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Abstract—In this paper, we present part of a study on 

stochastic, dynamic project scheduling in an R&D Department of 
a leading home appliances company in Turkey. The problem 
under consideration is the preemptive resource constrained 
multi-project scheduling problem with generalized precedence 
relations in a stochastic and dynamic environment. The model 
consists of three phases. Phase I of the model provides a 
systematic approach to assess uncertainty resulting in activity 
deviation distributions. In Phase II, proactive project scheduling 
is accomplished through two different scheduling approaches, 
which employ a bi-objective genetic algorithm. Phase III is the 
reactive project scheduling phase aiming at rescheduling the 
disrupted project activities. Here, we will limit our presentation 
to Phase II – the proactive project scheduling phase. The 
procedure is demonstrated through an implementation with real 
data covering 37 R&D projects. Computational study is 
performed to compare the two different scheduling approaches 
called single and multi-project scheduling approaches, as well as 
two different chromosome evaluation heuristics.  Results are 
presented and discussed.  

Keywords: Proactive project scheduling, multi-objective genetic 
algorithm, R&D 

I. INTRODUCTION 

In the last decades we observe a proliferation among 
others of research and development (R&D), engineering 
services, IT services and software development, infrastructure 
projects on a global scale, which increases the emphasis on 
project based management – particularly multi-project 
management. It is suggested that up to 90 %, by value, of all 
projects occur in a multi-project context [1,2]. For example, 
R&D organizations [3] and large construction companies 
regularly execute multi-project scheduling procedures [4]. 

 
During project execution, especially in a multi-project 

environment unforeseen events arise that disrupt project plans 
resulting in deviations of project plans and budgets due to 
missed due dates and deadlines, resource idleness, higher 
work-in-process inventory and increased system nervousness. 
Most of the studies in project scheduling literature assume 
complete information about the problem and develop 
scheduling methodologies for the static and deterministic 

project scheduling problem (see Hartman and Briskorn [5]). 
However, uncertainty is inherent in all project management 
environments. In reality, the situation is dynamic in the sense 
that new projects arrive continuously and stochastic in terms 
of inter-arrival times and work content. Furthermore, during 
project execution, especially in a multi-project environment 
project activities are subject to uncertainty that can take many 
different forms. Activity duration estimates may be off, 
resources may break down, work may be interrupted due to 
extreme weather conditions, new unanticipated activities may 
be identified, etc. All these types of uncertainties may result in 
a disrupted schedule, which leads in general to the 
deterioration of the performance measures. Thus, the need to 
protect a schedule from the adverse effects of possible 
disruptions emerges. This protection is necessary because a 
change in the starting times of activities could lead to 
infeasibilities at the organizational level or penalties in the 
form of higher subcontracting costs or material acquisition and 
inventory costs. Therefore, project schedules should also 
include solution robustness to cope with the uncertainties such 
that actually realized activity start times during project 
execution will not differ much from the baseline schedule.  

Constructing solution robust schedules requires proactive 
scheduling techniques. With the risk information on hand, 
proactive scheduling aims at the construction of a protected 
baseline schedule that anticipates possible future disruptions 
by exploiting statistical knowledge of uncertainties that have 
been detected and analyzed in the project planning phase. The 
literature on proactive project scheduling is relatively scarce. 
The objective of minimizing the total weighted instability of 
the schedules from a given deadline is considered in [6]. 
Herroelen and Leus [7] develop mathematical models for the 
generation of stable baseline schedules. Van de Vonder et al. 
[8] propose resource flow dependent float factor heuristic as a 
time buffering technique to produce robust schedules relying 
completely on the activity weights. Lambrechts et al. [9] focus 
on disruptions caused by stochastic resource availabilities and 
aim at generating stable baseline schedules. Van de Vonder et 
al. [10] introduce multiple algorithms to include time buffers 
in a given schedule while a predefined project due date 
remains respected. The impact of unexpected resource 
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breakdowns on activity durations is determined analytically 
and an approach for inserting explicit idle time into project 
schedules is developed in order to protect them from possible 
resource unavailability and presented in [11]. In addition to 
these proactive strategies, there are some risk-integrated 
procedures. Shatteman et al. [12] develop a methodology that 
relies on a computer supported risk management system that 
allows to identify, analyze and quantify the major risk factors 
and derive the probability of their occurrence and their impact 
on the duration of the project activities. Creemers et al. [13] 
propose a quantitative approach that allows addressing the risk 
response process in a scientifically sound manner and shows 
that a risk-driven approach is more efficient than an activity- 
based approach when it comes to analyzing risks. Herroelen 
[14] proposes a methodology that integrates quantitative risk 
analysis with reliable proactive/reactive project scheduling 
procedures.   

 
We consider the preemptive resource constrained multi-

project scheduling problem (RCMPSP) with generalized 
precedence relations in a stochastic and dynamic environment 
and develop a three- phase model incorporating data mining 
and project scheduling techniques to schedule the projects in 
the R&D Department of a leading home appliances company 
in Turkey. Phase I of the model, uncertainty assessment phase, 
provides a systematic approach to assess uncertainty by 
identifying the most important sources of uncertainty, 
measuring the impacts of these factors to resource usage 
deviation levels of projects and their activities and generating 
activity deviation distributions by using the most important 
data mining techniques: feature subset selection, clustering 
and classification. Phase II, proactive project scheduling 
phase, proposes two different scheduling approaches both of 
which employ a bi-objective genetic algorithm (GA). Phase 
III, the reactive project scheduling phase, aims at rescheduling 
the disrupted project activities. Basic framework of the three-
phase approach is given in Figure 1. 

 
In this paper, our focus is limited to Phase II of the three-

phase approach. In Section II, the problem and the problem 
environment are explained. In Section III, we present the 
solution methodology and in Section IV we present the main 
results obtained by the implementation of the proposed 
proactive project scheduling approach with real data. Finally, 
in Section V we conclude and provide suggestions for future 
work.   

 

 

Fig. 1. Framework of the three-phase approach 

 

II. PROBLEM DEFINITION AND ENVIRONMENT 

The problem on hand is proactive scheduling of the R&D 
projects with a priori assigned resources in a stochastic and 
dynamic environment present in the R&D Department of a 
leading home appliances company in Turkey. The problem 
environment under consideration contains multiple projects 
consisting of activities using multi-skilled renewable 
resources.  Projects are managed with a stage-gate approach 
and most of them are research-based projects. The department 
is organized in technology departments and these technology 
departments are comprised of technology families each of 
which works on a different technology field. Each technology 
family has a technology family leader who is responsible for 
all the resources that work under the corresponding 
technology family. 

A project consists of a number of events and activities 
that have to be performed in accordance with a set of 
precedence and resource constraints. Activities require two 
types of renewable resources: human resource and equipment. 
Equipment includes machines, mechanisms and laboratories. 
Non-renewable resources are not considered since in this 
problem setting they do not constitute a limitation. The 
problem environment under consideration contains multiple 
projects using multi-skilled renewable resources. The resource 
requirement of activities and hence, the durations of activities 
are uncertain. The project network is of activity-on-node 
(AON) type with Finish-to-Start (FS) and Start-to-Start (SS) 
precedence relations with zero or positive time lags. No 
precedence relation is assumed between projects. The problem 
on hand can be considered an extension of the RCMPSP with 
generalized precedence relations and multi-skilled resources to 
include preemption, stochastic activity duration and resource 
availabilities and dynamic arrival of projects. The objective is 
generating solution robust baseline project schedules and 
minimizing the completion time for the overall project 
makespan. Solution robustness is a measure of the difference 
between realized schedule and baseline schedule. In our case, 
we use total sum of absolute deviations (TSAD) for solution 
robustness. TSAD is sum of the absolute deviations between 
actual starting times and starting times realized in a set of K 
simulations over all activities.  

 
The problem environment differentiates from those in the 

literature in that a resource is required for the duration of its 
usage within an activity rather than for the whole deterministic 
or stochastic duration of the activity requiring that particular 
resource. Resources can work on more than one activity in a 
time period (say, a week) and the duration of the usage of the 
resources can differ over the periods that the activity is 
executed. Additionally, the concept of preemption of a 
resource employed by an activity is also introduced.  

III. SOLUTION METHODOLOGY 

The main purpose of this study is generating robust 
baseline schedules for the projects of the R&D department by 
considering the uncertainty in the resource usages of projects 
and their activities. In this section, after briefly explaining 
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Phase I, the uncertainty assessment phase, we present a bi-
objective GA that uses the output of the Phase I, and two 
scheduling approaches each using the bi-objective GA. These 
scheduling approaches are called the single and multi-project 
scheduling approaches. The aim of these approaches is to 
generate non-dominated solution robust project schedules with 
the minimum makespan for the completion of all projects 
scheduled. Solution robustness is measured with TSAD of the 
schedule through K number of possible schedule realizations 
in both approaches. The single and multi-project scheduling 
approaches differ in that the single project scheduling 
approach considers the remaining part of the schedules of the 
already active projects as fixed and schedules only the newly 
arrived project using the currently available resources, 
whereas the multi-project scheduling approach, schedules all 
the active projects in the system anew together with the newly 
arrived project. Since the two scheduling approaches differ in 
the way they adopt for the scope of scheduling, the definitions 
of TSAD and makespan, thus, the objectives considered in the 
bi-objective GA also differ although they both try to minimize 
TSAD and makespan. Note that in the proactive project 
scheduling approaches, a set of non-dominated robust project 
schedules are generated. From these non-dominated robust 
schedules, the decision maker can choose the schedule that 
best fits the current project management environment in the 
system. Proposed bi-objective GA is an adopted version of 
NSGA-II suggested in [14], which uses an explicit diversity 
generation procedure along with an elite-preservation 
procedure. An individual is represented by a precedence 
feasible activity list. We make use of one-point crossover and 
swap mutation operators. Population management is the same 
as of NSGA-II. However, our bi-objective GA differs in the 
schedule generation scheme and chromosome evaluation 
procedures. 

 

A. Uncertainty Assessment 

Uncertainty assessment is an essential step in proactive 
scheduling. Since the activities require working hours from 
resources, the main source of uncertainty in the activity 
durations is the uncertainty of resource usages of the activities. 
Therefore, to assess the uncertainty, we investigate the 
deviations of resource usages of projects and their activities. 
Uncertainty assessment phase suggests assessing the 
uncertainty of projects and their activities by classifying the 
projects with respect to their percentage resource usage 
deviations, then classifying the activities with respect to their 
percentage resource usage deviations, thus constructing a 
resource usage deviation assignment procedure for the 
prediction of the percentage resource usage deviation levels of 
the activities of a newly arrived project. Final output of this 
phase is deviation distributions for the activities of projects. It 
should be noted that, this phase is not problem-specific, i.e., 
can be implemented for any stochastic project scheduling 
problem. This phase of the proposed model is comprised of 
three steps: (i) Deviation Analysis of Projects, (ii) Project 
Deviation Class Prediction and (iii) Activity Deviation 
Prediction.  

Step I of uncertainty assessment phase establishes 
classification models based on real data regarding the 
completed projects of the R&D Department. The input of this 
step consists of various features that are thought to be relevant 
for determining the percentage resource usage deviations of 
the projects and the values that these features take for each 
project in sample project set. In this step, first, with the 
application of feature subset selection algorithms, the most 
important features are determined, then clustering is applied to 
the percentage resource usage deviation of projects (numeric 
output) to generate actual nominal class labels of the projects. 
Clustering is needed since most of the classification 
algorithms work on nominal output rather than numeric output 
Afterwards; these nominal and numeric output values of the 
projects are used in the learning stage of classification model 
construction. For each feature subset and output combination, 
a classification model is constructed. Since this learning 
process depends on the sample project data, to decrease the 
bias on the selected sample project set Step I of the uncertainty 
assessment phase is reinitialized with an update in the sample 
project set whenever a project is completed in the system.  
      Step II of the uncertainty assessment phase predicts the 
deviation class of a newly arrived project based on its input 
features. In this step, instead of selecting the classification 
model that performs best on the given data, we propose to use 
all prediction results of different classification models 
obtained with WEKA and produce probabilistic predictions 
for the percentage resource usage deviation levels of the 
projects. Thus, we provide probabilistic membership of the 
projects to the predetermined percentage resource usage 
deviation classes. This approach is more robust than selecting 
a single classification model and making deterministic 
predictions, since providing a probabilistic prediction 
precludes the missing of the actual deviation class of projects 
and tolerates the error caused by model selection. Moreover, 
in reality, instead of making a class prediction, giving a 
closeness value to each deviation class is more understandable 
by the project managers. Thus, it makes sense both in terms of 
convenience of perception and correctness. With this step in 
the planning phase, that is to say before the project actually 
starts, predicting its resource deviation level can be possible, 
and the needed precautions can be taken.  Since relationships 
between important features on the prediction of deviation 
classes are already identified to have a better understanding of 
the system in Step I, Step II, as a side contribution, enables 
project managers to make fine-tuning on the important feature 
values of the newly arrived project in order to bring the 
project’s deviation at a desired level. 

Using the project deviation class prediction, in Step III, we 
develop a model to predict the percentage resource deviation 
of the activities of this newly arrived project. The aim of Step 
III of the uncertainty assessment phase is to obtain percentage 
resource usage deviation distributions for each project 
deviation class - activity class combination to be used in the 
bi-objective GA. Therefore, Step III of the uncertainty 
assessment phase starts with the classification of all the project 
activities, thus forming a number of activity subsets. Forming 
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a distribution requires sufficient number of replications. Since 
we deal with R&D projects and the activities of R&D projects 
are usually unique and the work content is characteristic 
among all activities, to obtain sufficiently large amount of data 
for a valid distribution of percentage resource usage deviation 
from the mean requirement, such an aggregation and 
classification is compulsory. For each activity class of a newly 
arrived project, using the percentage resource deviation 
information of already completed activities in the 
corresponding activity class and the deviation class prediction 
of this newly arrived project, we obtain the adjusted frequency 
information for each predetermined deviation intervals. The 
adjusted frequency information for an interval is obtained by 
summing the multiplications of activity numbers in each 
project deviation class with the probability of the membership 
of the newly arrived project to that project deviation class. 
After obtaining these adjusted frequency distributions, 
probabilities of an activity having a deviation level in each 
range is calculated and piecewise linear percentage resource 
usage deviation distributions of each activity class in the 
newly arrived project is formed. These distributions are used 
to assign percentage resource usage deviation level to the to-
be-scheduled activities in the proactive project scheduling 
approach. 
 

B. Bi-objective Genetic Algorithm 

Proposed bi-objective GA is an adopted version of 
NSGA-II suggested by Deb et al. (2002), which uses an 
explicit diversity generation procedure along with an elite-
preservation procedure. The GA framework of the procedure 
starts with the computation of an initial population. A 
chromosome is composed of a precedence feasible activity 
sequence list of the activities of the project network. The 
number of chromosomes in the population is referred to as N, 
which is assumed to be an even integer. After each 
chromosome is decoded as a schedule and each chromosome 
is evaluated. The population is then sorted based on the non-
domination levels and each chromosome is assigned a fitness 
value equal to its non-domination level (1 is the best level, 2 is 
the next-best level, and so on) with respect to its objective 
function values. Thus, the aim is minimization of the fitness. 
After that, crowding distance of a chromosome is calculated 
and the population is partitioned into pairs of chromosomes 
using binary tournament selection as parent selection 
mechanism. To each resulting pair of chromosomes, we apply 
one-point crossover operator to produce two new (daughter d 
and son s) chromosomes. Subsequently, we apply swap 
mutation operator to the genotypes of the newly produced 
children. Since elitism is introduced by comparing current 
population with previously found best non-dominated 
chromosomes, the procedure is different after the initial 
generation. After computing the fitness of each child 
chromosome, we add the children to the current population. 
Then the population is sorted into different non-domination 
levels (frontiers) along with crowding distance calculation and 
the reduction process to reduce the population to its former 
size POP is applied. Thus, we obtain the next generation to 

which we again apply the crossover operator and so on. This 
process is repeated for a pre-specified number of generations, 
which is denoted as Total Generations. 

In the following subsections, details of schedule 
generation and chromosome evaluation mechanisms are 
presented.   

 

Schedule Generation 

Since the work of resources on activities are preemptive, a 
schedule is represented with the lists of resource, activity, 
week and amount (r,a,t,k) quadruple. Each (r,a,t,k) quadruple 
shows that resource r works on activity a at time instant t for k 
working hours. Our resource schedule generation scheme 
starts with scheduling the resources of the first activity in the 
chromosome. Note that, resource order for scheduling is not 
important since all orders give the same work schedule for that 
activity. Considering the earliest precedence feasible starting 
time of activities and starting at the first available time instant, 
resources are scheduled until they reach their required usage 
hours. After all the resources of the first activity in the 
chromosome are scheduled, starting and ending time of that 
activity is determined by simply checking the work schedules 
of the resources that activity requires. Then, the earliest 
starting time of the successor activities are updated. This 
procedure is repeated until all the activities in the chromosome 
are scheduled. 

 

Chromosome Evaluation 

For a given order of activities both the overall makespan 
and solution robustness are assessed through a set of K 
realizations mimicking the implementation phase, where a 
realization corresponds to a sample instance obtained by a 
simulation run using the activities’ percentage resource 
requirement deviation distributions, which is determined 
calling Phase I of the three-phase approach. For this purpose, 
two alternative chromosome evaluation heuristics with the 
objective of quality robustness represented with makespan and 
solution robustness expressed in terms of TSAD value of the 
robust activity starting times from their counterparts in all K 
realizations, are considered: chromosome evaluation heuristic 
I (CEH-I), and chromosome evaluation heuristic II (CEH-II). 
CEH-I solves a TSAD minimization model by LP. Using the 
activity starting times realized in simulations, this TSAD 
minimization model aims at finding robust start times that 
minimizes the TSAD value of the scheduled activities. Note 
that resulting activity start times might be completely different 
than the activity starting times in K realizations and they might 
be resource-infeasible. Thus, using the resulting robust starting 
times, first, feasibility of these starting times is checked and if 
infeasible, the schedule is fixed with deferring the infeasible 
activities. On the other hand, in CEH-II, K realizations are 
sorted in their non-domination levels using the corresponding 
makespan and TSAD values and among the schedules that 
have a rank of 1, the schedule having minimum TSAD is 
selected as the robust schedule of the chromosome. The 
makespan and the TSAD values of the resulting schedule are 

969



used as performance measures of the chromosome. Note that 
the TSAD in the multi-project scheduling approach includes 
the deviations of the starting times of the existing activities as 
well. 

IV. IMPLEMENTATION WITH REAL DATA 

For the implementation, 37 completed R&D projects are 
used as test instances to compare the performances of the two 
proactive project scheduling approaches developed. All codes 
are written in Microsoft Visual Studio C# and CPLEX 12.5 is 
used as the MILP solver. All tests are performed on a 
computer with a 3.20 GHz Intel(R) Core(TM) i7 CPU 960 
processor and 8 GB of RAM. The best combination of the 
parameters to be used in the bi-objective GA is determined 
through extensive experimentation. In the following sections, 
the results of the scheduling approaches obtained by using the 
crossover rate of 0.95, mutation rate of 0.05, population size 
of 50 and the number of generations and the number of 
schedule realizations for a chromosome are taken as 50, and 
100, respectively. 

A. Data 

All 37 projects are the projects initiated between 2007 and 
2011. Project networks are of AON type FS and SS 
precedence relations with zero and positive time lags. There is 
no precedence relation between projects. The two types of 
renewable resources are: Human resource and equipment. The 
projects in the project set require a total of 91 different 
equipment type resources and 183 different human resources. 
Activities require from one human resource to a total of more 
than 11 human resources and equipment. While the weekly 
capacity of human resources is 45 working hours, these 
capacity values differ from 9 working hours to 672 working 
hours for the resources in the equipment category. 

B. Results 

The results obtained by the use of CEH-I and CEH-II in 
the bi-objective GA are compared with respect to CPU time, 
diversity of the solutions and solution quality. Although, we 
do not present the detailed results in these terms, we provide 
the main conclusions arrived at through the analysis of these 
results. Table 1 presents the number of non-dominated 
solutions obtained and the CPU time required in the 
implementation of the method with each type of chromosome 
evaluation scheme. It is observed that the CPU time required 
to schedule the projects is less for almost all projects when 
CEH-II is used instead of CEH-I, since fitness of a 
chromosome is calculated using an already generated schedule 
in CEH-II. Thus, it seems sorting the schedules generated in 
the simulation with respect to their non-domination level 
requires less computational time than solving the TSAD 
minimization model and generating a new schedule using the 
output of the TSAD minimization model. It is also seen that 
when CEH-I is used, less number of non-dominated schedules 
are obtained for each project and it tends to find schedules 
with less TSAD while CEH-II tends to find schedules with 
smaller makespan values.  

 

TABLE I. Comparison of CEH-I and CEH-II 

 
When we compared the results of the single and multi-

project scheduling approaches, we saw that for most of the 
projects, single project scheduling approach gives better 
completion times. On the other hand, if we think all the 
projects as a composite project, the completion time of this 
composite project obtained with multi-project scheduling 
approaches approximately 5 months earlier using CEH-I and 
approximately 6 months earlier using CEH-II. Hence, if 
completing the composite project is more important than 
completing the projects individually, multi-project scheduling 
approach is better. On the other hand, a disadvantage of multi-
project scheduling is that it re-schedules all the active 
activities with a new project initiation, so an activity is 
scheduled more than once even if there is no disruption 
affecting that activity. This re-scheduling increases system 
nervousness and demotivates the resources that work on the 
activities. An additional disadvantage is that the multi-project 

1 1 15.46 4 13.29
2 2 8.92 11 7.06
3 3 22.65 1 21.7
4 4 25.89 9 23.63
5 1 21.41 3 19.63
6 3 10.74 11 9.25
7 6 16.14 15 15.68
8 1 26.32 3 24.85
9 3 21.72 6 18.53
10 1 32.98 1 28.74
11 4 23.68 5 23.06
12 2 21.4 5 16.99
13 2 11.63 10 10.32
14 2 11.71 7 9.51
15 1 15.89 2 15.35
16 5 24.12 14 22.12
17 1 6.4 8 5.96
18 1 17.48 3 15.16
19 2 17.66 9 16.62
20 1 30.77 15 27.86
21 4 17.48 10 15.01
22 3 8.88 9 6.42
23 1 12.23 2 9.56
24 3 17.11 7 14.71
25 3 13.33 9 11.29
26 2 14.73 8 13.39
27 5 13.53 9 10.64
28 3 6.3 9 5.35
29 1 13.43 6 11.94
30 3 11.1 13 11.09
31 2 9.43 9 10.19
32 3 15.76 8 17.32
33 5 10.22 10 11.07
34 2 12.04 7 11.01
35 2 15.63 3 15.7
36 3 9.08 5 10.7
37 3 14.49 10 14.72

Number of    
Non-dominated 

Schedules

CEH-I CEH-II

CPU Time 
(minutes)

CPU Time 
(minutes)

Project ID Number of    
Non-dominated  

Schedules
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scheduling approach needs more CPU time than the single 
project scheduling approach. 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented the proactive project 
scheduling phase of the three-phase approach developed for 
robust project scheduling. To the extent of our knowledge, this 
study is the first study considering multiple objectives on 
proactive project scheduling literature for the problem of the 
preemptive version of the RCMPSP with generalized 
precedence relations. To obtain robust baseline schedules, in 
the proactive project scheduling phase, we suggested two 
scheduling approaches each using a bi-objective GA with two 
different chromosome evaluation heuristics. Solution 
robustness is assured with TSAD minimization after a pre-
specified number of schedule realizations are obtained for a 
chromosome. The other objective is the minimization of the 
makespan over all projects. The proactive project scheduling 
approaches are implemented on the real data from the R&D 
Department of a leading home appliances company in Turkey. 
Although we have used these two objectives, some other 
objectives could be used or added to the model as well. A 
further extension of our work could be considering the 
concepts of activity flexibility, project flexibility, activity 
priority and project priority while scheduling the projects. 
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