Furthermore, if either Al is countable or Ûl(T̂l) is countable for all l = 1, . . . , L, or (T̂ , Σ̂, ν̂)

is super-atomless, then both (a) and (b) are equivalent to

(c) (x, ν̂1 ◦ (Û1,x1)
−1, . . . , ν̂L ◦ (ÛL,xL)−1) is a SED.

4 Games with finite characteristics

In this section we consider the case where players in T̂ have a finite action space and a

finite set of payoff functions. We adapt Harsanyi’s (1973) notion of regular equilibrium to

non-atomic games and show that every regular equilibrium is a SE. Furthermore, we show

that this conclusion may fail regarding limit points of Nash equilibria of large finite-player

games approaching a given non-atomic game.

For simplicity, we consider only one group of players in T̂ , ignore the set T̄ and assume

that (T̂ , Σ̂, ν̂) is atomless. We say that a game G = ((T̂ , Σ̂, ν̂), A, Û) has finite characteristics

if both A and Û(T̂ ) are finite. Let µ = ν̂ ◦ Û−1 and S be the support of µ. In such game,

the set M(A) is identified with ∆A = {π ∈ R|A|
+ :

∑
a∈A πa = 1} and, likewise, M(U × A) is

identified with ∆S×A = {τ ∈ R|S||A|
+ :

∑
(u,a)∈S×A τ(u,a) = 1}.
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We say that G is smooth if G has finite characteristics and, for each u ∈ S, there exists

an open set Ou in R|A| and û : A×Ou → R such that ∆A ⊆ Ou, u = û|A×∆A
and π 7→ û(a, π)

is continuously differentiable for each a ∈ A.

We turn to the definition of a regular equilibrium of a smooth game G. Let O = ∩u∈SOu

and W = {τ ∈ R|S||A| : τA ∈ O}. Note that O is an open subset of R|A| such that ∆A ⊆ O

and that W is an open subset of R|S||A| such that ∆S×A ⊆ W . Let a∗ = (a∗u)u∈S ∈ A|S| and

define F a∗ : W → R|S||A| by setting, for each τ ∈ W and (u, a) ∈ S× A,

F a∗

u,a(τ) = τ(u, a)[u(a, τA)− u(a∗u, τA)] if a 6= a∗u

and

F a∗

u,a∗u
(τ) =

∑
a∈A

τ(u, a)− µ(u).

Let Ja∗(τ ∗) be the Jacobian of F a∗ at τ ∗, i.e. Ja∗(τ ∗) = ∂F a∗ (τ∗)
∂τ

. We say that τ ∗ is a regular

equilibrium of G if τ ∗ is an equilibrium of G and Ja∗(τ ∗) is non-singular for some a∗ ∈ A|S|

such that τ ∗(u, a∗u) > 0 for each u ∈ S.

Because we only consider cases where players in T̂ have a finite action space and a finite

set of payoff functions, by Theorem 3, SED and SES are equivalent; thus, in what follows

we simply refer to any one of them as SE.

The main result of this section states that every regular equilibrium of a smooth game is

a SE (see Section A.5 for its proof).

Theorem 4 If G = ((T̂ , Σ̂, ν̂), A, Û) is smooth, then every regular equilibrium of G is a SE.

The above theorem tells that the well behaved and robust behavior associated with regu-

lar equilibrium prevails under the SE. Thus, the SE can be viewed as a coarse generalization

of regular equilibrium (which demands that attention be restricted to smooth games) to non-

smooth games. On the other hand, as we will show in what follows, an analog of Theorem 4

does not hold regarding limit points of equilibria of large finite-player games. Therefore, the

notion of limit equilibrium is more demanding as it does not necessarily allow the behavior

compatible with the regular equilibrium even when the game under consideration is smooth.

Let G = ((T̂ , Σ̂, ν̂), A, Û) be smooth. We say that τ ∈ M(S×A) is a limit equilibrium of

G if there exists a sequence {(Gk, fk)}∞k=1 such that, for each k ∈ N,

11



(a) Gk = (T̄k, (T̂ , Σ̂, ν̂), A, Û , (Xk
t , uk

t )t∈T̄k
) is a game such that T̂ = ∅, |T̄k| = k, Xk

t = A

for each t ∈ T̄k and there exists Uk : T̄k → U such that

uk
t (x) = Uk(t)(xt, νk ◦ x−1)

for each t ∈ T̄k and x ∈ Xk, where νk denotes the uniform distribution on T̄k,

(b) fk is an equilibrium of Gk, and

(c) νk ◦ (Uk, fk)
−1 → τ .

The following is an example of a regular equilibrium of a smooth game which is not a

limit equilibrium.2 The example is a coordination game with two actions such that the payoff

each player obtains from each of the two actions equals the fraction of those players who

choose that action. Thus, with non-atomic players there is an equilibrium where exactly half

of the players choose each one of the two actions. There is, however, no equilibrium with

such property in the case of a finite space of players. For simplicity, suppose that there is

a finite and even number n of players and exactly half of the population chooses each one

of the two actions. Then each player can profitably deviate in order to reside with a strict

majority: As a result of a deviation, say from a to b, there is a fraction of 1/2 + 1/n players

choosing b whereas with no deviations there is a fraction of 1/2 players choosing a. Since

each player’s payoff of each action equals the fraction of those choosing the same action, this

deviation yields a gain of 1/n > 0.

Example 1 Let G = ((T̂ , Σ̂, ν̂), A, Û) be such that A = {α, β}, ν̂ ◦ Û−1(u) = 1 where

u : A×M(A) → R is such that, for each a ∈ A and π ∈ M(A),

u(a, π) =

{
π(α) if a = α,

1− π(α) if a = β.

We have that τ ∗ such that τ ∗(u, α) = 1/2 = τ ∗(u, β) is a regular equilibrium of G. However,

τ ∗ is not a limit equilibrium of G (see Section A.6 for a proof).

2This example first appeared in Carmona, Páscoa, and Podczeck (2008) and it is presented in the current
paper with their consent.
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5 Mass-action interpretation of Nash equilibria

In his Ph.D. dissertation (see Nash (1950)), John Nash proposed two interpretations of his

equilibrium concept, with the objective of showing how equilibrium points “(...) can be

connected with observable phenomenon.” One interpretation is rationalistic: if we assume

that players are rational, know the full structure of the game, the game is played just once,

and there is just one Nash equilibrium, then players will play according to that equilibrium.3

A second interpretation, that Nash referred to by the mass action interpretation, is less

demanding on players: “[i]t is unnecessary to assume that the participants have full knowl-

edge of the total structure of the game, or the ability and inclination to go through any

complex reasoning processes.” What is assumed is that there is a population of participants

for each position in the game, which will be played throughout time by participants drawn

at random from the different populations. If there is a stable average frequency with which

each pure strategy is employed by the “average member” of the appropriate population, then

this stable average frequency constitutes a mixed strategy Nash equilibrium.

Below we consider a continuum-of-player mass-action version of a normal-form game and

we present a new interpretation of Nash equilibrium: The mixed strategy Nash equilibria of

a given finite normal-form game are exactly the profiles of distributions over actions induced

by the SE of its continuum-of-player mass-action version.

Consider a finite normal-form game Γ = (N, (∆Ai
, vi)i∈N), where N = {1, . . . , n} is the

set of positions, ∆Ai
is the set of mixed strategies over the finite action set Ai, and vi is

the usual extension to mixed strategies of the payoff function. As in Nash’s mass action

interpretation, imagine that this game is played in a large society divided into n groups,

from each of which a participant is drawn at random.

For any k ∈ N, we define the k-replica game as follows: There are k players in each

position, and we assume that each player is matched with n − 1 players selected from the

other positions. This gives rise to the k-replica game Gk = (T̄k, (T̂ , Σ̂, ν̂), A, Û , (Xk
t , uk

t )t∈T̄k
).

In the game Gk, T̂ = ∅ and T̄k = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ k}. Each player t ∈ T̄k

such that t = (i, j) for some 1 ≤ i ≤ n and 1 ≤ j ≤ k has Xk
t = ∆Ai

as his action space.

Under the assumption that all matchings are equally likely, the probability that an action

a ∈ A := A1×· · ·×An is played when players are using a strategy σ = (σi,j)i∈N,j=1,...,k ∈ Xk

3For a formal discussion of these ideas, see Aumann and Brandenburger (1995) and Kuhn and et al.
(1996).
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is
n∏

i=1

k∑
j=1

σi,j(ai)

k
.

Let σ̄ = (σ̄1, . . . , σ̄n) ∈ ∆A1 × · · · ×∆An be defined by σ̄i(ai) =
∑k

j=1 σi,j(ai)/k and let the

payoff of a player in position i be defined by

vk
i (σ) =

∑
a∈A

(∏
i′∈N

σ̄i′(ai′)

)
vi(a).

Then set, for each t ∈ T̄k such that t = (i, j) for some 1 ≤ i ≤ n and 1 ≤ j ≤ k,

uk
t (σ) = vk

i (σ)

for each σ ∈ Xk. It is then easy to see (after going over the proof of Theorem 5) that for

any k ∈ N, σ is an equilibrium of Gk if and only if σ̄ is a mixed strategy Nash equilibrium of

Γ. In words, equilibria of Gk are precisely those strategies under which the average behavior

in all positions is part of the same mixed strategy Nash equilibrium of the original game Γ.

I.e., on average, every position is best-replying to the others.

Even though this equivalence holds for every k ∈ N, it fails to do so in the limit

case of a continuum of players. To see this consider the non-atomic game given by G =

(T̄ , (T̂ , Σ̂, ν̂), (Ai, Ûi)i∈N , (Xt, ut)t∈T̄ ). The set of players in G are such that T̄ = ∅, T̂ =

∪n
i=1[2i − 1, 2i] with Lebesgue measure on the Lebesgue measurable sets. Furthermore, let

T̂i = [2i−1, 2i] and ν̂i be the Lebesgue measure on T̂i for all i ∈ N . Each player t ∈ T̂i chooses

an element of Ai. Regarding payoffs, for each i ∈ N , t ∈ T̂i, a ∈ Ai and (π1, . . . , πn) ∈ M,

let

Ûi(t) = vi(π1, . . . , πn).

The intuition behind the above definition of players’ payoff functions is easily seen by con-

sidering the case of a strategy in G. Let x = (x1, . . . ,xn) be such a strategy. A player is

selected from each T̂i according to the Lebesgue measure, and thus, the probability that the

player selected from the ith group will play action ai ∈ Ai is ν̂i ◦ x−1
i (ai). We thus define

x̄i = ν̂i ◦ x−1
i and then

Ûi(t)(ai, ν̂1 ◦ x−1
1 , . . . , ν̂n ◦ x−1

n ) = vi(x̄1, . . . , x̄n) =
∑
a∈A

(∏
i′∈N

x̄i′(ai′)

)
vi(a).4

4The above notation is appropriate in the following sense: represent Ai by the unit vectors {ei
1, . . . , e

i
|Ai|}

in R|A| and define x̂i(t) = ei
j if and only if xi(t) = aj ∈ Ai. Then, ν̂i ◦ x−1 =

∫
Ti

x̂idν̂i. Hence, ν̂i ◦ x−1 can,
in fact, be understood as an average.
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It is easy to see that every strategy is a Nash equilibrium of G, because no t ∈ Ti can

affect x̄i, i = 1, . . . , n. On the other hand, the following theorem shows that the SE of G are

characterized by the property that, on average, every position is best-replying to the others.5

Hence, the distribution of actions induced by the SE of G correspond to the limit points of

the corresponding distributions of equilibria of Gk when k converges to infinity.

Theorem 5 A strategy profile x∗ = (x∗1, . . . ,x
∗
n) is a SE of G if and only if (x̄∗1, . . . , x̄

∗
n) is

a mixed strategy Nash equilibrium of Γ.

Theorem 5, the proof of which can be found in Section A.7, provides a new interpretation

of mixed strategy Nash equilibria: they constitute precisely the vector of distributions of

actions, one for each position, that are induced by a (pure strategy) SE. Similarly as in

Nash’s mass action interpretation, a mixed strategy Nash equilibrium can be understood as

a “stable” average behavior in a large society. However, since every SE is a Nash equilibrium

(of the associated non-atomic game), our interpretation is rationalistic and so different from

Nash’s. Nevertheless, it is interesting to see that for our interpretation one needs to regard

full rationality as a limit case of incomplete rationality as in Selten (1975).

6 Strategic subgame perfect equilibrium

After formally describing a class of extensive-form games with a measure space of players

and finite periods, we introduce the notion of strategic subgame perfect equilibrium (SSPE)

and display its use in the optimal taxation game of Levine and Pesendorfer (1995).

In order to sustain some ease of exposition, our formulation involves a setting where

all players are assumed to choose actions in every period but the set of actions available

to them may vary depending on the time index. Indeed, their available set of actions are

allowed to be singleton sets. Moreover, in the current section we do not consider subgroups

of non-atomic players. Additionally, as in Sabourian (1990) we concentrate on non-atomic

extensive form games in which the choice of each non-atomic player does not depend on his

own past choices.

The set of players consists of a finite set T̄ and a probability space (T̂ , Σ̂, ν̂) such that

{t} ∈ Σ̂ for all t ∈ T̂ and T̄ ∩ T̂ = ∅. The set of atomic players equals T̄ and here we focus

5As Ai is finite for all i ∈ N , Theorem 3 implies that SED and SES are equivalent; so we simply refer to
any one of them as SE.
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only on the cases where (T̂ , Σ̂, ν̂) is atomless. Let T = T̄ ∪ T̂ .

The time is discreet and its index is given by k = 1, . . . , K. Given 1 ≤ k ≤ K, the set of

actions allowed in period k is denoted by Ck and defined as follows: For any t ∈ T

Ck,t =

 Xk,t if t ∈ T̄

Ak if t ∈ T̂ .

where Xk,t is a nonempty topological space for each t ∈ T̄ and players in T̂ have a common

action space Ak which is assumed to be a nonempty compact metric space. We denote

Xk =
∏

t∈T̄ Xk,t and Xk,−t =
∏

t′∈T̄\{t} Xk,t′ . Moreover, for any given 1 ≤ k ≤ K, we denote

Xk =
∏k

l=1 Xk and Ak =
∏k

l=1 Ak. Recall that M(Ak) denotes the space of Borel probability

measures on Ak endowed with the topology of the weak convergence of probability measures.

Similarly, denoting M(Ak) by Mk, we let Mk =
∏k

l=1 Mk.

Now we describe the set of (public) histories which are denoted by H. The initial history

is denoted by ∅ and we let H0 = {∅}. Furthermore, for each 1 ≤ k ≤ K, we let Hk = Xk×Mk

be the set of histories with length k. The set of histories is given by H = ∪K
k=0Hk while HK

is referred to as the set of terminal histories and H \HK as the set of non-terminal histories.

Moreover, for any h ∈ H, we say that the length of h, `(h), equals k whenever h ∈ Hk.

In what follows, we specify players’ payoffs. The payoff of each player t ∈ T̂ depends on

(i) his own choices and (ii) the profile of choices of players in T̄ and (iii) the vector (taken

across time) of distributions on the action sets of players in t ∈ T̂ and it is assumed to

be bounded. The payoff of t ∈ T̂ is formally defined as follows: Let P denote the space

of real-valued bounded payoff functions defined on AK × HK and endowed with the sup

norm. Payoff functions of players in T̂ are described by a measurable function Û : T̂ → P .

Similarly, the payoff of each player t ∈ T̄ is determined by (i) the profile of choices made by

the players in T̄ (including himself) and (ii) the vector of distributions on the action sets of

players in t ∈ T̂ . We let ut denote player t’s payoff function, a bounded real-valued function

defined on HK .

A non-atomic extensive-form game with K ∈ N periods is, therefore,

Γ = (T̄ , (T̂ , Σ̂, ν̂), (Ck)
K
k=1, Û , (ut)t∈T̄ ).

Thus, a strategy of player t ∈ T̄ is denoted by s̄t and maps every h ∈ H \ HK into

X`(h)+1,t. We let the set of strategies of player t ∈ T̄ be denoted by S̄t and use the following
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notation: s̄ = (s̄t)t∈T̄ and s̄−t = (s̄t′)t′∈T̄\{t} and S̄ =
∏

t∈T̄ S̄t and S̄−t =
∏

t′∈T̄\{t′} S̄t′ .

Similarly, a strategy of player in t ∈ T̂ is a function ŝ(t) : H \ HK → ∪K
l=1Ak such that,

for any h ∈ H \ HK , ŝt(h) ∈ A`(h)+1 for all t ∈ T̂ and ŝ(h) : T̂ → A`(h)+1 is measurable.

We denote such a strategy profile by s = (s̄, ŝ) and let S stand for the set of such strategy

profiles.

Given a strategy profile s ∈ S, the (public) outcome path induced is given as follows:

ω1(s) = (s̄(∅), ν̂◦ŝ(∅)−1) ∈ H1 and ωk(s) = (s̄(ω1(s), . . . , ωk−1(s)), ν̂◦ŝ(ω1(s), . . . , ωk−1(s))−1) ∈
Xk × Mk for each 1 < k ≤ K. Moreover, the outcome path induced by a strategy pro-

file s ∈ S at a given non-terminal public history h ∈ H \ HK is denoted by ω(s, h) =

(ωl(s, h))
K−`(h)
l=1 and defined by ω1(s, h) = (s̄(h), ν̂◦ŝ(h)−1) ∈ X`(h)+1×M`(h)+1 and ωk(s, h) =

(s̄(h, ω1(s, h), . . . , ωk−1(s, h)), ν̂ ◦ ŝ(h, ω1(s, h), . . . , ωk−1(s, h))−1) ∈ X`(h)+k ×M`(h)+k for any

1 < k ≤ K − `(h). It may be useful to point out that ω(s, ∅) = ω(s).

The action path of a non-atomic player t ∈ T̂ induced by a strategy profile s ∈ S at a

given non-terminal history h ∈ H \HK is denoted by at(s, h) = (al
t(s, h))

K−`(h)
l=1 and defined

by a1
t (s, h) = ŝt(h) and ak

t (s, h) = ŝt(h, ω1(s, h), . . . , ωk−1(s, h)) for any 1 < k ≤ K − `(h).

A subgame perfect equilibrium (SPE) of Γ is a strategy profile s∗ ∈ S such that for each

h ∈ H \HK ,

1. for all t ∈ T̄ , ut(ω(s∗, h)) ≥ ut(ω((s̄′t, s
∗
−t), h)) for all s̄′t ∈ S̄t, and

2. for all t ∈ T̂ , Ût(at(s
∗, h), ω(s∗, h)) ≥ Ût(ãt, ω(s∗, h)) for every profile ãt = (ãk

t )
K
k=`(h)+1 ∈∏K

m=`(h)+1 Am.

This definition makes sense only in the case where ν̂ is atomless because in the second

condition it is assumed that no player t ∈ T̂ can affect choices of players in T̄ and the

distribution of actions of players in T̂ .

The notion of SSPE consists of those equilibria that can be seen as a limit of SPE in

non-atomic extensive-form games in which each non-atomic player imagines that he alone

has a small, yet positive, impact on the distribution of actions.

Towards this regard consider the following measures: For each ε > 0 and t ∈ T̂ , let δt

be the probability measure on T̂ concentrated at t (i.e. δt({t}) = 1), and define a measure

ν̂t,ε = εδt +(1−ε)ν̂. Thus, under ν̂t,ε player t alone is an atom with mass ε. So for any given

h ∈ H \ Z and all strategies ŝ(h) : T̂ → A`(h)+1,

ν̂t,ε ◦ (ŝ(h))−1 = εδŝ(h)(t) + (1− ε)
(
ν̂ ◦ ŝ(h)−1

)
.
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Given a non-atomic extensive-form game with K ∈ N periods Γ, define, for all ε > 0 and

t ∈ T̂ and (ak, xk, πk)
K
k=1 ∈ AK ×XK ×MK ,

Ûε(t)
(
(ak)

K
k=1, (xk)

K
k=1, (πk)

K
k=1

)
= Û(t)

(
(ak)

K
k=1, (xk)

K
k=1, (εδak

+ (1− ε)πk)
K
k=1

)
.

Note that Ûε : T̂ → P is measurable (analogous to what is shown in Section A.1).

The ε-perturbed non-atomic extensive-form game Γε of Γ is defined by

Γε = (T̄ , (T̂ , Σ̂, ν̂), (Ck)
K
k=1, Ûε, (ut)t∈T̄ ).

Note that the difference between Γε and Γ involves only the payoff functions of players in T̂ .

Therefore, Γε is a non-atomic extensive-forme game as defined above.

Definition 3 A strategic subgame perfect equilibrium of a given non-atomic extensive-

form game Γ is a strategy profile s∗ = (s̄∗, ŝ∗) ∈ S, if there are sequences {εn}∞n=1 ⊆ (0, 1)

decreasing to zero and {sn}∞n=1 ⊆ S such that ω(sn) → ω(s∗) and sn = (s̄n, ŝn) ∈ S is a

subgame perfect equilibrium strategy of Γεn for every n ∈ N.

In words, a SSPE is a strategy profile such that the outcome path induced equals to one

obtained from a limit point of a sequence of SPE strategies of games where each non-atomic

player’s belief about his sui generis ability to affect the societal choice converges to zero.

6.1 Optimal taxation

The strategic interaction analyzed in this section concerns the optimal taxation game, ex-

ample 3 of Levine and Pesendorfer (1995) (henceforth, LP). We show that the use of SSPE,

instead of SPE (closely related to notion of precommitment equilibrium proposed by LP),

makes sure that the first-best can be obtained even with a continuum of non-atomic players.6

Indeed, it is well known that with finitely many players, the first-best can be supported via

the unique SPE. However, when a continuum of agents is considered, LP shows that the

unique precommitment equilibrium is not the first-best.

In what follows, we provide the nature of the strategic interaction and then define the

game formally and describe the relationship between our formalization and that of LP.

Finally, we present our result.

6The qualifier “precommitment” refers to the specification of the game in LP in which the large player
(i.e. the government) precommits in the initial period to a reaction to the choices of the households.
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The strategic interaction happens between the government, the large player L, and a

continuum of identical households (small players) where the set of households is T̂ = [0, 1]

and is endowed with the Lebesgue measure ν̂.

The interaction takes place over two periods: 1, 2. In the first period L has to commit

itself to a reaction function mapping households’ aggregate investment (which will be made

in period 2) into the probability of implementing one of the two taxation schemes available

to the government, a non-distortionary tax and a distortionary tax (these two tax schemes

will be explained in the next paragraph). This reaction function of L is denoted by x̄ :

[0, 1] → [0, 1] where, for each α ∈ [0, 1], x̄(α) denotes the probability of implementing the

non-distortionary tax when aggregate investment equals α. Meanwhile, the households do

not choose in the first period. In the second period, L does not choose while the non-atomic

players choose how much of their unit endowment of capital to invest. Their investment

decision is described by a measurable function x̂ : [0, 1] → [0, 1] where, for each function

x̄ : [0, 1] → [0, 1], x̂t(x̄) ∈ [0, 1] denotes the investment of t ∈ [0, 1] when the government has

chosen x̄. Such an investment, in turn, delivers a gross return of (1 + r)x̂t(x̄), where r > 0

denotes the interest rate.

Given x̄ and x̂, L has to implement his precommitment decision concerning how to tax the

households. Specifically, given the average investment behavior of households,
∫

x̂, taxation

must be used in order to raise adequate revenue to cover a given amount of spending equal to

1+r and the following two tax schemes are available. The first tax scheme consists of a non-

distortionary tax on the investments (collecting all the investments plus its interests). The

second tax scheme consists of a distortionary tax on some other resource in the economy (say,

labor). The government implements the non-distortionary tax with a probability determined

by his precommitment and defined by x̄(
∫

x) ∈ [0, 1].

The payoffs are described as follows. When L, the government, employs the non-

distortionary tax on households’ investments it collects all of households’ investments and

interests. In this case, the payoff of household t is his after-tax income which equals 1−x̂t ≥ 0,

the amount of capital net of the investment. With non-distortionary taxes, the tax collected

suffices to cover the needed resources of the government if and only if (almost) every house-

hold invests at the maximum amount 1. Thus, when
∫

x̂ = 1, the payoff of L equals 0, which

is the same as the average (representative) households’ payoff. However, when
∫

x̂ < 1, the

revenues collected does not suffice and due to a revenue shortfall L incurs a loss of p > 1 for
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every unit of revenue shortfall and this results in a total penalty the amount of p(1−
∫

x̂). So

the government’s payoff is the payoff of the average household minus the penalty resulting

from the revenue shortfall: (1 −
∫

x̂)(1 − p) ≤ 0. Notice that with non-distortionary taxes

(1−
∫

x̂)(1− p) equals the maximum payoff of L, i.e. 0, if and only if
∫

x̂ = 1; otherwise, it

is strictly negative.

If L uses distortionary taxation, then the amount of needed resources for the government

are fully covered. However, because that this tax is distortionary, each household incurs a

cost of c > 1+r. Therefore, with such taxes payoffs of household t consists of their endowment

net of investment, i.e. 1− x̂t, plus the proceeds from their investment, i.e. (1 + r)x̂t minus

the cost from the use of a distortionary tax, c; hence, is equal to (1 + rx̂t − c). Notice that

this amount is strictly negative for every x̂t ∈ [0, 1]. As there are no revenue shortfalls with

the use of distortionary taxes, the government obtains a payoff, equal to that of the average

(representative) household, i.e. 1 + r
∫

x̂− c, which is guaranteed to be strictly negative.

In this setting, it is clear that the first-best is given by an outcome where x̄(1) = 1 and∫
x̂ = 1 meaning that the government chooses the non-distortionary taxes and the average

households investment equals 1; in turn, delivering a payoff of 0 to all the players.

Next we describe this game in the formal setting of Section 6. Let T̄ = {L} and T̂ = [0, 1]

where ν̂ is given by the Lebesgue measure on [0, 1].

The time index is k = 1, 2. The actions allowed in period k, (Ck)k=1,2 are defined

as follows. Let X be the space of (bounded) functions mapping [0, 1] into itself, endowed

with the sup norm. We then let C1,L be a nonempty subset of X and A1 = {0}. In this

formalization, the assumption that non-atomic players do not choose in period 1 is modeled

by letting their allowed set of actions equal to this singleton set; the reason for not specifying

C1,L = X will be clear shortly. In period 2, C2,L = {0} ⊆ R and A2 = [0, 1].

In this setting, due to the specific nature of the game, the set of histories takes a simple

form: H1 = {h ∈ H : h = (x̄, 0) with x̄ ∈ C1,L} as player’s in [0, 1] are restricted to

choose 0. In what follows, we will suppress non-atomic players’ choices for any history

in H1 and simply refer such histories by h = x̄. The terminal histories take the form

H2 = {h′ ∈ H : h′ = (h, (0, π)) with h ∈ H1 and π ∈ M([0, 1])}. Since L is restricted to

choose 0 in period two, we suppress such degenerate choices and denote any h′ ∈ H2 by

h′ = (x̄, π).

Given any terminal history (x̄, π) ∈ H2 and letting i : [0, 1] → [0, 1] denote the identity,
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the payoff of L is

uL (x̄, π) =

(
1− x̄

(∫
idπ

))(
1 + r

∫
idπ − c

)
+ x̄

(∫
idπ

)(
1−

∫
idπ

)
(1− p).

The payoff of household t ∈ [0, 1] is, for each a ∈ A2 and (x̄, π) ∈ H2,

Û(t) (a, x̄, π) =

(
1− x̄

(∫
idπ

))
(1 + ra− c) + x̄

(∫
idπ

)
(1− a).

The above defines a non-atomic extensive-form game Γot.

A delicate issue regarding the game Γot concerns the specification of the government’s

choice set C1,L in period 1. Indeed, if we were to set C1,L equal to X, then a SPE fails

to exist. Indeed, there are x̄ ∈ X such that there is no Nash equilibrium in the subgame

induced by x̄, e.g. if x̄ = 1{α∈[0,1]:α>3/4}.

LP addressed the above issue in an ingenious way by introducing the notion of precom-

mitment equilibrium defined as follows. A pair (x̄, x̂) is a Stackelberg response if it satisfies

for all t ∈ [0, 1]

Û(t)
(
x̂t, x̄, ν̂ ◦ x̂−1

)
≥ Û(t)

(
a, x̄, ν̂ ◦ x̂−1

)
,

for all a ∈ [0, 1]. Furthermore, a pair (x̄∗, x̂∗) is a precommitment equilibrium if it is a

Stackelberg response and

uL

(
x̄∗, ν̂ ◦ (x̂∗)−1

)
≥ uL

(
x̄, ν̂ ◦ x̂−1

)
for all Stackelberg responses (x̄, x̂). Thus, only those strategies x̄ for which there exists

an equilibrium in the subgame it induces are considered in the notion of precommitment

equilibrium. Consequently, by letting C1,L be the set of x̄ ∈ X such that (x̄, x̂) is a Stackelberg

response for some measurable x̂ : [0, 1] → [0, 1], we obtain that the set of SPE outcomes of

Γot coincides with its precommitment equilibria.

However, our goal is to consider SSPE and, therefore, we need to restrict the set C1,L

further. Indeed, we need to consider C1,L so that, for some sequence {εn}∞n=1 ⊆ (0, 1)

converging to zero, every x̄ ∈ C1,L is such that there exists a Nash equilibrium in the

subgame it induces in the ε-perturbed non-atomic extensive form game Γot,ε of Γot. To be

concrete, we set C1,L to be such set corresponding to the sequence {1/n}∞n=1. The important

remark to make is that C1,L is nonempty and, indeed, contains the strategies used in LP’s

analysis, namely the set of all constant functions x̄ : [0, 1] → [0, 1] and the function x̄ = 11

(see the proof of their Theorem 1).
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Clearly, the first-best outcome cannot be supported by a SPE: When
∫

x̂(x̄) = 1 and

x̄(1) = 1, then (x̄, x̂) is not a SPE: the best response of every t ∈ [0, 1] equals 0, and not 1.

In fact, as LP have shown, the government’s SPE payoff is strictly lower than the first-best

level 0. In what follows, we show that the use of SSPE enables us to sustain the first-best

payoff for L uniquely (see Section A.8 for its proof).

Theorem 6 The non-atomic extensive-form game Γot has a SSPE. Furthermore, player L’s

payoff in any SSPE of Γot equals 0 (the first-best).

The intuition behind this result is as follows. When ε > 0, in the ε-perturbed game every

non-atomic player imagines that his deviation would be affecting the societal choice, thus,

deviations would be identifiable by the government. Indeed, the government, in contrast to

the non-atomic case, may employ the following strategy: Choose non-distortionary taxation

whenever the societal choice with ε-perturbations is 1; otherwise, the government “punishes”

the small players by choosing the distortionary tax. This, in turn, will make sure that the

first-best can be obtained by SSPE. And it is the unique such equilibrium payoff because

the government has the option to deviate to this strategy and the best responses of the

households with ε-perturbations is uniquely determined as described above. Thus, the unique

SSPE payoff of the government equals 0, the first-best.

A Appendix

A.1 Proof of the claims in Section 3

Claim 1 Ûl,ε : T̂l → Ul is measurable for each l = 1, . . . , L.

Proof. Fix l ∈ {1, . . . , L} and define, for all a ∈ Al, x ∈ X and π ∈ M, Û
(a,x,π)
l,ε by

t 7→ Ul,ε(t)(a, x, π) and U
(a,x,π)
l by t 7→ Ul(t)(a, x, π). Since U

(a,x,π)
l,ε = U

(a,(εδa+(1−ε)πl,π−l))
l and

U
(a,(εδa+(1−ε)πl,π−l))
l is measurable by Carmona (2009, Proposition 1), it follows that U

(a,x,π)
l,ε

is also measurable. Then, it follows again by Carmona (2009, Proposition 1) that Ul,ε is

measurable.

Claim 2 Ûl,ε(t) is continuous for each l = 1, . . . , L and t ∈ T̂l.

Proof. Let l ∈ {1, . . . , L} and t ∈ Tl. If a ∈ Al, x ∈ X, π ∈M, {ak}∞k=1 ⊆ Al, {xk}∞k=1 ⊆
X and {πk}∞k=1 ⊆ M are such that limk ak = a, limk xk = x and limk τk = τ then εδak

+
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(1− ε)πk
l → εδa + (1− ε)πl and the continuity of Ul(t) implies that limk Ul,ε(t)(ak, xk, πk) =

limk Ul(t)(ak, xk, (εδak
+ (1 − ε)πk

l , π
k
−l)) = Ul(t)(a, (εδa + (1 − ε)πl, π−l)) = Ul,ε(t)(a, x, π).

This concludes the proof.

A.2 Proof of Theorem 1

Let ε > 0. We start by showing that Gε has an equilibrium distribution using an analogous

argument to Mas-Colell (1984). Let M = {(τ1, . . . , τL) ∈ C : τl,Ul
= ν̂l ◦ Û−1

l for each l =

1, . . . , L}, a nonempty, compact and convex subset of C. Define a correspondence Φ : X ×
M ⇒ X × M by setting, for each (x, τ1, . . . , τL) ∈ X × M , Φ(x, τ1, . . . , τL) be the set of

(x′, τ ′1, . . . , τ
′
L) ∈ X ×M such that

ut(x
′
t, x−t, τ1,A1 , . . . , τL,AL

) ≥ ut(x̃t, x−t, τ1,A1 , . . . , τL,AL
)

for all t ∈ T̄ and x̃t ∈ Xt, and

τ ′l ({(u, a) ∈ Ul × Al : u(a, x, τ1,A1 , . . . , τL,AL
) ≥ u(ã, x, τ1,A1 , . . . , τL,AL

) for each ã ∈ Al}) = 1

for each l = 1, . . . , L. It is straightforward to show that Φ has a fixed point, which is an

equilibrium distribution of Gε.

To finish the proof, we let (xk, τ k
1 , . . . , τ k

L) be an equilibrium distribution of G1/k for each

k ∈ N. Since {Ûl,1/k}∞k=1 converges uniformly to Ûl, then it follows that ν̂l◦U−1
l,1/k converges to

ν̂l ◦U−1
l for all l = 1, . . . , L. For all l ∈ {1, . . . , L}, let Kl = {ν̂l ◦ Û−1

l , ν̂l ◦ Û−1
l,1 , ν̂l ◦ Û−1

l,1/2, . . .}
and Cl = {µ ∈ M(Ul × Al) : µl,Ul

∈ Kl}. It follows by Hildenbrand (1974, Theorems 32

and 33) that Kl is tight, and by Hildenbrand (1974, Theorems 34 and 35) that Cl is tight.

Recall that X is compact. Since {xk}∞k=1 ⊆ X and {(τ k
1 , . . . , τ k

L)}∞k=1 ⊆ C1 × · · · × CL, it

follows (using Hildenbrand (1974, Theorem 31)) that {(xk, τ k
1 , . . . , τ k

L)}∞k=1 has a converging

subsequence. Hence, its limit point is a SED of G.

A.3 Proof of Theorem 2

To simplify the notation, for each τ = (τ1, . . . , τL) ∈ C, l ∈ {1, . . . , L}, u ∈ Ul, x ∈ X

and a ∈ Al, we let τA = (τ1,A1 , . . . , τL,AL
) and write u(a, x, τA) ≥ u(A, x, τA) whenever

u(a, x, τA) ≥ u(a′, x, τA) for all a′ ∈ Al.
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Let (x, τ1, . . . , τL) be a SED and let {εk}k and {(xk, τ k
1 , . . . , τ k

L)}k be such that εk ∈ (0, 1),

limk εk = 0, (xk, τ k
1 , . . . , τ k

L) converges to (x, τ1, . . . , τL), and (xk, τ k
1 , . . . , τ k

L) is an equilibrium

distribution of Gεk
, for all k ∈ N.

Note that {(u, a) ∈ Ul × Al : u(a, x, τA) ≥ u(A, x, τA)} is closed and, for all k ∈ N,

τ k
l ({(u, a) ∈ Ul × Al : u(a, xk, τ k

A) ≥ u(A, xk, τ k
A)}) = 1 for each l = 1, . . . , L. Hence,

supp(τ k
l ) ⊆ {(u, a) ∈ Ul × Al : u(a, xk, τ k

A) ≥ u(A, xk, τ k
A)} for each l = 1, . . . , L.

We next show that supp(τl) ⊆ {(u, a) ∈ Ul × Al : u(a, x, τA) ≥ u(A, x, τA)} for each

l = 1, . . . , L. Let l ∈ {1, . . . , L} and (u∗, a∗) ∈ supp(τl). By Carmona and Podczeck

(2009, Lemma 12), there exists a subsequence {τ km
l }m of {τ k

l }k and, for each m ∈ N,

(um, am) ∈ supp(τ km
l ) such that limm(um, am) = (u∗, a∗). Hence, for all m ∈ N and

a′ ∈ A, um(am, xkm , τ km
A ) ≥ um(a′, xkm , τ km

A ) and so u∗(a∗, x, τA) ≥ u∗(a′, x, τA). Thus,

(u∗, a∗) ∈ {(u, a) ∈ Ul × Al : u(a, x, τA) ≥ u(A, x, τA)}. It then follows that τl({(u, a) ∈
Ul × Al : u(a, x, τA) ≥ u(A, x, τA)}) = 1.

Furthermore, we have that ut(x
k, τ k

A) ≥ ut(x
′
t, x

k
−t, τ

k
A) for all t ∈ T̄ , x′t ∈ Xt and k ∈ N,

which implies that ut(x, τA) ≥ ut(x
′
t, x−t, τA) for all t ∈ T̄ and x′t ∈ Xt. This, together

with what has been shown in the preceding paragraph, establishes that (x, τ1, . . . , τL) is an

equilibrium distribution of G.

A.4 Proof of Theorem 3

The equivalence between (a) and (b) follows from the fact that ν̂l◦(Ûl,εk
,xk

l )
−1 → ν̂l◦(Ûl,xl)

−1

if and only if ν̂l ◦ (Ûl,x
k
l )
−1 → ν̂l ◦ (Ûl,xl)

−1. To see the latter equivalence, fix l ∈ {1, . . . , L}
and suppose first that ν̂l ◦ (Ul,x

k
l )
−1 → ν̂l ◦ (Ul,xl)

−1.

Let ε > 0 and h : Ul × Al → R be a bounded uniformly continuous real-valued function.

We will show that there exists K ∈ N such that |
∫
Ul×Al

hdν̂l ◦ (Ûl,εk
,xk

l )
−1 −

∫
Ul×Al

hdν̂l ◦
(Ûl,xl)

−1| < ε for all k ≥ K.

Since h is bounded, there exists B > 0 such that ||h|| ≤ B. Let η > 0 be such that

η < ε/[2(1 + 2B)]. Since h is uniformly continuous, there exists δ > 0 such that |h(u, a) −
h(u′, a′)| < η for all u, u′ ∈ Ul and a, a′ ∈ Al such that ||u− u′|| < δ and d(a, a′) < δ. Since

Ûl,εk
(t) converges uniformly to Ûl(t) for each t ∈ T̂l, the function fk : T̂l → R defined by

fk(t) = ||Ûl,εk
(t) − Ûl(t)|| for all k ∈ N and t ∈ T̂l converges pointwise to zero. Hence, by

Ergorov’s Theorem, there exists a measurable F ⊆ T̂l and K ′ ∈ N such that ν̂l(T̂l \ F ) < η

and |fk(t)| ≤ δ/2 for all t ∈ F and k ≥ K ′.
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Since ν̂l ◦ (Ûl,x
k
l )
−1 → ν̂l ◦ (Ûl,xl)

−1, there exists K ∈ N such that K ≥ K ′ and

|
∫
Ul×Al

hdν̂l ◦ (Ûl,x
k
l )
−1 −

∫
Ul×Al

hdν̂l ◦ (Ûl,xl)
−1| < ε/2 for all k ≥ K.

Hence, for all k ≥ K,∣∣∣∣∫
Ul×Al

hdν̂l ◦ (Ûl,εk
,xk

l )
−1 −

∫
Ul×Al

hdν̂l ◦ (Ûl,xl)
−1

∣∣∣∣
≤
∣∣∣∣∫

Ul×Al

hdν̂l ◦ (Ûl,εk
,xk

l )
−1 −

∫
Ul×Al

hdν̂l ◦ (Ûl,x
k
l )
−1

∣∣∣∣
+

∣∣∣∣∫
Ul×Al

hdν̂l ◦ (Ûl,x
k
l )
−1 −

∫
Ul×Al

hdν̂l ◦ (Ûl,xl)
−1

∣∣∣∣
<

∫
T̂l

|h(Ûl,εk
(t),xk

l (t))− h(Ûl(t),x
k
l (t))|dν̂l(t) +

ε

2

=

∫
T̂l\F

|h(Ûl,εk
(t),xk

l (t))− h(Ûl(t),x
k
l (t))|dν̂l(t)

+

∫
F

|h(Ûl,εk
(t),xk

l (t))− h(Ûl(t),x
k
l (t))|dν̂l(t) +

ε

2
< 2Bη + η +

ε

2
< ε.

Note that a similar argument to the above show that ν̂l ◦ (Ûl,εk
,xk

l )
−1 → ν̂l ◦ (Ûl,xl)

−1

implies ν̂l ◦ (Ûl,x
k
l )
−1 → ν̂l ◦ (Ûl,xl)

−1.

We finally turn to the proof of the equivalence between (a) and (c). Suppose that

(x,x1, . . . , xL) is a SES of G. Let {εk}k and {(xk,x
k
1, . . . ,x

k
L)}k be such that εk ↘ 0,

(xk,x
k
1, . . . ,x

k
L) is a equilibrium strategy of Gεk

, xk → x and ν̂l ◦(Ûl,εk
,xk

l )
−1 → ν̂l ◦(Ûl,xl)

−1

for each l = 1, . . . , L. Since (xk, ν̂1 ◦ (Û1,εk
,xk

1)
−1, . . . , ν̂L ◦ (ÛL,εk

,xk
L)−1) is an equilibrium

distribution of Gεk
, then (x, ν̂1 ◦ (Û1,x1)

−1, . . . , ν̂L ◦ (ÛL,xL)−1) is a SED of G.

Conversely, let (x, ν̂1 ◦ (Û1,x1)
−1, . . . , ν̂L ◦ (ÛL,xL)−1) be a SED of G and let τl = ν̂l ◦

(Ûl,xl)
−1 for each l = 1, . . . , L. Let {εk}k and {(xk, τ

k
1 , . . . , τ k

L)}k be such that εk ↘ 0,

(xk, τ
k
1 , . . . , τ k

L) is an equilibrium distribution of Gεk
and (xk, τ

k
1 , . . . , τ k

L) → (x, τ1, . . . , τL).

Then, since either Al is countable or Ûl(T̂l) is countable for all l = 1, . . . , L, or (T̂ , Σ̂, ν̂) is

super-atomless, it follows by Khan and Sun (1995, Theorem 2), Carmona (2008, Theorem 1)

or Carmona and Podczeck (2009, Lemma 7) respectively that there exist (xk
1, . . . ,x

k
L) such

that (xk,x
k
1, . . . ,x

k
L) is an equilibrium strategy of Gεk

and ν̂l ◦ (Ûl,εk
,xk

l )
−1 = τ k

l for all k ∈ N

and l = 1, . . . , L. Since ν̂l ◦ (Ûl,εk
,xk

l )
−1 = τ k

l → τl = ν̂l ◦ (Ûl,xl)
−1 for each l = 1, . . . , L, it

follows that (x,x1, . . . ,xL) is a SES of G.

A.5 Proof of Theorem 4

The proof follows those of Lemma 2.5.2 and Theorem 2.5.5 in van Damme (1991).
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Let G be smooth, τ be a regular equilibrium of G and a∗u be such that τu,a∗u > 0 for each

u ∈ S. We first show that

{a ∈ A : τu,a = 0} = {a ∈ A : u(a, τA) < u(a∗u, τA)} for each u ∈ S. (6)

This can be established as follows. Since τ is an equilibrium of G, then {a ∈ A : u(a, τA) <

u(a∗u, τA)} ⊆ {a ∈ A : τu,a = 0} for each u ∈ S. To show the additional inclusion, let J̃ be

obtained from Ja∗(τ) by crossing out the rows and columns corresponding to (u, a) ∈ S×A

such that τu,a = 0. Since τA = (
∑

u∈A τu,a)a∈A, we have that, for each (u, a) ∈ S × A such

that τu,a = 0,

∂F a∗
u,a(τ)

∂τ̂u,a

= u(a, τA)− u(a∗u, τA) + τu,a

[
∂u(a, τA)

∂πa

− ∂u(a∗u, τA)

∂πa

]
= u(a, τA)− u(a∗u, τA), and

∂F a∗
u,a(τ)

∂τ̂u′,a′
= τu,a

[
∂u(a, τA)

∂πa′
− ∂u(a∗u, τA)

∂πa′

]
= 0

for any (u′, a′) ∈ S× A such that (u′, a′) 6= (u, a). This implies that

det(Ja∗(τ)) = det(J̃)
∏

(u,a)∈S×A:τu,a=0

[u(a, τA)− u(a∗u, τA)] . (7)

Now consider (u, a) ∈ S × A such that u(a, τA) = u(a∗u, τA). If τu,a = 0, then (7) implies

det(Ja∗(τ)) = 0, a contradiction. Hence, it must be τu,a > 0. Thus, {a ∈ A : u(a, τA) =

u(a∗u, τA)} ⊆ {a ∈ A : τu,a > 0} for each u ∈ S, i.e. {a ∈ A : τu,a = 0} ⊆ {a ∈ A : u(a, τA) <

u(a∗u, τA)} for each u ∈ S. This concludes the proof of (6).

Let V be a neighborhood of 0 in R such that, for each ε ∈ V and a ∈ A, εδa+(1−ε)π ∈ W ,

where δa is now regarded as the vector in ∆A with its coordinate corresponding to a being

equal to 1. Define F : W ×V → R|S||A| by setting, for each (τ, ε) ∈ W ×V and (u, a) ∈ S×A,

Fu,a(τ, ε) = τ(u, a)[u(a, εδa + (1− ε)τA)− u(a∗u, εδa + (1− ε)τA)] if a 6= a∗u

and

Fu,a∗u(τ) =
∑
a∈A

τ(u, a)− µ(u).

Since τ is an equilibrium of G and τu,a∗u > 0 for each u ∈ S, then F (τ, 0) = 0. Since τ is

a regular equilibrium of G, then
∂F (τ)

∂τ̂
=

∂F a∗(τ)

∂τ̂

is non-singular.
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It then follows by the implicit function theorem (see, e.g., Rudin (1976, Theorem 9.28,

p.224)) that there exists an open neighborhood W ∗ of τ , an open neighborhood V ∗ of 0 and

a differentiable function f : V ∗ → W ∗ such that, for each (τ ′, ε) ∈ W ∗ × V ∗,

F ∗(τ ′, ε) = 0 if and only if τ ′ = f(ε). (8)

Shrinking W ∗ and V ∗ if necessary, we may assume that

τ ′u,a > 0 for all (u, a) ∈ S× A such that τu,a > 0 (9)

holds for each τ ′ ∈ W ∗ and that

u(a, εδa + (1− ε)τ ′A) < u(a∗u, εδa + (1− ε)τ ′A) for all (u, a) ∈ S× A such that τu,a = 0 (10)

holds for each (τ ′, ε) ∈ W ∗ × V ∗. Note that (10) is possible due to (6).

Hence, for each ε ∈ V ∗, letting τ ′ = f(ε) ∈ W ∗, we have that the following holds. First,

by (9),

τ ′u,a > 0 for all (u, a) ∈ S× A such that τu,a > 0. (11)

Second, by (8) and (11),

u(a, εδa + (1− ε)τ ′A) = u(a∗u, εδa + (1− ε)τ ′A) for all (u, a) ∈ S×A such that τu,a > 0. (12)

Third, by (10),

u(a, εδa + (1− ε)τ ′A) < u(a∗u, εδa + (1− ε)τ ′A) for all (u, a) ∈ S×A such that τu,a = 0. (13)

Forth, and finally, by (8) and (13),

τ ′u,a = 0 for all (u, a) ∈ S× A such that τu,a = 0. (14)

Let x : T̂ → A be an equilibrium strategy such that ν̂ ◦(Û ,x)−1 = τ . Let {εk}∞k=1 ⊆ (0, 1)

be such that εk ↓ 0 and εk ∈ V ∗ for all k ∈ N. Fix k ∈ N and let τk = f(εk) and

xk : T̂ → A be such that ν̂ ◦ (Û ,xk)
−1 = τk. Such xk exists because A is finite and because,

by (8), τk,S(u) =
∑

a∈A τk(u, a) = µ(u) for each u ∈ S. Then (11)–(14) imply that xk is an

equilibrium strategy of Gεk
. Furthermore,

ν̂ ◦ (Û ,xk)
−1 = τk = f(εk) → f(0) = τ = ν̂ ◦ (Û ,x)−1.

Hence, by Theorem 3, x is a SES and τ is a SED. These complete the proof.
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A.6 Proof of the claims made in Example 1

It is clear that G is a smooth game by letting û(α, π) = π(α) and û(β, π) = 1 − π(α) for

each π ∈ R|A|. It is also clear that τ ∗ is an equilibrium of G.

Let a∗ = β and note that, for each τ ∈ R|S||A|,

F a∗

u,α(τ) = τu,α[2τu,α − 1], and

F a∗

u,β(τ) = τu,α + τu,β − 1.

Then

Ja∗(τ ∗) =

 4τ ∗u,α − 1 0

1 1

 =

 1 0

1 1


and is, therefore, non-singular. This establishes that τ ∗ is a regular equilibrium of G.

We next show that τ ∗ is not a limit equilibrium of G. Suppose not. Then there exists

{(Gk, fk)}∞k=1 satisfying the conditions in the definition of limit equilibrium. Let k ∈ N be

sufficiently large such that τk(u, α) > 0 and τk(u, β) > 0, where τk = νk ◦ (Uk, fk)
−1. For

convenience, let πk = τk(u, α). Since fk is a Nash equilibrium of Gk, then (1) applied to

t ∈ T̄k such that fk(t) = α implies that

πk ≥ 1− (πk − 1/k) ⇔ 2πk − 1 ≥ 1/k. (15)

Similarly, (1) applied to t ∈ T̄k such that fk(t) = β implies that

1− πk ≥ πk + 1/k ⇔ 2πk − 1 ≤ −1/k. (16)

Combining (15) and (16), we obtain −1/k ≥ 1/k, a contradiction. This contradiction shows

that τ ∗ is not a limit equilibrium of G.

A.7 Proof of Theorem 5

(Sufficiency) Let (x∗1, . . . ,x
∗
n) be a strategy in G, and assume that x̄∗ = (x̄∗1, . . . , x̄

∗
n) is a

mixed strategy Nash equilibrium of Γ. Let i ∈ N , t ∈ T̂i, ε > 0 and a ∈ A. We have that

Ûi,ε(x
∗(t), x̄∗1, . . . , x̄

∗
n) ≥ Ûi,ε(a, x̄∗1, . . . , x̄

∗
n). (17)

Indeed, we have that vi(x̄
∗) ≥ vi(σi, x̄

∗
−i) for all σi ∈ ∆Ai

, which implies, in particular, that

vi(x̄
∗) ≥ vi(εa + (1 − ε)x̄∗i , x̄

∗
−i) for all a ∈ Ai. It follows from (17) that (x∗1, . . . ,x

∗
n) is an

equilibrium strategy of Gε for all ε > 0 and, thus, a SE of G.
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(Necessity) Let (x∗1, . . . ,x
∗
n) be a SE of G, and let x̄∗ = (x̄∗1, . . . , x̄

∗
n). We show that for

all i ∈ N , and ai ∈ Ai if x̄∗i (ai) > 0, then ai maximizes âi 7→ vi(âi, x̄
∗
−i) in Ai, which then

implies that x̄∗ is a mixed strategy Nash equilibrium of Γ. Let i ∈ N and ai ∈ Ai. If ai does

not maximize âi 7→ vi(âi, x̄
∗
−i) in Ai, then ai does not maximize âi 7→ vi(âi, x̄

ε
−i) in Ai for

all ε > 0 sufficiently small, where x̄ε := (ν̂1 ◦ (xε
1)
−1, . . . , ν̂n ◦ (xε

n)−1), and (xε
1, . . . ,x

ε
n) is an

equilibrium strategy of Gε, xε
i converges in distribution to x∗i for all i ∈ N and ε → 0. Since

Ûi,ε(t)(âi, x̄
ε) = εvi(âi, x̄

ε
−i) + (1− ε)vi(x̄

ε)

and xε is an equilibrium strategy of Gε, then xε
i (t) 6= ai a.e. t ∈ T̂i and so x̄ε

i (ai) = 0. Thus,

x̄∗i (ai) = 0 since xε
i converges in distribution to x∗i .

A.8 Proof of Theorem 6

Let ε > 0 and consider (x̄∗, x̂∗,ε) defined by x̄∗ = 11, x̂
∗,ε(x̄∗) ≡ 1 and, for each x̄ ∈ C1,L\{x̄∗},

let x̂∗,εt (x̄) be any equilibrium of the subgame induced by x̄ in Γot,ε.

Since εa + (1− ε)
∫

x̂∗ = 1 if and only if a = 1, we have that

Ûε(t)
(
a, x̄∗, ν̂ ◦ x̂∗,ε(x̄∗)−1

)
=

 0 if a = 1,

1 + ra− c if a < 1.

Since 1+ ra− c < 0, a ∈ [0, 1], then x̂∗,εt (x̄∗) solves maxa∈A2 Ûε(t) (a, x̄∗, ν̂ ◦ x̂∗,ε(x̄∗)−1). Fur-

thermore, uL (x̄∗, ν̂ ◦ x̂∗,ε(x̄∗)−1) = 0 ≥ uL (x̄, ν̂ ◦ x̂(x̄)−1) for all x̄ ∈ C1,L. Hence, (x̄∗, x̂∗,ε)

is a SPE of Γot,ε. It is then clear that (x̄∗, x̂∗) with x̂∗(x̄∗) ≡ 1 is a SSPE of Γot. This

establishes existence of a SSPE of Γot.

We next show the uniqueness of the SSPE payoff of L. Let (x̄, x̂) be any SSPE and let

{εn}∞n=1 with εn ↘ 0 and {x̄n, x̂n}∞n=1 be such that ω(x̄n, x̂n) → ω(x̄n, x̂n) and (x̄n, x̂n) is a

SPE of Γot,εn for all n ∈ N. Then we have that, for each n, 0 ≥ uL

(
x̄n,
∫

idν̂ ◦ (x̂n)−1
)
≥

uL

(
x̄∗,
∫

idν̂ ◦ (x̂∗)−1
)

= 0. Hence, uL

(
x̄n,
∫

idν̂ ◦ x̂n(x̄n)−1
)

= 0 for all n ∈ N. This, in

turn, implies that
∫

x̂n(x̄n) =
∫

idν̂ ◦ x̂n(x̄n)−1 = 1, ν̂ ◦ x̂n(x̄n)−1({1}) = 1 and x̄n(1) = 1.

Since ω(x̄n, x̂n) → ω(x̄n, x̂n), then x̄(1) = 1, ν̂ ◦ x̂(x̄)−1({1}) = 1 and x̂t(x̄) = 1. Thus,

uL(x̄, ν̂ ◦ x̂(x̄)−1) = 0 as claimed. This concludes the proof.
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Carmona, G., M. Páscoa, and K. Podczeck (2008): “On the Existence of Limit

Equilibria in Large Games,” Universidade Nova de Lisboa and Universität Wien.

Carmona, G., and K. Podczeck (2009): “On the Existence of Pure Strategy Nash

Equilibria in Large Games,” Journal of Economic Theory, 144, 1300–1319.

(2011): “Approximation and Characterization of Nash Equilibria of Large Games,”

University of Cambridge and Universität Wien.

(2014): “Existence of Nash Equilibrium in Games with a Measure Space of Players

and Discontinuous Payoff Functions,” Journal of Economic Theory, 152, 130–178.

Chari, V. V., and P. J. Kehoe (1989): “Sustainable Plans,” Journal of Political Econ-

omy, 98(4), 783–802.

Green, E. (1980): “Non-Cooperative Price Taking in Large Dynamic Markets,” Journal of

Economic Theory, 22, 155–182.

Harsanyi, J. (1973): “Oddness of the Number of Equilibrium Points: A New Proof,”

International Journal of Game Theory, 2, 235–250.

Hildenbrand, W. (1974): Core and Equilibria of a Large Economy. Princeton University

Press, Princeton.

30



Khan, M., K. Rath, and Y. Sun (1997): “On the Existence of Pure Strategy Equilibria

in Games with a Continuum of Players,” Journal of Economic Theory, 76, 13–46.

Khan, M., and Y. Sun (1995): “The Marriage Lemma and Large Anonymous Games with

Countable Actions,” Mathematical Proceedings of the Cambridge Philosophical Society,

117, 385–387.

Kuhn, H., and et al. (1996): “The Work of John Nash in Game Theory,” Journal of

Economic Theory, 69, 153–185.

Levine, D., and W. Pesendorfer (1995): “When Are Agents Negligible?,” American

Economic Review, 85(5), 1160–1170.

Mas-Colell, A. (1983): “Walrasian Equilibria as Limits of Noncooperative Equilibria.

Part I: Mixed Strategies,” Journal of Economic Theory, 30, 153–170.

(1984): “On a Theorem by Schmeidler,” Journal of Mathematical Economics, 13,

201–206.

Nash, J. (1950): “Non-Cooperative Games,” Ph.D. thesis, Princeton University.

Novshek, W., and H. Sonnenschein (1983): “Walrasian Equilibria as Limits of Nonco-

operative Equilibria. Part II: Pure strategies,” Journal of Economic Theory, 30, 171–187.

Podczeck, K. (2008): “On the Convexity and Compactness of the Integral of a Banach

Space Valued Correspondence,” Journal of Mathematical Economics, 44, 836–852.

(2009): “On Purification of Measure-valued Maps,” Econ. Theory, 38, 399–418.

Postlewaite, A., and D. Schmeidler (1978): “Approximate Efficiency of Non-

Walrasian Nash Equilibria,” Econometrica, 46, 127–135.

Rudin, W. (1976): Principles of Mathematical Analysis. McGraw-Hill, Singapore.

Sabourian, H. (1990): “Anonymous Repeated Games with a Large Number of Players and

Random Outcomes,” Journal of Economic Theory, 51, 92–110.

Schmeidler, D. (1973): “Equilibrium Points of Non-atomic Games,” Journal of Statistical

Physics, 4, 295–300.

31



Selten, R. (1975): “Reexamination of the Perfectness Concept for Equilibrium Points in

Extensive Games,” International Journal of Game Theory, 4, 25–55.

van Damme, E. (1991): Perfection and Stability of Nash equilibrium. Springer Verlag,

Berlin.

32


	Introduction
	Games with a measure space of players
	Strategic equilibria
	Games with finite characteristics
	Mass-action interpretation of Nash equilibria
	Strategic subgame perfect equilibrium
	Optimal taxation

	Appendix
	Proof of the claims in Section 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of the claims made in Example 1
	Proof of Theorem 5
	Proof of Theorem 6


