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Abstract

Networks are commonly used to model the tra�c patterns, social interactions, or web pages.

The nodes in a network do not possess the same characteristics: some nodes are naturally

more connected and some nodes can be more important. Closeness centrality (CC) is a global

metric that quantifies how important is a given node in the network. When the network

is dynamic and keeps changing, the relative importance of the nodes also changes. The

best known algorithm to compute the CC scores makes it impractical to recompute them

from scratch after each modification. In this paper, we propose Streamer, a distributed

memory framework for incrementally maintaining the closeness centrality scores of a network

upon changes. It leverages pipelined, replicated parallelism and SpMM-based BFSs, and

takes NUMA e↵ects into account. It makes the CC maintenance of real-life networks with

millions of interactions significantly faster and obtains almost linear speedups on a 64 nodes

8 threads/node cluster.

Keywords: Closeness centrality, Incremental centrality, BFS, Parallel programming, Cluster

Computing

1. Introduction

How central is a node in a network? Which nodes are more important during an entity

dissemination? Centrality metrics have been used to answer such questions. They have

been successfully used to carry analysis for various purposes such as power grid contingency
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analysis [15], quantifying importance in social networks [21], analysis of covert networks [17],

decision/action networks [8], and even for finding the best store locations in cities [24].

As the networks become large, e�ciency becomes a crucial concern while analyzing these

networks. The algorithm with the best asymptotic complexity to compute the closeness

and betweenness metrics [4] is believed to be asymptotically optimal [16]. And the research

on fast centrality computation have focused on approximation algorithms [7, 10, 22] and

high performance computing techniques [20, 28]. Today, the networks to be analyzed can

be quite large, and we are always in a quest for faster techniques which help us to perform

centrality-based analysis.

Many of today’s networks are dynamic. And for such networks, maintaining the exact

centrality scores is a challenging problem which has been studied in the literature [11, 18, 25].

The problem can also arise for applications involving static networks such as the power grid

contingency analysis and robustness evaluation of a network. The findings of such analyses

and evaluations can be very useful to be prepared and take proactive measures; for instance

if there is a natural risk or a possible adversarial attack that can yield undesirable changes on

the network topology in the future. Similarly, in some applications, one might be interested

in trying to find the minimal topology modifications on a network to set the centrality

scores in a controlled manner. (Applications include speeding-up or containing the entity

dissemination, and making the network immune to adversarial attacks).

O✏ine Closeness Centrality (CC) computation can be expensive for large-scale networks.

Yet, one could hope that the incremental graph modifications can be handled in an inex-

pensive way. Unfortunately, as Figure 1 shows, the e↵ect of a local topology modification

can be global. In a previous study, we proposed a sequential incremental closeness centrality

algorithm which is orders of magnitude faster than the best o✏ine algorithm [25]. Still, the

algorithm was not fast enough to be used in practice. In this paper, we present Streamer,

a framework to e�ciently parallelize the incremental CC computation on high-performance

clusters.

Streamer employs DataCutter [3], our in-house data-flow programming framework for
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Figure 1: A toy network with eight nodes and three consecutive edge (ah, fh, and ab, respectively)

insertions/deletions. The nodes are colored with respect to their relative CC scores where red

implies a higher closeness score.

distributed memory systems. In DataCutter, the computations are carried by independent

computing elements, called filters, that have di↵erent responsibilities and operate on data

passing through them. There are three main advantages of this scheme: first, it exposes an

abstract representation of the application which is decoupled from its practical implemen-

tation. Second, the coarse-grain data-flow programming model allows replicated parallelism

by instantiating a given filter multiple times so that the work can be distributed among the

instances to improve the parallelism of the application and the system’s performance. And

third, the execution is pipelined, allowing multiple filters to compute simultaneously on dif-

ferent iterations of the work. This pipelined parallelism is very useful to achieve overlapping

of communication and computation.

The best available algorithm for the o✏ine centrality computation is pleasingly parallel

(and scalable if enough memory is available) since it involves n independent executions of

the single-source shortest path (SSSP) algorithm [4]. In a naive distributed framework for

the o✏ine case, one can distribute the SSSPs to the nodes and gather their results. Here

the computation is static, i.e., when the graph changes, the previous results are ignored and

the same n SSSPs are re-executed. On the other hand, in the online approach, the updates

can arrive at any time even while the centrality scores for a previous update are still being

computed. Furthermore, the scores which need to be recomputed (the SSSPs that need to

be executed) change w.r.t. the update. Finding these SSSPs and distributing them to the

nodes is not a straightforward task. To be able to do that, the incremental algorithms main-
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tain complex information such as the biconnected component decomposition of the current

graph [25]. Hence, after each edge insertion/deletion, this information needs to be updated.

There are several (synchronous and asynchronous) blocks in the online approach. And it is

not trivial to obtain an e�cient parallelization of the incremental algorithm. As our experi-

ments will show, the data-flow programming model and pipelined parallelism are very useful

to achieve a significant overlap among these computation/communication blocks and yield

a scalable solution for the incremental centrality computation.

In this paper, we extend Streamer that we introduced in [? ]. Our contributions can

be summarized as follows:

1. We propose the first distributed-memory framework Streamer for the incremental

closeness centrality computation problem which employs a pipelined parallelism to

achieve computation-computation and computation-communication overlap [? ].

2. The worker nodes we used in the experiments have 8 cores. In addition to the

distributed-memory parallelization, we also leverage the shared-memory paralleliza-

tion and take NUMA e↵ects into account [? ].

3. The framework scales linearly: when 63 worker nodes (8 cores/node) are used, for the

networks amazon0601, web-Google, and soc-pokec Streamer obtains almost linear

speedups compared to a single worker node-single thread execution [? ].

4. The framework is modular which makes it easily extendable. When the number of used

nodes increases, the computation inevitably reaches a bottleneck on the extremities of

the analysis pipeline which are not parallel. In [? ], this e↵ect appeared on one of the

graph (web-NotreDame). We show how to the management of the computation can be

made parallel by leveraging the modularity of dataflow middleware.

5. Using an SpMM-based BFS formulation, we significantly improved the incremental

CC computation performance and show that the data-flow programming model makes

Streamer highly modular and easy to enhance with novel algorithmic techniques.

6. These new techniques provide an improvement of a factor between 2.2 to 9.3 times

compared to the techniques presented in [? ].
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The paper is organized as follows: Section 2 introduces the notation, formally defines

the closeness centrality metric, and describes the incremental approach in [25]. Section 3

describes the proposed distributed framework for incremental centrality computations in

detail. The experimental analysis is given in Section 4, and Section 5 concludes the paper.

2. Incremental Closeness Centrality

Let G = (V,E) be a network modeled as a simple undirected graph with n = |V | vertices
and m = |E| edges where each node is represented by a vertex in V , and a node-node

interaction is represented by an edge in E. Let �G(v) be the set of vertices which are

connected to v.

A graph G

0 = (V 0
, E

0) is a subgraph of G if V 0 ✓ V and E

0 ✓ E. A path is a sequence of

vertices such that there exists an edge between consecutive vertices. Two vertices u, v 2 V

are connected if there is a path from u to v. If all vertex pairs are connected we say that

G is connected. If G is not connected, then it is disconnected and each maximal connected

subgraph of G is a connected component, or a component, of G. We use dG(u, v) to denote

the length of the shortest path between two vertices u, v in a graph G. If u = v then

dG(u, v) = 0. And if u and v are not connected dG(u, v) =1.

Given a graph G = (V,E), a vertex v 2 V is called an articulation vertex if the graph

G�v has more connected components than G. G is biconnected if it is connected and it does

not contain an articulation vertex. A maximal biconnected subgraph of G is a biconnected

component.

2.1. Closeness centrality

The farness of a vertex u 2 V in a graphG = (V,E) is defined as far[u] =
P

v2V
dG(u,v) 6=1

dG(u, v).

And the closeness centrality of u is defined as cc[u] = 1
far[u] . If u cannot reach any vertex in

the graph, then cc[u] = 0.

For a graph G = (V,E) with n vertices and m edges, the complexity of the best cc

algorithm is O(n(m+ n)) (Algorithm 1). For each vertex s 2 V , it executes a Single-Source

Shortest Paths (SSSP), i.e., initiates a breadth-first search (BFS) from s and computes the
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distances to the connected vertices. And, as the last step, it computes cc[s]. Since a BFS

takes O(m+ n) time, and n SSSPs are required in total, the complexity follows.

Algorithm 1: O✏ine centrality computation
Data: G = (V,E)
Output: cc[.]

1 for each s 2 V do
.SSSP(G, s) with centrality computation

Q empty queue
d[v] 1, 8v 2 V \ {s}
Q.push(s), d[s] 0
far[s] 0
while Q is not empty do

v  Q.pop()
for all w 2 �G(v) do

if d[w] =1 then
Q.push(w)
d[w] d[v] + 1
far[s] far[s] + d[w]

cc[s] = 1
far[s]

return cc[.]

2.2. Incremental closeness centrality

Algorithm 1 is an o✏ine algorithm: it computes the CC scores from scratch. But today’s

networks are dynamic and their topologies are changing through time. Centrality compu-

tation is an expensive task, and especially for large scale networks, an o✏ine algorithm

cannot cope with the changing network topology. Hence, especially for large-scale, dynamic

networks, online algorithms which do not perform the computation from scratch but only

update the required scores in an incremental fashion are required. In a previous study, we

used a set of techniques such as level-based work filtering and special-vertex utilization to

reduce the centrality computation time for dynamic networks [25].

2.3. Level-based work filtering

The level-based filtering aims to reduce the number of SSSPs in Algorithm 1. Let G =

(V,E) be the current graph and uv be an edge to be inserted. Let G0 = (V,E [{uv}) be the
updated graph. The centrality definition implies that for a vertex s 2 V , if dG(s, t) = dG0(s, t)
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for all t 2 V then cc[s] = cc0[s]. The following theorem is used to filter the SSSPs of such

vertices.

Theorem 2.1 (Sarıyüce et al. [25]). Let G = (V,E) be a graph and u and v be two

vertices in V s.t. uv /2 E. Let G

0 = (V,E [ {uv}). Then cc[s] = cc0[s] if and only if

|dG(s, u)� dG(s, v)|  1.

Many interesting real-life networks are scale free. The diameters of a scale-free network

is small, and when the graph is modified with minor updates, it tends to stay small. These

networks also obey the power-law degree distribution. The level-based work filter is par-

ticularly e�cient on these kind of networks. Figure 2 (top) shows the three cases while

an edge uv 2 E is being added to G: dG(s, u) = dG(s, v), |dG(s, u) � dG(s, v)| = 1, and

|dG(s, u)� dG(s, v)| > 1. Due to Theorem 2.1, an SSSP is required in Algorithm 1 only for

the last case, since for the first two cases, the closeness centrality of s does not change. As

Figure 2 (bottom) shows, the probability of the last case is less than 20% for three social

networks used in the experiments. Hence, more than 80% of the SSSPs are avoided by using

level-based filtering.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"

amazon0601" web3Google" web3NotreDame"

Pr(X"="0)" Pr(X"="1)" Pr(X">"1)"

Figure 2: Three possible cases when inserting uv: for each vertex s, one of the following is true: (1)
dG(s, u) = dG(s, v), (2) |dG(s, u) � dG(s, v)| = 1, or (3) |dG(s, u) � dG(s, v)| > 1 (top). The bars show the
distribution of random variable X = |dG(u,w)� dG(u,w)| into three cases while an edge uv is being added
to G (bottom). For each network, the probabilities are computed by using 1, 000 random edges from E.
For each edge uv, we constructed the graph G = (V,E \ {uv}) by removing uv from the final graph and
computed |dG(s, u)� dG(s, v)| for all s 2 V .

Although Theorem 2.1 yields to a filter only in case of edge insertions, the same idea can

easily be used for edge deletions. When an edge uv is inserted/deleted, to employ the filter,

we first compute the distances from u and v to all other vertices. Detailed explanation can

be found in [25].
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(a) G (b) ⇧ (c) ⇧0

Figure 3: A graph G (left), its biconnected component decomposition ⇧ (middle), and the updated ⇧0 after
the edge bd is inserted (right). The articulation vertices before and after the edge insertion are {b, c, d}
and {b, d}, respectively. After the addition, the second component contains the new edge, i.e., cid = 2.
This component is extracted first, and the algorithm performs updates only for its vertices {b, c, d}. It also
initiates a fixing phase to make the CC scores correct for the rest of the vertices.

2.4. Special-vertex utilization

The work filter can be assisted by employing and maintaining a biconnected component

decomposition (BCD) of G. A BCD is a partitioning ⇧ of the edge set E where ⇧(e) is the

component of each edge e 2 E. A toy graph and its BCDs before and after an edge insertion

are given in Fig. 3.

Let uv be the edge inserted to G = (V,E) and the final graph be G0 = (V,E 0 = E[{uv}).
Let far and far0 be the farness scores of all the vertices in G and G

0. If the intersection

{⇧(uw) : w 2 �G(u)} \ {⇧(vw) : w 2 �G(v)} is not empty, there must be only one element

in it (otherwise ⇧ is not a valid BCD), cid, which is the id of the biconnected component of

G

0 containing uv. In this case, updating the BCD is simple: ⇧0(e) is set to ⇧(e) for all e 2 E

and ⇧0(uv) is set to cid. If the intersection is empty (see the addition of bd in Fig. 3(b)), we

construct ⇧0 from scratch and set cid = ⇧0(uv) (e.g., cid = 2 in Fig. 3(c)). A BCD can be

computed in linear, O(m + n) time [13]. Hence, the cost of BCD maintenance is negligible

compared to the cost of updating closeness centrality.

Let G0
cid = (Vcid, E

0
cid) be the biconnected component of G0 containing uv. Let Acid ✓ Vcid

be the set of articulation vertices of G0 in G

0
cid. Given ⇧0, it is easy to find the articulation

vertices since u 2 V is an articulation vertex if and only if it is at least in two components

in the BCD: |{⇧0(uw) : uw 2 E

0}| > 1.

The incremental algorithm executes SSSPs only for the vertices inG

0
cid. The contributions

of the vertices in V \ Vcid are integrated to the SSSPs through their representatives rep :
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V ! Vcid [ {null}. For a vertex in Vcid, the representative is itself. And for a vertex

v 2 V \ Vcid, the representative is either an articulation vertex in Acid or null if v and

the vertices ofVcid are disconnected. Also, for all vertices x 2 V \ Vcid, we have far0[x] =

far[x] + far0[rep(x)]� far[rep(x)]. Therefore, there is no need to execute SSSPs from these

vertices. Detailed explanation and proofs are omitted for brevity and can be found in [25].

In addition to articulation vertices, we exploit the identical vertices which have the same/a

similar neighborhood structure to further reduce the number of SSSPs. In a graph G, two

vertices u and v are type-I-identical if and only if �G(u) = �G(v). In addition, two vertices

u and v are type-II-identical if and only if {u} [ �G(u) = {v} [ �G(v). Let u, v 2 V be two

identical vertices. One can easily see that for any vertex w 2 V \{u, v}, dG(u, w) = dG(v, w).

Therefore, if I ✓ V is a set of (type-I or type-II) identical vertices, then the CC scores of all

the vertices in I are equal.

We maintain the sets of identical vertices and while updating the CC scores of the vertices

in V , we execute an SSSP for a representative vertex from each identical-vertex set. We then

use the computed score as the CC score of the other vertices in the same set. The filtering

is straightforward and the modifications on the algorithm are minor. When an edge uv is

added/removed to/from G, to maintain the identical vertex sets, we first subtract u and v

from their sets and insert them to new ones. Candidates for being identical vertices are found

using a hash function and the overall cost of maintaining the data structure is O(n+m) [25].

2.5. Simultaneous source traversal

The performance of sparse kernels is mostly hindered by irregular memory access. The

most famous example for sparse computation is the multiplication of a sparse matrix by a

dense vector (SpMV). Several techniques, like register blocking [6, 29] and usage of di↵er-

ent matrix storage formats [2, 19], are proposed to regularize the memory access pattern.

However, multiplying a sparse matrix by multiple vectors is the most e�cient and popular

technique to regularize the memory access pattern. Once the multiple vectors are organized

as a dense matrix, the problem becomes the multiplication of a sparse matrix by a dense

matrix (SpMM). Each nonzero of the sparse matrix causes the multiplication of a single
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element of the vector in SpMV, and it results in the multiplications of as many consecutive

elements of the dense matrix as its number of columns in SpMM.

Accommodating that idea for closeness centrality computation turns out to be concur-

rently computing the multiple sources at the same time. However, as opposed to SpMV,

in which the vector is dense and therefore each non-zero induces exactly one multiplication,

in BFS, not all the non-zeros will induce operations. That is to say, a vertex in BFS may

or may not be traversed depending on which level is currently being processed. Thus, the

traditional queue-based implementation of BFS does not seem to be easily extendable to

support multiple BFSs in a vector-friendly manner. We developed that idea in [26] and

present here the main idea.

2.5.1. An SpMV-based formulation of closeness centrality

The idea is to convert to a more simple definition of level synchronous BFS: If one of the

neighbor of v is part of level `� 1 and v is not part of any level `0 < `, then vertex v is part

of level `. This formulation is used in parallel implementations of BFS on GPU [14, 23, 28],

on shared memory systems [1] and distributed memory systems [5].

The algorithm is better represented using binary variables. Let x`
i be the binary variable

that is true if vertex i is part of the frontier at level ` for a BFS. The neighbors of level ` is

represented by a vector y`+1 computed by y

`+1
k = ORj2�(k)x

`
j. The next level is then computed

with x

`+1
i = y

`+1
i AND not (OR`0`x

`0
i ). Using these variables, one can increase the farness of

the source by ` if i is at level ` (i.e., if x` = 1). One can remark that y`+1 is the result of the

“multiplication” of the adjacency matrix of the graph by x

` in the (OR,AND) semi-ring.

2.5.2. An SpMM-based formulation of closeness centrality

It is easy to derive an algorithm from the formulation given above for closeness centrality

computation that processes multiple sources at once. Instead of manipulating a single vector

x and y where each element is a single bit, one can encode 32 vectors for 32 BFSs so that one

int can encode the state of a single vertex across the 32 BFSs. The algorithm becomes quite

e�cient as it does not use more memory and process 32 BFS at once. All the operations

become simple bit-wise and, or and not.
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Theoretically, the asymptotic complexity changes when BFS is implemented using an

SpMM approach. The complexity of the traditional queue-based BFS algorithm is O(|E|).
If the adjacency matrix is stored row-wise, the SpMM-based implementation boils down to

a bottom-up implementation of BFS which has a natural write access pattern. However, it

becomes impossible to only traverse the relevant nonzero of the matrix and the complexity

of the algorithm becomes O(|E|⇥L), where L is the diameter of the graph. Social networks

have small world properties which implies that their diameter is low and we do not feel that

this asymptotic factor of L will hinder performance.

Moreover, multiple BFSs are performed simultaneously (here 32) which can recoup for

the loss. In [26], the algorithm computes the impact of the sources on all the vertices of the

graph. What we presented in this section does the reverse and compute the impact of all the

vertices of the graph on the sources. Despite worse asymptotic complexity the performance of

the SpMM approach outperforms traditional BFS approach [26]. Moreover, such algorithm

is compatible with the decomposition of the graph in biconnected components [27] which can

lead to further improvement. Because this algorithm computes the farness of the sources, it

can be used to compute centrality incrementally.

3. Streamer

Streamer follows the component-based programming paradigm which has been used

to describe and implement complex applications by way of components - distinct tasks with

well-defined interfaces. By describing these components and the explicit data connections

between them, the applications are decomposed along natural task boundaries according to

the application domain. Therefore, the component-based application design is an intuitive

process with explicit demarcation of task responsibilities. Furthermore, the communication

patterns are also explicit; each component includes its input data requirements and outputs

in its description.

Streamer is written in DataCutter, our in-house component-based middleware which

supports filter-stream programming, an instance of component-based programming. The

filter-stream programming model [3] (a specific implementation of the dataflow program-
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ming model [9]) implements the computations as a set of components, referred as filters,

that exchange data through logical streams. A stream denotes a uni-directional data flow

from some filters (i.e., the producers) to others (i.e., the consumers). Data flows along these

streams in untyped databu↵ers so as to minimize various system overheads. A layout is a

filter ontology which describes the set of application tasks, streams, and the connections

required for the computation.

Filter-stream programming enables some runtime benefits, which come at no additional

cost to the developer. Applications composed of a number of individual tasks can be executed

on parallel and distributed computing resources and gain extra performance over those run

on strictly sequential machines. This is achieved by specifying a placement which is an

instance of a layout with a mapping of the filters onto physical processors. A filter can be

replicable, if it is stateless; for instance, if a filter’s output for a given databu↵er does not

depend on the ones it processed previously, it is stateless and replicable. A replicated filter

can be placed on multiple processors to increase the throughput of the system.

Additionally, provided the interfaces exposed by a task to the rest of the application, dif-

ferent implementations of tasks, possibly on di↵erent processor architectures can co-exist in

the same application deployment, allowing developers to take full advantage of modern, het-

erogeneous supercomputers. Figure 4 shows an example filter-stream layout and placement.

In this work, we used both distributed- and shared-memory architectures. However, thanks

to filter-stream programming model, many-core systems such as GPUs and accelerators can

also be used easily and e�ciently if desired [12].

Figure 4: A toy filter-stream application layout and its placement.
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Figure 5: Layout of Streamer.

3.1. Pipelined parallelism

One of the DataCutter’s strengths is that it enables pipelined parallelism, where multiple

stages of the pipeline (such as A and B in the layout in Fig. 4) can be executed simultaneously,

and replicated parallelism can be used at the same time if some computation is stateless (such

as filter B in the same figure).

While computing the CC scores, the main portion of the computation comes from per-

forming SSSPs for the vertices whose scores need to be updated. If there are many updates

(we use the term “update” to refer to the SSSP operation which updates the CC score of

a vertex), that part of the computation should occupy most of the machine. A typical syn-

chronous decomposition of the application makes the work filtering of a Streaming Event

(handling a single edge change) wait for the completion of all the work incurred by a previous

Streaming Event. Since the worker nodes will wait for the work filtering to be completed,

there can be a large waste of resources. We argue that the pipelined parallelism should be

used to overlap the process of filtering the work and computing the updates on the graph.

We propose to use the four-filter layout shown in Fig. 5. The first filter is the InstanceGen-

erator which first sends the initial graph to all the other filters. It then sends the streaming

events as 4-tuples (t, oper, u, v) to indicate that edge uv has been either added or removed

(specified by oper) at a given time t. (In the following, we only explain the system for edge

insertion, but it is essentially the same for an edge removal.) In a real world application, this

filter would be listening on the network for topology modifications; but in our experiments,

all the necessary information is read from a file.

StreamingMaster is responsible for the work filtering after each network modification.
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Upon inserting uv at time t, it first computes the shortest distances from u and v to all other

vertices at time t� 1. Then, it adds the edge uv into its local copy of the graph and updates

the identical vertex sets as described in Section 2.4. It partitions the edges of the graph to its

biconnected components by using the algorithm in [13] and finds the component containing

uv. For each vertex s 2 V , it decides whether its CC score needs to be recomputed by check-

ing the following conditions: (1) d(s, u) and d(s, v) di↵er by at least 2 units at time t�1, (2) s
is adjacent to an edge which is also in uv’s biconnected component, (3) s is the representative

of its identical vertex set. StreamingMaster then informs the Aggregator about the number of

updates it will receive for time t. Finally, it sends the list of SSSP requests to the ComputeCC

filter, i.e., the corresponding source vertex ids whose CC scores need to be updated.

ComputeCC performs the real work and computes the new CC scores after each graph

modification. It waits for work from StreamingMaster, and when it receives a CC update

request under the form of a 2-tuple (t, s) (update time and source vertex id), ComputeCC

advances its local graph representation to time t by using the appropriate updates from

InstanceGenerator. If there is a change on the local graph, the biconnected component of

uv is extracted, and a concise information of the graph structure and the set of articulation

vertices are updated (as described in [25]). Finally, the exact CC score cc[s] at time t is

computed and sent to the Aggregator as a 3-tuple (t, s, cc[s]). ComputeCC can be replicated

to fill up the whole distributed memory machine without any problem: as long as a replica

reads the update requests in the order of non-decreasing time units, it is able compute the

correct CC scores.

The Aggregator filter gets the graph at a time t from InstanceGenerator. Then, it ob-

tains the number of updates for that time from StreamingMaster. It computes the identical

vertex sets as well as the BCD. It gets the updated CC scores from ComputeCC. Due to

the pipelined parallelism used in the system and the replicated parallelism of ComputeCC,

it is possible that updates from a later time can be received; Streamer stores them in a

backlog for future processing. When a (t, s, cc[s]) tuple is processed, the CC score of s is

updated. If s is the representative of an identical vertex set, the CC scores of all the vertices
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in the same set are updated as well. If s is an articulation point, then the CC scores of the

vertices which are represented by s (and are not in the biconnected component of uv) are

updated as well, by using the di↵erence in the CC score of s between time t and t� 1. Since

Aggregator needs to know the CC scores at time t � 1 to compute the centrality scores at

time t, the system must be bootstrapped: the system computes explicitly all the centrality

scores of the vertices for time t = 0.

3.2. Exploiting the shared memory architecture

The main portion of the execution time is spent by the ComputeCC filter. Therefore, it

is important to replicate this filter as much as possible. Each replica of the filter will end

up maintaining its own graph structure and computing its own BCD. Modern clusters are

hierarchical and composed of distributed memory nodes where each node contains multiple

processors featuring multiple cores that share the same memory space. For instance, the

nodes used in our experiments are equipped with two processors, each having 4 cores.

It is a waste of computational power to recompute the data structure on each core. But

it is also a waste of memory. Indeed, the cores of a processor typically share a common last

level of cache and using the same memory space for all the cores in a processor might improve

the cache utilization. We propose to split the ComputeCC filter in two separate filters which

is transparent to the rest of the system thanks to DataCutter being component-based. The

Preparator filter constructs the decomposed graph for each Streaming Event it is responsible

for. The Executor filter performs the real work on the decomposed graph. In DataCutter,

the filters running on the same physical node act run in separate pthreads within the same

MPI process making sharing the memory as easy as communicating pointers. The release

of the memory associated with the decomposed graph is handled by atomically decreasing a

counter by the Executor.

The decoupling of the graph management and the CC score computation allows to either

creating a single graph representation on each distributed memory node or having a copy of

the graph on each NUMA domain of the architecture. This is shown in Fig. 6.
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Figure 6: Placement of Streamer using 2 worker nodes with 2 quad-core processors. (The node 2 is hidden).
The remaining filters are on node 0.

3.3. Parallelizing StreamingMaster

When the number of cores used for ComputeCC increases the relative importance of

ComputeCC in the total runtime decreases. Theoretically with an infinite number of cores for

ComputeCC, the time required by it will drop to zero. And the bottleneck of the application

becomes the rate at which StreamingMaster can generate updates request and the rate at

which Aggregator can merge the computed results. To improve these rates, we follow the

avenue replacing them with a construct that allow parallel execution.

StreamingMaster is decomposed in three filters which are laid out according to Figure 7.

Most of the work done by StreamingMaster is done by a filter called StreamingMaster which

supports replication. Each of the replica receives the list of edges it has to compute the

filtering from a WorkDistributor. This WorkDistributor just listens on the modification on

the graph and distribute the Streaming Events among the di↵erent StreamingMaster.

It is important that the ComputeCC receives the update requests in non-decreasing order
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Figure 7: Replicating StreamingMaster for a better scaling when the number of processors is large.

of streaming events. StreamCoordinator is responsible for enforcing that order. StreamCo-

ordinator sits between the StreamingMaster and the ComputeCC (and the Aggregator) and

relays messages to them. The StreamCoordinator tells StreamingMaster which streaming

event is the next one. In other words, before outputting the list of updates (and metadata

for the Aggregator), the StreamingMaster reads from the StreamCoordinator whether it is

time to output.

3.4. Parallelizing Aggregator

One of the challenges in parallelizing the Aggregator is that there can be only one filter

that actually stores the centrality values of the network. Fortunately, most of the computa-

tion time spent by the Aggregator is spent in preparing the network rather than in applying

the updates. We modify the layout of the Aggregator to match that of Figure 8.

Therefore only a single filter, we will call Aggregator for the sake of simplicity, is re-

sponsible for applying the updates, and is only responsible for this. It takes three kinds of

input: the updates on the graph itself, the information of how many updates will be applied

for each streaming event and information on the graph (the graph itself, its biconnected

decomposition and identical vertices).

The information about the graph are constructed by another filter called Aggregator-

Preparator which can be replicated. It listens to the Streaming Events and receive work

assignment. It then computes the sets of identical vertices and its biconnected component

decomposition and send its downstream.

The work in the AggregatorPreparator is distributed in a way similar to the parallelization
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Figure 8: Replicating Aggregator for a better scaling when the number of processors is large.

of the StreamingMaster. Also the graph information must reach the Aggregator in the order

of the Streaming Event. An AggregatorCoordinator is used to regulate the order in which

the graph information are sent. It behaves under the same principle as StreamCoordinator.

4. Experiments

Streamer runs on the owens cluster in the Department of Biomedical Informatics at

The Ohio State University. For the experiments, we used all the 64 computational nodes,

each with dual Intel Xeon E5520 Quad-core CPUs (with 2-way Simultaneous Multithreading,

and 8MB of L3 cache per processor), 48 GB of main memory. The nodes are interconnected

with 20 Gbps InfiniBand. The algorithms were run on CentOS 6, and compiled with GCC

4.8.1 using the -O3 optimization flag. DataCutter uses an InfiniBand-aware MPI to leverage

the high performance interconnect: here we used MVAPICH2 2.0b.

For testing purposes, we picked 4 large social network graphs from the SNAP dataset

to perform the tests at scale. The properties of the graphs are summarized in Table 1.

For simulating the addition of the edges, we removed 50 edges from the graphs and added

them back one by one. The streamed edges were selected randomly and uniformly. For

comparability purposes, all the runs performed on the same graph use the same set of edges.

The number of updates induced by that set of edges when applying filtering using identical

vertices, biconnected component decomposition, and level filtering is given in Table 1. In

the experiments, the data comes from a file, and the Streaming Events are pushed to the

system as quickly as possible so as to stress the system.
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Name |V | |E| # updates time(s)
web-NotreDame 325,729 1,090,008 399,420 3.29
amazon0601 403,394 2,443,308 1,548,288 33.16
web-Google 916,428 4,321,958 2,527,088 71.20
soc-pokec 1,632,804 30,622,464 4,924,759 816.73

Table 1: Properties of the graphs we used in the experiments and execution time on a 64 node cluster.

All the results presented in this section are extracted from a single run of Streamer

with proper parameters. As our preliminary results show, the regularity in the plots indicates

there would be a small variance on the runtimes, which induces a reasonable confidence in

the significance of the quoted numbers. In the experiments, StreamingMaster and Aggregator

run on the same node, apart from all the computational filters. Therefore, we report the

number of worker nodes, but an extra node is always used.

To give an idea of the actual amount of computation, in the last column of Table 1,

we report the time Streamer spends to update the CC scores upon 50 edge insertions by

using all 63 worker nodes. We present the parallel time and not the sequential time for two

reasons: (1) Our framework is never really sequential, even using a single ComputeCC filter

would not actually be sequential. (2) The sequential runtime on the biggest tested graph

(soc-pokec) is prohibitive (estimated at about a month). As all the execution times given

in this section, the times in Table 1 do not contain the initialization time. That is the time

measurement starts once Streamer is idle, waiting to receive Streaming Events.

4.1. Basic performance results

Figure 9 shows the performance and scalability of the system in di↵erent configurations

with a single StreamingMaster and Aggregator. The performance is expressed in number of

updates per second. The framework obtains up to 11, 000 updates/sec on amazon0601 and

web-Google, 49, 000 updates/sec on web-NotreDame, and more than 750 updates/sec on the

largest tested graph soc-pokec. It appears to scale linearly on the graphs amazon0601 and

web-Google, soc-pokec. For the first two graphs, it reaches a speedup of 456 and 497,

respectively, with 63 nodes and 8 threads/node (504 Executor threads in total) compared

to the single node-single thread configuration (the incremental centrality computation on
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Figure 9: Scalability: the performance is expressed in the number of updates per second. Di↵erent worker-
node configurations are shown. “8 threads, 1 graph/thread” means that 8 ComputeCC filters are used per
node. “8 threads, 1 graph” means that 1 Preparator and 8 Executor filters are used per node. “8 threads, 1
graph/NUMA” means that 2 Preparators per node (one per NUMA domain) and 8 Executors are used.

soc-pokec with a single node was too long to run the experiment, but the system is clearly

scaling well on this graph). The last graph, web-NotreDame, does not exhibit a linear scaling

and obtains a speedup of only 316.

Let us first evaluate the performance obtained under di↵erent node-level configurations.

Table 2 presents the relative performance of the system using 31 worker nodes while using

1, 4, or 8 threads per node. When compared with the single thread configuration, using 4

threads (the second column) is more than 3 times faster, while using 8 threads (columns

3–5) per node usually gives a speedup of 6.5 or more. Overall, having multiple cores is
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Name 4 threads 8 threads, 1 graph per Shared Mem.
thread node NUMA awareness

web-NotreDame 3.69 6.46 7.13 6.99 1.08
amazon0601 3.26 6.75 6.81 7.45 1.10
web-Google 3.69 7.77 7.55 8.06 1.03
soc-pokec - 1.00 0.92 1.01 1.01

Table 2: The performance of Streamer with 31 worker nodes and di↵erent node-level configurations nor-
malized to 1 thread case (performance on soc-pokec is normalized to 8 threads, 1 graph/thread). The last
column is the advantage of Shared Memory awareness (ratio of columns 5 and 3).

fairly well exploited. Properly taking the shared-memory aspect of the architecture into ac-

count (column 5) brings a performance improvement between 1% to 10% (the last column).

In one instance (web-Google with a graph for each NUMA domain), we observed that the

normalized performance is more than the number of cores. UVC: Erik will fix this :)

This can be explained by the di↵erence in the amount of work due to the distribution of the

updates from di↵erent Streaming Events to the threads.

4.2. Execution-log analysis

Here we discuss the impact of pipelined parallelism and the sub-linear speedup achieved

on web-NotreDame. In Figure 10, we present the execution logs for that graph obtained

while using 3, 15, and 63 worker nodes. Each log plot shows three data series: the times at

which StreamingMaster starts to process the Streaming Events, the total number of updates

sent by StreamingMaster, and the number of updates processed by the Executors collectively.

The three di↵erent logs show what happens when the ratio of update produced and update

consumed per second changes.

The first execution-log plot with 3 worker nodes (Fig. 10(a)) shows the amount of the

updates emitted and processed as two perfectly parallel almost straight lines. This indicates

that the runtime of the application is dominated by processing the updates. As the figure

shows, the times at which the StreamingMaster starts processing the Streaming Events are

not evenly distributed. As mentioned before, StreamingMaster starts filtering for the next

Streaming Event as soon as it sends all the updates for the current one. In other words,

the amount of updates emitted for a given Streaming Event can be read from the execution

log as the di↵erence of the y-coordinates of two consecutive “update emitted” points (the
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Figure 10: Execution logs for web-NotreDame on di↵erent number of nodes. Each plot shows the total
number of updates sent by StreamingMaster and processed by the Executors, respectively (the two lines),
and the times at which StreamingMaster starts to process Streaming Events (the set of ticks).

first line). In the first plot, we can see that 6 out of 50 Streaming Events (the ticks at

the end of each partial tick-lines) incurred significantly much more updates than the others.

While these events are being processed, the two lines stay straight and parallel, because in

DataCutter, writing to a downstream filter is a bu↵ered operation. Once the bu↵er is full,

the operation becomes blocking.

The second execution log with 15 worker nodes (Fig. 10(b)) shows a di↵erent picture.

Here, the log is about 4 times shorter and the lines are not perfectly parallel. The number

of updates emitted shows three plateaus for more than a second around times 0, 5, and 16

seconds. These plateaus exist because many consecutive Streaming Events do not generate a
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significant amount of updates; therefore, the StreamingMaster spends all its time by filtering

the work for these Streaming Events.

The second plateau around time 5 seconds of the execution log with 15 worker nodes lasts

1.2 secs, and less than 100 updates are sent during that interval. However, as the plot shows,

the worker nodes do not run out of work and process more than 25, 000 updates during the

plateau. This is possible because the computation in Streamer is pipelined. If the system

were synchronous the worker nodes would spend most of that plateau waiting which yields a

longer execution time and worse performance. In addition to the three large plateaus, cases

with a few consecutive Streaming Events that lead to barely no updates are slightly visible

around times 3 and 9. These two smaller cases are hidden by the pipelined parallelism. The

third plateau is much longer than the second one (20 Streaming Events, 2.1 secs) and the

worker nodes eventually run out of work halfway through the plateau. As can be seen in

Fig. 9(b), the performance does not show linear scaling at 15 worker nodes; but it is still

good, thanks to the pipelined parallelism.

When 63 worker nodes are used, the execution log (Fig. 10(c)) presents another picture.

With the increase on the workers’ processing power, a single StreamingMaster is now the

main bottleneck of the computation. Two additional, considerably large plateaus appeared,

and StreamingMaster starts to spend more than half of its time with the work filtering.

However, during these times, the workers keep processing the updates, but at varied rates,

due to temporary work starvation. The work filtering and the actual work are being processed

mostly simultaneously showing that pipelined parallelism is very e↵ective in this situation.

Without the pipelined parallelism, the computation time would certainly be 2 secs longer,

and 25% worse performance would be achieved.

We used the techniques described in Sections 3.3 and 3.4 (Figs. 7 and 8) to replicate the

StreamingMaster and Aggregator filters, respectively, and obtain a better performance when

these filters becomes bottleneck throughout the incremental closeness centrality computation.

The results on the web-NotreDame graph are given for 50 and 1, 000 Streaming Events in

Figure 11. As the figure shows, using four StreamingMaster and Aggregator filters instead
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Figure 11: Parallelizing streaming master: the number of updates per second for web-NotreDame with 50
and 1, 000 streaming events, respectively. The best node configuration from Figure 9, i.e., 8 threads, 1
graph/NUMA, is used for both cases.

of one yields around 6% improvement for 50 Streaming Events when 63 working nodes in

the cluster are fully utilized. This small improvement is due to lack of su�cient number of

Streaming Events which generates a large amount of updates (see Figure 10). Hence, even

with a large number of StreamingMaster and Aggregator filters, due to the load balancing

problem on these filters, one cannot improve the performance more with 50 Streaming Events

by just replicating them. Fortunately, in practice this number is usually much higher. In

Figure 11(b), we repeated the same experiment for 1, 000 Streaming Events. As the figure

shows, the performance significantly increases when the filters are replicated. Furthermore,

the percentage of the improvement increases when more number of nodes are used and reaches

to 58% with 63 working nodes. This is expected since, with more number of nodes for the

Executor filter, the time spent for StreamingMaster and Aggregator becomes more important.

When applied on the other graphs, going from one StreamingMaster and Aggregator to

four have not yield significant improvements since these components were not bottlenecks.

Therefore, we omited those results here.
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4.3. Plug-and-play filters: Vectorization

As stated above, thanks to filter-stream programming model, di↵erent filter implementa-

tions and various hardware such as GPUs can be used easily and e�ciently if desired. Here,

we show that using the SpMM-based approach described in Section 2.5, one can modify the

ComputeCC filter in Figure 5 (or the Executor filters in Figure 6) to increase the speedup.

For this experiment, we changed the filter in a way that 32 BFSs from di↵erent sources are

executed in parallel to update the corresponding closeness centrality values. The results of

the experiments with 15, 31, and 63 working nodes are shown in Figure 12. Using a di↵er-

ent kernel with vectorization (and coupled with multiple StreamingMaster and Aggregator)

improves the performance of the non-vectorized version by a factor ranging from 2.2 to 9.3

depending on the graph and number of working nodes.

4.4. Summary of the experimental results

The experiments we conducted shows that Streamer can scale up and e�ciently utilize

our entire experimental cluster. By taking the hierarchical composition of the architecture

into account (64 nodes, 2 processors per node, 4 cores per processor) and not considering it as

a regular distributed machine (a 512-processor MPI cluster), we enabled processing of larger

graphs and obtained 10% additional improvement. Furthermore, the pipelined parallelism

proved to be extremely necessary while using a large amount of nodes in a concurrent fashion.

Replicating the ComputeCC filter leads to significant speedup. Yet, the bottleneck even-

tually becomes the filters that cannot be replicated automatically. For such filters, that the

ordering of the messages is important, we can substitute an alternative filter architecture to

alleviate the bottleneck and make the whole analysis pipeline highly parallel.

The flexibility of the filter-stream programming model allows to easily substitute a com-

ponent of the application by an alternative implementation. For instance, one can use

modern vectorization techniques to improve the performance by a significant factor. Simi-

larly, one could have alternative implementation which use di↵erent type of hardware such

as accelerators.
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Figure 12: Vectorization: the performance is expressed in the number of updates per second. The best
worker-node configuration, “8 threads, 1 graph/NUMA”, is used for the experiments.

5. Conclusion

Maintaining the correctness of a graph analysis is important in today’s dynamic net-

works. Computing the closeness centrality scores from scratch after each graph modification

is prohibitive, and even sequential incremental algorithms are too expensive for networks of

practical relevance. In this paper, we proposed Streamer, a distributed memory frame-

work which guarantees the correctness of the CC scores, exploits replicated and pipelined

parallelism, and takes the hierarchical architecture of modern clusters into account. Using

Streamer on a 64 nodes, 8 cores/node cluster, we reached almost linear speedup for the
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three out of four graphs we used for the experiments.

Streamer scales well. However, despite we exposed pipelined parallelism, the system

eventually reaches a point where the SSSPs initiated from each source are no longer the

bottleneck. We had this problem for one of our graphs, and could increase the performance

further by replicating the StreamingMaster and Aggregator filters which have almost negligi-

ble overhead in a sequential execution. We also used techniques such as vectorization for a

much faster incremental centrality computation which shows that one can use di↵erent filter

implementation or even a better hardware to increase the performance of Streamer.
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