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Abstract. Incompressible smoothed particle hydrodynamics method has been used to
simulate the deformation of a two-dimensional liquid droplet suspended in Couette flow in
presence of an external electric field. The results show that the elongation and orientation
of the droplet is dependent on permittivity and conductivity ratios.

1 INTRODUCTION

The interaction between liquid droplets with a fluid environment is one of the most
common problems arising in nature and industry, particularly in emulsification, mixing
and suspensions. Simulation of the behavior of droplets in linear shear has attracted
many researchers where either of the droplet or the background flow may be Newtonian
or non-Newtonain [1–3]. Special attention has been paid to stable rotation of droplets or
their breakup. Evolution of a Newtonian droplet in non-Newtonain background fluid is
studied in [1, 3] while the effects of an external electric field in a Newtonian-Newtonian
case is investigated in [2].

In this study, a two-dimensional Incompressible Smoothed Particle Hydrodynamics
(ISPH) scheme is used to simulate the two-phase flow of a droplet in simple shear [4].
Both fluids are modeled as leaky dielectric material [5, 6]. We have carried out numerical
simulations of a Newtonian droplet in non-Newtonian background flow in a recent study
[3]. Here, we extend that study to evolution of droplets in linear shear while they are
exposed to an external electric field. Comparison of results with those without electric
field shows that it is possible to manipulate the elongation and orientation of the droplets,
as suggested by [2].
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2 Mathematical Formulation

Equations governing an incompressible flow may be written as

∇ · u = 0, (1)

ρ
Du

Dt
= −∇p+ 1

Re
∇ · τ +

1

We
f(s) +

1

Ei
f(e), (2)

where u is the velocity vector, p is pressure, ρ is density, t is time and D/Dt = ∂/∂t+u ·∇
represents the material time derivative. Here, τ is the viscous stress tensor,

τ = µ
[
∇u+ (∇u)†

]
, (3)

where µ denotes viscosity and superscript �† represents the transpose operation. Local
surface tension force is expressed as an equivalent volumetric force according to the CSF
method [7],

f(s) = γκn̂δ. (4)

Here, surface tension coefficient, γ, is taken to be constant while κ represents interface
curvature, −∇ · n̂, where n̂ is unit surface normal vector. f(e) is the electric force vector
defined as [5]

f(e) = −1

2
E · E∇ε+ qvE. (5)

In the above equation, ε denotes electric permittivity, qv is the volume charge density
near the interface while E is the electric field vector. Assuming small dynamic currents
and neglecting magnetic induction effects, the electric field is irrotational [8] and may
be represented by gradient of an electric potential ϕ, E = −∇ϕ. Further assumption of
fast electric relaxation time compared to viscous relaxation time leads to the following
relations for electric potential and charge density

∇ · (σ∇ϕ) = 0, (6)

qv = ∇ · (ε∇ϕ) , (7)

where σ is the electrical conductivity.
Dimensionless values are formed using the following scales

x = x∗/H, ρ = ρ∗/ρf , µ = µ∗/µf u = u∗/Uw, t = t∗Uw/H, (8)

E = E∗/E∞, ϕ = ϕ∗/E∞H, p = p∗/ρfU
2
w,

R = ρd/ρf , M = µd/µf , P = εd/εf , C = σd/σf ,

leading to Reynolds, Weber and Electroinertial numbers defined as

Re =
ρfUwH

µf
, We =

ρU2
wH

γ
, Ei =

ρfU
2
w

εfE2
∞
. (9)
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Here E∞ is the undisturbed electric field intensity, H is the distance between electrodes,
Uw is the wall velocity (figure 1-a). An asterisk marks dimensional variables whereas
subscripts �d and �f denote droplet and background fluid phases, respectively.

To distinguish between different phases, a color function ĉ is defined such that it as-
sumes a value of zero for one phase and unity for the other. The color function is then
smoothed out across the phase boundaries as

ci =
Jn∑
j=1

ĉjWij

ψi

, (10)

to ensure smooth transition between the properties of each phase when used for their
interpolation. Here, ψi =

∑Jn
j=1Wij, is the number density of SPH particle i, calculated

as the sum of interpolation kernel of neighboring particles i and j over all neighbors of
particle i, Jn. Interpolation kernel, W (rij, h), is a function of the magnitude of distance
vector, rij = ri−rj, between particle of interest i and its neighboring particles j and h, the
smoothing length [9, 10]. Interpolation of phase properties is carried out using Weighted
Harmonic Mean (WHM),

1

χi

=
ci
χd

+
1− ci
χf

, (11)

where χ may denote density, viscosity, permittivity or conductivity [11]. The smoothed
color function is also utilized to evaluate δ ≃ |∇c|, κ = −∇ · n̂ and n̂ = ∇c/|∇c| in (4).
In this formulation, a constraint has to be enforced to avoid possible erroneous normals
[12]. In this study, only gradient values exceeding a certain threshold, |∇ci| ≃ β/h, are
used in surface tension force calculations. A β value of 0.08 has been found to provide
accurate results without removing too much detail [4].

A predictor-correcter scheme is employed to advance the governing equations of flow
in time using a first-order Euler approach with variable timestep according to Courant-
Friedrichs-Lewy condition, ∆t = CCFLh/umax, where umax is the largest particle velocity
magnitude and CCFL is taken to be equal to 0.25. In predictor step all the variables are
advanced to their intermediate form using following relations,

r∗i = r
(n)
i + u

(n)
i ∆t+ δr

(n)
i , (12)

u∗
i = u

(n)
i +

1

ρ
(n)
i

(
1

Re
∇ · τ i +

1

We
f(s)i +

1

Ei
f(e)i

)(n)

∆t, (13)

ψ∗
i = ψ

(n)
i −∆tψ

(n)
i (∇ · u∗

i ) , (14)

where starred variables represent intermediate values and superscript (n) denotes values
at the nth time step. Artificial particle displacement vector in (12), δri, is defined as
stated in [3] where a constant value of 0.06 is used.
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Using intermediate values, pressure at the next time step is found by solving the Poisson
equation which is then followed by corrections in position and velocity of the particles,
completing the temporal transition.

∇ ·
(

1

ρ∗i
∇p(n+1)

i

)
=

∇ · u∗
i

∆t
, (15)

u
(n+1)
i = u∗

i −
1

ρ∗i
∇p(n+1)

i ∆t, (16)

r
(n+1)
i = r

(n)
i +

1

2

(
u
(n)
i + u

(n+1)
i

)
∆t+ δr

(n)
i . (17)

Boundary conditions are enforced through MBT method described in [13] while first
derivative and Laplace operator are approximated through following expressions

∂fmi
∂xki

akli =
∑
j

1

ψj

(
fmj − fmi

) ∂Wij

∂xli
, (18)

∂2fmi
∂xki ∂x

k
i

amli = 8
∑
j

1

ψj

(
fmi − fmj

) rmij
r2ij

∂Wij

∂xli
. (19)

Here, akli =
∑

j

rkij
ψj

∂Wij

∂xli
is a corrective second rank tensor that eliminates particle inconsis-

tencies. Left hand side of (15) is discretized as

∂2fmi
∂xki ∂x

k
i

(
2 + akki

)
= 8

∑
j

1

ψj

(
fmi − fmj

) rkij
r2ij

∂Wij

∂xki
. (20)

3 RESULTS

In this study, deformation of a neutrally buoyant droplet suspended in plane Couette
flow is simulated. The droplet is expected to elongate in the direction of flow, possibly
reaching an equilibrium dictated by the balance between the forces acting on the interface
[3]. A schematic of this case is provided in figure 1-a. Computational domain consists
of an 8 × 32 rectangle discretized by 39973 particles initially arranged in a Cartesian
grid for background fluid and concentric circles for the droplet [14]. A close-up view of
the particle arrangement at the vicinity of the droplet is provided in figure 1-b. Initial
droplet radius is half of the distance between moving walls, H/2, while the droplet is
placed at the center of the channel. Top and bottom walls abide by the no-slip condition
and are moving in opposite directions at a velocity of Uw/2 while applying a potential
difference of ∆ϕ = E∞H. Periodic boundary condition is imposed in streamwise direction.
Particles inside the droplet are at rest while background fluid particles are initialized with
undisturbed Couette flow velocity. Reynolds, Weber and Electrinertial numbers are set
to 1, 0.2 and 50, respectively. The background and droplet fluids have identical density

4



N. Tofighi, M. Ozbulut and M. Yildiz

1.75 2 2.25
0.25

0.5

0.75

x

y

(b)

Figure 1: (a) Schematic of the test case. (b) Closeup view of initial particle distribution at the vicinity
of the droplet. Black points denote droplet particles whereas gray points are background fluid particles.

and viscosity while permittivity and conductivity ratios are varied according to table 1.
Equal permittivity and conductivity ratios are not considered here.

Figure 2 provides droplet deformation factor defined as

Df =
Lmax − Lmin
Lmax + Lmin

, (21)

where Lmax and Lmin denote major and minor axis of an approximated ellipsoid [15].
Denoting the test cases in pairs of permittivity and conductivity ratios as (P, C), cases
(5.0, 0.2) and (5.0, 0.5) do not reach a steady profile during the simulation time. Observing
the deformation rate of case (5.0, 0.2), we predict that the droplet will eventually break-
up, given sufficient simulation time. Averaged values of Df are provided in table 1 for
better comparison. At constant P , increasing C results in larger deformation factors for
P < 1 while this trend is reversed for P > 1. Similarly, at constant C, a larger P results
in larger Df for C < 1 while increasing P for C > 1 reduces the deformation factor.

Figure 3 provides a better representation of the interface profile at the end of the
simulations. Smoothed color function is used to define the droplet interface by plotting
its contour at 0.5 level. The droplets are more slender where deformation factor is larger
(refer to table 1). It is notable that the angle between major axis of the elliptic droplet and
streamwise direction becomes smaller with increasing conductivity ratio. The shape of
case (5.0, 0.2) is immediately distinguishable due to its large deformation. As f(e) increases
with P, the extreme elongation happens as a result of suppression of surface tension forces
by electrical forces. It is also notable that the droplet has lost its elliptic shape at this
simulation time.

Figure 4 provides snapshots of interface in red, streamlines in blue and electric field
lines in black for the case without electric field, case with largest elongation (5.0, 0.2) and
two other cases. The last two cases, (0.2, 2.0) and (2.0, 0.2), are chosen based on their
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Figure 2: Comparison of the deformation factor for all cases (a) and a close up view of the cases with
steady shape (b). Black plus signs denote the case without electric field.

Table 1: Deformation factor for different permittivity and conductivity ratios. Cases with bold numbers
did not reach a steady profile during the simulation. Deformation factor without electric field isDf = 0.09.

P 0.2 0.5 2 5

C

0.2 - 0.089 0.162 0.675
0.5 0.091 - 0.115 0.284
2 0.096 0.094 - 0.093
5 0.107 0.105 0.105 -
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(0.0,0.0) (0.5,0.2) (2.0,0.2) (5.0,0.2)

(0.2,0.5) (0.0,0.0) (2.0,0.5) (5.0,0.5)

(0.2,2.0) (0.5,2.0) (0.0,0.0) (5.0,2.0)

(0.2,5.0) (0.5,5.0) (2.0,5.0) (0.0,0.0)

Figure 3: Interface profiles of droplet at the end of the simulation. Permittivity and conductivity pairs
(P, C) are shown above each case. The case with no electric field, shown in blue, is repeated in each row
marked as (0.0, 0.0).
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Figure 4: Snapshots of droplet interface in red, streamlines in blue and electric field lines in black at
the end of simulation; (a) without electric field; (b) (5.0, 0.2); (c) (0.2, 2.0); (d) (2.0, 0.2).
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final orientation when compared to the case without electric field. Case (0.2, 2.0) is more
aligned to normal direction wheres (2.0, 0.2) is more aligned to streamwise direction. Case
without electric field shows a circulation region inside droplet while two types of stream-
lines in background fluid are observed. The first type traverses the whole domain while
the second type approaches the droplet and then reverses its direction. Case (5.0, 0.2)
shows no circulation inside the droplet while two large vortices are observed near trail-
ing edges of the droplet. These vortices encompass both droplet and background fluid
and rotate in the direction of imposed shear. Since the droplet is less conductive than
the surrounding fluid in this case, the electric field lines diverge from the surface of the
droplet. The streamlines in case (0.2, 2.0) resemble those of the case without electric field
in general. Electric field lines converge toward the droplet as it is more conductive than
surrounding fluid in this case. The streamlines in case (2.0, 0.2) start to show a different
pattern than that of the case with no electric field. A pattern similar to the case without
shear, that is four vortical structure rotating alternatively in clockwise and counterclock-
wise rotations [8], is observed here. The vortices rotating in the direction of background
flow’s vorticity are paired, separating the voritces countering the imposed shear. With a
conductivity ratio of C = 0.2, the droplet is less conductive than surrounding fluid and
the electric field lines diverge from the droplet surface.

4 CONCLUSION

In this paper, we use ISPH to simulate the deformation of a neutrally buoyant droplet
in planar Couette flow under external electric field. The deformation factor is compared
for different permittivity and conductivity ratios. It is seen that it is possible to overcome
the surface tension forces at suitable permittivity and conductivity ratios, resulting in
droplet elongations that are likely to end in break-up. The effects of permittivity and
conductivity ratios on streamline patterns are also studied. It is seen that the circulation
patters may change for cases with a preference for aligning with the streamwise direction,
resulting in patterns resembling those observed in the absence of imposed shear.
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