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Abstract 

Doping of ferroics is often intended to generate new functionalities or enhance the already 

existing properties but it comes at the expense of local structural distortions around dopants 

in the lattice. We have reported on the effect of A-site doping and their effect on the phase 

transition temperatures of sol-gel synthesized Bi1-xAxFeO3 (A: Gd, Sm, La) powders as a 

function of dopant type and concentration. A clear direct correlation between structural 

parameters and transition temperatures was noted as a function of ionic radii of dopants for 

any given concentration, implying the effect of inhomogeneous lattice strains around 

dopants. There is a dramatic reduction in the phase transition temperatures of BiFeO3 upon 

doping determined with differential thermal analyses. This is accompanied by a partial 

volume of the grains gradually shifting from the bulk rhombohedral towards a higher 

symmetry one evidenced by X-ray diffraction and Raman Spectroscopy for Sm and Gd 

doped powders while this effect is minimal in La doped powders. We find that a phase 

mixture forms in powders whose fraction is a strong function of dopant radius for a given 

concentration. Moreover, there is a direct correlation between the ionic radius and the 

extent of reduction in the transition temperature of the polar phase in the mixture for a 

given dopant concentration. We suggest a mechanism to explain the inhomogeneous nature 

of the transition of the sol-gel synthesized powders where the dramatic reduction in the 

transition temperatures of Sm and Gd doped BiFeO3 is due to local lattice strains around 

unit cells containing dopant ions that create gradients in polarization leading to internal 

depolarizing fields, possibly stabilizing non-polar phases. We conclude that local 

disappearance of stereochemical activity of Bi+3 due to lone pairs is not sufficient to 

explain dramatic changes in phase transition temperatures because of strong dependence on 

ionic radii of dopants.  
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Özet 

Ferroik malzemeler çoğu zaman yeni işlevselliklerin kazanımı veya mevcut 

özelliklerin iyileştirilmesi amacı ile katkılandırılırlar ancak bunun sonucunda latiste 

katkı elementlerinin etrafında bölgesel deformasyonlar oluşması kaçınılmazdır. Bu 

tezde A-konumu katkılandırmasının so l-jel metodu ile sentezlenmiş Bi1-xAxFeO3 (A: 

Gd, Sm, La) tozlarının faz geçiş sıcaklıklarına etkisini katkı elementi türü ve miktarına 

göre değişimini rapor etmekteyiz. Belirli bir katkı oranı için yapı ve geçiş sıcaklıkları 

arasındaki ilişkinin katkı elementinin iyon yarıçapına net şekilde bağlı olduğunu ortaya 

koymanın yanısıra elde edilen bulgular katkı iyonları etrafında homojen olmayan latis 

deformasyonlarının güçlü etkisini ortaya koymuştur. Katkılandırma sonucu BiFeO3 

tozlarının geçiş sıcaklığını azalmakta olduğu diferensiyel termal analiz ile tespit 

edilmiştir ve bu azalma küçük katkı iyonlarının varlığında daha şiddetli olmaktadır. Bu 

davranışın, Sm ve Gd ile katkılandırılmış tozlarda yapılan XRD ve Raman 

spektrometresi analizlerinden de anlaşıldığı üzere, tozlardaki bazı tanelerin hacimsel 

rombohedralden daha yüksek simetriye sahip yapılara geçiş ile eşzamanlı olduğu 

gözlemlenmiş, La katkılı tozlarda ise minimal seviyede olduğu dikkati çekmiştir. 

Sonuçlar katkılı tozlarda miktarı güçlü şekilde katkı iyon yarıçapına bağlı faz 

karışımları oluştuğuna işaret etmektedir. Bunun dışında katkı iyon yarıçapı ile faz 

karışımının geçiş sıcaklığındaki düşüş şiddeti arasında da doğrudan bir bağıntı 

gözlemlenmiştir. Çalışmadaki sol-jel tozlarının homojen olmayan faz geçişi 

davranışını açıklamak için özellikle Sm ve Gd katkılı BiFeO3 tozlarda katkı iyonlarının 

etrafında oluşan yapısal deformasyonun yol açtığı kutuplaşma farklılıkları ve buna 

bağlı oluşan iç elektrik alanların etkisini temel alan bir mekanizma öne sürülmüştür. 

Sonuç olarak faz geçiş sıcaklığının güçlü ve net şekilde katkı iyon yarıçapına bağlı 

olması, katkı sonucu kaybolmaya yüz tutan Bi+3’teki stereokimyasal aktivitenin 

gözlemlenen dramatik değişimleri açıklamak için yetersiz olduğunu da göstermektedir. 
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Chapter 1. INTRODUCTION 

1.1  Introduction 

 

Multiferroic materials have been on the agenda of many research groups owing to the 

coexistence of spontaneous electric and magnetic dipoles, namely ferroelectric and 

magnetic ordering. Many of these compounds actually exhibit improper ferroelectricity as 

the occurrence of permanent dipoles in these materials is a result of spiral or helical spin 

structure favoring angled oxygen-cation bonds at low temperatures giving rise to local 

charge separation that forms the basis of weak but finite amplitude electric dipoles. Such a 

mechanism of ferroelectricity occurs mostly at temperatures much lower than room 

temperature (RT) for these materials. BiFeO3 (BFO), as a proper ferroelectric displaying a 

first order structural transition, has probably been the most interesting compound in this 

regard because of its very high paraelectric-ferroelectric transition temperature (around 

820°C) and Neel point (around 380°C). Such characteristics have allowed proposal of 

device designs with new functionalities, in particular following the studies claiming that 

the magnetic ordering and the ferroelectric state are intimately coupled and that domain 

manipulation both via electric and magnetic fields is possible in thin films. Moreover, 

reports exist claiming about 10 times increase in the remnant polarization in epitaxial BFO 

films at RT compared to their bulk counterparts. Despite the continued interest in growth 

and characterization of BFO thin films, structural and electrical properties of BFO in bulk 

form have been systematically studied by a few groups. Recent works have mostly focused 

on the effect of synthesis on morphology and RT phase stability in the presence of dopants 

in addition to effects of these dopants on polarization and magnetic structures and, very 

importantly, leakage currents. Many of the hysteresis loops in the works cited above have 

tendencies to fatten, a major sign of leakage. Leakage has been a foremost problem in BFO 

films and powders. While domain walls have been held responsible for leakage many of 

the above citations attribute leakage to the volatility of the Bi+3 ions that, when these sites 

are vacant, they act as p-type centers, accepting electrons from the valence band and 

causing p-type conduction both in films and bulk form. Bi+3 ion vacancies have also been 
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held responsible for oxygen vacancy formation to sustain local electrostatic neutrality, 

which can again result in increased conductivity. Owing to the fact that a few A-site 

compatible ions such as La, Sm, Gd, Pr and Nd have significantly higher bond enthalpies 

with oxygen than the Bi-O bond, they are often added to BFO in order to minimize carrier 

donating/trapping vacant sites via stabilizing the oxygen in the lattice in addition to 

rendering a more “useful” magnetic structure for potential applications especially in the 

case of Gd and Sm. From the point of view of leakage, compensation of vacancy generated 

carriers via doping can lead to a more “intrinsic” BFO with relatively less free carrier 

densities. Rare earth elements compatible with Bi+3 ions in radius that can substitute the 

A-sites stabilize Bi and oxygen along with reduction of the concentration of p-type centers 

accompanied by a shift of the Fermi level towards the middle of the band gap, which is one 

way to reduce and control the leakage currents as shown in our recent work. Apparent 

polarization enhancement has also been attributed to the reduced leakage via La 

substitution to Bi sites, reducing the available Fe 3d states that would otherwise drive a 

hopping-type conduction mechanism.  A-site doping has also shown that the formation of 

secondary conducting phases can be prevented, likely upon stabilization of oxygen via 

higher bond enthalpy of dopants helping to sustain the equilibrium stoichiometry. On the 

other hand it is well understood that doping the BFO with A-site substitutes should be 

expected to change the transition temperatures and impact the ferroelectric properties at RT 

as with any other polar oxide. However, we came across only a few articles that analyze the 

effect of various dopants on phase transition temperatures and characteristics. There have 

been numerous reports on the ferroelectric and magnetic properties of BFO mostly at RT as 

a function of dopant type and concentration only some of which we can cite here. A 

significant number of these studies are dedicated to thin films  where misfit strains induced 

by the substrate are expected to screen structural impact of dopants and make the study of 

their effect alone rather difficult. Moreover, that the film structure tries to cope with the 

misfit strains via several elastic variants of “strain stabilized” crystalline structures carry 

the discussion on dopant effects to an entirely different setting. Generally speaking, that the 

ferroelectric properties can diminish with dopants is often discussed envisioning unitcells 

shifting to higher symmetry upon doping. Dopant effects in BFO have almost always 

considered from the point of view of the local stereochemistry of bonding of bismuth with 
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oxygen however this mechanism solely on its own cannot explain the significant reduction 

in the phase transition temperatures that strongly depend on ionic radius mismatch with 

Bi+3 and additional mechanisms at a more global scale need to be considered. Dopants 

also create extended inhomogeneous strain fields in the lattice. Strain effects in BFO are 

quite well understood in thin film studies where the stabilized phases can be identified for a 

given misfit with the substrate and a similar approach can be employed to evaluate dopant 

effects in powders. With this in mind, we carried out a structural study to probe the effect 

of RE A-site dopant radius on the structure of BiFeO3 combined with a DTA analysis to 

determine the Curie point of this material and propose a mechanism to qualitatively but 

consistently explain the the dopant radius sensitivity of BFO. Here, we report on the 

structural changes of sol-gel prepared high quality BFO powders upon doping with La, Sm 

and Gd respectively. These dopants have a range of ionic radius misfit with Bi with La 

being the closest to Bi and Gd having the largest misfit. XRD studies along with Rietveld 

refinement is carried out followed by Differential Thermal Analysis (DTA) and Micro 

Raman Spectroscopy. Scanning Electron Microscopy was carried out to characterize the 

grains size and morphologies of our powders with the intention of understanding whether 

we might be encountering size effects in doped powders, i. e. disappearance of the 

ferroelectric state due to small grain size. One way to check this is to carry out hystereses 

measurements on compacted powder samples. Noting that bulk BFO in powder form, 

despite its very high Curie temperature, has a small remnant polarization (around 3 

μC/cm2) compared to materials like BaTiO3 or PZT, moderate amounts of leakage in the 

presence dopants can easily overwhelm the displacement currents emanating from dipole 

switching during hysteresis measurements, rendering detection of ferroelectricity nearly 

impossible.  To probe the existence of the polar phase in our powders, we chose to conduct 

Raman spectroscopy as we failed to obtain any reasonable hysteresis or butterfly-type 

capacitance-voltage curves due to unacceptable amounts of leakage in our samples. We 

found a direct correlation between the changes in structural characteristics of BFO upon 

doping with the reduction in Curie temperatures as a strong function of dopant radius. 

Finally we propose a mechanism to qualitatively but consistently address the complicated 

and dopant radius dependent behavior of the phase transitions we observe in DTA 

experiments based on the magnitude of the lattice strain the dopants induce. 
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1.2 Ferroelectricity 

 

Ferroelectric materials can be considered as dielectrics which have a switchable 

spontaneous electric polarization      in absence of an external electric field. The direction 

of the polarization can be switched by an oppositely aligned external electric field larger 

than the coercive field     . One classic signature of ferroelectricity is the polarization-

electric field hysteresis loop. In linear dielectric materials the polarization is proportional to 

the applied field, but for ferroelectric materials the polarization has an additional hysteretic 

component. This non-linear behavior of polarization (P) as a function of electric field is 

shown in Figure 1-1. The ferroelectric polarization and coercive fields can be determined 

from a hysteresis loop. Polarization will saturate at sufficiently large fields, and a remnant 

polarization     , or spontaneous polarization, prevails in zero electric field. Ferroelectric 

materials undergo a structural phase transition from a paraelectric phase to a ferroelectric 

phase upon cooling through the Curie temperature     .  

 

 

Figure 1-1. Hysteresis loops characteristic for the ferroic properties of ferroelectricity 

 

The dielectric constant  which is a measure of the polarisability of the material is large in 

ferroelectric materials, and diverges at the Curie temperature, when the polarization is most 

susceptible to applied electric fields. The symmetry of the crystallographic point groups 

imposes restrictions on the possibility of ferroelectricity in a crystal. There are 32 

crystallographic point groups out of which 21 are non-centrosymmetric. Twenty of these 
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21 point groups exhibit piezoelectricity in which mechanical stress can induce polarization, 

and vice versa: an electric field can induce strain. Piezoelectricity is a strong, linear 

coupling between electric polarization and mechanical stress, opposed to the weak, 

quadratic electrostriction effect found in all dielectric materials. Ten of the twenty non-

centrosymmetric point groups possess one unique polar axis and hence exhibit 

pyroelectricity in which a change of temperature will induce a change of polarization. All 

pyroelectric materials are also piezoelectric, but piezoelectric materials without one unique 

polar axis are not pyroelectric. All ferroelectric materials are pyroelectric, but not all 

pyroelectrics are ferroelectric. The unique characteristic is whether the spontaneous 

polarization can be switched by an external field or not, a feature which must be tested 

experimentally as it cannot be predicted a priori from symmetry considerations. 

 

Depending on the origin of the polarization, we can classify Ferroelectric materials into 

proper or improper, and the difference lies in the mechanism by which (the primary order 

parameter) ferroelectricity occurs. For instance, BiFeO3 is a proper ferroelectric because 

the origin of the ferroelectric behavior is ionic displacements owing to a structural 

transition. Many other magnetoelectric materials, on the other hand such as YMnO3 are 

improper ferroelectrics because the permanent dipoles arise as a result of a cycloidal spin 

ordering that favors of slight shifts of oxygen-Mn bonds leading to asymmetric charge 

distribution, hence dipoles.  Above   , the crystal has a centrosymmetric structure and has 

no spontaneous polarization. Below   , the crystal exhibits ferroelectricity and has a 

structure resulting from a change in the symmetry of the unit cell. As a perovskite 

ferroelectric is cooled below   , the central ion in the unit cell displaces from its 

equilibrium position to create a spontaneous polarization. In displacive ferroelectrics the 

spontaneous  polarization arises from displacements  of cations  with respect  to the  anion  

sublattice, creating electric dipoles which are aligned in one direction, breaking the 

inversion symmetry. In contrast with conventional displacive ferroelectrics, also known as 

proper ferroelectrics, polarization in improper ferroelectrics is not the primary order 

parameter. In improper ferroelectrics polarization results as a secondary effect from a 

lattice distortion, e.g. in magnetic spin spiral induced ferroelectrics. Polarization can also 

arise from ordering of the orientation of anion groups, charge ordering (electronic 



6 

 

ferroelectrics) [1], orbital ordering [2],  cooperative tilting of polyhedra (geometric 

ferroelectrics) [3],  or layered ordering in asymmetric super lattices [4]. Long range 

Coulombic forces are responsible for the alignment of electric dipoles in one direction in  

 

 

displacive ferroelectrics, while short range Coulombic forces (e.g. ionic bonds) support 

centrosymmetry; ferroelectricity thus requires long-range forces to dominate over short 

range forces. Partial covalent bonding is the common mechanism for stabilizing 

ferroelectric dipoles by off-centering of cations relative to the anion sublattice. We have 

three principal types of perovskite oxides based on cation valence distribution; I-V, II-IV 

and III-III perovskites. The simple, cubic perovskite structure is shown in Figure 1-2. the 

larger A cation resides in a 12-coordinated dodecahedron, while the smaller B cation is 

octahedrally coordinated. In the prototype ferroelectrics BaTiO3 and PbTiO3 the 

centrosymmetric, high temperature cubic structure transforms to a tetragonal, polar 

structure below the Curie temperatures of 123° and 490°C, respectively. The cation is 

displaced towards an apical oxygen along the long c-axis of the tetragonal unit cell, 

breaking inversion symmetry and providing electric dipoles along the [001] direction. 

Partial covalent bonding between empty d orbitals of        and O 2p orbitals stabilizes the 

Figure  1-2. Unit cells of paraelectric cubic (a) and ferroelectric tetragonal perovskite with 

polarisation up (b) and down (c). A cations(orange), B cations(green) and oxygen anions 

(Blue) are situated in the corners, centres and faces of the unit cells, respectively. 
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off-centering atom relative to the inversion symmetry centre of the TiO6 octahedron, as 

shown by first principles calculations and verified experimentally [5]. The substantially 

higher   , tetragonality (unit cell distortion c/a) and spontaneous polarization of BaTiO3 

and PbTiO3 shows the importance of the 6s2 lone pair of     , as it takes part in partial 

covalent bonding with O 2p orbitals. Partial covalent bonding between O 2p and 4d orbitals 

of      have also been identified in KNbO3 [6], thus partial covalent  bonding is not 

restricted to the titanate perovskites. In general, the extent of covalency between A and O 

sites in ferroelectric crystals is understood to impact the Curie temperature and polar 

stability.  

 

1.3 Multifunctional materials 

 

Multifunctional materials are in demand for new generation technologies and prime 

candidates for high-density computer memory concepts, as well as for sensors and 

spintronics devices. In the development toward device miniaturization and high-density 

data storage system, it becomes highly desirable to integrate multifunction in a single 

material. They combine two or more of the ferroic properties ferromagnetism, 

ferroelectricity (chapter 1-5) and ferroelasticity. Perovskite materials have generated much 

interest in recent years. They are compatible with Si and SiO2, the two materials the 

information technology industry is based on, and thus one of the most promising classes of 

materials for technological applications, particularly due to their magnetic and electric 

properties. More interesting is that these ferroelectric and antiferromagnetic properties are 

present at room temperature [7]. Such materials seem to be promising candidates for 

spintronics and magnetoelectronics. BiFeO3 (BFO) is one such material that has received 

much attention and it is perhaps the only material that is both magnetic and a strong 

ferroelectric at room temperature, in the same phase and spontaneously.  One of the most 

important requirements for magnetoelectric multiferroics predicted by P.Curie [8] on the 

basis of symmetry considerations. The primary conditions for ferroelectricity are the non-

centrosymmetric structure, which allows the dipole formation and spontaneous 

polarization. There are 31 (out of 122) Shubnikov Heesch point groups that allow 
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spontaneous electric polarization and 31 that allow spontaneous magnetization. There is 

only 13 Shubnikov points, which allow both spontaneous magnetization and spontaneous 

electric polarization in same phase. The symmetry considerations itself restrict the number 

of multiferroics. We can divide magnetoelectric multiferroics into two types. First type of 

multiferroics contains those perovskites in which ferroelectricity and ferromagnetism have 

different origins (cations at A-site and B-site respectively). These materials show weak 

magnetoelectric coupling. In these materials, ferroelectricity typically appears at higher 

temperatures than magnetism and they exhibit large spontaneous polarization just like 

BiFeO3. These materials have been extensively studied since 1960’s. However, major 

challenge in these materials is to enhance the values of magnetoelectric coupling 

coefficient. These multiferroics are further classified in many subclasses on the basis of 

origin of ferroelectricity which are: I) Ferroelectricity due to shifting of B-cation, II) 

Ferroelectricity due to lone pairs, III) Ferroelectricity due to charge ordering and IV) 

Geometric ferroelectricity. Most of Bismuth (Bi) and Lead (Pb) based perovskites show 

ferroelectricity due to lone pair, for example BiFeO3, BiMnO3, and PbVO3. In these 

materials       and      have two outer 6s electrons that do not participate in chemical 

bonds. These electrons are called “lone pairs” or sometimes dangling bonds. 

Microscopically, one can explain the origin of ferroelectricity in these compounds by the 

ordering of these lone pairs (with certain admixture of p-orbitals) in the direction of electric 

field. The magnetism in these materials is originated from B-cation.  The second type is 

Magnetic Multiferroics in which the ferroelectricity is originated from magnetism and 

implies strong magnetoelectric coupling. 

 

1.4 Cubic oxide perovskite materials 

 

The cubic perovskite structure has the general stoichiometry     . The traditional view of 

the cubic perovskite oxide lattice is that it consists of small B cations within oxygen 

octahedra, and larger A cations which are XII fold coordinated by oxygen. For the some 

oxides like        or        with          perovskites structure, the most symmetric 

structure observed is rhombohedral R3c which involves a rotation of the BO6 octahedra 
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with respect to the cubic structure However, this distortion from the perfect cubic 

symmetry is slight. The structure of an ideal cubic perovskite is shown in Figure 1-1, where 

the A cations are shown at the corners of the cube, and the B cation in the centre with 

oxygen ions in the face-centred positions. The space group for cubic perovskites is Pm3m.  

Literature suggests that many of the materials exhibit the orthorhombic Pnma (or Pbnm) 

distorted structure at room temperature. A further distortion is also possible resulting in a 

rhombohedral structure with the space group R3c. The rhombohedral structure is shown in 

Figure 1-4. However, with decreasing A cation size, a point will be reached where the 

cations will be too small to remain in contact with the anions in the cubic structure. 

Therefore the B-O-B links bend slightly, tilting the BO6 octahedra to bring some anions 

into contact with the A cations.  To allow for this distortion, a constant, t, is introduced into 

the equation 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

` 

Figure 1-3 Cubic perovskite unit cell. Blue spheres represent the A cations, yellow 

spheres represent the B cations, and red spheres represent oxygen anions forming an 

octahedra. 

Figure 1-4 R3C rhombohedral perovskite unit 
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The constant, t, is known as the tolerance factor and can be used as a measure of the degree 

of distortion of a cubic perovskite structure from ideal cubic (Figure 1-5). Therefore, the 

closer to cubic, the closer the value of the tolerance factor is to unity. All perovskite 

distortions that maintain the A and B site oxygen coordinations involve the tilting of the 

BO6 octahedra and an associated displacement of the A cation. For the orthorhombic 

structure, these octahedra tilt about the b and c axis, while in the rhombohedral structure 

the octahedra tilt about each axis. This octahedral tilting is related to the sizes of the A and 

B cations (as described by the tolerance factor). 

 

       √                                    (1-1) 

 

Perovskite materials are fascinating because they display a wide variety of fundamental 

properties, from magnetism to ferroelectricity, from colossal magneto-resistance to half-

metallicity [9]. These materials are used in a number of important technological 

applications such as electromagnets, sensors and optical storage devices. In recent years 

multi-ferroic materials have attracted significant interest as they exhibit ferroelectric and 

ferromagnetic properties. In particular, after the discovery of large electric and magnetic 

polarization effects in thin BFO films [7], much attention has been devoted to the 

properties of BiFeO3. ABO3 oxide perovskites which are rhombohedral at low 

temperatures, such as               ,        or        have ferroelastic instabilities at 

Figure 1-5. Perovskite distortion from (left) cubic to (right) orthorhombic 
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the A-ion site that induce displacive phase transitions directly to cubic, but those which 

have B-site instabilities instead have order-disorder transitions to cubic that involve two or 

more steps. The quest to understand room temperature ferroelectricity of BFO has led to an 

advent of research in this area [10] and its possible applications. More interestingly is the 

possible existence of both electronic and magnetic properties in such a material, with 

miniaturization opening the possibility of combining [11] both these properties into a 

multi-functional material to produce a single device component to perform one task. Such 

materials are rare in nature as the conditions of being simultaneously ferroelectric 

(materials with a spontaneous electric polarization that can be switched on by an applied 

electric field) and ferromagnetic (empty and partially filled transition metal orbits) cannot 

exist at the same time [12]. 
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1.5 Bismuth Ferrite 

 

Bismuth ferrite also commonly referred to as BFO is an inorganic chemical compound with 

a perovskite-type structure. The structure of bulk BiFeO3 is usually described in three 

different geometrical ways. The most accurate description is that BiFeO3 is rhombohedral 

at room temperature with the space group R3C . This is equivalent to the hexagonal setting 

often used by crystallographers, which has six formula units of BiFeO3 in the hexagonal 

cell and lattice constants of       =5.579 Å and       = 13.869 Å. Bismuth ferrite is an 

example of perovskite structure that attracts attention not only because of its ferroelectric 

properties but also because of its magnetic ordering coupled with its ferroelectric behavior. 

It shows a high temperature paraelectric-ferroelectric phase transition (Curie temperature of 

1083K, and Néel temperature of 657K) , which means that        is a stable ferroelectric 

in room temperature showing magnetic behavior in the meantime. The idea of using 

multiferroics in applications for multifunctional device components arouses interest on 

materials in which the magneto-electric property is tailored. In these materials polarization 

and magnetization can be weakly or strongly coupled [13], Due to coexistence of 

antiferromagnetism and ferroelectricity (magneto-electric effect) the net magnetization 

would be changed by applying an electric field, or the polarization increased by applying a 

magnetic field. Although the linear magneto-electric effect is theoretically forbidden by the 

symmetry of bulk BiFeO3 [14], a linear effect in BiFeO3 films has been reported [15]. It 

should be noted a certain class of materials, prominently oxides exhibit the presence of a 

magnetic structure along with ferroelectricity in the same phase [16].  

The nature of the ferroelectric transition of BiFeO3 and its paraelectric structure has thus 

not yet conclusively been identified, although cubic Pm3m, rhombohedral R3m, 

orthorhombic P2mm, and tetragonal I4/mcm and monoclinit have been suggested 

[17,18,19,20,21]. BiFeO3 exhibits spontaneous polarization along the [100] direction. 

However, a serious problem with BiFeO3 that has greatly limited its applications is that it 

has very high values of leakage current. This high amount of leakage current is mainly 

attributed to deviation from oxygen stoichiometry and high defects density [22]. There are 

charge defects present in the system such as bismuth vacancies (   ) and oxygen vacancies 

(  ). Creation of    is a result of Bi volatility and the transition from      to     . 
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Equations 1.2 and 1.3 suggests that charged defects governed by  ions, oxygen vacancies 

   and/or bismuth vacancies     may appear in both the deoxygenated BiFeO3 phases and 

deoxygenated impurity phases. These    and/or     vacancies will reduce the electrical 

resistivity of the samples, giving rise to high leakage currents in the samples [22]. In this 

situation, theoretical prediction of observing multiferroic behavior turns into high 

conductivity due to valence fluctuation between      and       ions and oxygen 

deficiency in the system. 

 

 

                        
        

        (1.2) 

                    0.5      
            (1.3) 

 

 

Below the Curie temperature, the cubic lattice will be tetragonally distorted which is a 

displacive ferroelectric phase transition. As mentioned before, bismuth ferrite exhibits a 

rhombohedral ferroelectric phase. As in Figure 1-2 local atomic arrangement in perovskite 

structure can acquire a position so that there will be some remnant polarization after 

applying sufficient electric field. In this situation unit cells contain a permanent electric 

dipole. 

 

Variety of atoms occupying A-site and B-site positions in oxide perovskites create different 

mechanisms of ferroelectricity and various levels of magnetic substructure. In BaTiO3 for 

instance, ferroelectricity occurs due to the asymmetric shift of Ti while the lone-pair Pb ion 

is dominant in PbTiO3 [23] again accompanied by Ti shifts in the unitcell. In our study 

with BiFeO3, the later one is the case where the polarization is mostly caused by the lone 

pair of     , meaning the A-site positions involvement while the magnetization comes 

from the B-site (    ). 
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1.6 Applications of BiFeO3 

 

BiFeO3 is a prime candidate for magnetoelectric memories, where bits can be written by an 

electric field, utilizing the ferroelectric polarization, and read from the associated magnetic 

field, avoiding destructive read-out of the ferroelectric state. Reading antiferromagnetic 

states is not straightforward, and an obvious solution to this is to read the magnetism of a 

ferromagnetic layer in contact with antiferromagnetic BiFeO3, exploiting the associated 

exchange bias [24]. Exchange bias offsets and/or widens the magnetic hysteresis loops, and 

exchange bias between BiFeO3 and several ferromagnetic materials has been reported. 

Voltage control of an exchange biased ferromagnetic layer has been demonstrated [25]. A 

possible Magnetoelectric Random Access Memory (MERAM) element using BiFeO3 is 

shown in Figure 1-6 . A voltage V controls the ferroelectric state of BiFeO3, and given the 

strong coupling between the antiferromagnetic plane and ferroelectric polarization, 

switching the ferroelectric polarization by 71 or 109 ° can change the antiferromagnetic 

planes, and thereby flip the direction of the lower ferromagnetic (FM, blue) layer through 

exchange bias if the coupling is strong enough. In the FM-Metal-FM trilayer the alignment 

of the FM layers can thus be controlled to be parallel or antiparallel by the ferroelectric 

state of the green BiFeO3 layer.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-6. A concept for a MERAM element utilizing BiFeO3 (green FE-AFM 

layer, ferroelectric antiferromagnet). 
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Parallel FM layers give a lower resistance across the FM-Metal-FM trilayer, corresponding 

to the binary state “0”. Oppositely, antiparallel alignment of the FM layers give a higher 

resistance, corresponding to the binary state “1”, as in conventional read-out of bits 

utilizing Giant Magnetoresistance. BiFeO3 can also be used as a tunneling barrier layer as it 

is ferroelectric down to 2 nm thickness [26]. The ferroelectric state can control the 

direction of magnetisation in adjacent ferromagnetic layers, and thus the tunneling 

magnetoresistance [27]. The direction of the polarization can also directly control the 

tunneling resistance, enabling non-destructive read-out of ferroelectric bits. 

 

As BiFeO3 is a lead-free, non-toxic ferroelectric with the highest switchable polarization 

known among perovskites, it is a primary candidate for substituting              (PZT). 

It is possible to incorporate into Si and SiO2 based circuitry, and can thus be used for 

FeRAM, which do not utilize the magnetic properties. Leakage currents must be controlled 

and minimized to utilize the ferroelectric polarization, regardless of whether the magnetism 

is active as in MERAM or “passive” as in FeRAM concepts. Chemical compatibility, 

fatigue and voltage stressing are other challenges for BiFeO3-based ferroelectric memories 

[28]. Pure BiFeO3 has a too low piezoelectric coefficient to challenge PZT, but pulsed laser 

deposition (PLD) grown films of              an exhibit a piezoelectric coefficient d33 

of > 100 pm/V at a morphotropic phase boundary, and are promising candidates for lead-

free piezoelectrics [29]. Emission of tetrahertz radiation from BiFeO3 when illuminated 

with a femtosecond laser pulse is correlated with the ferroelectric state. THz emission has 

thus the potential of being a non-destructive and very fast way of reading ferroelectric bits. 

It has the further advantage that it is insensitive to leakage currents. 

 

 

1.7 Size effect on the ferroelectric phase transition 

 

The great fascination of nanostructure materials is that their properties are different from, 

and often superior to, those of conventional materials that have phase or grain structures on 

a coarse size scale. On the other hand, phase stability is an important aspect of materials 
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with reduced spatial dimensions in the nanometer size scales. The reduction in physical 

sizes of ferroelectrics from the macroscopic down to the mesoscopic system usually gives 

rise to a change in stability of the polarization [30,31]. Experimentally it is well known that 

the physical properties can be inhibited [31] or even enhanced [30] in nano-structured 

materials, i.e., zero-dimensionality (O-D) atom clusters and cluster assemblies, or thin 

films. The polarization on the other hand usually suffers a degradation in nanosize 

ferroelectric films or clusters due to the fact that the surface usually behaves much different 

than bulk. Finite size effects and their induced abnormalities in ferroelectrics can be 

explained by four different circumstances: 

 

 Mono-domain configuration: many size effects in ferroelectrics are explained by the 

occurrence of a mono-domain configuration, which is energetically favorable in 

systems with small size. However, this effect is unrelated to a change in the structural 

instability of a polar phase as the physical dimensions or sizes are reduced. 

 

 Depolarizing field effect: Quite a number of size effects in ferroelectric systems can 

be attributed to a depolarizing field effect [32]. In a mono domain system, if the 

surface bound charges are not compensated, strong depolarizing fields can suppress 

ferroelectricity. Nevertheless, not only the depolarizing field effect seems to be much 

weaker than expected , but also it cannot explain why sometimes ferroelectric 

stability can be even enhanced in some types of thin films or nanometer-sized 

materials [30].  

 

 

 Surface effect: it is third source of strong finite size effects on polarization stability 

[30] or more generally, an interface effect. There are two main physical 

consequences of surface effects. (1) Close to the surface of a system the original 

translational invariance of the system tends to be broken as compared to the bulk 

interior. As a result, changes in the local symmetry and features of soft modes occur 

such that the polarization characteristic (dipole-dipole interactions) at the surface 

differs from that within the interior [33]. Accordingly, the total energy of the system 
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is altered by the surface effect, which is represented by a sulfate energy or a surface 

tension and is proportional to the total surface area. (2) As the physical sizes of a 

confined system reach a mesoscopic level (100 nm or less), the fraction of atoms 

located in (or near) surfaces increases substantially. They are structurally associated 

with surface or interfacial environments, thus surface effects can play a vital role in 

controlling the properties of nanostructure materials.  

 

 Defects can have a very strong influence on the physical properties of ferroelectric 

structures especially in confined geometries such as sub micron powders and thin 

films. The study of dopants effects in the current thesis is also an example to 

demonstrate the impact of “introduced” point defects via dopants to A-sites whereby 

it will be shown in the rest of the thesis that the “strength” of the defect (which, here 

means how strongly the defect distorts or alters the regular ferroelectric lattice) can 

become a prominent factor even when the defect concentration is relatively low (a 

few percent).  
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Chapter 2. EXPERIMENTAL  

 

 

 

2.1 BiFeO3 Synthesis 

 

In order to synthesis the BiFeO3, several techniques have been used to overcome its 

leakage problem. Solid-state reaction [34], co-precipitation method [35] and soft chemical 

route [36] are some methods that have been used to synthesis BiFeO3 with minimum 

leakage current. On the other hand, it is crucial to introduce a well-defined fabrication 

procedure of synthesizing pure single phase BiFeO3. Bismuth ferrite is very prone to show 

parasitic phases that tend to nucleate at grain boundaries and impurities [37] and as it is 

shown in compositional phase diagram of BiFeO3 (Figure 2-1) [19] According to the phase 

diagram, BiFeO3 is a stable compound up to the peritectic decomposition temperature of 

930-934 °C, where BiFeO3 melts incongruently. In contrast with the phase diagram, which 

shows the equilibrium thermodynamic properties, BiFeO3 has frequently been claimed to 

be metastable at high temperatures, above 750-830. The pseudo-binary phase diagram of 

the system               contains three ternary phases at room temperature; BiFeO3 

with perovskite structure,     Fe    and          with sillenite and mullite composition 

respectively. The formation of the sillenite and mullite phases is a challenge during ceramic 

and chemical synthesis routes to obtain BiFeO3. Any slight change in procedure parameters 

could lead to forming other impurity phases present in Bi-Fe-O system, such as Bi or Fe 

rich phases, like     Fe   ,         ,            and unreacted       [38,39]. 

Impurities and oxygen vacancies are also important for thin films, because they are known 

to artificially enhance the remnant magnetization. Minimizing them requires very careful 

modification of growth parameters. 
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There are several significant advantages of sol-gel method which we used in comparison to 

other methods like solid-state calcination. First of all it is energy efficient and cost effective 

because it is relatively low temperature process and easy to control the stoichiometry of the 

system. Other advantages are association of solid colloidal state with liquid medium, thus 

avoiding any pollution by the eventual dispersion of dust. We can also control the kinetics 

of the various chemical reactions by the low processing temperatures and by the often 

dilute conditions. The nucleation and growth of the primary colloidal particles can also be 

controlled in order to give particles with a given shapes, size and size distribution. Finally 

it allows us to obtain materials with high purity and homogeneity which are not possible to 

be produced by solid-state fusion can be produced by this method and unlike the solid state 

reaction it doesn’t need addition purification step like leaching in acids. Better 

stoichiometric control and avoiding contaminations. Flowchart given in Figure 2-2 is an 

outline of the sol-gel method we used for the synthesis procedure. Bismuth nitrate 

pentahydrate [         5  O] and iron nitrate nonahydrate [         9  O] (99.99% 

Sigma-Aldrich) were used as Bi and Fe based chemicals respectively. By dissolving Bi and 

Figure 2-1 Phase diagram of the       –       system [19] 
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Fe nitrates in ethylene glycol and acetic acid separately followed by mixing at room 

temperature, we obtained a transparent precursor solution. This precursor solution was used 

both in powder synthesis and in spin coating to fabricate near-epitaxial films. It should be 

mentioned here that we don’t discuss the results from thin film preparation and electrical 

properties investigate of BiFeO3 in this thesis but focus on a structural characterization 

route to shed light on structural effects of A-site dopants with various ionic radii.  

 

 

 

 

 

To investigate the effect of A-site doping, Gd, La and Sm elements were added in different 

doping levels (1, 5, 10 and 15%). For Gd doping, gadolinium nitrate hexahydrate 

[         6  O], for La, lanthanum nitrate hexahydrate [         6  O] and for Sm, 

samarium nitrate hexahydratewere [         6  O] all 99.99% from GFS chemicals 

substituted to same percentage of bismuth nitrate pentahydrate in the first stage. A two-

stage thermal path was used for calcination where the precursor solutions were kept in 

 

Figure 2-2 Flowchart of the synthesis process for obtaining pure and doped BiFeO3 powders 
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550°C and 700°C each for 1 hour and the heating rate was 10°C/min. Then powders were 

free-cooled down to room temperature to get BiFeO3 phase (Figure 2-3).  In previous 

studies on BiFeO3, the purity of the phase is mostly reported to be related to the 

temperature, atmosphere and time at the calcination stage as well as the type and amount of 

doping elements [36]. Our findings suggest that a combination of drying stage and 

calcination path is the most important part of the synthesis. It is crucially important to dry 

the solution in a particular temperature to prevent obtaining precocious gel. In Gd doping 

for instance, single phase BiFeO3 can form in different heat treatment paths during 

calcination for different Gd doping levels when the drying stage is done properly as long as 

the gel is not precocious. 

 

After calcination step, X-ray diffraction (XRD), Differential Thermal Analysis (DTA) and 

Raman Spectroscopy were used for characterization of powders. The chemical or physical 

changes which are not accompanied by the change in mass on heating are not indicated in 

thermogravimetric but there is a possibility that such changes may be indicated in DTA. In 

DTA technique, the heat changes within a material are monitored by measuring the 

difference in temperature (ΔT) between the sample and the inert reference. This differential 

temperature is then plotted against temperature or time to get DTA curve. BiFeO3 has high 

Curie temperature (  830 ºC ), high Neel temperature (  370 ºC), What is important here 

is that such a reduction in lattice parameters with increasing Sm, Gd and La content should 

be expected to impact the   . To do so we carried out TG/DTA experiments with cooling 

and heating cycles at the rate of 10°C/min. To make sure that the temperature at the value 

of 900º C will not affect the synthesized BiFeO3 in terms of forming new phases that might 

change DTA results, the stability of the obtained BiFeO3 was checked at high temperatures. 

To do so, crystallized BiFeO3 powder was heated up with the same regime exerted in the 

TG/DTA to the samples. The structure of the sample was checked after this heat treatment 

through XRD analysis. XRD results confirm that there is no extra chemical phase 

formation during the DTA/TG test. 

 

Raman scattering has proven to be a valuable technique to obtain information about local 

structures within materials. Since Raman scattering spectra are sensitive to atomic 
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displacements, the evolvement of Raman normal modes with increasing dopant content can 

provide valuable information about ionic substitution and electric polarization. The 

presence of Raman active modes can be used to evaluate the structural order degree at 

short-range and vibrational modes of the powder obtained in the hydrothermal microwave 

tend to disappear which can be related to structural disordering at short range, as well as a 

phase transition for an ordering crystal structure. Therefore, small changes observed in the 

spectra can be associated with the preparation method, average crystallite size and the 

degree of structural order. It is known that BiFeO3 belongs to distorted rhombohedral 

structure with R3c space group. 10 atoms in the unit cell of this structure yields 18 optical 

phonon modes      = 4  
 
 
 + 5    + 9E. According to group theory          = 4  

 
 
+ 9E are 

13 Raman active modes, whereas 5  
 
 
 are Raman inactive modes. The   

  modes are 

associated with Fe ions and E modes are associated with Bi ions. More details about raman 

spectra of the        sample are discussed and illustrated in next chapter. 
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Figure 2-3. The heating and cooling regime during crystallization followed to get 

pure and doped powders 
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Chapter 3. RESULTS AND DISCUSSION 

 

3.1 X-ray diffraction Results and Rietveld Refinement 

 

The crystalinity and structure of the powders calcined at various doping levels was 

characterized by an X-ray diffractometer (BRUKER axs XRD) with Cu K radiation and 

data were collected from 20° to 60° 2θ with a step size of 0.01 °2θ at ambient temperature, 

with pure BFO as a reference in Figure 3-1, and powder peaks were matched with “Joint 

Committee on Powder Diffraction Standards” (JCPDS). In most of the research activites 

carried out on        it is mentioned that this ceramic has rhombohedral perovskite 

structure with space group R3c [40], a non-centrosymmetrical structure. Our data is 

consistent with previous reports and a Rietveld refinement using the R3c space group 

yields a perfect match with the experimental data. According to Pauling’s equation, there is 

correlation between ionic bond strength     with the average electronegativity of cation      

and anion   . As the atomic radius decreases, ionization energy increases and this leads to 

increases in electronegativity of an atom. The higher the associated electronegativity 

number, the more an element or compound attracts electrons towards itself. On the other 

hand, bond energy is a measure of the strength of a chemical bond (the amount of energy 

(enthalpy) required to be broken), the larger the bond energy, the stronger the bond. Ionic 

bond strength of La–O (     =799 kJ/mol), Gd–O (     =716 kJ/mol) and Sm–O 

(     =619 kJ/mol) bonds are higher than that of Bi–O bond (     =343 kJ/mol). This 

implies that enthalpy of formation       of Sm-doped        is more negative as 

compared to the undoped       . More negative enthalpy of formation will lead to more 

negative free energy of formation       of Sm-doped        phase as compared to 

undoped        phase and possibly compared to secondary phases too, especially at 

higher temperatures, assisting in improved stability of the perovskite BFO phase upon 

doping[45]. As we discussed            chemical bond possessed much more stability 

for the perovskite structure than the           chemical bond, minimizing Bi 

volatilization and reduce the number of O vacancies    
  , and consequently stabilizing 

BFO phase. As a result we can say that by doping BFO with these three elements not only 
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we are compensating Bi vacancies (   
  ) but also we are stabilizing O in its own position 

which leads to reducing O vacancies (  
  ).   

   comes mainly from    
   and the transition 

from      to     , which can be described by equations (3-1) and (3-2) [79]. 

 

 

4                                       
       

         (3-1) 

 

                                   
                         (3-2) 

 

 

We also noted substitution with La, Sm and Gd over than 20%, 15% and 12% respectively 

could lead to secondary phase formation. The desired reaction between       and       

powders is : 

 

 

      +          2                                                          (3-3) 

 

  

  
         + 

 

  
     Fe          Fe                                 (3-4) 

 

 

But it has been reported that secondary phases form due to insufficient reactions between 

      and       powders according to the following reaction:  

 

      +         (
 

 
)                 (x>y) + (

   

 
)       (unreacted)    (3-5) 

 

In some samples presence of tiny amounts of       were observed around 2θ =28°  

(JCPDS 27-0053) which probably is due to excessive Bi used for compensating 

volatilization during synthesis or unreacted      with melting temperature around 817 °C.  
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Upon doping with La, Sm or Gd, changes in peaks shapes and positions are observed 

especially once %5 is exceeded. These changes are more significant for Sm and Gd doped 

powders as these two have lower ionic radii than La. For both pure BFO and doped 

powders, our comparative results of the Rietveld refinement of our data are given in Table 

3-1. We start our discussion first with the La doped samples as the effect of La doping is 

relatively weak below 10% contrary to Sm and Gd doped samples. Please note that, where 

needed, we had to refer to the DTA results of our powders for a reasonable discussion of 

the XRD and Rietveld results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. XRD Diffraction pattern of the sol-gel synthesized pure BiFeO3 powder in 

this work. 
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3.1.1 La doped powders 

 

La doping until around 5% does not have a considerable impact on the XRD peaks where 

the original BFO peaks and their θ positions are almost conserved (See Figure 3-2a) after 

which a gradual shift to higher angles start visible only in high resolution as shown for  the 

peaks around 32° in Figure 3-2b. The space group of the La-doped BFO structure appears 

to be preserved as R3c with the possibility of few percent of Pbnm up after around 10% La 

doping deduced from the Rietveld refinement where an A-site occupancy ratio as the 

powder stochiometries we work with was used. Pbnm is a non-polar orthorhombic phase. 

Polar and anti-polar orthorhombic phases did not reveal better fits than Pbnm in the R3c + 

Pbnm phase mixtures and therefore we give only the results for the R3c + Pbnm fits in La 

doped powders in Table 3-1 for brevity. Stability of R3c phase for La ≤10% was also 

confirmed by our Raman spectroscopy results given in the next section. Similar results 

have also been reported for the relatively low La doping regime [48-53]. At La 

concentrations exceeding 10%, we start observing a clear broadening of peaks in the 20°-

60° scale accompanied by a slight peak shift towards higher angles, implying an average 

gradual shrinkage in the unit cells. The peak shift and broadening for the 104-110 planes in 

high resolution is given in Figure 3-2b. While the peak broadening should be expected due 

to increased amount of local strain fields around unitcells containing      as this ion has 

around a 1% ionic radius mismatch with     in 8 coordination within the pseudocubic 

approximation [54], the gradual merging of peaks above La>10% is consistent with what is 

reported in [51-53] where an apparent shift toward a higher symmetry structure happens for 

at least some of the grains as R3c still persists. For La> 10%, our Rietveld refinement fits 

indicate that Pbnm or Pnma phases, both of which yield a good fit, could be getting stable 

next to polar R3c where the latter one is still the dominant structure. Pnma is the LaFeO3 

space group. In addition, a shrinkage in unitcell volume could be expected to reduce 

polarization stability due to the restriction of the displacive shift of B-site cation along 

          or          in the R3c phase along with the loss of the 6s2 lone pairs at      

sites, weakening the shift of the      along          . We found out that La is fully 

soluble in the BFO lattice even at 20 atomic percent, higher values were 

reported[43,52,55,56] in powders  
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Table 3-1. Results of the Rietveld refinement for various phase possibilities. a, b and c are 

unitcell parameters (GOF: Goodness of the fit)  

 

   

Rp' 

 

GOF 

 

Phase Fraction 

 

a(Å) 

 

b(Å) 

 

c(Å) 

Unit Cell 

Volume(Å3) 

 

 

 

R3c 

%0   Gd 5.58 1.00 %100 5.57841 5.57841 13.87210 373.847 

%5   Gd  6.38 1.04 %100 5.57325 5.57325 13.8551 372.70 

%10 Gd  6.21 1.03 %100 5.56334 5.56334 13.8003 369.90 

%15 Gd  8.85 1.34 %100 5.5636 5.5636 13.772 369.19 

         

 

 

 

R3c 

+ 

Pbnm 

 R3c% Pbnm% 

%0  Gd 5.58 1.00 100 0 5.57825 5.57825 13.87076 373.847 

%5   Gd 6.54 1.03 89.00 11.00 5.5746 5.5746 13.8608 373.03 

%10 Gd 6.30 1.02 82.6 17.4 5.5624 5.5624 13.8041 369.88 

%15 Gd 7.04 1.11 23.8 76.2 5.554 5.554 13.583 362.8 

%15 Gd 7.04 1.11 23.8 76.2 5.6092  5.4290 7.8229 238.23 

         

 

 

R3c 

+ 

Pn2(1)a 

 R3c% Pn2(1)a%  

%0   Gd 5.58 1.00 100 0 5.57825 5.57825 13.87076 373.847 

%5   Gd 6.52 1.03 95.8 4.2 5.57356 5.57356 13.8544 372.72 

%10 Gd 6.48 1.03 97.3 2.7 5.5636 5.5636 13.8027 370.01 

%15 Gd 6.86 1.08 36.5 63.5 5.5473 5.5473 13.7715 367.00 

%15 Gd 6.86 1.08 36.5 63.5 5.6173 7.8210 5.4360 238.82 

         

 

 

R3c 

%0   Sm 5.58 1.00 100 5.57841 5.57841 13.87210 373.847 

%5   Sm  6.43 1.05 100 5.57212 5.57212 13.8377 372.079 

%10 Sm  6.20 1.03 100 5.56523 5.56523 13.7936 369.98 

%15 Sm  7.85 1.22 100 5.5569 5.5569 13.661 365.32 
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R3c 

+ 

Pbnm 

 R3c% Pbnm%  

%0   Sm 5.58 1.00 100 0 5.57841 5.57841 13.87210 373.847 

%5   Sm 6.76 1.05 95.6 4.4 5.57267 5.57267 13.8382 372.17 

%10 Sm 6.00 1.02 86.94 13.06 5.5652 5.5652 13.7970 370.05 

%15 Sm 7.23 1.14 46.3 53.7 5.5605 5.5605 13.7805 366.81 

%15 Sm 7.23 1.14 46.3 53.7 5.4462 5.5935 7.9015 240.70 

         

 

 

 

R3c 

+ 

Pn2(1)a 

 R3c% Pn2(1)a%  

%0   Sm 5.58 1.00 100 0 5.57825 5.57825 13.87076 373.847 

%5   Sm 6.65 1.05 98.58 1.42 5.57227 5.57227 13.8397 372.152 

%10 Sm 6.41 1.03 88.7 11.3 5.56543 5.56543 13.7946 370.03 

%15 Sm 7.70 1.18 72.022 27.978 5.5589 5.5589 13.7922 368.99 

%15 Sm 7.70 1.18 72.022 27.978 5.6146 7.8271 5.4473 239.39 

         

 

     R3c 

%0   La 5.58 1.00 100 5.57825 5.57825 13.87076 373.847 

%5   La 6.24 1.04 100 5.57760 5.57760 13.83963 372.864 

%10 La 6.33 1.04 100 5.57708 5.57708 13.80836 371.952 

%15 La 5.74 1.00 100 5.57777 5.57777 13.7796 371.720 

         

 

 

R3c 

+ 

Pbnm 

 R3c% Pbnm%  

%0   La 5.58 1.00 100  5.57825 5.57825 13.87076 373.847 

%5   La 6.34 1.04 97.5 2.5 5.57764 5.57764 13.83967 372.870 

%10 La 6.34 1.04 98.16 1.84 5.57731 5.57731 13.80923 372.005 

%15 La 5.67 1.00 85.2 14.8 5.57732 5.57732 13.7818 371.269 

 

synthesized using various methods and such a high value is possibly emanating from the 

identical ionic radii of Bi+3 and La+3 for 8 coordination. 
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      (a) 

       (b) 

Figure  3-2. (a) XRD pattern for Bi1-xLaxFeO3 for various concentrations of La and (b) 

high resolution of the 104 and 110 peaks showing the peak broadening and shift. BLFO: 

Bi1-xLaxFeO3. 

 



30 

 

3.1.2 Sm and Gd doped powders 

 

In the case of Sm and Gd doping, the XRD data of powders containing the two dopants are 

nearly identical despite the fact that Sm+3 in 8 coordination has around 8.5% ionic radius 

mismatch with Bi+3 and this value for Gd+3 is around 11% obtained from Ref. [54]. In 

contrast to La, such a difference in the ionic radii of Sm and Gd has an immediate impact 

on the XRD patterns where, at percentages of Sm and Gd doping 5% and higher, a 

significant peak broadening together with merging of the double peaks are visible in Figure 

3-3a and 3-3b respectively (See Figure 3-4a and Figure 3-4b for the high resolution graph 

for the 32° range). In our experiments, we find that Sm has a solubility limit of around 15% 

in BFO while this is nearly 12% for Gd after which non-perovskite impurity phases form. 

Due to the large ionic radius mismatch of Sm+3 and Gd+3 with Bi+3 for 8 coordination, 

the grains should be expected to contain a large fraction of inhomogeneous strains around 

unitcells containing the dopants, causing the highly visible peak broadening along with the 

possibility of a dopant driven structural change from R3c. The Sm and Gd doped powders 

have also a lowered transition temperature with respect to La+3 for a given concentration 

evidenced by our DTA data that is discussed in the next section.  

Before going onto the Rietveld analysis discussion of our XRD results for Sm and Gd 

doped powders, we noted that these samples have considerably smaller grains than pure 

BFO and La doped BFO up to around 10%, a conclusion we reach after SEM observations 

(See Figure 3-5). Inhibited diffusion in BFO due to Sm and Gd has been reported 

previously [42,44,45,57,58], possibly due to reduced amount of vacancies owing to the 

high enthalpy of Sm-O and Gd-O bonds and the shrinkage of the unitcell. A more than 

200% reduction in grain size with respect to pure BFO with higher Sm and Gd dopant 

concentrations is another possibility to explain peak broadening but cannot directly be held 

responsible for peak shifts. While this conclusion might appear obvious or even trivial at 

first, it forms the basis of the discussion for the relation between the observed Curie 

temperature behavior (discussed in the next section) and the grain sizes making us pose the 

following question: Are the changes in Curie temperatures due to a size effect in our doped 
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Figure 3-3. . XRD patterns of (Top) Sm doped and (Bottom) Gd doped powders for 

various concentrations considered in this work 



32 

 

        (a)   

         (b) 

Figure 3-4. High resolution XRD data around 104-110 peaks are given for (a) Sm and 

(b) for Gd. BSFO: Bi1-xSmxFeO3, BGFO: Bi1-xGdxFeO3 
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powders or is there another mechanism taking effect upon doping Size effects are usually 

observed in such systems but only at 20-30 nm grain sizes [59-61] while we have grains of 

about 300 nm or more for heavily doped samples. In fact, Jiaswal et al. has reported that 

the BFO powders with 50-60 nm particle sizes have only a slightly reduced transition 

temperature compared to bulk BFO [62].  Therefore, it is likely that our powders are well 

above the grain size where a size effect could be claimed.  Moreover, we see that the 

change in powder size for Gd and Sm doped samples even after a few percent is negligible, 

however the reduction of the Curie temperatures depends directly on the dopant radius and 

concentration. 

 

 

Ruling out a possible size effect, we conclude that the changes in XRD patterns upon 

doping, in the light of  our Rietveld refinement, is a result of significant distortion of the 

BFO structure upon doping, resulting in parallel stabilization of a phase with higher  

Figure 3-5. SEM image of the synthesized (a)       , (b) Bi0.9La0.1FeO3, (c) 

Bi0.9Gd0.1FeO3and (d) Bi0.9Sm0.1FeO3showing the impact of doping on grain size. 
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Figure 3-6. SEM image of the synthesized (a)       , (b) Bi0.99La0.01FeO3, (c) 

Bi0.99Gd0.01FeO3and (d) Bi0.99Sm0.01FeO3showing the impact of doping on grain size.  

 

 

Figure 3-7. SEM image of the synthesized (a)       , (b) Bi0.95La0.05FeO3, (c) 

Bi0.95Gd0.05FeO3and (d) Bi0.95Sm0.05FeO3showing the impact of doping on grain size. 

 



35 

 

 

symmetry than R3c along with the R3c itself even at 5% Sm and Gd dopant concentrations. 

We think so because we obtain the best Rietveld refinement fits to our Sm and Gd doped 

powders if we consider a orthorhombic (Pbnm) + rhombohedral (R3c) phase mixture 

following trial runs with P1, C2, Pnma for Sm doped powders and Pn21a as other possible 

structures reported previously in doped powders: Particularly for Sm and Gd doping 

concentrations greater than 5%, we can argue that the orthorhombic Pbnm phase around 5-

15%  (Please see the Rietveld refinement results in Table 3-1) of the total powder volume 

is stabilized possibly by the chemical pressure induced by dopants along with internal 

electric fields emanating from inhomogeneous strain fields of these dopants (Discussed in 

the forthcoming section). From here onwards we insert the * to indicate that the R3c 

discussed at RT is a distorted structure and call it R3c* with possibly weakened polarity, 

hence a reduced transition temperature. Regarding Sm doped powders, we get the best fit 

for Pbnm whereas in Ref. [63], the authors have given a very clear analysis of the La, Sm 

and Nd doped BFO and report the Pnma phase for Sm as the stable structure at RT. Pnma 

is antipolar orthoferrite similar to        however the appearance of such an antipolar 

phase upon cooling from high temperature should yield a signal in the DTA in our 10% and 

15% Sm doped powders, similar to what one can expect in PbZrO3 around 231°C, which 

we do not see in our experiments. The signal we see in 10% Sm doped powders is most 

likely coming from the PE→R3c* transition of the dopant depleted regions as we get the 

best fits for a R3c*+Pbnm phase mixture and that the R3c* must have formed above RT 

(See the detailed discussion in the next section). The authors of Ref. [63] see a DTA peak 

around 309°C that they attribute to the formation of Pnma, the phase they report at RT, and 

this could point out the effect of sample preparation technique where they have chosen the 

solid state calcination method. Similarly, we also found out Pn21a, the polar orthorhombic 

phase, yields a fit to our Sm and Gd doped powders just as good as or even slightly better 

than Pbnm for Gd doped samples, a point mentioned in Ref.[47] however lack of any 

relevant transition peaks in DTA analyses between 900°C and RT (Please see next section) 

for high concentrations of Sm (≥10%) and Gd (>10%) in our samples led us to choose non-

polar Pbnm, which could also be stable at high temperatures in contrast to unlikely 

existence of polar stability such as the Pn21a which also does not exist at high temperatures 
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even in pure BFO according to neutron diffraction experiments [64,65]. We revisit this 

argument for Sm and Gd doped powders in the coming section. The Pbnm phase 

constitutes a significant volumetric fraction of the grains when the Sm and Gd levels 

exceed 10% of Bi sites. If we carry out the Rietveld refinement for 15% Gd doped 

powders, despite the impurity phases appearing in this regime, we find that the samples 

have more than 79% of its volume in non-polar Pbnm phase, confirming our argument in 

the light of our DTA data given in the next section. At 15% of Sm doping, we find a phase 

mixture to enable the best fit between the experiment and Rietveld refinement but with 

around 54% of Pbnm orthorhombic phase compared to 79% in Gd doped samples with 

same concentration. Nature of the chemical bonding between dopants and the neighboring 

oxygen ions have been discussed to effect the ferroelectric distortions for reasons other 

than the chemical pressure induced by mismatch in ionic radii. The lack of the 6s2 lone 

pairs in RE elements upon bonding is discussed to be unfavorable for the structural 

distortions leading to the spontaneous dipole formation in BFO driven by the ionic 

polarizability degree of freedom of Bi+3.  Therefore, that La+3 having an ionic mismatch 

of only around 1% with Bi+3 under 8 fold coordination causes a small decrease in the 

Curie temperature can be elaborated from the point of the lack of the stereochemistry that 

is actually present in Bi+3. However, that this reduction in transition temperature directly 

scales with the ionic radius mismatch of the A-site dopants with Bi as shown in our work 

as well as others [63] implies that ionic radius mismatch becomes a stronger contributor to 

noticeable changes in phase transition temperature and accompanying distortions. For 

Sm+3 and Gd+3, the effect is most likely due to chemical pressure rather than local 

chemistry indeed combined with natural formation of internal electric fields owing to the 

electrostrictive nature of the material keeping in mind that strong internal fields can 

stabilize centrosymmetric phases with higher symmetry than the polar phase. There is 

direct correlation between amount of reduction in transition temperatures as will be shown. 

We try to link the systematically acquired DTA data to the XRD results and define a 

sequence of phase transitions in our doped powders in the next section. 
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3.2 Differential Thermal Analysis and Raman Spectroscopy 

 

After determining the crystalline phases via XRD at RT, we carried out DTA experiments 

to see the effect of dopants on transition temperatures as a function of their ionic radii 

between RT and 900°C. We do not see any degradation or irreversible dissociation in any 

of our samples: XRD results at RT before and after DTA remain exactly the same (not 

shown here). Irreversible dissociation of BFO was reported to occur around 930°C [41] and 

we stayed under this limit in our experiments. In Figure 3-8, we give the DTA plots of the 

pure and doped powder samples and in Figure 3-9 the transition temperature (strongest 

peak) as a function of dopant concentration for the three dopant elements. For 1% doping 

of La, Sm and Gd, no significant change in high temperature transition is observed and we 

have a sharp DTA peak in all cases. Therefore, a common result is that 1% doping for all 

elements has a little impact on the transition temperature of BFO around 820°C and these 

all appear to be mainly in the R3c phase as confirmed by the Rietveld analysis. 5% and 

higher concentrations of dopants in powders start to make a difference though: Increasing 

La occupancy at A-sites induces a gradual reduction in the transition temperature while this 

reduction is much more rapid for increasing Sm and Gd content. For 5% Sm and Gd 

doping, the major visible dip indicating a phase transition shifts to much lower 

temperatures compared to that of 5% La. For 10% Sm and Gd doping, the dips in the DTA 

curves are at around 400°C and 300°C respectively. Near and beyond the solubility limit of 

Sm and Gd (15% for Sm and 12% for Gd), we found that doping with 15% Sm and 12% 

Gd apparently suppresses the transition to below RT in majority of the grains as we 

observed no indication, i. e. signal, of a transition. On the other hand, 15% La doped 

powders exhibit the dip at around 530°C, a significantly high temperature with respect to 

even 10% Sm and Gd containing powder samples. The major visible dip at the transition 

for doped samples shifting to lower temperatures is accompanied by a strong smearing 

along with intensity loss with increased dopant content. This smearing and intensity loss is 

much more profound in Sm and Gd doped samples at 10%. An outcome of this type is 

often expected in a phase mixture where the dominant phase undergoes no transition while 

the other may have a transition but with a reduced signal in DTA. Remembering that La 

doped powders appear to be mostly in the R3c phase and that a Pbnm + R3c* mixture 
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forms in Sm and Gd doped powders at or above 5%, the weakening of the DTA signal for 

the case of powder with Sm and Gd >5% might imply that a considerable volume of the 

grains are in Pbnm phase for the entire temperature range, noticing also that the kink 

appearing around 800°C also weakens with doping. We discuss the possible origin of this 

kink in the forthcoming paragraphs.  

 

 

 

 

 

Figure 3-8. DTA curves for pure BFO and various doping levels of Bi1-xAxFeO3 (A: La, 

Sm, Gd) samples 
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Figure 3-9. Temperature for the possible PE→R3c* transition for doped powders as a 

function of dopant concentration. 

 

 

The DTA data can be interpreted in the light of what is observed in the XRD analysis: 

Increasing the dopant concentration with ions having radii less than Bi+3 reduces the Curie 

point to lower temperatures concurrent with ionic radius mismatch with Bi+3. Powders 

with low doping (1%) and are in R3c phase have a transition temperature close to bulk 

BFO. This trend is still valid for 5% La doped powders. For phase mixtures that appear to 

be the case for Sm and Gd > 5% and La > 10%, the portion of grains having a lower 

transition temperature is in the R3c* at RT. The loss of signal intensity in the case of large 

dopant concentrations indicates that there is a “background” or “parent” phase that does not 

undergo any transition. This structure is probably the Pbnm phase as any transition from a 

high temperature PE phase into Pbnm would give a strong peak in DTA, which is not 

observed in the temperature range considered here. Referring to the previous section, this 

also helps us to identify the Rietveld refinement fit of the phase mixture as the Pbnm+R3c 

at RT because we would expect to see a peak in DTA had there been any transition from 

the paraelectric non-polar Pbnm state to polar P21na phase above RT. In the light of this 
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argument, larger volumetric fraction of Pbnm phase would mean a greater loss in signal 

intensity in DTA and this expectation is totally consistet with the case of our doped 

samples. Moreover, the increase in Pbnm volume fraction appears to be imposing a further 

reduction of the temperature at which R3c* occurs (because it is present at low amounts in 

the phase mixture at RT). In the rest of the discussion, we call the non-polar high 

temperature phase “paraelectric (PE) phase” for sake of generality as there is still some on-

going discussion on the structure of this phase in literature and we do not have any precise 

tools for determining the structure of this phase, which is also outside the scope of our 

work. The high temperature PE phase has been claimed to have the non-polar P21/m space 

group symmetry in [46,66] which is probably true for our pure BFO. However, we remind 

here again that our DTA data combined with the RT XRD results hints at the strong 

possibility that we might have the non-polar Pbnm phase in heavily doped (>10%) Sm and 

Gd powders in the entire temperature range of our DTA experiments owing to absence of 

any peaks above RT but with a small fraction of grains possibly depleted of dopants 

displaying the regular PE→R3c transition. This transition makes itself visible with the 

small smeared kink just below 800°C and is independent of dopant type and concentration 

range considered in this work.  

 

The general reduction of the temperature for the PE→R3c* transition eventually becoming 

prominent for dopants with smaller ionic radii occurs in grains that are likely to be not in 

Pbnm phase of the phase mixture when present. This dopant radius dependency can 

directly be correlated to inhomogeneous lattice strains induced by these dopants in grains 

which can undergo a PE →R3c* transition. The greater the ionic radius misfit of the dopant 

with Bi+3 the stronger the reduction of this temperature along with the smearing as 

observed in our DTA data, keeping in mind again that the presence of the Pbnm phase 

volume only amplifies this behavior. At 15% doping of both Sm and Gd, we observe no 

peaks in DTA and this is an expected outcome if one refers to the Rietveld results where 

the non-polar orthorhombic structure is the dominant volumetric phase at RT. This could 

indicate that the remaining small R3c volume is also saturated with dopants and has very 

weak ferroelectricity, hence we call it R3c*, along with a very strong smearing of its 
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transition and such a mechanism is very well documented in earlier text books on defect 

effects in phase transition anomalies [67]. 

We now discuss the all-time presence of the kink in DTA data around 800°C visible in our 

samples regardless of dopant type and concentration. Such a dip in the DTA curves in the 

vicinity of the pure BFO Curie point (~820°C) would normally be associated with the 

PE→R3c transition. For low doping concentrations, no such observation can be claimed as 

the entire volume appears to be transforming from the parelectric state to ferroelectric 

relatively close to bulk BFO. At increasing dopant concentrations, this peak or “kink” is 

relatively easier to distinguish in all our powders despite the fact that it becomes weaker 

with increased dopant concentration. Such a result points out to a rather inhomogeneous 

phase transition of the R3c phase in our powders where one can envision the situation of 

some grains depleted of dopants transforming much earlier than others having 

inhomogeneous strains due to dopants, for instance during cooling. The remaining fraction 

is either PE+Pbnm phase mixture that transforms to R3c*+Pbnm upon further cooling or 

another possibility is PE transforming into R3c*+Pbnm particularly when dopant 

concentration exceeds 5% (>10% in case of La) as we always find a phase mixture at RT 

XRD in these cases. We can, however, eliminate PE transforming into R3c*+Pbnm as this 

would yield either a very strong peak, or at least two peaks at different temperatures in 

DTA owing to the fact that the appearance of the non-polar Pbnm and polar R3c* phase at 

the same temperature is very unlikely and neither of it is present in our doped powders.  

The decrease of the amplitudes of the ‘high temperature’ dips in powders with dopant 

concentrations ≥ 5% for Sm and Gd, >10% for La, indicate that majority of the grains 

undergo a transition at lower temperatures as can be justified by the relatively stronger, 

although smeared, intensity of the low temperature peak (around 300-400°C). We think 

that this is a consequence of strain fields around dopants in grains that can still transform 

into R3c* from the parent non-polar PE phase. With the amount of such grains decreasing 

in volume in our powders for higher dopant concentrations, the peak associated with the 

above transition is expected to weaken and get smeared. In the light of our DTA and XRD 

data discussed above, the following sequence of transitions can be proposed upon cooling 

from 900°C to RT in doped samples: 
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PE phase + Pbnm↓ → R3c^ + Pbnm↓ → R3c* + Pbnm↓ for Sm and Gd ≤ 10% (1) 

 

PE phase + Pbnm↑ → R3c^ + Pbnm↑ → R3c* + Pbnm↑ for Sm and Gd ≥ 15% (2) 

 

where we used ^ to indicate the R3c capable of forming in grains with low dopant 

concentration having a transition temperature close to bulk BFO, ↓ indicates either “non 

existing” or “low-to-moderate in volume fraction” and similarly ↑ “high in volume 

fraction”. Sequence given in (2) exhibits no apparent peaks in DTA below 780-800°C 

(except that the temperature at which the smeared low intensity “kink” exists as with all 

other powders likely due to a very low fraction of grains exhibiting the PE phase → R3c^ 

transition)  and is probably dominated by the non-polar Pbnm phase, concurrent with the 

Rietveld refinement. Note that this also signals the possibility that ≥15% Sm and Gd doped 

powders could be predominantly in Pbnm state at high temperatures and only a small 

amount of “dopant depleted” grains transform to R3c^ slightly below bulk BFO transition 

temperature, yielding the relevant weak and smeared but all-time existing kink in DTA. 

The transitions proposed in (1) is a function of dopant type and concentration for Sm and 

Gd doped powders as single R3c phase appears to be stable and dominant in La doped 

powders until around 15%. The visible peaks in DTA associated with transitions in (1) are 

stronger for low amounts of Pbnm phase if the dopant concentration is not larger than 5%, 

in particular for Sm and Gd doped samples. Therefore, the strong signal upon the likely 

transition from the PE phase to R3c* comes from majority of the grains that have almost no 

Pbnm or low dopant concentration. As described previously, this signal is reduced at high 

dopant concentrations most likely because of the increased stability and volume fraction of 

Pbnm and the low amount of R3c* formation in a range of temperatures also leading to 

smearing of the signal. Note that the peaks we see in the range 300-700°C in 5% or 10% 

doped samples (See transitions given in 1) cannot be originating from a PE→Pbnm 

transition because then we would expect to see another peak or kink associated with the 

Pbnm→R3c* before reaching RT as we find that the RT phase is predominantly R3c* even 

in 5% Sm and Gd doped BFO following the best Rietveld fits. The structures with high 

dopant concentration and lower transition temperatures can then be expected to exhibit 

reduced intensities of Raman scattering according to the given interpretation until now. 
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This a way to probe ferroelectricity especially in leaky samples like ours where electrical 

measurements are inconclusive.  That the paraelectric-ferroelectric transition of BFO takes 

place is evident at the expected temperature consistent with previous reports and we now 

give in Figure 3-10 and 3-11 comparative Raman spectroscopy results of our powders to 

reveal the effect of dopants on intensity of allowed vibrations of the R3c particularly in the 

small wave vector regime . 

 

 

 

Figure  3-10. Measured Spectra, simulated spectra of the deconvoluted (decomposed) 

Raman active modes for pure BFO.  
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Figure  3-11. Effect of doping on Raman peaks of (a) La doped, (b) Sm doped and (c) Gd 

doped powders for increasing dopant concentrations. Pure BFO is given in all plots for 

reference.  

 

Looking at Figure 3-10, the pure BFO exhibits 11 modes of all 4  
 
 
+ 9E phonon modes 

that are allowed in the non-centrosymmetrical R3c in part of the spectra until 800 cm-1. 

The A1 modes are associated with Fe ions and E modes are associated with Bi ions. Raman 

modes located above 200      are responsible for distortions and internal vibrations of 

FeO6 octahedra, and any distortion into the A site of the perovskite enhances the Jahn-

Teller distortion of these FeO6 octahedras, while modes below 200      are attributed to 

different sites occupied by bismuth inside the perovskite structure. A comparison of Raman 

peak positions for pure BFO obtained from this study and other works is provided in Table 
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3-2 for reassurance of the presence of the R3c phase in BFO. Moreover, we noted that the 

peak positions of nearly all 1% to 5% doped samples coincide with the R3c phase 

consistent with our XRD results with some visible weakening of intensities in Sm and Gd 

doped samples.  

 

Table 3-2.Raman modes for R3c BFO in our work and their comparison with other studies.  

 

BFO Raman 

modes 

Yuan et al  

2007 [68] 

Fukumura et 

al  

2007 [69] 

Singh et al 

2006 [70] 

Present 

study 

A1
-1 

126 147 136 129.96 

A1
-2

 165 176 168 166.47 

A1
-3

 213 227 211 212.69 

A1
-4

 425 490 425 419.5 

E1 111.7 - 77 111.44 

E2 259.5 265 275 257.10 

E3 - 279 335 293.5 

E4 339.6 351 365 338.67 

E5 366.9 375 - 365.59 

E6 473.3 437 456 458.75 

E7 599.6 525 597 519.53 

 

 In powders containing high concentrations of Sm and Gd (>10%) the R3c modes are very 

weak or nearly absent as can be seen in Figure 3-11. There is a gradual disappearance of 

the low frequency modes (large wavelength phonons) upon increased doping 

concentrations and this is prominent in 5% and 10% Sm and Gd doped powders that 

exhibit the clear lowering of transition temperatures in the DTA measurements. Thus, the 

Raman spectra implies a dopant induced “weakening” of the ferroelectric state upon doping 

of the large mismatch A-site cations. At this point we also sought trace of the Pbnm modes 

that appear to be the case in Sm and Gd doped powders giving the best Rietveld refinement 

results consistent with the picture revealed by DTA. In search of the experimental Raman 
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spectra of the orthorhombic phase, we came across the systematical work of Yang et al. 

[71] where the orthorhombic phase of BFO was obtained and analyzed in-situ by Raman 

spectroscopy under high hydrostatic pressure. They observed that intensity of two peaks in 

the 300-400 cm-1 region was enhanced with increasing hydrostatic pressure that was 

attributed to FeO6 octahedra tilts. At first sight, it seems reasonable to compare our Raman 

data to the pressure-induced ortorhombic phase again owing to the fact that the Rietveld 

results yield the best fit to orthorhombic phase for >%5 Sm and Gd doped powders. We do 

observe a relative increase in intensity of the modes around 300-400 cm-1 region along 

with a near-disappearance of low frequency modes of the R3c but because of the 

inhomogeneous nature of our powders, we can clearly confirm here the disappearance of 

the R3c modes rather than appearance of the possible Pbnm modes. The inhomogeneous 

nature of the dopant distribution in our powders is expected to reduce the intensities of the 

Raman peaks. Although we did not carry out Raman spectroscopy for 15% Sm and Gd 

doped BFO after observing the almost-total disappearance of R3c peaks in 10% Sm and Gd 

powders, it is useful to remind here that the Rietveld analysis on this composition has the 

uncomparably best fit for Pbnm. In another systematic work carried out by Bielecki et al. 

[53] Tb doped powders (Tb has a very close ionic radius to Gd in 8 coordination) showed a 

similar trend with the R3c modes rapidly losing intensity after around 10% doping but not 

a clear signal of the secondary phase was detected despite the mention of a gradual 

transition upon doping citing precise neutron diffraction studies. The Pnma space group 

modes in that work, which is claimed to be the phase that the R3c transforms into, started 

to exhibit themselves only after %17.5 Tb concentrations in the Raman spectra but they 

also started to see impurity phases such as Bi2Fe4O9 (only in their XRD analysis) which 

we tried to avoid in our work to reduce complications in data interpretation. It turns out that 

dopants induce a higher symmetry phase than R3c and the fraction of this phase is a strong 

function dopant radius. Despite the use of the sol-gel method where homogeneous 

solutions are prepared, there is strong evidence for “dopant depleted” grains upon 

crystallization which do undergo a PE→R3c transition but with a tendency of smearing and 

reduced temperatures depending on dopant radius for a given concentration. It is important 

to add here that we systematically sought evidence for the inhomogeneous distribution of 

dopants during SEM sessions as signaled by the DTA results but our efforts were 
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inconclusive mostly because of submicron grain size. However, with the available 

structural and thermal analysis data we gathered, we can suggest an apt mechanism using 

well known phenomena in ferroelectric crystals to explain this interesting result in the next 

section.  

 

3.2.1 Transition into polar R3c phase from non-polar PE phase in dopant depleted 

grains 

 

In this section we discuss the shift of the transition peak in DTA to lower temperatures 

accompanied by a smearing with dopant concentration. Our DTA data implies that, in 

powders A-site doped at 5% or more, a small fraction of possibly dopant depleted grains 

still exhibit the PE→R3c^ transition slightly below 820°C with another small fraction of 

grains exhibiting a reduced transition temperature similarly for the PE→R3c* especially 

for Sm and Gd doped samples when the doping level less than 15%. We had thought so as 

the peak associated with any transition gets weaker and smeared with higher dopant 

concentrations. We already elaborated on the likely possibilities of these transitions but it 

remains important to understand the origin of the reduction in the temperature for the 

PE→R3c* transition as a function of dopant radius in some volume of doped powders 

keeping in mind that our XRD results strongly suggest phase mixtures.  

As mentioned previously, transition from one polar symmetry to non-polar or 

disappearance or weakening of ferroelectric character in BFO (which is mostly due to 

reduction of the paraelectric-ferroelectric transition) has been often attributed to local 

bonding changes due to hybridization states between valence electrons and the presence of 

6s2 lone pairs, strongly screened from the nucleus of Bi+3 that are absent in rare earth 

elements such as La, Gd and Sm. Such an effect is also expected to reduce the 

polarizability of these ions, a driving force often required for distortions leading to 

ferroelectricity. Despite this often-discussed mechanism, how a few percent of A-site 

dopants can make a significant reduction in the phase transition temperature of the entire 

sample remains as a non-trivial question. One must bear in mind that the number of 

unitcells and therefore the bonds have the same percentage as the dopant concentration. For 
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instance, in the pseudocubic perovskite structure with 5% dopant concentration, there will 

be on average about 5 unit cells housing a dopant atom out of 100 unit cells and yet for Sm 

and Gd doping we observe that there is a considerable reduction in the phase transition 

temperature accompanied by a clear DTA signal, implying that majority of the structure 

behaves the same. 5% doped powders that we have yield R3c* as the dominant phase 

particularly in Sm and Gd doped samples and the shift of the peak position in DTA to 

lower temperatures is associated with this phase. No such strong reduction is observed in 

%5 La doped samples. This reduction in transition temperature cannot simply be explained 

by local bonding chemistry or absence of lone pairs because it is a strong function of 

dopant radius for a given concentration, keeping in mind the similar valence arrangements 

and close atomic masses of La, Sm and Gd. With the above picture in sight, we refer to the 

sensitivity of ferroelectric crystals to inhomogeneous lattice strains to explain the reduction 

in transition temperature that appears to be dramatically dependent on dopant radius. It is 

well-understood that any structural inhomogeneity in a ferroelectric crystal is a source of 

electric field as the Maxwell relation divD=ρ (ρ is space charge due to defects and 

excitationa across the bandgap and D is dielectric displacement) universally holds in these 

materials as with any other dielectric. This equation, when expanded and expressed in 

terms of electrical potential, takes the following form, namely the Poisson equation, 

considering the ferroelectric polarization components Px, Py and Pz in BFO along [111] 

direction:  

 

  

 (3) 

 

 with φ being the electrostatic potential, x, y and z are coordinates in space, Px, Py, Pz are 

components of ferroelectric polarization vector, ρ is space charge (often called the 

depletion charge in widebangap materials such as BFO), ε0 is permittivity of vacuum 

(8.85×10
-12

), εb is the background dielectric constant, a value on the order of 5-10. The 

solution of this equation in a random shaped crystallite neighboring others is nearly an 

impossible task due to the high ambiguity in defining proper boundary conditions both for 

electrostatic potential and ferroelectric polarization but we can still deduce common sense 
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implications: One can immediately see from (3) that spatial potential distribution will be a 

function of the polarization gradients induced by the position dependent strain around the 

dopant sites that will generate electric fields coupling to the [111] polarization of bulk BFO 

equal to (Px
2
 + Py

2
 + Pz

2
)

1/2 
 in magnitude. Even if these gradient variations are less than 

1% several unit cells far from the strain source, for instance, it is striking to see that such 

small variations will scale with 1/εbε0, a very large number, at the order of 1011. 

Moreover, due to the large Debye screening lengths (at the order of 10-20 nm, see Ref.[72] 

which was shown for a formal thin film geometry) even in leaky perovskites, such electric 

fields will not be screened by free charges and penetrate into a significant volume. 

Therefore, a random distribution of dopants in the grains, which is the most conservative 

and natural case to consider, can create random internal electric fields at the order of or 

higher than coercive field of BFO via their position-wise varying strain fields owing to the 

electrostrictive nature of the crystal where strain induced polarization is Pi = (ujk / Qijk)
1/2

. 

Such electric fields emanating from gradual change of polarization, called depolarizing 

fields, are often present in thin films with imperfect charge screening at film-electrode 

interfaces [73,74] but the regular and high-symmetry orientation of the entire crystal there 

helps to naturally develop regular up-down domain patterns to confine the field to the 

interface, stabilizing ferroelectricity although not in single domain state. In the case of 

random source distribution of these fields due to distortions around dopants in A-sites 

within randomly shaped grains, such a mechanism is not possible and one should expect 

strong internal fields with random direction that can only weaken ferroelectric distortions 

bearing in mind that random internal fields cannot “enhance” ferroelectricity but only 

reduce it [67]. The extent of strain field penetration of a point defect such as a dopant is 

well documented in perovskites and strain fields of such defects extend as much as 4-5 

unitcells [75], corresponding to a “volume under influence” consisting of about 125 unit 

cells. That a large portion of unitcells neighboring a dopant-site will be under the influence 

of such “inhomogeneous strain driven” internal fields can be concluded even for 

compositions less than 1 dopant/125 unit cells. BFO grains can then certainly be expected 

to experience these internal electric fields around dopant sites especially if the ionic radius 

misfit with Bi+3 is significant, in total accordance with our experimental findings. Large 

internal depolarizing fields can be capable of suppressing ferroelectricity and therefore 
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stabilize centrosymmetric phases. It is therefore feasible to expect that a few percent dopant 

concentrations might stabilize 15-20% Pbnm if the dopant radius misfit with Bi+3 is large. 

Higher dopant concentrations with “smaller ionic radius” will introduce a larger “distorted 

volume” distribution and amplify the above mechanism further while low-to-moderate 

dopant concentrations with radius close to Bi+3 (the case of La) will have a lesser impact 

as observed in our experiments. Note that dopant induced strains in the case of dopant 

radius < Bi+3 will not neutralize or cancel each other as sign of strain induced by local 

displacements will be negative, i. e., pointing towards the strain source that is the dopant 

itself. A similar effect is documented in ferroelectric crystals with dislocations where the 

dislocation produces local strain fields that decay away from the core and is a function of 

Burgers vector magnitude, analogous to the ionic radii mismatch between the dopant and 

native A-site atom, leading to a degradation [76,77] and smearing [67,78]  in ferroelectric 

properties. It is also well understood that increase in defect density will only degrade polar 

properties.  

We thus have solid evidence that the reduction of the Curie temperature with reduced 

dopant ionic radius for a given concentration is mainly due to the inhomogeneos strain 

fields introduced dominating over the mechanism that takes into account the local 

chemistry of bonds with dopants in the BFO lattice. The effect of RE dopants in BFO is 

two fold: (i) Dopants with large ionic radii misfit stabilize non-polar phases such as the 

Pbnm structure, leading to a phase mixture and (ii) the polar phase portion of the phase 

mixture will experience strong inhomogeneous strains that, via electrostrictive coupling, 

generate internal electric fields capable of dramatically altering the PE→R3c* temperature, 

a well understood phenomena in ferroelectric crystals. The sensitivity of the structure and 

subsequent Curie temperatures being a function of dopant radii can actually be used as a 

design parameter especially when considering film growth on misfitting substrates. The 

magnetic substructure of BFO has not been considered as a parameter in discussing 

changes of the structure as the changes in magnetic ordering at temperatures near RT will 

be negligible due to the very weak magnetostriction. We also did not see a visible signal to 

judge as the paramagnetic-antiferromagnetic transition around the reported Neel 

temperature for pure BFO except a gradual slope change. Moreover, had extensive doping 

with Gd and Sm been capable of inducing a detectable magnetic transition above RT in 



51 

 

DTA, we would have seen it in ≥ 5% Sm or Gd doped powders, which does not reveal 

itself. Thus, the detectable peaks in our DTA can be concluded to arise from the structural 

distortions leading to transitions between various space groups.  
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Chapter 4.  CONCLUSIONS 

 

 

We studied the effect of A-site dopant radius on the phase transition temperatures and 

structure of BiFeO3, a magnetoelectric material attracting intense attention. While several 

works exist in literature on dopant effects, our main point in revisiting dopant effects in 

BFO was to bring an explanation of the serious impact of dopant radius on phase transition 

temperatures and lattice structure in the light of experimental data. RT XRD θ-2θ results 

reveal that the peaks tend to broaden, merge and shift to higher angles faster for dopants 

with larger ionic radius misfit with Bi+3, implying a shrinkage of the unitcell and a 

tendency towards a “less distorted rhombohedral” which we named as R3c*. In fact, 

Rietveld analysis indicate the presence of a R3c* + Pbnm phase mixture for Sm and Gd 

doped films above 5% and La above 10%, with the Sm and Gd doped powders 

experiencing the strongest decrease in the transition temperatures. Our DTA data 

interpreted together with the RT XRD and Raman Spectroscopy results point out to the 

presence of dopant depletion in some grains because of the all-time present signal in the 

vicinity of 800°C followed by another signal that shifts faster to lower temperatures 

accompanied by intensity loss and smearing upon increase in dopant concentration. This 

shift along with intensity loss and smearing is much stronger in Sm and Gd doped powders. 

We proposed a sequence of phase transitions that can consistently explain the experimental 

data and that the Pbnm phase might be the dominant “background” phase in the phase 

mixtures for high concentration of dopants. Therefore, doping with elements having a 

smaller ionic radius than Bi+3 can stabilize the Pbnm phase even down to RT with some 

remnant R3c with a reduced transition temperature. The fraction of “non-Pbnm” grains in 

doped powders have a reduced PE→R3c transition mostly because of the inhomogeneous 

strains associated with dopant sites that are still expected to be present. Smaller ionic radius 

of a dopant creates steeper strain gradients that are capable of creating stronger internal 

electric fields that is expected to reduce the PE→R3c transition more rapidly along with a 

strong smearing as also observed in our doped powders. A possible size effect due to 

inhibited grain growth in doped powders was consistently eliminated as a mechanism 

behind reduction in the transition temperatures or even disappearance of structural 
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transitions. Doping with rare earth elements to enhance dielectric and magnetic properties 

has been a common practice in BFO but our work draws attention to the possible strong 

impact of structural inhomogeneities and sensitivity of BFO to such formations and that 

local bonding environments cannot be the sole cause of degradation in ferroelectric 

behavior. Despite the care shown in preparation of homogeneous precursor solutions, one 

may end up with inhomogeneous structures with locally varying properties. Comparing our 

results with that of other groups who have carried out similar experiments with RE dopants 

but on samples synthesized through a different route, we find rather different phases and 

phase transition characteristics, pointing out the significance of the synthesis method on 

properties. We also hope that our results can motivate detailed atomistic computational 

analysis of dopant effects with particular emphasis on the inhomogeneous strain effects on 

electronic structure of BFO. 
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