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Özetçe —Bu çalışmada yapay olarak üretilmiş öznitelik-
lerin hiperspektral uzaktan algılanmış görüntülerin sınıflandırma
başarımına olan etkisi incelenmiştir. Öznitelik olarak, bu alanda
kendini ispatlamış olan biçimbilimsel öznitelik profillerinden
yararlanılmıştır. Yapay öznitelik üretimi için, çalışmamızın bu
erken aşamasında, görece basit olan Bootstrapping algoritması
seçilmiştir. Farklı hiperspektral veri kümeleri ile yürütülen
deneyler sonucunda, yapay öznitelik üretiminin, kısıtlı eğitim
verileri durumunda sınıflandırma başarımına önemli oranda
katkı sağladığı gözlemlenmiştir

Anahtar Kelimeler—uzaktan algılama, hiperspektral, biçimbil-
imsel öznitelik profilleri, matematiksel biçimbilim, sınıflandırma.

Abstract—This paper studies the effect of synthetic feature
vectors on the classification performance of hyperspectral remote
sensing images. As feature vectors, it has been chosen to employ
morphological attribute profiles, that have proven themselves in
this field. At this early stage of our work, the relatively simple
Bootstrapping algorithm has been used for synthetic feature
vector generation. Based on experiments conducted on multiple
hyperspectral datasets, it has been observed that synthetic feature
vectors contribute considerably to classification performance in
the case of limited training dataset sizes.

Keywords—remote sensing, hyperspectral image, extended mor-
phological attribute profile, bootstrap, resampling, classification.

I. INTRODUCTION

Remote sensing is nowadays of paramount importance
for several application fields, including environmental moni-
toring, urban planning, ecosystem-oriented natural resources
management, urban change detection and agricultural region
monitoring [1]. The majority of the aforementioned monitoring
and detection applications require at some stage a label map
of the remotely sensed images, where individual pixels are
marked as members of specific classes, e.g. water, asphalt,
grass, etc. In other words, classification is a crucial step for
several remote sensing applications.

It is widely acknowledged that exploiting both the spectral
as well as spatial properties of pixels, improves classification
performance with respect to using only spectral based features
[2]. In this regard, morphological profiles (MP) are one of the
popular and powerful image analysis techniques that enable
us to compute such spectral-spatial pixel descriptions. They
have been studied extensively in the last decade and their
effectiveness has been validated repeatedly [3]–[5].

The characterization of spatial information obtained by the
application of a MP is particularly suitable for representing the
multiscale variations of image structures, but they are limited
by the shape of the structuring elements. To avoid this lim-
itation, morphological attribute profiles have been developed
[6]. By operating directly on connected components instead
of pixels, not only they enable us to employ arbitrary region
descriptors (e.g. shape, color, texture, etc) but they pave the
way for object based image analysis as well. In addition they
can also be implemented efficiently.

In this paper, we employ morphological attribute profiles
for content description and focus specifically on the case of
imbalanced and/or limited training datasets. As remote sensing
images possess most often heterogeneous content, the classes
therein are almost always represented unequally, e.g. a lot of
roofs, very few shadows in an urban area, or a lot of fields
and very few trees, etc. Moreover, the small ratio between
the number of available training samples and the number of
features makes it impossible to obtain reasonable estimates
of the class-conditional hyper-dimensional probability density
functions used in standard statistical classifiers. Consequently,
on increasing the number of features given as input to the
classifier beyond a certain threshold (which depends on the
number of training samples and the kind of classifier adopted),
the classification accuracy decreases [7]; this behavior is
known as the Hughes phenomenon [8]. We have chosen to
explore synthetic feature vector generation along with mor-
phological attribute profiles in order to remedy these issues.
In particular, we have investigated a popular synthetic dataThis work was supported by the TUBITAK Grant 112E210.



generation method from the machine learning state of the art,
namely resampling [9]–[11].

This paper is organized as follows; the explored approach is
detailed in Section II. Next, Section III presents the conducted
experiments and their results. Finally in Section IV the paper
concludes with a discussion of the obtained results.

II. APPROACH

In this work we used extended attribute profiles (EAP)
[13] as feature vectors for every pixel. As our datasets are
hyperspectral, i.e. consist of hundreds of spectral bands, in
order to prevent the EAP dimension from being very high and
impractical, the number of image bands have been reduced
by means of principle component analysis to a number which
contains more than 99% of the dataset energy. After computing
the feature vectors, we have added synthetic data to our
feature space and we took advantage of resampling by the
bootstrapping algorithm for its generation. The entire workflow
is depicted in Figure 1.

Having the feature vector computed, we generated equal
number of synthetic data, n, per each class using bootstrapping
and added them to the original feature vector. The result was
used as the new data set and training and test sets were
extracted from it as is going to be described in section III-C.
Feeding the aforementioned feature vector to the classifier, the
classification performance was measured for different numbers
of n values.

For classification purpose, random forest classifier was
exploited. Random forest is basically an ensemble of decision
trees. Unlike single decision trees which are likely to suffer
from high Variance or high bias, random forests use ensemble
methods to find a natural balance between the two extremes.
In this work we used Bagging for ensembling which is based
on averaging method. In averaging methods, the driving prin-
ciple is to build several estimators independently and then to
average their predictions. On average, the combined estimator
is usually better than any of the single base estimator because
its variance is reduced [12].

III. EXPERIMENTS

A. Data Sets

Pavia University, has been acquired by the ROSIS sensor
in 115 spectral bands during a flight campaign over Pavia,
northern Italy. 12 of these bands were removed due to noise
and therefore 103 bands were used in this work. The scene
has a size of 610 times 340 pixels with geometrical resolution
of 1.3 m. Table I shows the classes and number of pixels per
each class in Pavia University scene data set. We used the first
four principle components of this dataset which had 99.16%
of the total variance.

The Salinas Valley scene was collected by the 224-band
AVIRIS sensor over Salinas Valley, California, and is char-
acterized by high spatial resolution (3.7 m). In the corrected
version 20 channels were removed and the experiments were
conducted on a 204 channel HS image. The area covered
comprises of 512 lines by 217 samples. It includes vegetables,
bare soils, and vineyard fields. Table II shows its class based
information. We used the first four principal components of
this dataset which possessed 99.68% of the total variance.

Table I: Pavia University scene data set; class based informa-
tion

# Class Samples

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Table II: Salinas scene data set; class based information

# Class Samples

1 Brocli_green_weeds_1 2009
2 Brocli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Strubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

B. Feature Extraction

The feature vector in this work was extended multi attribute
profile (EMAP) with four attributes and four thresholds [13].
In detail:

• Area EAP: Area Extended Attribute Profile; the area
threshold values for this attribute were tuned to be
100, 500, 1000, 5000.

• SD EAP: Standard Deviation Extended Attribute Pro-
file; its threshold values were tuned to be 20, 30, 40
and 50.

• Hu First Moment EAP: The attribute threshold values
were tuned to be 0.2, 0.3, 0.4, and 0.5.

• BBD EAP: Bounding Box Diagonal Extended At-
tribute Profile; its attribute threshold values were tuned
to be 10, 25, 50 and 100.

For calculating the EMAPs, a hierarchical image repre-
sentation named Max-tree [6] was employed and for filtering
the constructed Max-tree based on each λ value, Max-filtering
strategy [6] was used.

C. Classification

For classification a random forest classifier was used.
Number of trees was chosen to be 100 and number of features
to be used for training each tree was

√
number of features

by default for bagging. For training we randomly selected
20 pixels per class from the image as the training set and
used them for the classification and all the ground truth pixels
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Figure 1: Our approach workflow.

Table III: Pavia University scene; classification performance
for different number of synthetic data

# synth data AA% AA std OA% OA std Kappa Kappa std

0 94.24 0.56 92.46 2.98 0.9023 0.0372
20 94.57 1.10 92.47 3.13 0.9025 0.0392
40 94.25 1.30 92.78 1.65 0.9059 0.0211
60 94.69 0.91 93.43 2.18 0.9143 0.0273
80 94.82 1.21 93.35 2.92 0.9135 0.0365
100 94.85 1.08 93.81 2.18 0.9192 0.0275
125 94.98 0.84 93.94 1.90 0.9208 0.0242
250 94.49 1.10 93.75 1.70 0.9182 0.0218
500 94.04 1.31 92.41 2.53 0.9014 0.0321
1000 93.76 0.86 92.52 1.98 0.9024 0.0251
3000 92.12 1.63 91.63 2.51 0.8905 0.0320

were used for testing. For each experiment, this procedure
was repeated 25 times and Overall Accuracy (OA%), Average
Accuracy (AA%) and Kappa averages and standard deviations
of them over these 25 repetitions were calculated and reported
as the classification performance. As a recall:

• OA: The overall accuracy is the number of correctly
classified instances divided by the total number of data
points (pixels).

• AA: The average accuracy is the average of class-
based accuracies.

• Kappa: The kappa statistic is a measure of how closely
the instances classified by the classifier matched the
ground truth. By measuring the expected accuracy, it
basically gives a statistic for the accuracy of a random
classifier.

D. Experiments and Results

As it was mentioned in section II, we used data augmenta-
tion via the bootstrapping algorithm in order to compensate the
class-based insufficiency of training data instances by means of
adding synthetic data to our feature space. Table III and Figure
2 show the classification performance for different number of
synthetic feature vectors added to Pavia University scene data
set. Similarly, Table IV and Figure 3 show the classification
performance for different number of synthetic feature vectors
added to Salinas scene data set.

IV. CONCLUSION

Having a look at the results for these two data sets, it
can be understood that employing synthetic feature vector
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Figure 2: Pavia University scene; classification performance
with different amount of added synthetic data.

Table IV: Salinas; classification performance for different
number of synthetic data

# synth data AA% AA std OA% OA std Kappa Kappa std

0 95.61 0.47 91.71 1.05 0.9079 0.0117
20 95.39 0.73 91.03 1.47 0.9005 0.0162
40 95.50 0.65 91.37 1.42 0.9042 0.0157
60 95.53 0.60 91.41 1.49 0.9046 0.0165
80 95.40 0.81 91.37 1.61 0.9042 0.0178
100 95.65 0.60 91.94 1.18 0.9105 0.0131
125 95.41 0.51 91.24 1.40 0.9027 0.0154
250 95.25 0.67 91.04 1.43 0.9004 0.0159
500 95.19 0.57 91.15 1.66 0.9017 0.0183
1000 94.76 0.63 90.67 1.08 0.8963 0.0120
3000 93.60 0.76 89.21 1.13 0.8801 0.0125

has a positive effect on HS image classification performance.
Although we used a simple generation method without taking
the statistics of data into account, for Pavia University data set
we obtained around 1.5% and 2% performance improvement
for OA% and Kappa respectively. For the Salinas data set,
around 0.25% improvement was achieved for OA% and Kappa
as well.

Furthermore, based on the results, adding synthetic feature
vectors not only improves the accuracy and Kappa statistics,
but also it whether decreases the standard deviation of the
results or keep it low while the accuracy and Kappa is
increased. Having a look at Figure 2 it is obvious that the
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Figure 3: Salinas scene; classification performance with dif-
ferent amount of added synthetic data.

minimum standard deviation is obtained when the optimum
number of synthetic feature vectors was added, i.e. maximum
performance was achieved. On the other hand for Salinas
valley dataset, Figure 3 shows that the standard deviation is
kept almost in the same level as the case of not using synthetic
feature vector while the accuracy and Kappa is improved.
Figure 4 and Figure 5 visualizes the aforementioned remarks.
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Figure 4: Effectiveness of using synthetic data using resam-
pling for Pavia University scene data set. In this chart the best
performance of resampling in III was exploited.
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Figure 5: Effectiveness of using synthetic data using re-
sampling for Salinas scene data set. In this chart the best
performance of resampling in IV was exploited.

V. FUTURE WORKS

In the context of synthetic data generation, there are
three main different aspects that can affect the classification
performance positively. First, is the algorithm for generating
synthetic data. The wiser choosing this algorithm, the more
the synthetic data will be informative and will enrich the main
data. Second, is balancing the classes via adding different
number of synthesized data and the last one is determining
the optimal number of synthetic data is an important parameter
which plays an important role to get the most out of synthetic
data generation approach.

As it was noted, in this work we used a simple generation
method to study the usability of synthetic data in this field.
We are planning to study the aforementioned three aspects and
compare their effectiveness in HS RSI supervised classification
in our future works.
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