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Abstract

We say that a mechanism is harmless if no student can ever misreport his preferences so

that he does not hurt but someone else. We consider a large class of rules which includes the

Boston, the agent-proposing deferred acceptance, and the school-proposing deferred acceptance

mechanisms (sDA). In this large class, the sDA happens to the unique harmless mechanism.

We next provide two axiomatic characterizations of the sDA. First, the sDA is the unique

stable, non-bossy, and independent of irrelevant student mechanism. The last axiom is a weak

variant of consistency. As harmlessness implies non-bossiness, the sDA is also the unique stable,

harmless, and independent of irrelevant student mechanism.
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1 Introduction

Initiated by Gale and Shapley (1962), matching theory has been fruitful both in theory and

practice. Fortunately, theoretical findings have been put into practice, and some important

real-life markets have been successfully redesigned by researchers under the guidance of theory.

Examples include the National Residency Matching Program in the USA, placing doctors at

hospitals, and The New York City and Boston student placement systems.1

In the redesign of matching markets, one of the main concerns has been agents’ incen-

tives in reporting their preferences to relevant matching intuitions. More specifically, both

researchers and market practitioners put high premium on market designs giving right incen-

tives to agents to submit their true preferences regardless of everything. This property is known

as strategy-proofness in the literature. In terms of positive economics, in compliance with the

Wilson doctrine, strategy-proofness is highly desirable because it provides participants a very

simple optimal strategy. Moreover, from normative point of view, it sustains fairness among

sophisticated and unsophisticated participants by leveling the playing field. The unfairness of

non-strategy-proof Boston mechanism (henceforth, BM) has been well-documented by Roth

et al. (2006). By using the 2001-02 Boston Public Schools (BPS) data, they show the presence

of both sophisticated and unsophisticated students and observe that the latter (group) have

indeed hurt the former.2 In fact, the following memo from BPS Superintended Payzant to the

School Committee on May 25, 2005 reveals the importance BPS staff gives to strategy-proofness

due to its fairness aspect:

“A strategy-proof algorithm levels the playing field by diminishing the harm done

1See Balinski and Sönmez (1999), Abdulkadiroǧlu et al. (2005), Roth et al. (2005), and Roth and Peranson
(1999).

2They show that many of unsophisticated students were unassigned, which would not have been the case
if they had chosen a wise preference submission strategy. Similarly, by using data from Wake County School
District, Dur et al. (2015) show that sophisticated students benefit under the BM at the expense of sincere
students.
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to parents who do not strategize or do not strategize well.”

The above empirical finding of Roth et al. (2006) is confirmed both in theory and in lab

by Pathak and Sönmez (2008) and Chen and Sönmez (2006). Especially, Pathak and Sönmez

(2008) show that the Pareto-dominant Nash equilibrium under the BM favors sophisticated

students at the expense of sincere ones, providing a theoretical support for the unfairness of the

BM stemming from its lack of strategy-proofness.

In this study, especially motivated by the fairness implication of strategy-proofness, we

consider manipulable mechanisms3 and study whether or not a preference manipulation by

a student can harm other students. Specifically, we say that a mechanism is harmless no

other students are harmed if a student manipulates the mechanism.We first show that the

school-proposing deferred acceptance mechanism(sDA) is harmless, whereas the commonly used

agent-proposing deferred acceptance mechanism (aDA) is not.

Next, we conduct an axiomatic analysis to deepen our understanding of the set of stable and

harmless mechanisms. We say that a mechanism is independent of irrelevant student whenever

a new student who finds every school unacceptable joins the problem, the other students’ as-

signments under the mechanism do not change. A mechanism is non-bossy (Satterthwaite and

Sonnenschein (1981)) if no student can ever change someone else’s assignment without changing

his own assignment. We show that a mechanism is stable, non-bossy, and independent of irrel-

evant student if and only if it is the sDA. As harmlessness implies non-bossiness, as a corollary

of this result, we also obtain that the sDA is the unique stable, harmless, and independent of

irrelevant students mechanism. To the best of our knowledge, altoughsDA is widely used in

real life matching practices,4 there has been no axiomatization of the sDA other than being the

3We say that a mechanism is manipulable if a student can change the mechanism outcome without hurting
herself. That is, manipulable mechanisms includes ones where at some problem, the misreporting student’s
assignment does not change but someone else. Such situations may call for strategic misreporting, because hurt
students may incentivize misreporting through offering transfers

4Centralized college admission in Turkey, secondary school assignment in France and Finland, and high school
assignment in Ireland are done through variants of sDA.
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student-pessimal stable mechanism (Gale and Shapley (1962)); thereby those characterizations

shed a further light on our sDA understanding.

Lastly, in order to investigate possibly other harmless mechanisms, we consider a very large

class of mechanisms, including the BM , the aDA, and the sDA. A subclass of it, which is in

use in China for college admissions, was first introduced by Chen and Kesten (2015). Within

this very large class, the sDA happens to be the unique harmless rule as well.

2 Related Literature

This paper is broadly related to the extensive manipulations in matching markets literature.

In two-sided matching markets where both sides are active agents, Roth (1982) shows that no

stable mechanism is strategy-proof. On the other hand, whenever either side has commonly

known preferences in the one-to-one matching environment, a stable and strategy-proof rule

exists (Dubins and Freedman (1981) and Roth (1982)). Sönmez (1997, 1999) demonstrate that

stable mechanisms are vulnerable to capacity and pre-arrangement manipulations, respectively.

In contrast to stable rules, the BM and the Top Trading Cycles mechanism (attributed to David

Gale) are immune to capacity manipulations (Kesten (2012)). Some of these negative results

are overturned in large markets. Kojima and Pathak (2009) prove that under some regularity

conditions, the scope of profitable preference and capacity manipulations diminishes under the

aDA as the market becomes large.

Pathak and Sönmez (2008) conduct an equilibrium analysis under the BM with sophisticated

and sincere students. Among other results, they report that sophisticated students weakly prefer

the Pareto-dominant Nash equilibrium outcome of the BM to the dominant-strategy outcome

of the aDA. Other papers on manipulations in matching markets include Kojima (2011, 2006),

Ergin (2002), Konishi and Ünver (2006), Pathak and Sönmez (2013), and Afacan (2013b).

The paper is also related to the axiomatic characterization line of literature. Gale and Shap-
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ley (1962) show that the sDA is the worst stable mechanism for the student side, in other word,

it is the student-pessimal stable mechanism. No paper has offered a different characterization

of the sDA. This paper provides two axiomatizations of it in terms of non-bossiness and harm-

less manipulability. As opposed to the sDA, there are various axiomatizations of the aDA,

including Kojima and Manea (2010), Morrill (2013a), Ehlers and Klaus (2014), Balinski and

Sönmez (1999), and Alcalde and Barbera (1994). Other well-known and in use school choice

mechanisms BM and Top Trading Cycles have been characterized in the literature as well by

Kojima and Ünver (2014), Afacan (2013a), Abdulkadiroglu and Che (2010), Dur (2015), and

Morrill (2013b).

3 Model

A school choice problem (Abdulkadiroğlu and Sönmez (2003)), or simply a problem, consists

of:

• a finite set of students I = {i1, i2, ..., in},

• a finite set of schools S = {s1, s2, ..., sm},

• a quota vector q = (qs)s∈S where qs is the number of available seats in school s,

• a list of preference relations P = (Pi)i∈I where Pi is the strict preference of student i over

the schools and being unassigned option denoted by ∅,

• a list of priority orders �= (�s)s∈S where �s is the strict priority relation of school s over

I.

Let q∅ = ∞. In all sections except Section 4.1 (Characterization section) we fix I,S, q, and �,

and represent a problem with P . Let Ri be the at-least-as-good-as relation associated with Pi
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for all i ∈ I. We write P for the set of all possible strict preferences of students. We say that

school s is acceptable to student i if sPi∅. Otherwise, it is called unacceptable.

A matching µ : I → S is a function such that |µ(i)| ≤ 1 and |µ−1(s)| ≤ qs for all i ∈ I and

s ∈ S. Let M be the set of all matchings.

A matching µ ∈ M Pareto dominates another matching ν ∈ M if µ(i)Riν(i) for each

student i ∈ I and µ(j)Pjν(j) for at least one student j ∈ I. A matching µ is Pareto efficient

if there does not exist another matching ν ∈ M which Pareto dominates µ.

A matching µ is non-wasteful if there exists no student school pair (i, s) such that |µ−1(s)| <

qs and sPiµ(i). A matching µ is individually rational if µ(i)Ri∅ for all i ∈ I . A matching

µ is fair if there does not exist a student school pair (i, s) where s Pi µi and i �s j for some

j ∈ µ−1(s). A matching is stable if it is non-wasteful, individually rational, and fair. A stable

matching µ is student-optimal stable matching if it Pareto dominates any other stable matching.

A mechanism Φ is a procedure which selects a matching for each problem. The matching

selected by mechanism Φ in problem P is denoted by Φ(P ) and the assignment of each student

i ∈ I is denoted by Φi(P ).

A mechanism Φ is Pareto efficient (stable) if for any problem P its outcome Φ(P ) is

Pareto efficient (stable).

A mechanism Φ is strategy-proof if there do not exist a student i ∈ I and a preference

relation P ′ such that Φi(P
′, P−i) Pi Φi(P ). We say a mechanism is non-strategy-proof if it is

not strategy-proof.

A mechanism Φ is bossy if there exist a problem P , student i ∈ I, and a preference relation

P ′ such that Φi(P
′, P−i) = Φi(P ) and Φ(P ′, P−i) 6= Φ(P ). We say a mechanism is non-bossy

if it is not bossy.

A mechanism Φ is group-strategy-proof if there exist no problem P , a group of stu-

dents I ′ ⊆ I, and a false preference profile P ′
I′ = (P ′

i )i∈I′ for I ′ such that for every i ∈ I ′,

Φi(P
′
I′ , P−I′) Ri Φi(P ), with strictly holding for some student in I ′. Pápai (2000) shows that a
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mechanism is group-strategy-proof if and only if it is non-bossy and strategy-proof.

A mechanism Φ is manipulable if there are a problem P , a student i and a preference

relation P ′ such that Φi(P
′, P−i)RiΦi(P ) and Φ(P ′, P−i) 6= Φ(P ). Our class of manipulable

mechanisms includes ones where at some problem, the misreporting student’s assignment does

not change but someone else. Such situations may call for strategic misreporting, because

badly affected students may incentivize misreporting through offering transfers. Note that, if a

mechanism is non-strategy-proof and/or bossy, then it is manipulable.

Now we are ready to define the key notions that we use in our analysis. We say a mechanism

Φ is weakly harmfully manipulable if there are a problem instance P , student i, and P ′

such that Φi(P
′, P−i)RiΦi(P ) and, for some student j 6= i, Φj(P )PjΦj(P

′, P−i). A mechanism

ψ is harmfully manipulable if there are a problem instance P , student i, and P ′ such that

Φi(P
′, P−i)PiΦi(P ) and, for some student j 6= i, Φj(P )PjΦj(P

′, P−i). A mechanism is harmless

if it is not weakly harmfully manipulable. Similarly, a mechanism is weakly harmless if it is

not harmfully manipulable.

4 Results

In the literature, mechanisms are compared based on their vulnerability to manipulation. In

particular, a strategy-proof (or group-strategy-proof) mechanism has been considered mostly

better than ones which are not strategy-proof (or group-strategy-proof). However, being a

strategy-proof mechanism does not imply being a harmless mechanism.

Proposition 1 (i). If a mechanism is group-strategy-proof, then it is harmless.

(ii). If a mechanism is strategy-proof, then it is weakly harmless.

(iii). If a mechanism is bossy, then it is weakly harmfully manipulable.

Proof. Parts (i) and (ii) directly follow from the definition.
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(iii). If a mechanism Φ is bossy, then there exist a problem P , a student i and preference

relation P ′ such that Φi(P
′, P−i) = Φi(P ) and Φ(P ′, P−i) 6= Φ(P ). Then, there exists at least

one student j ∈ I \ {i} such that Φj(P
′, P−i) 6= Φj(P ). Due to the strict preferences either

Φj(P
′, P−i) Pj Φj(P ) or Φj(P ) Pj Φj(P

′, P−i). Hence, j will be harmed either in problem P

when i reports P ′ or in problem (P ′, P−i) when i reports Pi.

Since the set of group-strategy-proof mechanisms is a strict subset of the set of strategy-proof

mechanisms,5 Proposition 1 implies that some of the strategy-proof mechanisms can be weakly

harmfully manipulable.

Proposition 2 (i).If a manipulable mechanism is harmless, then it is Pareto inefficient.

(ii). Given a mechanism Φ, if there exists a problem P such that Φ(P ) is Pareto efficient and

someone has a manipulation making him strictly better off, then Φ is harmfully manipulable.

(iii). Given a mechanism Φ, if there exists a problem P such that Φ(P ) is Pareto efficient and

someone has a manipulation changing the outcome but leaving his assignment unchanged, then

Φ is weakly harmfully manipulable.

Proof. (i). Suppose not. That is, there exists a manipulable mechanism Φ which is harmless

and Pareto efficient. Suppose under problem P , there exist a student i and a preference relation

P ′ such that Φ(P ) is Pareto efficient, Φi(P
′, P−i)RiΦi(P ) and Φ(P ′, P−i) 6= Φ(P ). Since Φ is

harmless, then Φj(P
′, P−i)RjΦj(P ) for all j ∈ I /∈ {i}. Then, Φk(P

′, P−i)RkΦk(P ) for all k ∈ I

and Φ(P ′, P−i) 6= Φ(P ). However, this contradicts with the Pareto efficiency of Φ(P ).

(ii). Suppose not and assume that at problem P , student i strictly benefits from reporting

P ′. That is, Φi(P
′, P−i)PiΦi(P ) and Φj(P

′, P−i)RjΦj(P ) for all j ∈ I /∈ {i}. Then, Φ(P ′, P−i)

Pareto dominates Φ(P ). However, this contradicts the Pareto efficiency of Φ(P ).

(iii). As the same as above, suppose not and assume that at problem P , student i does not

hurt by reporting P ′. That is, Φi(P
′, P−i)RiΦi(P ) and Φj(P

′, P−i)RjΦj(P ) for all j ∈ I /∈ {i}.
5The aDA is strategy-proof but not group-strategy-proof.

8



Then, Φ(P ′, P−i) Pareto dominates Φ(P ). However, this contradicts the Pareto efficiency of

Φ(P ).

As immediate two corollaries to Proposition 2 are stated below.

Corollary 1 (i). If a mechanism is Pareto efficient and someone has a manipulation at some

problem making him strictly better off, then it is harmfully manipulable.

(ii). If a mechanism is Pareto efficient and someone has a manipulation at some problem leaving

him indifferent, then it is weakly harmfully manipulable.

In Corollary 1, we state that any Pareto efficient and manipulable mechanism is (weakly)

harmfully manipulable; hence any such rule is not (weakly) harmless. A very well-known class

mechanisms is stable mechanisms (Gale and Shapley (1962); Dubins and Freedman (1981);

Roth (1982); Balinski and Sönmez (1999)). In this class, the aDA6 is bossy and any other

stable mechanism is not strategy-proof. Hence, any stable mechanism is manipulable. Since the

aDA is bossy (Ergin (2002)), it is weakly harmfully manipulable. Moreover, because the aDA

is strategy-proof, it is weakly harmless (Proposition 1) at the same time.

Corollary 2 The aDA is weakly harmfully manipulable; thereby it is not harmless. Yet, the

aDA is weakly harmless.

Note that, neither Proposition 1 nor Proposition 2 says anything about whether the sDA7

is harmful or not. In the following theorem, we show that the sDA is harmless.

Theorem 1 The sDA is harmless.

Proof. See the Appendix B.

6Formal definitions of the BM and the aDA are provided in Fact 2 in Section 4.2.
7The formal definition of the sDA is relegated to Appendix A.
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4.1 Characterization

In Theorem 1, we show that the sDA is harmless. A natural question arises is whether there

exists another harmless mechanism in the class of stable mechanisms. By using an intuitive and

weak axiom, we prove that the sDA is the unique harmless and stable mechanism satisfying

that weak property. In particular, we show a stronger result by using non-bossiness instead of

harmlessness in our characterization. Before presenting the characterization result, we introduce

a new axiom.

Consider a problem (I,�, P ) where there exists a student i ∈ I preferring ∅ to all schools

in S. We say student i is an irrelevant student in problem (I,�, P ). Let �̄ be the priority

order obtained by removing i from all schools’ priority orders while keeping the relative order

of the other students. A mechanism Φ is independent of irrelevant student if it selects the

same outcome when the independent student is removed with all of his priorities: Φj(I,�, P ) =

Φj(I \ {i}, �̄, P−i) for all j ∈ I \ {i}.

Theorem 2 The sDA is the unique mechanism which is stable, non-bossy and independent of

irrelevant student.

Proof. See the Appendix B.

The three axioms used in Theorem 2 are independent:

A mechanism which is non-bossy and independent of irrelevant student: Top

Trading Cycles mechanism is non-bossy (Pápai (2000)) and independent of irrelevant student.

A mechanism which is stable and independent of irrelevant student: The aDA is

stable and independent of irrelevant student.

A mechanism which is stable and non-bossy: A mechanism which selects the aDA

outcome whenever the priority structure is acyclic otherwise selecting the sDA outcome is

stable and non-bossy. The aDA becomes non-bossy under acyclic priorities (Ergin (2002)), and

the sDA is already non-bossy (due to Theorem 1 and Proposition 1); hence the mechanism

10



is non-bossy. Its stability directly comes from its definition. However, as the rule changes

depending on the priority structure, the presence of an irrelevant student’s priority matters

here; thereby it is not independent of irrelevant student.

Theorem 2 implies that any stable mechanism satisfying independence of irrelevant agent

which is not equivalent to the sDA is bossy. When we combine this observation with Proposition

1 and Theorem 1, we have the following corollary.

Corollary 3 The sDA is the unique mechanism which is stable, harmless, and independent of

irrelevant student.

In the rest of the paper, we consider a very large class of rules, including the BM , the aDA,

and the sDA, and investigate their harmlessness property. It will turn out that the even in this

large class of rules, the sDA is the unique harmless one.

4.2 The Class of Student-Proposing Parallel Mechanisms

In this subsection, we consider a particular class of mechanisms, which is first considered by Chen

and Kesten (2015). They call it “application-rejection” class of mechanisms where each member

is identified by a single parameter e ∈ {1, 2, ..,∞}. Here, we call this class the student-proposing

parallel mechanisms.

In what follows now, we first describe that class of mechanisms. For a given e,

Round 1.

* Each student applies to her first choice. Among the current applicants, each school tenta-

tively accepts the highest priority ones up to its capacity and rejects the rest.

* Each rejected student in the previous step and yet to apply her eth choice applies to her

next best choice. Any other rejected student in the previous step remains unassigned in this

round. Among the tentatively accepted and current applicants, each school tentatively accepts

the highest priority ones up to its capacity and rejects the rest.
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* This round terminates whenever every student is tentatively assigned or had all of her top

e applications rejected. By the end of the round, all tentative assignments are finalized, and

tentatively assigned students leave the problem with their assigned seats.

In general,

Round t ≥ 2

* Each unassigned student from Round t-1 applies to his next best acceptable school. Each

school tentatively accepts the highest priority students among the applicants up to its left

capacity and rejects the rest.

*Each rejected student in the previous step and yet to apply his acceptable (e× t)th choice

applies to his next best acceptable school. Any other rejected student in the previous step

remains unassigned in this round. Among the current applicants and the tentatively accepted

ones, each school tentatively accepts the highest priority ones up to its available capacity and

rejects the rest.

* The round terminates whenever every student is tentatively assigned or had all of her top

(e× t)th applications rejected. By the end of the round, all tentative assignments are finalized,

and tentatively assigned students leave the problem with their assigned seats.

The algorithm terminates whenever every student is matched or had rejection from all of his

acceptable choices.

By following the notations of Chen and Kesten (2015), let us write Φe for the above mecha-

nism.

Fact 1 [see Chen and Kesten (2015)]

(i) For e = 1, Φe = BM .

(ii) For e = ∞, Φe = aDA
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Chen and Kesten (2015) show that for any finite e, Φe is non-strategy-proof. In the following

result, we prove that for any finite e, whenever a student has profitable deviation under Φe at a

problem, then at least one other student is hurt. That is, Φe is harmfully manipulable for any

finite e.

Theorem 3 For any finite e, if there exists a student who can deviate profitably under Φe at

problem P , then it is harmfully manipulable at P .

Proof. See the Appendix B.

Theorem 3 above, along with the fact that for any finite e Φe is non-strategy-proof, shows

that Φe is harmfully manipulable.

Corollary 4 For any finite e, Φe is harmfully manipulable.

The only strategy-proof member of the student-proposing class of parallel mechanisms is

the aDA. This, along with the above results, shows that the aDA is the only rule in that

class which is not harmfully manipulable. However, it is weakly harmfully manipulable (see

Corollary 2). Therefore, any member of the student-proposing class of parallel mechanisms is

weakly harmfully manipulable.

Next we introduce a new notion which helps us to compare any two harmfully manipulable

mechanisms a la Pathak and Sönmez (2013).

Definition 1 A mechanism Φ is more (weakly) harmfully manipulable than φ if, whenever the

latter is (weakly) harmfully manipulable at a problem P , then so is the former at P ; yet the

converse is not true.

By using this notion, in the next result, we show that as e decreases Φe becomes more

harmfully manipulable.

Proposition 3 Φe is more harmfully manipulable than Φe′ for any e < e′.
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Proof. The proof follows from Theorem 3 and Theorem 1 of Chen and Kesten (2015). In

particular, Theorem 1 of Chen and Kesten (2015) shows that Φe is more manipulable than Φe′

for any e < e′ in the sense that whenever some student has profitable deviation at some problem

P under Φe′ , then the same is true for Φe at the same problem P , while the converse is not true.

This result, along with the Theorem 3, proves Proposition 3.

However, we cannot compare the mechanisms in terms of weakly harmful manipulability.

Proposition 4 There is no comparison in the above sense for the weak type of harmful manip-

ulation.

Proof. See Appendix B.

4.3 The Class of School-Proposing Parallel Mechanisms

In this subsection, we introduce a new class of mechanisms including the sDA.

As in the above student-proposing class of mechanisms, each member is specified with a

parameter e ∈ {1, ...,∞}. For a given e ∈ {1, ...,∞}, we define φe as follows:

Round 1.

* Schools offer to their respective top choice student. Each offer receiving student tentatively

holds the best offer and rejects the rest.

* Each rejected school in the previous step or still having an available seat after giving one

seat to the offer accepting student in the previous step proposes to its next best student if it

did not offer to its top eth choice. Each offer receiving student tentatively accepts the best offer

among the current offers and the tentatively held one and rejects the rest.

* The round terminates whenever every school offers to its top e choice or had as many

accepted offers as its capacity. The tentatively held offers are finalized and the students holding

offers leave the problem with their assigned seats. Each school capacity is decreased by the
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number of students getting seats from it.

In general,

Round t ≥ 2

* Each school still having a left capacity offers to its next best remaining student. Each offer

receiving student tentatively holds the best one and rejects the rest.

* Each rejected school in the previous step or still having an available seat after giving one

seat to the offer accepting student in the previous step offers to its next best student if it did

not offer to its top (e × t)th choice. Each offer receiving student tentatively accepts the best

offer among the current offers and the tentatively held one and rejects the rest.

* The round terminates whenever every school offers to its top (e × t)th choice or had as

many accepted offers as its capacity. The tentatively held offers are finalized and the students

holding offers leave the problem with their assigned seats. Each school capacity is decreased by

the numbers of students getting seats from it.

The algorithm terminates whenever every school fills out its capacity or made offer to ev-

ery student. We call this class of mechanisms, where each member is induced by different e,

“School-Proposing Parallel Mechanisms.

In the following proposition, we show that for e = ∞, we obtain the sDA.

Proposition 5 φ∞ = sDA.

Proof. In the above class, schools simultaneously make offers in decreasing order of their

priorities with a difference that they propose to a single student at each step. However, at the

end, schools do propose to the same sets of students under both φ∞ and the sDA; hence they

are the same.
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sDA is a member of the above class of school-proposing parallel mechanisms; and it is known

that the sDA is not strategy-proof. Indeed, the following result shows that no member of this

class is strategy-proof.

Proposition 6 For any e, φe is non-strategy-proof.

Proof.

For a finite e, let us consider a problem instance consisting of I = {i1, ..., ie+2} and S =

{s1, s2}, with qs1 = e + 1 and qs2 = 1. The priority orders are such that (i) student ie+1 is the

top (e+1)th priority student at school s1, and (ii) student ie+1 is the top priority one at school

s2. Student preferences are such that every school is acceptable to every student, and student

ie+1 prefers school s1 to school s2.

Then, mechanism φe at the true preference profile places student ie+1 at school s2. Now, let

student ie+1 misreport his preferences by declaring school s1 as the only acceptable school. At

this false preference profile, mechanism φe places student ie+1 at school s1; thereby he would be

better off.

The above shows that φe is non-strategy-proof for any finite e. From Proposition 6, we

already know that sDA coincides with φ∞; hence for e = ∞, it is non-strategy-proof as well,

which finishes the proof.

Now, we are ready to show that sDA is the unique harmless mechanism in this class.

Theorem 4 For any finite e, φe is harmfully manipulable; thereby it is not even weakly harm-

less.

Proof. We prove by constructing an example for each finite e. There are e+ 2 schools and

e+2 students: S = {s1, s2, ..., se+2} and I = {i1, i2, ..., ie+2}. qs = 1 for all s ∈ S. For k ≤ e+1,

each school sk ranks student ik at the top: ik �sk i for all i ∈ I \ {ik}. The priority order of
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school se+2 is given as: i1 �se+2 i2 �se+2 ... �se+2 ie+2. For all k ≤ e, each student ik considers

only sk acceptable, i.e., ∅Piks for all s ∈ S \ {sk}. The preferences of student ie+1 and ie+2 are

given as follows: se+2Pise+1Pi∅Pie+1s for all s ∈ S \ {se+1, se+2} and i ∈ {ie+1, ie+2}.

Under true-telling, in the first round, the offer of each school sk is accepted by ik for any

k ≤ e+ 1. In the following round(s), se+2 proposes to ie+2 and ie+2 is assigned to se+2.

However, if ie+1 reports only se+2 as acceptable, then ie+1 will be assigned to se+2 and ie+2will

be assigned to se+1. Hence, ie+2 is hurt when ie+1 manipulates the mechanism.

Remark 1. In our whole analysis above, we look at whether any student is hurt whenever

someone misreports his preferences while all the rest is sincere. However, this analysis does

not say anything for the case where more than one student deviates from truth telling while

assuming that the rest sticks to their true preferences. In this remark, we will formally deal with

this question and show that the sDA is the unique rule among the class of rules we consider

above such that no student is hurt whenever more than one student deviates from truth telling

while assuming that the rest sticks to their true preferences.

For a mechanism Φ, and any preference profile P , letBi(P−i,Φ) = {P ′
i ∈ P : Φi(P

′
i , P−i)RiΦi(P )}.

That is, it is the set of strategies (referring to preferences as strategies as we consider game among

students in this section) of student i giving at least as good outcome as the true preferences

while all the others are sincere under Φ. Note that Pi ∈ Bi(P−i,Φ). We say that a mechanism

Φ is strongly harmless if there exist no problem P , student j, and P ′ such that Φj(P )PjΦj(P
′)

where P ′
i ∈ Bi(P−i,Φ) for any i ∈ I. It is easy to see that strong harmlessness implies harm-

lessness. For any e ∈ {1, ..,∞}, let ψe and φe be the student and school-proposing parallel rule

corresponding to the given e, respectively. As ψe for any e, and φe for any finite e are at least

weakly harmfully manipulable, they are in particular not strongly harmless. However, the sDA

happens to be strongly harmless as well.

Proposition 7 sDAi(P
′)RisDAi(P ) where P

′
i ∈ Bi(P−i) for any i ∈ I.
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Proof. See Appendix B.

5 Conclusion

This paper concerns with the cost of manipulation in terms of harm given to sincere students.

To this end, we say that a mechanism is (weakly) harmless if no student ever can misreport his

preferences so that he is (better off) not worse off but someone else (becomes worse off). We

consider a very large class of rules admitting the well-known BM , the aDA, and the sDA. In

this class, the sDA turns out to be the unique harmless rule. Next, in order to improve our

understanding of the class of harmless and stable rules, we provide an axiomatic characteriza-

tion of the sDA. The sDA is the unique stable and harmless mechanism satisfying a very mild

consistency requirement.
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Appendix A

Below describes the sDA.

Round 1. Each school offers to the top priority student group up to its capacity. Each offer

receiving student tentatively accepts the most preferred one and rejects the rest.

In general,

Round k. Each rejected school offers to the next top priority student group for its rejected

seats. Each offer receiving student tentatively accepts the most preferred offer among the current

ones and the tentatively held one in the previous round and rejects the rest.

The sDA terminates whenever every school tentatively fills out its all seats or has all offers

exhausted. The assignments at the terminal round realize as the final outcome of the sDA. The

student-offering version of this algorithm is the aDA.

Appendix B

Proof. [Proof of Theorem 1] Let us consider a problem P where there exist a student i ∈ I

and a preference order P ′
i such that sDAi(P

′
i , P−i)RisDAi(P ). We claim that no student is

worse off at P ′ = (P ′
i , P−i), i.e., sDAj(P

′)RjsDAj(P ) for all j ∈ I. Let ψ denote the sDA and

ψi(P
′) = a and ψi(P ) = b (schools a and b may be the same).

Let P ′′
i be the preference relation where the only acceptable school is a and P ′′ = (P ′′

i , P−i).

Lemma 1 ψ(P ′′) = ψ(P ′).

Proof. [Proof of Lemma 1]For the proof of this Lemmata, we will show that students reject

the same set of schools in the course of ψ at both problems P ′ and P ′′. This in turn implies that

students receives the same set of offers at both problems; thereby the outcomes are the same.

Let Ok
s (P

′) and Ok
s (P

′′) be the set of offers school s makes in step k at problems P ′ and

P ′′, respectively. By definition, O1
s(P

′) = O1
s(P

′′) for any s ∈ S. Then, again by definition, any
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student other than i rejects the same set of offers while student i may reject more offers at P ′′

in the first round. As in the first round, no rejected offer at P ′ is tentatively accepted at P ′′,

hence O2
s(P

′) ⊆ O2
s(P

′′) for any s ∈ S. The same arguments above applies to the second stage

offers and so on. At the end of the ψ at problem P ′′, no student fails to receive an offer he gets

at P ′. This shows that ψj(P
′′)Rjψj(P

′) for any student j ∈ N . Hence, by the definition of P ′′,

we have ψi(P
′′) = ψi(P

′) = a.

We now claim that ψj(P
′′) = ψj(P

′) for any j ∈ I \ {i} as well. Assume for a contradiction

that for some student j ∈ I \{i}, ψj(P
′′)Pjψj(P

′). From above, we know that O1
s(P

′) = O1
s(P

′′)

for any s ∈ S. If student i rejects the same set of offers in the first round, then we would have

O2
s(P

′) = O2
s(P

′′) for any s ∈ S as well (note that the preferences of the other students are

the same). Similarly, if he rejects the same set of offers in the second stage, then we would

have O3
s(P

′) = O3
s(P

′′) for any s ∈ S and so on and so forth. In this case, the outcomes would

have been the same. Therefore, our supposition implies that there exists some stage at which

student i rejects an offer at P ′′, yet he does not reject it at P ′. Moreover, he does not reject

it at any later stage at P ′ as well, because if he were to reject, then that school would make

offer to the next priority students and so on; thereby nothing would change in the working of

ψ. This, however, contradicts ψi(P
′′) = ψi(P

′) = a.

Lemma 1 shows that ψ(P ′′) = ψ(P ′). It is now enough to show that ψj(P
′′)Rjψj(P ) for

each student j ∈ I. We already have ψi(P
′′)Riψi(P ). By the definition of P ′′ and by the same

arguments as above, we have Ok
s (P ) ⊆ Ok

s (P
′′) for every step k and every school s ∈ S. This

easily shows that ψj(P
′′)Rjψj(P ), which completes the proof.

Proof. [Proof of Theorem 2] We first show that the sDA satisfies non-bossiness and inde-

pendence of irrelevant student.

Non-bossiness: Suppose the sDA is bossy. By Proposition 1, the sDA is weakly harmfully

manipulable and therefore it is not harmless. However this contradicts with Theorem 1. Hence,
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the sDA is non-bossy.

Independence of irrelevant student: Since in any problem the sDA selects an individu-

ally rational matching, one can alternatively define the sDA in which each school s ∈ S does not

offer to the students considering s unacceptable. Under this definition, removal of the irrelevant

student does not affect the matching selected by the sDA. Hence, the sDA is independent of

irrelevant student.

Uniqueness: Next we show that there does not exist another mechanism satisfying these

three axioms. On the contrary, let φ be a mechanism satisfying all the desired properties and it

selects a different outcome than school optimal stable matching in problem (I,�, P ). Denote the

school optimal stable matching in problem (I,�, P ) and φ(I,�, P ) with µ and ν, respectively.

Since ν 6= µ, both µ and ν are stable and the fact that any other stable matching is weakly

preferred to µ by all students, ν(i)Riµ(i) for all i ∈ I and ν(j)Pjµ(j) for some student j ∈ I.

Moreover, due to rural hospital theorem, there exists at least two distinct students j1 and j2

strictly preferring ν to µ. Let µ(j1) = s and ν(j1) = s̃. Due to stability, |µ−1(s̃)| = qs̃ and

k �s̃ j1 for all k ∈ µ−1(s̃). That is, there exist at least qs̃ students in I with higher priority than

j1 for school s̃ according to �s̃.

Now we add a student ī to problem (I,�, P ) and construct a new problem (Ī , �̄, P̄ ) such

that

• Ī = I ∪ {̄i},

• P̄ī : ∅P̄īs for all s ∈ S and P̄i = Pi for all i ∈ I,

• i �s j ⇐⇒ i�̄sj for all i, j ∈ I and s ∈ S,

• i�̄sī for all i ∈ I and s ∈ S \ {s̃},

• i �s̃ j1 ⇐⇒ i�̄s̃ī for all i ∈ I.
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Due to independence of irrelevant student, φi(Ī , �̄, P̄ ) = ν(i) for all students in i ∈ I. Let µ̄ be

a matching such that µ̄(i) = µ(i) for all i ∈ I and µ̄(̄i) = ∅. One can easily verify that µ̄ is the

school optimal stable matching in problem (Ī , �̄, P̄ ).

Consider preference profile P̂ī : s̃P̂ī∅P̂īs for all s ∈ S \ s̃. In problem (Ī , �̄, (P̂ī, P̄−ī)) µ̄ will be

the outcome of the sDA (j1 does not get offer from s̃ in problem (I,�, P ) and therefore ī does

not get offer from s̃ in problem (Ī , �̄, (P̂ī, P̄−ī))) hence it is the school optimal stable matching

of problem (Ī , �̄, (P̂ī, P̄−ī)). Due to rural hospital theorem, the set of students assigned to a

school in any stable in problem (Ī , �̄, (P̂ī, P̄−ī))) and (I,�, P ) and (Ī , �̄, P̄ ) is the same and each

school fills the same number of seats under any stable matching of these three problems. That

is, φī(Ī , �̄, (P̂ī, P̄−ī)) = ∅. Due to stability, φj1(Ī , �̄, (P̂ī, P̄−ī)) 6= s̃. Otherwise, priority of ī at s̃

would be violated. Hence, φ(Ī , �̄, (P̂ī, P̄−ī)) 6= φ(Ī , �̄, P̄ ). Since φ(Ī , �̄, (P̂ī, P̄−ī)) 6= φ(Ī , �̄, P̄ )

and φī(Ī , �̄, (P̂ī, P̄−ī)) = φī(Ī , �̄, P̄ ) = ∅, φ cannot be non-bossy.

Proof. [Proof of Theorem 3] Before moving to proof, we introduce some notation and

definition. For a student i with preferences Pi, we write Rank(i, s|Pi) for the ranking of school

s at student i’s preferences Pi. That is, Rank(i, s|Pi) = ` means that school s is the top `th

choice of student i having Pi. Let us next define r(i, s|Pi) = dRank(i, s|Pi)/ee. In the course of

the proof, r(i, s|Pi) will give us the round in which student i applies to school s in the course of

Φe given that he is rejected from all of his better schools.

From Chen and Kesten (2015), we know that for any e, Φe is non-strategy-proof. Hence,

let us assume that some student has a profitable deviation at problem P under Φe. That is,

there exists a student i1 with false preferences P ′
i1
such that Φe(P ′

i1
, P−i1)Pi1Φ

e(P ). For ease of

notation, let P ′ = (P ′
i1
, P−i1) and a1 = Φe

i1
(P ) and a2 = Φe

i1
(P ′).

As a2Pi1a1, school a2 has no excess capacity at Φe(P ). By the definition of Φe, for any

j ∈ Φe
a2
(P ), either r(j, a2|Pj) < r(i1, a2|Pi1) or r(j, a2|Pj) = r(i1, a2|Pi1) and j �a2 i1. In words,

any student who is matched with school a2 at Φ
e(P ) either applies to school a2 in a round before
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student i1 does or they apply in the same round while he has higher priority than student i1 at

school a2.

Student i1 being assigned to school a2 at Φe(P ′) implies that some student i2 ∈ Φe
a2
(P ) is

placed at some other school, say a3. If a2Pi2a3, then we are done as it means that student i3 is

harmed by student i1’s misreporting. Hence, let us assume that a3Pi2a2. That is, student i2 is

better off at Φe(P ′). By the same reasoning as above, it means that there exists some student

i3 ∈ Φe
a3
(P ) placed at some other school, say a4, at Φe(P ′). If a3Pi3a4, then we are done as

student i3 is getting worse off at P ′. On the other hand, if the converse is the case, then it gives

us another student-school pair as the same as before. By continuing in the same manner, if we

eventually come up with a student being worse off at P ′, then we are done. Therefore, let us

assume that any student we consider throughout this process becomes better off. We depict it

with the following diagram:

i1 → a2 → i2 → a3 → i3 → a4

Above, students are pointing to their more preferred assignments at Φe(P ′); and schools are

pointing the students who are matched with them at P , yet not at P ′. As everything is finite,

continuing in the same manner as above would give us a cycle, implying that student i1 belongs

to a cycle of the following form:

i1 → a2 → i2.....in−1 → an → i1.

That is, there exist distinct students i1, .., in−1 and schools an = a1, a2, ...an−1 such that

(i) ak+1Pikak for any k ∈ {1, .., n− 1} and

(ii) Φe
ik
(P ) = ak for any k ∈ {1, .., n− 1}.

Claim 1 For any k ∈ {1, .., n− 1}, r(ik, ak|Pik) = r(ik, ak+1|Pik) = r(ik+1, ak+1|Pik+1
). That is,

all students in the above cycles apply to their respective schools within the same round in the

course of Φe(P ).
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Proof. [Proof of Claim 1]By construction, we have ak+1Pikak and Φe
ik
(P ) = ak for any k ∈

{1, ..., n−1}. This along with the definition of Φe implies that r(ik, ak+1|Pik) ≥ r(ik+1, ak+1|Pik+1
)

(where in = i1). Let us suppose that it holds strictly for some k′. That is, r(ik′ , ak′+1|Pik′
) >

r(ik′+1, ak′+1|Pik′+1
). If we apply the above inequality for every pair in the cycle, we end up

with r(ik′−1, ak′−1|Pik′−1
) < r(ik′ , ak′+1|Pik′+1

). This is turn implies that r(ik′−1, ak′ |Pik′−1
) <

r(ik′ , ak′|Pik′
), contradicting the definition of Φe. If we apply the fact r(ik, ak+1|Pik) = r(ik+1, ak+1|Pik+1

)

to every student-school pair appearing in the cycle, we prove the claim.

We therefore show that every student ik in the above cycle applies to schools ak and ak+1

in the same round in the course of Φe(P ). By definition, within each round of Φe, the usual

agent proposing DA is used. The above improvement cycle, hence, implies that there exists

some student (out of the above cycle), say j, causing rejection cycle at P in the round in which

the above students apply to their respective schools. On the other hand, as this rejection cycle

does not occur at P ′, it means that r(j, a2|Pj) = r(i1, a2|Pi1) and j �a2 i1 (student i1 prevents

this cycle from occurring by misreporting) and r(i1, a2|P ′
i ) < r(j, a2|Pj).

At false preference profile P ′, student i1 applies to school a2 in round r(i1, a2|P ′
i1
) and is

placed at a2. On the other hand, student i1 and j apply to it in a later round at P , given

by r(i1, a2|Pi1). This implies that school a2 does not exhaust its capacity by the end of round

r(i1, a2|Pi1)−1 in the course of Φe(P ). This, however, gives us another manipulative misreport-

ing by student j. Namely, student j can misreport his preferences by announcing: P ′′
j : a2, ∅ (as

r(j, a2|Pj) > 1, we infer that P ′′
j 6= Pj) and can be matched with school a2 at P ′′ = (P ′′

j , P−j)

(note that all the students belonging the above cycle apply to their respective schools in some

round t ≥ 2).

Above shows that Φe is manipulable by student j at problem P and Φe
j(P

′′) = a2PjΦ
e(P ).

We now repeat the very first analysis above for student j. That is, student j being matched

with school a2 at P
′′ implies that some other student, say k ∈ Φe

a2
(P ), is assigned to a different

school. If that student is worse off, then we are done. If not, then we continue in the same
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manner as before. If we end up with a student who is worse off at P ′′, then we are done.

Otherwise, we can create a cycle as above including student j and conclude that some student

causes a rejection cycle causing student j to be rejected by school a2 at P . This, however, is

impossible as student j himself initiates a rejection cycle at P by applying to school a2, which

brings him anything while causing the students in the cycle above to be worse off.

Proof. [Proof of Proposition 4] We prove by comparing two extreme members of the class:

the BM and the aDA. Consider a problem instance consisting of I = {i1, i2, i3} and S =

{a, b, c}, each with unit capacity. Let the preference and priority order profiles be as follows:

Pi1 : a, c, b, ∅; Pi2 : a, b, c, ∅; Pi3 : c, a, b, ∅.

�a: i3, i1, i2; �b: i2, i3, i1; �c: i1, i2, i3.

Under the BM , BMi1(P ) = a, BMi2(P ) = b, BMi3(P ) = c. It is easy to see that at

P , the BM is neither profitably manipulable (that is, no student receives better school by

misreporting) nor bossy. Let us consider the aDA (that is, e = ∞). DA(P ) = BM(P ) at P ,

however, student i2 can manipulate DA mechanism under problem P . Consider P ′
i2
: c, b, a, ∅.

Then, DAi1(P
′
i2
, P−i2) = c, DAi2(P

′
i2
, P−i2) = b, and DAi3(P

′
i2
, P−i2) = a.

For the converse, consider the following profiles:

P̃i1 : a, c, b, ∅; P̃i2 : a, c, b, ∅; P̃i3 : a, ∅.

�a: i3, i1, i2; �b: i2, i3, i1; �c: i1, i2, i3.

In problem P̃ , BMi1(P̃ ) = c, BMi2(P̃ ) = b, BMi3(P̃ ) = a. Student i2 can strategize by

reporting school c as his top choice. In this case, he would receive school c, while student i1

would be matched with school b and become worse off. However, in problem P̃ , it is easy to

verify that the aDA is non-manipulable.
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Proof. [Proof of Proposition 7] Let P ′
i ∈ Bi(P−i) and P

∗ = (P ′
i , P−i). Let Oi(P ) be the set

of schools offering to student i at P (in the course of sDA) and sDAi(P ) = s. As student i does

not lose at P ∗, that is, sDAi(P
∗)PisDAi(P ), it implies that at P ∗, student i is not matched with

any school in Oi(P ) \ {c}. This along with everything else (except the preferences of student i)

being the same at both P and P ∗ implies that any school c′ ∈ Oi(P ) continues to propose to

student i at P ∗ as well and he rejects any school c′ ∈ Oi(P ) \ {s}.

Above shows that we can without loss of generality assume that for any school s′ ∈ Oi(P ) \

{s}, ∅P ′
is

′. We now want show that sDAj(P
′)PjsDAj(P ) where P

′ = (P ′
j)j∈I and for any j ∈ I,

P ′
j ∈ Bj(P−j) (recall that, by our supposition, sDAi(P

′
i , P−i)PisDAi(P ) for any i ∈ I).

By our above arguments, we have ∅P ′
ks

′ for any s′ ∈ Ok(P ) \ {sDAk(P )} for k ∈ I. As

schools propose to students in decreasing order of their priorities in the course of sDA and

schools that are rejected at P are to be rejected at P ′ as well, every student k receives an offer

from sDAk(P ) (the steps of sDA leading school sDAk(P ) to offer to student k will be the same

at both P and P ′). Hence, the result follows.
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