
 

 

 

 

 

 

 

 

NETWORK TOPOLOGIES FOR LONG ARMATURE LINEAR MOTORS 

 

 

 

 

by  

KUBRA KARAYAGIZ 

 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences 

in partial fulfillment of  

the requirements for the degree of  

Master of Science 

 

Sabanci University 

Fall 2013 

 

 

 

 

 



 

 

 

 

 

 

 

 

NETWORK TOPOLOGIES FOR LONG ARMATURE LINEAR MOTORS 

 

 

 

APPROVED BY  

 

 

 

 Assoc. Prof. Dr. Ahmet ONAT  ……………………………………….. 

 (Thesis Supervisor) 

 

 Assoc. Prof. Dr. Ayhan BOZKURT  .………………………………………. 

 

 Assoc. Prof. Dr. Ozgur ERCETIN  .………………………………………. 

 

 

 

DATE OF APPROVAL: ………………………………………. 

 

 

 



iii 

 

 

 

 

 

 

 

Acknowledgments 

 

 

First, I would like to express my special appreciation and thanks to my supervisor Ahmet 

Onat for his guidance, support and good nature. I feel fortunate to have had the opportunity to 

work with such a kind and considerate supervisor. 

Secondly, I would like to thank my friends in Sabanci University for their support and 

interior friendship. 

Next, I would also like to thank my family, especially my mother and my father for all of 

their sacrifices. Words cannot express how grateful I am to them. And finally, I would like to 

express my gratitude to my husband, Omer, not only for his encouragement but also for his 

patience and understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

Abstract 

 

Long armature linear motor is a type of distributed control system including a large number 

of motor drivers implemented in a distributed fashion.  

In such a system, data exchange between the motor drivers must be accurate and lossless. 

However, delays and packet losses can be constant, bounded, or even random, depending on 

the network protocol adopted. Although it is hard to avoid delay and packet loss problems in 

communication networks, it is possible to decrease these disadvantages to the minimum level 

by choosing a suitable communication protocol and a network topology. 

In this thesis, CAN protocol that is a reliable real-time communication protocol for control 

systems is used and two different network topologies entitled as topology A and topology B 

are introduced for the communication of motor drivers of long armature linear motor.  

Topology A is a hierarchical system composed of motor drivers, a main computer that 

coordinating the overall motion of the linear motor movers (with connected elevator cars), 

and gateway computers in between. The unit that is composed of one gateway and a fixed 

number of motor drivers connected to it is called one “motor section”. The structure of this 

topology requires using gateway computers to communicate with adjacent motor sections 

while the mover is passing the borders of motor sections. Due to this, an extra delay occurs in 

the communication of the adjacent motor sections. 

Similar to topology A, topology B is a hierarchical system composed of motor drivers, a main 

computer and gateway computers as well.  However, thanks to the structure of this topology, 

gateway computers are not required to be used to communicate with adjacent motor sections. 

The proposed topologies are simulated via TrueTime, a toolbox for simulation of distributed 

real-time control systems. Since the system consists of many computers, it is not easy and 

inefficient to use the standard Matlab graphical user interface based mouse operations to 

create a model. Moreover, while analyzing the topologies, the system parameters must be 

changed several times to observe their effects in the system performance or for other 

purposes. In order to easily create and modify that kind of large and complicated models, we 

use a new Matlab script based method to build Simulink models of large repetitive systems. 

The advantages and disadvantages of both topologies are discussed and their performances 

are evaluated based on comparisons in delay amount. The results indicate that compared to 

topology A, topology B has a better performance with less delay as expected. Therefore, 

topology B is suggested for the communication of motor drivers of long armature linear 

motor. 

 



v 

 

 

 

 

 

Özet 

 

Uzun armatürlü lineer motor, büyük sayıda motor sürücü içeren bir çeşit dağıtık kontrol 

sistemidir.  

Bu gibi sistemlerde, motor sürücüler arasındaki bilgi alışverişi doğru ve kayıpsız olmalıdır. 

Fakat, kullanılan ağ protokolüne göre sabit, sınırlı veya rastgele zaman gecikmeleri ve 

kayıplar oluşabilmektedir. Haberleşme ağlarında, bu gibi zaman gecikmesi ve paket kaybı 

problemlerinden tamamen kurtulmak mümkün olmasa da, seçilen uygun bir haberleşme 

protokolü ve ağ topolojisine göre bu dezavantajları en düşük seviyeye indirmek mümkündür. 

Bu çalışmada, uzun armatürlü lineer motorun motor sürücülerinin haberleşmesinde kontrol 

sistemleri için güvenilir bir gerçek-zamanlı haberleşme protokolü olan CAN protokolü 

kullanılmış, topoloji A ve topoloji B isimli iki farklı ağ topolojisi önerilmiştir. 

Topoloji A, motor sürücüleri,  ana bilgisayar ve bu ikisi arasındaki gateway bilgisayarlardan 

oluşan hiyerarşik bir sistemdir. Bir gateway bilgisayar ve belirli sayıda motor sürücüden 

oluşan bölüme bir “motor bölümü” denilmektedir. Bu topolojinin yapısı, itici motor 

bölümlerinin sınırlarını geçerken, komşu motor bölümlerle haberleşmek için gateway 

bilgisayarları kullanmayı gerektirir. Buna bağlı olarak, komşu motor bölümler ile 

haberleşmelerde daha fazla zaman gecikmesi meydana gelmektedir.. 

Topoloji A‟ya benzer olarak, topoloji B de motor sürücüler, ana bilgisayar ve gateway 

bilgisayarlardan oluşan hiyerarşik bir sistemdir. Fakat, bu topolojinin yapısı sayesinde, 

komşu motor bölümlerle haberleşmelerde gateway bilgisayarların kullanılması 

gerekmemektedir. 

Amaçlanan topolojiler, gerçek-zamanlı dağıtık kontrol sistemlerinin simülasyonu için 

geliştirilmiş olan TrueTime yazılımı ile simüle edilmiştir. Sistem pek çok bilgisayardan 

oluştuğu için, simülasyon modelini oluştururken, standart grafiksel kullanıcı arayüzüne dayalı 

Matlab işlemlerini kullanmak kolay değildir ve verimsiz bir metottur.  Ayrıca, topolojileri 

analiz ederken, sistem parametrelerinin performansa etkisini gözlemlemek için veya başka 

amaçlarla pek çok defa değiştirilmeleri gerekmektedir. Bu gibi büyük ve karmaşık modelleri 

kolaylıkla oluşturmak ve değiştirmek için, Matlab kodlarına dayalı bir metot kullanılmıştır. 

Her iki topolojinin avantaj ve dezavantajları tartışılmış ve zaman gecikme miktarları 

kıyaslanarak da performansları değerlendirilmiştir. Sonuçlar, beklenen gibi topoloji B‟nin 

daha iyi sonuçlar verdiğini göstermiştir. Bu yüzden, uzun armatürlü lineer motorun 

haberleşmesi için topoloji B ağ yapısı önerilmektedir 



vi 

 

 

Table of Contents 
 

Acknowledgments .......................................................................................................... iii 

Abstract ............................................................................................................................ iv 
Özet ................................................................................................................................... v 
List of Figures ............................................................................................................... viii 

1     Introduction and Background .................................................................... 1 

2     Communication Protocols Suitable for Real Time Communication ...... 6 

2.1. Contention-Based Protocol ......................................................................................... 6 

2.1.1. CSMA....................................................................................................... 6 

2.1.1.1. CSMA/CD ................................................................................. 6 

2.1.1.2. Virtual-Time Carrier-Sensed Multiple Access (VTCSMA) ...... 6 

2.1.2. Window Protocol...................................................................................... 7 

2.2. Token-Based Protocols ............................................................................................... 8 

2.2.1. IEEE 802.5 Token-Ring Protocol ............................................................ 8 

2.2.1.1. Timed-Token Protocol ............................................................... 9 
2.3. The Polled Bus Protocol ........................................................................................... 10 
2.4. CAN Bus Protocol .................................................................................................... 11 

2.4.1. Data Transmission .................................................................................. 12 

3     Proposed Topologies and Protocols .......................................................... 13 

3.1. Topology A ............................................................................................................... 13 

3.1.1. Suitable Communication Networks for Topology A ............................. 16 

3.1.2. Advantages of the Method ..................................................................... 16 

3.1.3. Disadvantages of the Method ................................................................. 16 

3.2. Topology B ............................................................................................................... 16 

3.2.1. Suitable Communication Networks for Topology B ............................. 19 

3.2.2. Advantages of the Method ..................................................................... 19 

3.2.3. Disadvantages of the Method ................................................................. 19 

4     Simulation Models and Environment ...................................................... 20 

4.1. Truetime .................................................................................................................... 20 

4.1.1.Truetime Kernel Blocks .......................................................................... 21 

4.1.2. Truetime Network Block ........................................................................ 24 

4.1.2.1. CSMA/CD (Ethernet) .............................................................. 25 
4.1.2.2. CSMA/AMP (CAN) ................................................................ 25 

4.2. Building Simulink Models using MATLAB Scripts ................................................ 25 

4.3. Scripts Used in TrueTime Blocks ............................................................................. 30 



vii 

 

4.3.1. Writing the Initialization Function ......................................................... 31 

4.3.2. Writing the Task Functions .................................................................... 34 

 

5     Simulation Results ..................................................................................... 36 

5.1.Topology A ................................................................................................................ 37 

5.2. Topology B ............................................................................................................... 43 

6     Conclusions ................................................................................................. 47 

7     Appendix ..................................................................................................... 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

List of Figures 

 

1. A networked control system……………………...........................................................4 

2. VTCSMA Protocol…………………….........................................................................7 

3. Token Ring Protocol………………...............................................................................8 

4. Token Ring Send Algorithm....………………………………………………...............9 

5. Flowchart of the timed-token protocol after the second cycle........................................10 

6. Topology A.............………………...……………………………………....………….15 

7. Topology B................……………………………………………………....………….18 

8. The TrueTime Block Library…………………………………………………………..21 

9. The TrueTime Kernel Function Block Parameters………………………………….....22 

10. The TrueTime Wired and Wireless Network Function Block Parameter.........………..24 

11. Message Transmission Between the Motor Drivers of the Adjacent Motor Sections 

(Topology A)...................................................................................................................38 

12. Message Transmission Between the Motor Drivers of the Adjacent Motor Sections 

 (In detail) (Topology A).………………………………………………………………39 

13. Motor Section 1 Delay-Time Graph (Topology A)..………………….………………..40 

14. Delay Distribution for Motor Section 1 (Topology A)..........…………………………..40 

15. Delay Distribution for Motor Section 2 (Topology A)..………………………………..41 

16. Delay Distribution for Motor Section 3 (Topology A)..........…………………………..41 

17. Delay Distribution for Motor Section 4 (Topology A).……….………………………..42 

18. Motor Section 1 Delay-Time Graph (Topology B)...………………….………………..43 

19. Delay Distribution for Motor Section 1 (Topology B)..………….……………………..43 

20. Delay Distribution for Motor Section 2 (Topology B)..………….……………………..44 

21. Delay Distribution for Motor Section 3 (Topology B)..………….……………………..44 

22. Delay Distribution for Motor Section 4 (Topology B)...………………………………..45 

 

 

 

 

 



1 

 

 

 

 

 

Chapter 1 

 

Introduction and Background 

 

 

Thanks to the improvements in building technology, high-rise buildings can be constructed 

successfully. However, traditional cable driven elevators are not desirable in such buildings . 

The most important elevator problems encountered in such high-rise buildings are that the 

weight of the traction cable limits the payload and its elasticity degrades control performance . 

Since only one elevator car can use the hoist way, transportation from the ground to the top 

floors takes a long time causing a high passenger waiting time and its elasticity degrades 

control performance [1], [2], [3]. A solution to these problems is using multiple cars in the 

same hoist-way. However, traditional cable driven elevators have some limitations on the 

number of cars placed in the same hoist way; because of the cables, it is not mechanically 

possible to include several elevator cars in the same hoist way. However, for obtaining 

significant improvements over single–car systems, we should use more than two cars in the 

same hoist way spanning several hundred meters; the height of the building, which can be 

realized using elevator cars being directly driven by linear motor. [2], [1], [3], [7], [8].  

In multi–car elevator systems, since the travelling cable is undesirable the elevator car must 

be free of any connections, mechanical or electrical. This causes some interesting design 

requirements on safety devices, position measurement, supplying power, communication of 

call buttons which must all be implemented externally, from the stator side. [10], [11], [12]. 

Because of these limitations, the design must be a long armature type where the stator 

contains the coils and the mover contains permanent magnets. 

Since the propulsion method is the core component of new multi-car elevator (MCE) systems, 

it needs to be designed to manage not only lifting the elevator car, but also several other 

requirements. Therefore, selection and design of the linear motor has a big importance. In 

addition to the major properties such as power consumption, torque and size additional 

requirements for mechanical and control purposes, must be included as design criteria. 

In order to satisfy all requirements, the linear motor that will be used for MCE systems must 

have these properties: high thrust force, low force ripple, brake operation, spanning whole 

hoist way, independent control of sections, unlimited length, modularity, position sensing, 

power and signal transfer. Our group member Ender Kazan discussed all these properties in 

detail and proposed a linear motor meeting all the requirements. In this research, we will only 



2 

 

discuss about the properties related to our studies among all the properties mentioned above. 

These are: 

 Spanning whole hoist way – Since traction cable is absent, it is not possible to transfer 

lifting force through the hoist way. Instead of ropes, the linear motor mover will 

transfer that force directly. So that, we need a motor spanning the whole hoist way. 

 Independent Control of Sections – MCE systems require independent control. 

Therefore, at least one mover for each elevator car is needed. However, it is not 

feasible to build different actuators for each car. In order to control each car 

independently, the motor can be divided into different sections electrically and each 

section is assigned to different cars. Therefore, each car can be controlled 

independently from the section assigned to it.  

 Unlimited Length - The motor should not limit the height of the building. Therefore, 

this criterion also must be taken into consideration while the motor is designing. 

 Modularity – Since the linear motor for MCE systems is constructed for very high 

buildings, it is not possible to construct it at once. Therefore, the motor must be 

designed as parts and constructed part by part to be assembled into each other within 

the hoist way. Moreover, if a replacement of a part is needed, it is possible to replace 

only the related module can be replaced instead of whole motor.  

 Power and Signal Transfer – Cables for power or signal transfer to elevator car must 

be removed. In this case, the motor itself should be used for power and signal transfer 

to elevator car. 

 Position Sensing – In order to control and drive the motor accurately, feedback from 

the system is needed. However, the position measurement method should not be based 

on any cable travelling with the elevator car. Therefore, it is not suitable to use 

conventional position encoders for position sensing. The motor itself should be able to 

measure the position of the car. 

 

In order to design a linear motor with a good performance, all these properties must be 

examined in detail. Some of these properties have been studied before by our group members. 

A significant research on position sensing methods has been done by one of our group 

member Cagri Gurbuz. He investigated position sensing methods and introduced a method 

called as the linear-motor active position sensing method (LIMAP) having the best 

performance for the linear motors used in MCE systems up to now. This research discussed 

on the following subjects. It is desired to drive the motor without any electrical connections 

between the mover and stator. Therefore, there are some limitations on safety devices, 

supplying power and position measurement [10], [11], [12]. Especially, limitations on 

position measurement complicate to drive the RLMs. In this case, sensorless motor drive 

method can be a solution to this problem. Sensorless motor drive is usually realized by 

measuring the electrical variables of the motor [13], [14]. However, these methods do not 

work in low speeds because of the magnitude of back-EMF will be very small to provide 

enough voltage value compared to the noise. Therefore, incremental encoders are generally 

used for measuring the position. However, in this method the active part of the encoder is 

attached to the mover and cables of the encoder are travelling with the mover. This is an 

undesirable way in MCE systems. Therefore, a new method, that is sensitive to initial 



3 

 

position called linear drive with passive vehicle, was proposed. Although the previous studies 

[15], [16], [17], [18] on position sensing with the use of passive lightweight vehicles attached 

to the mover are accurate enough for linear motors, these methods contradicts with some 

constraints of the linear motor designed for MCE. Therefore, our group member Cagri 

Gurbuz proposed the idea of the passive position sensing for ropeless linear motors, which 

utilized its own stator. In this method, it is taken advantages of the segmented construction of 

the linear motor.  

Segmented construction provides separated segments to do different works. During normal 

drive operation, while active segments are used for motor driving, the passive segments can 

be used for other operations, such as braking, signal transfer or position sensing. The position 

measurement method called Linear Motor Active Position Measurement Method (LIMAP), 

introduced by Cagri Gurbuz, aims to use the passive segments of the stator, for position 

sensing of the mover. The sensing is based on the principle of measuring the variation of the 

mutual inductance between the coils of the stator caused by a magnetic shunt which is fixed 

at a predetermined distance from the mover [19]. By combining the proposed position 

sensing method with sensorless drive method, it is aimed to obtain a linear motor completely 

ropeless and working independently from the zero velocity.  

The working principle of LIMAP system is explained as follows. The motor coils are placed 

on the stator. The stator is electrically divided into segments and each segment has its own 

motor driver and controller. The magnetic shunt used for position measurement and the 

mover are mounted on both sides of the stator and connected to each other mechanically. The 

position of the magnetic shunt is calculated by the drivers close to the shunt during the 

movement. Since the distance between the magnetic shunt and the mover is known, it is 

possible to determine the position of the mover from measured position of the magnetic shunt. 

Finally, the calculated position value is sent to the other drivers which are used for motor 

driving in order to continue the movement. The method explained above requires a 

communication between the motor drivers for transfering the position information. Moreover, 

it is also necessary for commanding target position, velocity etc. of the mover and other 

purposes.  

The control method that is applied to the linear motor must be designed as enabling the 

movers to move independently. Also, it must be independent of the motor length. The 

simplest method to achieve that is to implement a centralized control scheme where each 

module is directly connected to a central controller. However, this method can be applied to a 

limited number of movers in the system. Therefore, control of the movers should be shared 

between local controllers instead of one main controller. In this approach, the motor modules 

are driven separately with a certain coordination. While a mover is passing a certain part of 

the motor, relevant segments must be allocated and deallocated for a predetermined duration 

to avoid collisions. While the motor is driven, the synchronization of the electrical phases of 

several modules can cause a problem in terms of timing requirements. Especially the adjacent 

drivers have more time restrictions since the duty of motor driving is shared between the 

adjacent drivers. If a time delay occurs between these adjacent drivers, the electrical signal 

can not transmit well and this causes oscillation and driving of the mover improperly. In 

order to solve this problem, a real-time computer network is used so that travelling of the 

movers can be coordinated by distributed control [20].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Distributed control systems include a set of control systems implemented in a distributed 

fashion using an appropriate communication network and protocol. A networked control 

system seen in Figure 1 is a control system whose functions are shared between separate 

modules each implemented in a distributed fashion on separate computer nodes connected by 



4 

 

a real-time computer network. Each node in the computer network must perform 

computations in a bounded amount of time to meet sampling constraints of the control system. 

The computing system and the communication network have several features designed to 

satisfy the requirements and constraints of the control system. A control system is 

characterized by one or more feedback control loops, and associated control algorithms, 

sensors, and actuators. The various controllers, sensors, and actuators can take place in 

different nodes of the communication network and communicate among one another using 

the network services. Thus in a distributed control system the applications involve controllers, 

sensing functions, actuation functions, and communication functions in the context of control 

loops. 

 

Figure 1. A networked control system 

 

In a communication network managing traffic, timely execution of tasks and delivery of 

messages within their deadlines are of prime importance. These time constrained messages 

are the basis for applications that operate in a real-time environment.  

Besides timely delivery of the messages, another important requirement in such a system is 

data exchange between the physical process and the controllers to be accurate and lossless. 

However, transmission delays and packet losses can be constant, bounded, or even random, 

depending on the network protocol adopted. Although they are hard to avoid in 

communication networks, it is possible to decrease these disadvantages to the minimum level 

by choosing a suitable communication protocol and a network topology. 

In this research, our aim is to find a network topology suitable for the long armature linear 

motor as a distributed real time system and evaluate their performance. Two different 

topologies are introduced and simulated in TrueTime that is a Matlab/Simulink-based 

simulator for networked and embedded control systems. The advantages and disadvantages of 

both topologies are discussed and their performances are evaluated according to the 

Continuous Plant

Sensor Node Actuator Node

NETWORK

Controller Node



5 

 

simulation results. Moreover, the suitable communication protocols are introduced and 

applied in TrueTime system models. 

The work done in this thesis is laid out as follows. Firstly, in Chapter 1, some information 

about the background of the project is presented and the motivation of our study is declared. 

Later, in Chapter 2, communication protocols suitable for real time communication are 

explained. In Chapter 3, proposed topologies and protocols are introduced and their 

advantages and disadvantages are discussed. In Chapter 4, after background information on 

TrueTime is provided, the steps for creating a script-based TrueTime simulation models are 

explained. In Chapter 5, the simulation results of the proposed topologies are presented and 

performances are compared. Chapter 6 summarizes and concludes the thesis and indicates 

possible future works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

 

 

 

 

Chapter 2 

 

Communication Protocols Suitable for Real Time 

Communication 

 

2.1. Contention-Based Protocol 

In contention based protocols, there is no centralized control and when a node wants to send 

data, it competes for gaining control of the medium. The main advantage of contention based 

protocols is their simplicity. They can be easily implemented in each node. The techniques 

work efficiently under light load, but performance falls under heavy load [21]. 

2.1.1. CSMA 

Carrier sense multiple access (CSMA) is a probabilistic media access control (MAC) [22]. In 

this protocol, before transmitting data, a node first listens to the medium to check whether 

another transmission is in progress or not. The node starts sending only when the channel is 

free, that is there is no carrier. That is why the scheme is also known as listen-before talk. [21] 

2.1.1.1. CSMA/CD 

CSMA/CD is used to improve CSMA performance by terminating transmission as soon as a 

collision is detected. In this protocol, nodes transmit only when they detect that the channel is 

idle. If more than one node starts to transmit at about the same time, a collision of packets 

occur. In this case, the transmissions have to be aborted and then retried. 

2.1.1.2. Virtual-Time Carrier-Sensed Multiple Access (VTCSMA) 

VTCSMA is designed to avoid collision generated by nodes transmitting signals 

simultaneously, used mostly in Hard Real-Time systems. The VTCSMA algorithm uses two 

different clocks; a real-time clock and a virtual-time clock, at each node. If the channel is idle, 

VT clock runs. If it is behind the real-time clock, it runs at a faster rate. When a node 

generates a message, its time is stamped with the (real) time of its generation. In order to 

transmit a message, the virtual clock reading should reach the time stamp of a message. 

 

http://en.wikipedia.org/wiki/Probabilistic
http://en.wikipedia.org/wiki/Media_access_control


7 

 

 

Figure 2. VTCSMA Protocol   

In order to satisfy soft real-time constraints, latest time can be used to send as the time stamp. 

Whenever the bus becomes idle virtual clock is reset to real clock and then runs at a faster 

rate. This results in a significantly improved probability of missing message deadlines and 

results in a network-wide minimum-laxity-first policy.  

 

2.1.2. Window Protocol 

Similar to the VTCSMA protocol, the window protocol is based on collision sensing and it 

can not be guaranteed that messages will be transmitted in time to meet their deadlines. 

Therefore, this protocol is only suitable for soft real-time systems. 

The system consists of a set of nodes connected on a bus like VTCSMA. In order to receive 

any messages that may be addressed to a node, each node continuously monitors the bus. All 

activity on the bus is equally visible to all the nodes. Therefore, it can be assumed that each 

node knows when multiple simultaneous transmissions collide or when a transmission has 

succeeded, even if the transmissions in question does not originate from or not destinated for 

that node. Thus, for synchronizing the actions of the nodes, events on the bus become a 

mechanism. 

The protocol owes its name to the window maintained at each node. The window is a time 

interval, and the windows of all the nodes are identical. The packet is eligible to be 

transmitted when the latest-time-to-transmit (LTTT) of a packet falls within the window and 

the channel is idle. If a node has more than one packet that are eligible for transmission, one 

of them is chosen based on some criterion (e.g. LTTT).  [23] 

 

 

8      16        24     32      40       48     56     64     72       Real Clock

8

24

32

64

Virtual Clock

16

40

48

56

72



8 

 

2.2. Token-Based Protocols 

A node must hold the token to transmit its packets on the network. A token is a grant of 

permission to a node to transmit. When the node with the token completes its transmission, it 

surrenders the token to another node. 

The ratio of the end-to-end delay time to the time taken in putting out a packet on the ring is 

large in optical networks. Therefore, token-based protocols are more suitable for optical 

networks than collision-sensing. 

 

2.2.1. IEEE 802.5 Token-Ring Protocol 

Token Ring is a LAN protocol that is defined in the IEEE 802.5. All stations are connected in 

a ring network and each station can receive transmissions from only its instant neighbor. A 

token that circulates around the ring gives the permission to transmit. 

IEEE 802.5 Token Ring protocol is originated from the IBM Token Ring LAN technologies. 

Both of them are based on the Token Passing technologies. They generally compatible with 

each other but differ in minor ways. 

 

                                                   Figure 3. Token Ring Protocol 

 

Token-passing networks move a small frame, called a token, around the network. Possession 

of the token grants the right to transmit. If a node receiving the token does not have any 

information to send, it seizes the token, alters 1 bit of the token (which turns the token into a 

start-of-frame sequence), attaches the information of wanting to transmit, and sends this 

information to the next station on the ring. While the information frame is circling the ring, 

NODE

NODENODE

NODE

token



9 

 

no token is on the network. It means that other stations wanting to transmit must wait. So that, 

collisions do not occur in Token Ring networks. 

The information frame circulates the ring until it reaches the intended destination station. 

Then the station copies the information for next processing. The information frame maintains 

circling the ring and when it reaches the sending station, it is finally removed. The sending 

station can check the returning frame to see if the frame was seen and copied by the 

destination.  

In contrast with Ethernet CSMA/CD networks, token-passing networks are deterministic. It 

means that it is possible to calculate the maximum time that will pass before any end station 

will be capable of transmitting. This feature and several reliability features make Token Ring 

networks ideal for applications requiring delay to be predictable and robust network operation 

[24]. 

 

Figure 4. Token Ring Send Algorithm 

 

 

2.2.1.1. Timed-Token Protocol 

The timed-token protocol provides each node to be guaranteed timely access to the network. 

It distinguishes between two basic classes of traffic, synchronous and asynchronous. 

Wait for Token

Forward Token

Transmit Frame Set R Bits to 
Frame Priority

Remove Frame After Ring 
Circulation. Pass A and C 
Bits to Higher Layers.

Forward Token

Frame
Waiting For

Transmission?

Token Priority<=
Frame Priority?

Token Hold
Timer Expired?

R Bits <
Frame Priority?



10 

 

Synchronous traffic is the real-time traffic which guarantees that each node can send out up 

to a certain amount of synchronous traffic every T time units. Asynchronous traffic is 

nonreal-time traffic. It takes up any bandwidth left unused by the synchronous traffic. It can 

consist of multiple priority classes [23]. 

 

Figure 5. Flowchart of the timed-token protocol after the second cycle 

 

2.3. The Polled Bus Protocol 

There is a bus network with a bus-busy line. When a processor broadcasts on the bus, it also 

makes this line high. After finishing broadcasting, this line is reset. This can be done very 

easily if the line executes a wired-OR operation. If two signals a and b are put out on the line 

simultaneously, the resultant signal is a OR b. 

The polled bus protocol assumes all the processors to be tightly synchronized. The time axis 

is divided into slots. Each slot duration is equal to the end-to-end propagation time of the bus. 

If a processor wants something to transmit on the bus, it checks the bus-busy line to see if it is 

busy. If the bus-busy line is busy, the processor waits until the transmission ceases. If it is not 

busy, it monitors the bus for one slot. During that slot, if no other processor makes a request, 

the processor starts to transmit a poll number on the bus. This poll number is directly 

proportional to the priority of the message. 

The poll number is transmitted slowly. The transmission rate is one bit per slot. After the 

processor transmits its bit, it monitors the bus to see whether the signal on the bus is the same 

Received token

Transmit up to 
permitted number of
synchronous packets

Is the token
running late?

Transmit up to 
permitted number of
asynchronous packets

Surronder token

No

Yes



11 

 

as its own output. If it is not the same, we can understand that there is higher-priority 

processor asking for access, and this processor drops out of contention and stops transmitting 

its poll number. If the bus signal is the same, the processor proceeds during the next slot to 

broadcast the next bit of the poll number. This process continues until it sends out its entire 

poll number successfully or until it has to drop out of contention [23]. 

 

 

2.4. CAN Bus Protocol 

CAN (Controller Area Network) protocol was developed to be used for conveying 

information between the subassemblies in an automobile, truck or vessel in automotive 

industry. However, since it has a good performance in other process control systems, it is 

used in many other industrial applications.  

CAN is a multi-master broadcast serial bus standard for connecting electronic control 

units (ECUs). Each node can send and receive messages, but not simultaneously. A message 

is composed of an ID (identifier), which represents the priority of the message, and data up to 

eight bytes. In the improved CAN (CAN FD), the length of the data section can be extended 

up to 64 bytes per frame. It is transmitted serially onto the bus. This signal pattern is encoded 

in non-return-to-zero (NRZ) and is sensed by all nodes. 

The devices that are connected by a CAN network are typically sensors, actuators, and other 

control devices. These devices are not connected directly to the bus, but through a host 

processor and a CAN controller. 

If the bus is idle which is represented by recessive level (TTL=5V), any node may begin to 

transmit. If two or more nodes begin sending messages at the same time, the message with 

the more dominant ID (which has more dominant bits, i.e., zeroes) will overwrite less 

dominant IDs of other nodes, so that finally only the dominant message remains and is 

received by all nodes. This mechanism is referred to as priority based bus arbitration. 

Messages with numerically smaller values of IDs have higher priority and are transmitted 

first. 

Each node requires a host processor, CAN controller and a transceiver. Their duties re 

explained below: 

 Host processor: decides what received messages mean and which messages it wants to 

transmit itself. Sensors, actuators and control devices can be connected to the host 

processor. 

 CAN controller: 

 Receiving: the CAN controller stores received bits serially from the bus until a whole 

message is available. Thereafter, it can be fetched by the host processor usually after 

the CAN controller has triggered an interrupt. 

 Sending: the host processor stores its transmit messages to a CAN controller, which 

transmits the bits serially onto the bus. 

 Transceiver: 

https://en.wikipedia.org/wiki/Broadcasting_(computing)
https://en.wikipedia.org/wiki/Serial_communications
https://en.wikipedia.org/wiki/Electronic_control_unit
https://en.wikipedia.org/wiki/Electronic_control_unit
https://en.wikipedia.org/wiki/Electronic_control_unit
https://en.wikipedia.org/wiki/Non-return-to-zero
https://en.wikipedia.org/wiki/Sensors
https://en.wikipedia.org/wiki/Actuators
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Transceiver


12 

 

 Receiving: it adapts signal levels from the bus to levels that the CAN controller 

expects and has protective circuitry that protects the CAN controller. 

 Transmitting: it converts the transmit-bit signal received from the CAN controller into 

a signal that is sent onto the bus. 

The CAN protocol is optimized for short messages. It can carry up to 8 bytes of data in each 

frame. Bit rates can change according to the network length. It can increase up to 1 Mbit/s  at 

network lengths below 40 m. Decreasing the bit rate allows longer network distances (e.g., 

500 m at 125 kbit/s). The improved CAN (CAN FD) extends the speed of the data section by 

a factor of up to 8 of the arbitration bit rate. 

 

2.4.1. Data Transmission 

In CAN protocol, data transmission is based on priority. A message with highest priority will 

succeed, and the node transmitting the lower priority message will sense this and wait. In 

order to decide on the message with higher priority, CAN transmitting data is checked. It 

includes binary numbers 1 or 0. If it is logical 0 then it is dominant bit, if it is logical 1 then it 

is recessive bit. If one node transmits a dominant bit and another node transmits a recessive 

bit then the dominant bit "wins". If any node sets a voltage difference, all nodes will see it. 

Thus there is no delay to the higher priority. 

It uses a CSMA/CD+AMP (Carrier Sense Multiple Access with Collision Detection and 

Arbitration on Message Priority) access protocol. If more than one node start transmitting at 

the same time, there is a priority based arbitration scheme to decide which one will be 

permitted to continue transmitting. The CAN solution to this is prioritized arbitration, making 

CAN very suitable for real time prioritized communications systems. 

During arbitration, each transmitting node monitors the bus state and compares the received 

bit with the transmitted bit. If a dominant bit is received when a recessive bit is transmitted 

then the node stops transmitting. Arbitration is performed during the transmission of the 

identifier field. Each node starting to transmit at the same time sends an ID. When their ID is 

a larger number (lower priority) they will send 1 and see 0, so they cancel transmitting. At the 

end of ID transmission, all nodes with lower priorities back off, and the highest priority 

message gets the chance to be sent. 

 

 

https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Megabit_per_second
https://en.wikipedia.org/wiki/Kilobit_per_second


13 

 

 

 

 

 

Chapter 3 

Proposed Topologies and Protocols 
 

Real-time systems can support the execution of applications with time constraints. There are 

two classifications of real-time systems based on their properties:  soft and hard real-time 

systems. In hard real-time systems, like our linear motor system, delay is accepted only up to 

a certain level. If a deadline is not met, the controlled device may suffer a failure. The 

proposed topologies aim to decrease the delay to the minimum levels to satisfy hard real time 

requirements. Two different topologies are introduced and their advantages and 

disadvantages are discussed in this section.  

3.1. Topology A  

The structure of the topology can be seen in Figure 6. It is a hierarchical system composed of 

motor drivers, a main computer that coordinating the overall motion of the linear motor 

movers (with connected elevator cars), and gateway computers in between. The “Main 

computer” labeled as „M‟  is connected to “gateway computers” labeled as „G‟ and gateway 

computers are connected to “motor drivers” labeled as „MD‟. The unit that is composed of 

one gateway and a fixed number of motor drivers connected to it is called one “motor section” 

shown in a grey colored square. There are several different types of networks in the system. 

We can classify them into three groups: one is between main computer and gateway 

computers labeled as “network1”, another one is between a gateway computer and motor 

drivers labeled as “network2”, and the last one is between adjacent gateway computers 

labeled as “network3” in the Figure 6. As seen in the Figure 6, main computer is only 

connected to network1, motor drivers are only connected to network2 motor of their section. 

Unlike the main computer and motor drivers, gateway computers are connected to at least 

three types of networks, network1, network2 and one or two different network3. While inner 

gateways are connected to two different network3, first and last gateways are connected to 

only one network3 based on their positions in the system.  

The tasks and real-time requirements of the three types of computers are divided in the 

following way: 

 Main computer's job is to set the position reference and generate the motion profile of the 

mover and communicate this to motor drivers through movers, when a passenger pushes 

the button to call the elevator. In order the mover to arrive to the correct floor, the main 

computer sends the necessary messages to the related motor drivers. 



14 

 

 Gateway computers are responsible for motion control, calculation of current reference 

based on position measurement sent from motor drivers. Besides data transfer from main 

computer to motor drivers, gateway computer has an important role that is receiving the 

position information from its own motor drivers and sending to motor drivers of adjacent 

group or vice versa. This data transfer is required to communicate with adjacent motor 

sections while the mover is passing the borders of the groups. 

 Motor  drivers have two different tasks during position measurement  and  during  driving. 

 During position measurement: generation of sinusoidal coil excitation signal, 

measurement of induced coil voltages.  

 During driving: current control of motor and similar low level control and 

measurement duties. Motor drivers receive the position information from analog 

input and send to the gateway computers for necessary calculations. In order to 

drive the motor, adjacent drivers have to communicate. While the mover is 

passing through one motor section, motor drivers of that section can easily 

communicate through their own group network. However, while crossing from 

one motor group to the other, they communicate via gateway computers as 

explained above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

Figure 6. Topology A 

M

G

G

G

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

Motor Section

G



16 

 

 

 

 

3.1.1. Suitable Communication Networks for Topology A 

Since the linear motor is designed for high rise buildings, the communication protocols must 

be chosen to meet its requirements. Considering that requirement as well, the communication 

protocol for network 1 is chosen as Ethernet, with a high communication and addressing 

capacity that is sufficient for a large number of gateway nodes, and no hard real-time 

capability requirements. Network 2 and network 3 can be simpler but with low latency and 

high reliability. Therefore, CAN protocol is suitable for these networks. 

3.1.2. Advantages of the Method 

Motor drivers can be simple computers. They can be used either as position sensors or 

inverters with current regulation. If a motor driver is used for position measurement, it will 

only produce sinusoidal excitation voltage for the LVDT on one phase and send the measured 

position value to neighboring drivers. However, while the mover is passing the section 

borders gateway computers must be used to relay the position information, since the position 

measurement and drive tasks are shared between nodes of adjacent sections.  

3.1.3. Disadvantages of the Method 

Due to the structure of topology A, extra delays occur in the last motor drivers of each motor 

section. These extra delays in the last motor drivers may cause torque fluctuations and 

vibrations while the mover is passing the motor sections. Moreover, since gateway computers 

are used for the communication of the adjacent motor drivers, if one of these gateway 

computers breaks down, problems in driving and controlling the motor will be encountered. 

3.2. Topology B 

The structure of the topology can be seen in Figure 7. “Main computer” labeled as „M‟  is 

connected to “gateway computers” labeled as „G‟ and gateway computers are connected to 

“motor drivers ” labeled as „MD‟. The unit that is composed of a fixed number of motor 

drivers is called one “motor section” shown in a grey colored square. As distinct from 

topology A, a gateway computer to relay the information between motor sections is not 

required. Here, this task is carried out by a particular motor driver. So, in this topology the 

motor drivers are more complex than the motor drivers of topology A. In topology B, motor 

sections communicate directly through the common networks shared with the adjacent motor 

sections without any need for such gateway computers. In this topology, gateway computers 

are used for relaying messages from main computer to motor drivers and for necessary motor 

control calculations. 

There are two types of networks in the system: one is between main computer and gateway 

computers labeled as “network 1”, another one is between motor drivers of a motor section 

and gateway computers labeled as “network 2” seen in Figure 7. Main computer is only 

connected to network 1,  gateway computers are connected to network 1 and related network 

2, motor drivers are connected to related network 2 both from right and left sides. The tasks 

and real-time requirements of the three types of computers are divided in the following way: 



17 

 

 Main computer generates position reference and motion profile and sends to the related 

motor drivers. This is necessary when a passenger pushes the button to call the elevator. 

In order for the mover to arrive at the correct floor, the main computer sends the 

necessary messages to the related motor drivers through network 1. 

 Gateway computers relay messages from main computer to motor drivers and do the 

necessary motor control calculations. 

 Motor drivers of this topology have the same responsibilities with the motor drivers of 

topology A, such as generation of sinusoidal coil excitation signal, measurement of 

LVDT position sensor, current regulation and similar low level control and measurement 

duties. These duties are explained in detail in Section 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



18 

 

 

 

     Figure 7. Topology B 

 

M

G

G

G

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

Motor Section



19 

 

3.2.1. Suitable Communication Networks for Topology B 

Similar to topology A, a network with a high communication and addressing capacity that is 

sufficient for a large number of motor drivers and no real-time capability is required for 

network 1. Therefore it is chosen as Ethernet. Network 2 is chosen as CAN, a simpler and 

low latency network. 

 

3.2.2. Advantages of the Method 

The main advantage of this topology compared to topology A is the elimination of the time 

delay that is caused by using the gateway computers. Using the gateway computers makes the 

motor driver tasks easier since most of the complex calculations are achieved by the gateway 

computers. However, in order for the motor drivers to communicate with the main computer 

and the other motor sections, the only way is using gateway computers. And, since the 

gateway computers have to perform many tasks, there may be traffic and time delays may 

occur. Actually, the process of sending the messages using gateway computers causes time 

delays itself even if there is no traffic in the system. For some systems, time delays can be 

acceptable, but since the motor driving and control is a hard real time process time delays are 

more crucial and are not acceptable if they are more than a limit. In order to avoid time 

delays caused by using the gateway computers, topology B uses the motor drivers themselves 

for communicating with the other motor sections. 

 

3.2.3. Disadvantages of the Method 

In topology B, we observe uniformly distributed delays in the communication of the motor 

drivers. Although they do not cause torque fluctuations and vibrations in the system like seen 

in topology A, these uniform delays lead to deceleration in the system. However, since it is 

hard to avoid delay problem in communication networks, it is acceptable. 

 

 

 

 

 



20 

 

 

 

 

 

 

Chapter 4 

Simulation Models and Environment 
 

 

Networked control systems are hybrid systems where continuous time-driven dynamics and 

discrete event-driven dynamics interact. Delays can lower the performance. Software tools 

are needed to analyze and simulate how the  timing affects the control performance [26]. 

Using a simulation tool during the development stage is very helpful for such systems. It is 

required to simultaneously simulate the computations within the nodes, the communication 

between the nodes, the sensor and actuator dynamics [27].  

 

4.1. Truetime 

TrueTime is a Matlab/Simulink-based simulator for networked and embedded control 

systems developed at Lund University since 1999. The simulator software is composed of  a 

Simulink block library seen in Figure 5 and a collection of MEX files. The kernel block 

(computer node) simulates a real-time kernel on an embedded computer executing user-

defined tasks and interrupt handlers. The network blocks allow kernel blocks to communicate 

over simulated wired or wireless networks [29]. The TrueTime blocks can be connected with 

ordinary Simulink blocks to create a real-time control system. The main advantage of 

TrueTime is the possibility of co-simulation of the interaction between the real-world 

continuous dynamics and the computer architecture in the form of task execution and 

network communication. 

 

The Truetime block library consists of the TrueTime Kernel blocks simulating real-time 

kernels that execute user defined tasks and interrupt handlers, the Network blocks enabling 

nodes to communicate over simulated network, a couple of standalone interface blocks and 

the Battery block that allows modeling of battery driven operation. Before a simulation can 

be run, it is necessary to initialize kernel blocks and network blocks, and to create tasks, 

interrupt handlers, timers, events, monitors, etc. TrueTime allows the initialization code and 

the code that is executed on the computer nodes during simulation to  be written either as 

Matlab Mfiles or as C++ code. 

 

 



21 

 

 

Figure 8. The TrueTime Block Library 

 

4.1.1.Truetime Kernel Blocks 

 

A computer node that is simulated as TrueTime kernel block has a generic real-time kernel, 

A/D and D/A converters, and network interfaces. An initialization script is used to configure 

the block. In this function, it is possible to create several objects as task, timers, interrupt 

handlers, semaphores, etc. These objects establish the software executing in the kernel block. 

The kernel continuously calls the code functions of the tasks and interrupt handlers. To write 

initialization scripts and the code functions either Matlab m-files code or C++ language may 

be used. The main advantage of using C++ is the speed, but creating m-file code is easier for 

the user. A variety of scheduling policies can be used in TrueTime kernel blocks, these can be 

fixed-priority scheduling, earliest-deadline-first scheduling or custom scheduling policies 

[29]. 

 

The kernel block is configured through the block mask dialog, see Figure 6, with the 

following parameters; name of init function, init function argument, number of analog inputs 

and outputs, number of external triggers, network and node numbers, local clock offset and 

drift. Init function argument is an optional argument to the initialization script. It can be any 

Matlab struct. The following points must be taken into consideration while Network and 

Node Numbers parameter is entered: 

 

 If there is only one network in the simulation model, there is no need to specify the 

network number. It is considered as “1” that is the default network number.  

 

An example of this case: [2] 

 

Here number “2” represents the node number. Network number is “1” as default. 

 

 If there is more than one network in the model, the network numbers must be specified as 

well. A node can be connected to more than one network and can take different node 



22 

 

numbers in each of these networks. In order to define a node that is connected to different 

networks, we should specify each network and node numbers of this node. 

 

An example of this case: [1 2; 3 4] 

 

It means the node is connected to network 1 with a node number of 2 and connected to 

network 3 with a node number of 4. 

 

 

 
 

Figure 9. The TrueTime Kernel Function Block Parameters 

 

The task in the kernel is used to simulate periodic and aperiodic activities. A set of 

characteristics and a code function define a task. These characteristics are release time, worst-

case execution time, relative and absolute deadlines, priority, period [30]. An example of the 

definition of a task is shown below: 

 
function controller_init(arg)  
% Distributed control system: controller node 
% Initialize TrueTime kernel 
ttInitKernel('prioDM') % deadline-monotonic scheduling 
% Periodic dummy task with higher priority 
starttime = 0.0; 
period = 0.007; 
data = period*arg; 
ttCreatePeriodicTask('dummy_task', starttime, period, 'dummy_code', data); 
 

The kernel primitive ttInitKernel()initializes a sensor node. The kernel is initialized by 

specifying the number of A/D and D/A channels and scheduling policy. The built-in priority 

function prioFP specifies fixed-priority scheduling. Rate monotonic prioRM, earliest deadline 

first prioEDF, and deadline monotonic prioDM scheduling are additional predefined 

scheduling policies [26]. 

 

Interrupts can be internal and external interrupt. The Truetime blocks are event-driven and 

support external interrupt handling. An external interrupt is associated with one of the 



23 

 

external interrupt channels of the computer block. When the signal of the corresponding 

channel changes value the interrupt triggers. This type of interrupt is useful to simulate 

distributed controllers that execute when measurements arrive on the network. A user-defined 

interrupt handler is scheduled when an interrupt occurs. An interrupt is scheduled on a higher 

priority level. An interrupt handler is defined by name, a priority and a code function [30].  

An example of a definition of a interrupt handler is as follows: 

 
% Create and attach network interrupt handler 
data = 'controller_task'; 
ttCreateHandler('network_handler', 1, 'nwhandler_code', data) 
ttAttachNetworkHandler('network_handler') 

 

Simulated execution can be preemptive or non-preemptive. The execution occurs at three 

distinct priority levels: the interrupt (highest priority), kernel and task (lower priority) levels. 

At interrupt level, interrupt handlers are scheduled according to fixed priorities. At kernel and 

task level, dynamic-priority scheduling may be used. At each scheduling point, the priority of 

task is given by user-defined priority function.This makes it easy to simulate different 

scheduling policies. Predefined priority functions exist for most of the commonly used 

scheduling schemes [29], [30]. 

 

While simulation is running the code associated with task and interrupt handlers is executed 

by the kernel. The code may be divided in segments, which can interact with other tasks. 

After the simulation is finished, the execution time of each segment is returned by the code 

function as an output [30]. The kernel saves the current segment during the simulation and 

calls the code functions. Execution pursues in the next segment when the task has been 

running for the time regarding to previous segment [32]. An example of a sensor code is 

given bellow: 

 
function [exectime, data] = sensor_code(seg, data) 

  
persistent y 
  
switch seg 
 case 1 
  y = ttAnalogIn(1); 
  exectime = 0.0005; 
 case 2 
  ttSendMsg(3, y, 80); % Send message (80 bits) to node 3 (controller) 
  exectime = 0.0004; 
 case 3 
  exectime = -1; % finished 

 
end 
  

This function explain a simple sensor mechanism. In the first segment, data is received from 

analog input and the plant is sampled using a execution time of 0.5 ms. In the second 

segment, the message (control signal) is sent to the controller node. The third segment shows 

the end of execution by returning a negative execution time. The structure data is the local 

memory and used to store the measured variable between calls to the different segments [33]. 

 

Truetime blocks generate different output graphs; computer graphs and monitor graphs. A 

computer graph will display the execution of each task and interrupt handler. If the signal is 

high, it means that the task is running. If there is a medium signal,it means that the task is 



24 

 

ready but not running.A low signal indicates that the task is idle. On the other hand, a monitor 

graph displays which tasks are holding and waiting on the different monitors during 

simulation [30]. 

 

4.1.2. Truetime Network Block 

 

 

The TrueTime network block simulates medium access and packet transmission in a local 

area network (LAN). When a node tries to transmit a message, a triggering signal is sent to 

the related network block. When the transmission of the message is finished, a new triggering 

signal is sent by the network block to the receiving node. The transmitted message is saved in 

a buffer at the receiving computer node [33]. 

 

The network blocks are mainly configured using their block mask dialogues. There are some 

common parameters for all networks such as network type, network number, number of 

nodes, data rate or minimum frame size. Some of the parameters are specific to the network 

type like transmit power or receiver signal threshold in wireless networks. Wired and wireless 

network block masks are seen in the Figure 7.  There can be several network blocks in a 

model. The ID numbers of each network is used to identify these networks. Connected nodes 

also have their ID numbers. The node ID numbers must be specific to their networks. 

 

 

 
 

Figure 10. The TrueTime Wired and Wireless Network Function Block Parameters 

 

 

The nodes send and receive messages over the networks belonging to them using 

ttSendMsg()and ttGetMsg()kernel primitives. An overview of all Truetime‟s primitives 

can be found on Truetime Manual.  

 



25 

 

The types of networks supported by Truetime are CSMA/CD (Ethernet), CSMA/AMP 

(CAN), Round Robin  (Token Bus), FDMA, TDMA (TTP), Switched Ethernet, 

WLAN(802.11b), and ZigBee (802.15.4).  The networks are simulated down to the data 

transport layer. 

 

Truetime models of CSMA/CD (Ethernet) and CSMA/AMP (CAN) protocols used in this 

project are explained and their comparison with those used in real applications are done in the 

following sections. 

 

4.1.2.1. CSMA/CD (Ethernet)  

 

CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. If the network 

is busy, the sender node must wait until it is free. A collision occurs if a message is 

transmitted within 1 microsecond of another. When a collision occurs, the sender node backs 

off for a time defined by: 

 

𝑡𝑏𝑎𝑐𝑘𝑜𝑓𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 ÷ 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 × 𝑅 

 

Where 𝑅 = 𝑟𝑎𝑛𝑑(0.2𝐾 − 1) (discrete uniform distribution) and K is the number of collisions 

in a row. K can be maximum 10 and minimum frame size cannot be 0. After waiting time is 

finished, the node will try to retransmit. 

 

4.1.2.2. CSMA/AMP (CAN)  

 

As the same as real CAN applications, if the network is busy, the sender will wait until it 

occurs to be free. If a collision occurs, the message with the highest priority (the lowest 

priority number) will continue to be transmitted. On the other hand, there is a difference on 

message choice when two messages with the same priority seek transmission simultaneously. 

In that case an arbitrary choice is made as to which is transmitted first. However, in real CAN 

applications, all sending nodes have a unique identifier, which serves as the message priority 

and the choice is made according to these priorities [33]. 

 

4.2. Building Simulink Models using MATLAB Scripts  

The linear motor is made up of a large number of sections and modules that are repeated. 

Since we wish to analyze the performance of several different network topologies and 

communication protocols, models of different motors must be prepared. One contribution of 

this thesis is the development of a Matlab script based method to create a Simulink model. 

Such an approach makes it easier to generate a model and change parameters of the model. 

It is possible to build a Simulink model using Matlab scripts, without using the standard 

Matlab graphical user interface based mouse operations. Although building a Simulink model 

with the usual operations is easier and preferred by most of the users, using Matlab script to 

generate models is more advantageous as follows: 

* Ease of building and modification- The linear motor that will be modeled in Simulink is 

composed of repeated modules, consisting e.g., a fixed number of motor drivers connected to 

one gateway. These modules are called “motor sections”. Number of motor sections may 



26 

 

change depending on the length of the motor, or design considerations. Therefore, it is 

necessary to modify the model frequently. However, it is difficult and complicated to build 

such a large model with GUI operations. Also, it is not easy to modify even if the model has 

been created with the GUI method since it requires several repetitive changes in each system 

block. Using Matlab scripts for building a model enables the model to be created and 

modified easily. 

* Ease of parameter change- The Simulink model is used to simulate the system and to 

determine the performance of the selected topologies and network protocols. In order to 

compare their performances, we need to change the parameters and decide on the optimum 

one. It is easy to change the parameters of several blocks with a few modifications in the 

MATLAB script. 

This section discusses how to build and manipulate a Simulink model using only m-scripts. 

The main steps to create a model automatically are explained: 

1. The parameters are introduced. 

2. The scripts then checks to see if a model with the specified name already exists and if 

it does then it deletes it.  

3. A new model is created using the MATLAB function new_system.  

4. The model is filled in using MATLAB functions such as add_block, add_line and 

set_param, etc. set_param is necessary when the default values of the block properties are 

to be modified. After the model is constructed, it is saved using save_system. Creating a 

model will be explained in detail in the following paragraphs. 

Since TrueTime has its own library, there are a few differences while using MATLAB to 

create a TrueTime model.  

The scripts written for creating our linear motor model is described in detail below: 

 

i. The name of the model that will be created is specified. 

% Specify the name of the model to create 
fname = 'Topoloji_A'; 

 

ii. The parameters are introduced at the beginning. In order to easily modify the model, 

the numbers such as number of gateways, number of drivers must be defined as 

constants. The parameters dependent on these numbers are assigned automatically in 

the scripts.  

 
% Introduce the parameters 
Outer_Network_No=50000; %outer network number 
Num_of_Gate=3;  %number of gateway computers 
Num_of_Drivers=10; %number of motor drivers 
Const=1000; %max group number can be 1000 
Const2=40000; %parameter used for naming the 2nd scope of the Gateway 
init_function='Tum_sistemi_baslatan';  %initialization function for 

all Truetime blocks 

 



27 

 

iii. It is checked to see if a model with the specified name already exists and if it does 

then it is deleted. 

 
% Check if the file already exists and delete it if it does 
if exist(fname,'file') == 4 
    % If it does then check whether it's open 
    if bdIsLoaded(fname) 
        % If it is then close it (without saving!) 
        close_system(fname,0) 
    end 
    % delete the file 
    delete([fname,'.mdl']); 
end 
 

iv. A new model is then created using the MATLAB function new_system. 

 
% Create the system 
new_system(fname); 

 

v. In contrast with adding blocks from Simulink Library, it is required to open TrueTime 

Library and the created model to add blocks. This operation is based on copying the 

blocks from TrueTime Library and pasting to the new model. 

 
% Open truetime library and the created system to copy(add) blocks 
open_system('truetime'); 
open_system('Topoloji_A'); 

 

vi. The MATLAB functions used to create the model are add_block, add_line and  

set_param. set_param is necessary when the default values of the block properties 

must be modified. Usage of these functions are introduced below: 

 

 add_block('src', 'dest', 'param1', value1,'param2', value2,.

..) creates a copy of the 'src' block, with the named parameters having the 

specified values. 

 set_param(object,param1,value1,...,paramN,valueN)  sets 

parameters and values on the specified model or block object. Some properties 

are read-only and hence cannot be modified. Block parameter names used in 

set_param is different from the dialog box prompt. For instance, the parameter 

name of the dialog box prompt “Sample time (-1 for inherited)” is  “SampleTime”. 

For Simulink blocks, the detailed information about the parameter names with 

their dialog box prompt and the values showing the type of value required (scalar, 

vector, variable), the possible values, and the default value can be reached from 

Matlab Simulink Help under “Block-Specific Parameters” section. For TrueTime 

blocks, such information can be found as described: Bring the cursor on to the 

block, then right click and choose View Mask and the Mask Editor is opened 

automatically. The dialog prompts, variable names belonging to the parameters 

and types can be seen under “Parameters” section. 

 add_line('sys', 'oport', 'iport') adds a straight line to a system from 

the specified block output port  'oport' to the specified block input port  'iport'. 

'oport' and 'iport' are strings composed of a block name and a port identifier in 

the form 'block/port'. Most block ports are identified by numbering the ports from 

top to bottom or from left to right, such as 'Gain/1' or 'Sum/2'.   



28 

 

 

vii. In our model both commonly used Simulink blocks and TrueTime blocks are used 

together. Adding Simulink blocks and adding TrueTime blocks are explained below 

in detail with their usage in the scripts. 

  

 Adding Simulink Blocks- In our model, clock, display, gain, sum, sine wave and 

scope blocks are used. The inputs of add_block and add_line functions must 

be entered in the order that is given as 
add_block('src', 'dest', 'param1', value1,'param2',... 

value2,...) before. For example in order to add a clock to the system, first the 

source ('src') of the block is defined as 'built-in/Clock' and the destination 

('dest') is defined as [gcs,'/Clock']. Then all the parameters of the block 

are defined with their values. In the first example below, there is only one type of 

parameter that is 'Position' and its value is [800 20 830 50]. 

add_block function achieves its task by copying the block from the source and 

pasting it to the destination.  More examples are presented below: 

 

 
% Add Clock  
add_block('built-in/Clock', [gcs,'/Clock'],'Position', [800 20 830 

50]); 

 
% Add Display 
add_block('built-in/Display', [gcs,'/Display'],'Position', [850 20 

900 50]); 

 
% Connect Clock and Display  
add_line('Topoloji_A','Clock/1','Display/1'); 

 
% Add Gain 
add_block('built-in/Gain', [gcs,'/Gain'],'Position', [850 150 880 

180], ...  'Gain','100','SampleTime','-1'); 

 
% Add Sum 
add_block('built-in/Sum',[gcs,'/','Sum']) 

 
% Set Sum Block Parameters 

set_param([gcs,'/','Sum'],'inputs','++','position',[900,150,930,18

0]) 

 
% Add Constant 

add_block('built-in/Constant', [gcs,'/Constant'],'Position', [850 

250 880 280],... 
'Value','26','SampleTime','inf'); 

 
% Connect First Output of Constant Block to Second Input of Sum 

Block 

add_line('Topoloji_A','Constant/1','Sum/2'); 

 
% Add Scope 
add_block('built-in/Scope', [gcs,'/Scope'],'Position', [100 (10) 

130 (40)],... 'LimitDataPoints','off'); 

 

 Adding TrueTime blocks-In our model, TrueTime kernel and network blocks are 

used. Since the linear motor consists of several motor sections, including one 

gateway computer and fixed number of motor drivers, for loops and if-else 



29 

 

conditions are used to create these similar blocks. Since set_param and 

add_block functions requires these parametric numbers to be as string type, 

num2str is used to change the numbers to string. The following examples show 

their usage: 

 
 
% Generate OUTER NETWORK BLOCK  

add_block('truetime/TrueTime Network','Topoloji_A/Outer 

Network',... 

'Position', [10 (20) 70 (70)]); 

 
set_param('Topoloji_A/Outer Network',... 

'nnodes',num2str(Num_of_Gate+1),'nwnbr',num2str(Outer_Network_No),

'nwtype','CSMA/AMP (CAN)','rate','10000000','minsize','80'); 

 
add_block('built-in/Scope', [gcs,['/Scope' 

num2str(Outer_Network_No)]],... 

'Position', [100 (10) 130 (40)],'LimitDataPoints','off'); 

 
add_line('Topoloji_A','Outer Network/1',['Scope' 

num2str(Outer_Network_No) '/1']); 

 

 

 

While using add_block function, “TrueTime Network” block is copied from 

“truetime” library to the model where model name is “Topoloji_A” and the name 

of this block in new system is determined as “Outer Network”,then the position of 

the block is specified. In order to set block properties of  TrueTime Network 

block, set_param function is used. First, the name of the model, “Topoloji_A”, 

and the block name, “Outer Network” are introduced then the parameters such as 

number of nodes (nnodes), network number (nwnbr), network type (nwtype) , 

data rate (rate)  and minimum frame size (minsize) are introduced as below. 

Name of the parameters such as nnodes, nwnbr, nwtype can be learned as 

explained previous section. Number of nodes change according to number of 

gateway computers.  Therefore, its value is introduced as parameter. Also, to make 

network number as variable, it is also introduced as parameter.  

 

Since Matlab does not allow to use the same block name more than once, the 

block names are specified as unique to each block. For similar blocks, the same 

name but with different numbers such as “Truetime Network 1”, “Truetime 

Network 2”, “Truetime Network 3” etc. are used. The total number of the motor 

drivers of the designed linear motor are assumed to be maximum 1000. Therefore, 

since each motor section elements (the motor drivers and the gateway computer of 

the section) communicate over their own network, the number of networks for 

these sections will be the same amount. The gateway computers and the networks 

for the sections have the same number such as for the first motor section  the name 

of network is “Truetime Network 1” and the name of the gateway computer is 

“Gateway Computer 1”. The number of motor drivers is constant for each motor 

section. In the real motor, there must be 10 motor drivers in each section. In order 

to easily distinguishing the motor drivers of each section, they are named 

depending on this simple formula:  

 

 



30 

 

The node IDs (dID) for the motor drivers (md) in each motor section (ms) should be 

unique. This was accomplished using a simple coding method: dID=ms*K+md, 

where K is an appropriate constant taken as 1000. For example; when the number 

of the motor section is ms=2, the name of the motor driver md=5 of this section 

becomes dID=2005. Here, Scope block is named with the Outer_Network_No that 

is “Scope 50000”. 

 

Scope blocks automatically show the last 5000 data. However, it prevents the 

results to be evaluated fairly. Therefore, the default value of “LimitDataPoint” 

parameter is changed from “on” to “off” to see all data. 
 

 

% Generate MAIN COMPUTER BLOCK  

 
add_block('truetime/TrueTime Kernel', 'Topoloji_A/Main 

Computer',... 
'Position', [60 110 120 160]); 

 
set_param('Topoloji_A/Main Computer','sfun',init_function,'args', 

... ['['num2str(Outer_Network_No) ']'],'ninputsoutputs','[1 

1]',... 
'nwnodenbr',['[', num2str(Outer_Network_No),' ', 

num2str(Num_of_Gate+1),']']); 

 

add_block function is used as similar to adding TrueTime Network block. Here, 

TrueTime Kernel block is copied from truetime library and added to the model 

with “Main Computer” name. The parameters name of init function (sfun), init 

function argument (args), number of analog input and outputs 

(ninputsoutputs), network and node numbers (nwnodenbr) are set in 

set_param function. 

 

Nested for loops are used to create Driver Networks, Gateway Networks, Motor 

Drivers and Gateway Computers. Whole scripts creating the model is attached at 

the end of this report in Appendix section.  

 

 

 

4.3. Scripts Used in TrueTime Blocks 

It is necessary to initialize kernel blocks and network blocks. In order to define the 

parameters, to create tasks and interrupt handlers these initialization functions are used. The 

initialization scripts and the scripts that is executed during simulation may be written either as 

Matlab M-files or as C++ code (for increased simulation speed). In this project, the Matlab 

M-files are preferred since they are easy to use. How the code functions are defined and what 

must be provided during initialization will be described below.  

  

 



31 

 

 

4.3.1. Writing the Initialization Function 

 

Initialization of a TrueTime kernel block involves specifying the number of inputs and 

outputs of the block, defining the scheduling policy, and creating tasks, interrupt handlers, 

events, monitors, etc for the simulation. This is done in an initialization script for each kernel 

block. 

 

In our model, initialization script is named as “initialization”. The initialization script 

used in Topology A model will be introduced step by step: 

 

1. Initialization of TrueTime Kernel: The kernel is initialized by providing the scheduling 

policy using the function ttInitKernel.  

 
function initialization(mode) 

  
% Initialize TrueTime kernel 
ttInitKernel('prioDM');   % deadline-monotonic scheduling 

 

2. Definition of Parameters: All parameters are defined in the initialization script. So that, 

their values can be changed from one place easily. Struct data type is preferred to use since it 

enables several parameters grouped together under one name . The data structure, consisting 

of the data sent as messages between the nodes, is named as msg. The data structure, 

consisting of the parameters used to create the simulink model, is named as data. The 

related scripts are presented below: 

 
% Define the parameters 
msg.sender_ID=0; %% node number of the sender node 
msg.outer=0; %% the message sent by main computer via outer network 
msg.pos_of_sensor=0;  %% position of the sensor  
msg.des_ID=0;  %% node number of the destination node 
num_of_gateways=3; %%number of gateways 
num_of_drivers=6; %%number of drivers 
driver_length=25; %% the length of one motor driver 
sensor_offset=26; %%sensor position is 26 cm far from the bottom of the 

mover. 
data.kernel_ID = mod(mode,100); %%used to determine the type of the kernel 

as main computer,gateway computers, motor drivers  
data.network_ID= (mode-data.kernel_ID)/1000;   %%network number 
data.first_driver_ID=2; %%in each motor section, gateway has the node 

number "1". The node number of the drivers start from 2 and goes on as 

3,4,5,... 
data.last_driver_ID=num_of_drivers+1; %%since the node numbers of the 

drivers start from "2", the last driver has the node number: (number of 

drivers + 1) 
data.num_of_drivers=num_of_drivers;   
data.num_of_gateways=num_of_gateways;  
data.sensor_offset=sensor_offset; 
data.driver_length=driver_length; 
data.pos_down=(data.network_ID - 1)*num_of_drivers*driver_length +   

(data.kernel_ID - 1)*driver_length; %%lower limit of the position of the 

driver 
data.pos_up= (data.network_ID - 1)*num_of_drivers*driver_length + 

(data.kernel_ID)*driver_length;     %%upper limit of the position of the 

driver 



32 

 

 

3. Calculation of the Network IDs of Upper and Lower Gateway Networks: The gateway 

computers communicate with each other via the networks called “Gateway Network” 

between them and every two adjacent gateways have a different network between  each other 

as seen in Figure 6. The network IDs of upper and lower gateway networks are calculated 

using a simple coding method. In order to calculate the upper network number (net_noup) of a 

gateway, the following code is used:  net_IDup=K+gwID-1  where  K is appropriate constant 

taken as 1000,  gwID is the ID number of the gateway and gwID-1 is the ID number of the 

previous (upper) gateway. For example; for the gateway with ID number  of gwID=2 , the ID 

of upper gateway network becomes net_IDup=1001. In order to calculate the lower network 

number (net_nolow) of a gateway, the following code is used:  net_IDlow=K+gwID  where  K is 

appropriate constant taken as 1000,  gwID is the ID number of the gateway and gwID+1 is 

the ID number of the next (lower) gateway. For example ; for the gateway with ID number  

of gwID=2 , the ID of lower gateway network becomes net_IDlow=1002. 

 

Instead of using the node number of each node in the scripts, we generalize them as upper or 

lower gateway based on their position in the system. Therefore, we do not need to calculate 

their node numbers everytime  when we use them in the scripts. 

 
%%calculate upper and lower gateway network numbers 
if data.network_ID<data.num_of_gateways 
   data.lower_gw_network_no=1000+(data.network_ID);    
end 
if data.network_ID>1 
data.upper_gw_network_no=1000+(data.network_ID-1); 
end 
 

 

4.Creating Periodic and Aperiodic Tasks: In order to create periodic activities such as 

controller and I/O tasks, ttCreatePeriodicTask function is used. The matlab syntax for 

this function is : 

 
ttCreatePeriodicTask(name, starttime, period, codeFcn, data) 
 

The arguments of the function are stated below: 

 

name: Name of the task. It must be unique. 

starttime: Release time for the first job of the periodic task. 

period: Period of the task. 

codeFcn: The code function of the task, where codeFcn is a name of an m-file in the Matlab. 

data: An arbitrary data structure representing the local memory of the task. 

 

 

In order to create aperiodic activities such as communication tasks and event-driven 

controllers, ttCreateHandler and ttAttachNetworkHandler functions can be used 

together.  

 

The matlab syntax for the ttCreateHandler function is: 

 
ttCreateHandler(name, priority, codeFcn)  

 



33 

 

where name, priority, codeFcn stand for name of the handler, priority of the handler, 

the code function of the handler, an arbitrary data structure, respectively. The code function 

of the handler includes the jobs of this handler. 

 

This function is used to create a handler that will be executed in response to interrupts. 

Interrupt handlers may be associated with timers, network interfaces, external interrupt 

channels, or attached to tasks as overrun handlers. In this project,  networked interfaces are 

used a to trigger the interrupt handlers. Therefore, the code function of the handler is invoked 

when a message arrives over the network. A handler may be associated with many interrupt 

sources. 

  

The matlab syntax for the ttAttachNetworkHandler function is: 

 
ttAttachNetworkHandler(network, handlername) 

 

where network and handlername stand for The number of the TrueTime network block 

and The name of the interrupt handler, respectively.  

 

Since the same initialization function is used by all type of kernels in the system (main 

computer, gateway computers, motor drivers), if-else statements are used in the script. 

Therefore, each type of kernel will execute the condition related to them. Each kernel in the 

simulation system has unique “mode numbers”  and these numbers are used to distinguish the 

computers. These mode numbers are defined as “init function arguments” in the “Source 

Block Parameters” of each kernel blocks. 

 

The scripts below, written for creating periodic and aperiodic tasks, clarify the usage  of the  

TrueTime functions explained previously: 

 
%%%%Since this initialisation code is used for all type of kernels, each 
%%%%type of kernels (main computer,gateway computer,motor drivers) will run 
%%%%the condition related to them. 
  
if mode ==50000 % (main computer) 
    starttime = 0.0; 
    period = 0.010; 
    ttCreatePeriodicTask(['Main_computer_task' num2str(mode)], starttime, 

period, 'Main_computer',data); 
end 
  

  
if data.kernel_ID==1 % (gateway computers) 
    deadline = 10.0; 
    % Network handler triggered by Outer Network (node number=50000) 
    prio = 1.0; 
    ttCreateHandler(['Gateway_computers_outer_network_Task' num2str(mode)], 

prio, 'Gateway_computers_outer_network', data);     
    ttAttachNetworkHandler(50000,['Gateway_computers_outer_network_Task' 

num2str(mode)])     

     
    % Network handler triggered by TrueTime Network Blocks used for 

connecting the motor section elements (node number=data.network_ID) 
    ttCreateHandler(['Gateway_computers_drivers_network_Task' 

num2str(mode)], prio, 'Gateway_computers_drivers_network', data); 



34 

 

    

ttAttachNetworkHandler(data.network_ID,['Gateway_computers_drivers_network_

Task' num2str(mode)]) 
     
    %%for all motor section networks except the last one 
    if data.network_ID<data.num_of_gateways 
        ttCreateHandler(['Gateway_computers_lower_network_Task' 

num2str(mode)], prio, 'Gateway_computers_lower_network', data); 
        

ttAttachNetworkHandler(data.lower_gw_network_no,['Gateway_computers_lower_n

etwork_Task' num2str(mode)]) 
    end 
     
    %%for all motor section networks except the first one 
    if data.network_ID>1 
        ttCreateHandler(['Gateway_computers_upper_network_Task' 

num2str(mode)], prio, 'Gateway_computers_upper_network', data); 
        

ttAttachNetworkHandler(data.upper_gw_network_no,['Gateway_computers_upper_n

etwork_Task' num2str(mode)]) 
    end 

   
end 
  

  
if data.kernel_ID>1 % (drivers) 
    deadline = 10.0; 
    % Network handler 
    prio = 1.0; 
    ttCreateHandler(['Motor_Drivers_Task' num2str(mode)], prio, 

'Motor_Drivers',data);     
    ttAttachNetworkHandler(data.network_ID,['Motor_Drivers_Task' 

num2str(mode)])      
end 

 

 

 

 

4.3.2. Writing the Task Functions 

 

The task functions are invoked by the initialization function. In our model, we have three 

different type of kernels that are main computer, gateway computers and motor drivers. And 

all these kernels have different tasks. One kernel may have more than one task, such as 

interrupt handlers. If these tasks are trigerred by different network handlers, it is useful to 

create different script files for each type of these tasks. For example, in our model gateway 

computer has to complete several tasks trigerred by different network handlers, so a different 

script file is created for each type of task. The two main TrueTime functions used in these 

task functions are ttGetMsg and ttSendMsg. ttGetMsg function is used to retrieve a 

message that has been received over the network. If no message exists, the function will 

return an empty value. ttSendMsg function is used to send a message over a network. 

 

 

The matlab syntax for the ttGetMsg function is: 

 
msg = ttGetMsg(network) 



35 

 

 

where “network” stands for the network interface from which the message should be 

received.  The default network number is 1.  

 

The matlab syntax for the ttSendMsg function is: 

 
ttSendMsg([network receiver], data, length) 

 

The meaning of the input arguments are stated below: 

 

network: The number of the network on which the message is sent. The default network 

number is 1. 

receiver: The ID of the receiving node.  

data: An arbitrary data structure representing the contents of the message. 

length: The length of the message, in bits. Determines the time it will take to transmit the 

message. 

 

The following scripts clarify how to use these functions: 

 
msg = ttGetMsg(data.network_ID); 
        if isempty(msg) 
            disp(msg) 
            disp('Error nwhandler_code : no message received!');         
            msg = 0.0; 
        else 
 

First the message sent through the network with number “data.network_ID” is received, 

then it is checked if it is an empty message. If it is an empty message, it returns 0 value. 
 

ttSendMsg([data.network_ID 1 ], msg , 16); 

 

16 bit length message is sent to the node with ID number “1” through the network with 

network number “data.network_ID” . 

 

 

 

 

 

 



36 

 

 

 

 

 

Chapter 5 

Simulation Results 
 

In simulations, due to some restrictions in Matlab, some real system requirements could not 

be realized as desired. However, it is created as similar as possible to the real motor. The real 

system consists of a main computer and 800 motor sections each with 10 motor drivers and 

one gateway computer. The simulation model is a prototype of the real system consisting of a 

main computer and 4 motor sections, each spanning 1m with 4 motor drivers and one 

gateway computer. The reason for selecting this size was that for a larger model with greater 

memory requirements, Matlab faces problems with data logging. However, with a suitably 

powerful computer the simulations are believed possible. The control loop has a frequency of 

7 kHz and a period of 142 µs (0.000142s). The speed of the motor is 4 m/s in the model. Each 

motor driver has 0.25 m length. Therefore, in order the mover to rise up to the height of the 

whole motor (4 m), we need to run the model for a time duration of 1s. In real life 4 m/s is 

too fast and 1.5 m/s is more reasonable. However, since the control loop has a frequency of 7 

kHz, the total number of messages sent and received is so many causing the simulation to 

slow down. In order to realize the real velocity of 1.5 m/s, we need to run the simulation for 

longer times. Therefore, mover velocity is chosen as 4 m/s in the simulations. 

As explained in Section 3, two different communication protocols are used in the system. The 

communication on the inform network is carried out using Ethernet protocol and the 

communication on the synchronization network is carried out using CAN protocol. Ethernet 

communication is used to convey the messages containing various system related information 

sent by main computer to gateway computers with a period of 0.01s. For all other 

communications between the nodes, CAN protocol is used. It is assumed that the messages 

with 16 bits data length for CAN protocol (containing current mover position) and 1000 bits 

data length for Ethernet (containing various system related information) are enough for the 

system communication. In CAN protocol, each packet has 60 bits length consisting of 44 bits 

header and 16 bits data. The data rate of CAN protocol is set to 1Mbits/s that is the maximum 

data rate for CAN protocol. Therefore, the time required for the communication on CAN is 

60µs. In Ethernet protocol, each packet has 1144 bits length consisting of 14 byte header, 4 

byte CRC and 1000 bits data. The data rate for Ethernet is set to 10 Mb/s (10,000,000bits/s) 

as a commonly accepted value.  

In Matlab scripts, task execution times are defined as 10µs, 14.2µs for gateway computers 

and motor drivers respectively.  Messages are sent 3 µs later than the time that task 

executions start.  

 



37 

 

 

5.1.Topology A 

 

Topology A as described in the Chapter 3 is investigated here. In the simulations, the 

messages between motor drivers are sent in one direction simulating the mover going up. The 

topology consists of several motor sections. Elements of each motor section communicate 

through their group network. The adjacent motor sections communicate via gateway 

computers relaying the messages. The messages sent by the main computer are also relayed 

to motor drivers via gateway computers. When more than one node demands to use the 

network at the same time, collision may occur and one node must wait until the network is 

free as in CSMA-CD protocol. In the following network traffic graphs, a high level signal 

means the node is sending, a medium level signal means waiting (e.g. for media access), and 

a low level signal means idle. In the simulation results, we rarely observe large positive 

delays due to the periodic messages sent by the main computer to the motor drivers through 

gateway computers causing a network traffic. 

We used time stamps to analyze the delays in each node statistically. In order to observe the 

steps a message is following, we should examine the schedule output ports of the nodes.  

As explained in Section 3, since gateways are used to relay messages between adjacent motor 

sections, extra delays occur in this transmission. In order to understand how these extra 

delays occur, we should examine each step of a message from sender to receiver. For 

example, a message sent from “motor section 2- motor driver 1” to “motor section 1- motor 

driver 4” follows these steps: 

1. From “motor section 2- motor driver 1” to “gateway computer 2” through “network 2” that 

is the group network of motor section 2. 

2. From “gateway computer 2” to “gateway computer 1” through “network 1-2” that is the 

network between “gateway computer 2” and “gateway computer 1”. 

3. From “gateway computer 1” to “motor section 1- motor driver 4” through “network 1” that 

is the group network of motor section 1. 

In order to observe each step of this transmission, schedule output ports of motor section 2- 

motor driver 1 (MS2-MD1), network 2 (N2), gateway computer 2 (GW2), network 1-2 (N12), 

gateway computer 1 (GW1), network 1 (N1), motor section 1- motor driver 4 (MS1-MD4) 

are combined in one graph seen in Figure 11. In the graph, motor section 2- motor driver 1, 

network 2 , gateway computer 2, network 1-2, gateway computer 1, network 1, motor section 

1-motor driver 4 are represented with brown, brown, pink, turquoise, red, green, blue colors 

respectively, from down to up.  



38 

 

 

Figure 11. Message Transmission Between the Motor Drivers of the Adjacent Motor 

Sections 

(Topology A)  (motor section 2- motor driver 1, network 2 , gateway computer 2, network 1-

2, gateway computer 1, network 1, motor section 1-motor driver 4 are represented as 1
st
, 2

nd
, 

3
rd

, 4
th

, 5
th

, 6
th

, 7
th

 scheduling graphs from down to up, respectively.) 

 

Figure 12 represents all steps, marked with black colored squares, to transmit only one 

message. The brown signal in the bottom belongs to motor section 2-motor driver 1. It 

represents the task execution time of MS2-MD1. It is seen that this time is 14.2 µs as defined 

in Matlab scripts. Messages are started to sent to the other node 3 µs later than the time that 

task execution of this node start. The second brown signal belongs to network 2. It represents 

the message transmission time between MS2-MD1 and GW2. When we look the graph in 

detail, we observe that this transmission time is 60 µs that matches with the required time to 

communicate on CAN explained in the beginning of this chapter. Pink signal belongs to 

gateway computer 2. It represents the task execution time of gateway computer 2 that is 10 µs. 

It is seen that this execution time matches with the execution time of gateway computers 

defined in Matlab scripts. Messages are started to sent to the other node 3 µs later than the 

time that task execution of this node start. Blue signal belongs to network 1-2 and represents 

the message transmission time between GW2 and GW1. The duration is 60 µs as expected. 

Red signal belongs to gateway computer 1 and represents the task execution time of gateway 

computer 1. The duration is 10 µs as expected. Messages are started to sent to the other node 

3 µs later than the time that task execution of this node start. Green signal represents the 

message transmission time between GW1 and MS1-MD4. The duration is 60 µs same as the 

other message transmission times. Blue signal belongs to MS1-MD4. It represents the task 

execution time. It is 14.2 µs as defined in Matlab scripts. 

 

0.1876 0.1877 0.1878 0.1879 0.188 0.1881 0.1882 0.1883 0.1884
2

3

4

5

6

7

8

9

Time(s)

S
ch

ed
u
li
n
g
 G

ra
p
h
s 

o
f 
th

e 
R

el
ev

a
n
t 
7
 N

o
d
es



39 

 

 

Figure 12. Message Transmission Between the Motor Drivers of the Adjacent Motor 

Sections (In detail ) (Topology A) (motor section 2- motor driver 1, network 2 , gateway 

computer 2, network 1-2, gateway computer 1, network 1, motor section 1-motor driver 4 are 

represented as 1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
, 6

th
, 7

th
 scheduling graphs from down to up, respectively.) 

 

As a result, it is seen all measured values of execution time and message transmission time 

match with the predefined values. As seen in Figure 12, messages are sent to the other nodes 

3 µs later than their task execution starts. In that case, sending a message between the motor 

drivers of the adjacent motor sections will take  60 × 3 + (3 × 3) = 189µs that is the total 

amount of time spent during three Can communications and the delays caused by the task 

execution of the three nodes used in that communication . Here, we represent the steps to 

transmit one message between “motor section 2-motor driver 1” and “motor section 1-motor 

driver 4”.  Same steps are followed to relay a message between motor drivers of the other 

adjacent motor sections. Therefore, we will not show them separately. In general, three CAN 

communications and three nodes are used to relay a message between the motor drivers of 

adjacent motor sections. However, in order to relay a message between the motor drivers of 

the same motor section only one CAN communication and one node is used, so, 63 µs is 

spent in that communication. Due to these reasons, extra delays occur in the message 

transmission between the motor drivers of the adjacent motor sections. 

Figure 13 is presented to show how delays are changed in each motor drivers of a motor 

section with respect to time. This graph belongs to motor section 1 as a representative, and all 

other motor sections have results similar to it. First three signals (pink, green, blue) represent 

the delays in MD1, MD2, MD3 respectively and the last signal represent the delays in MD4. 

It is obviously seen that the delay in MD4 is three times higher than the others. It means that 

the communication is carried out using the gateway computers. The spikes in the delays are 

caused by the periodic messages sent by the main computer to the motor drivers using the 

gateway computers. Since these messages are sent to the motor drivers via the same network 

used for the communication of the motor drivers, while these messages are received the 

communication of the motor drivers is disrupted and these spikes in the delay amounts occur 

periodically.  

0.1876 0.1876 0.1876 0.1876 0.1877 0.1877 0.1877 0.1877 0.1877 0.1878 0.1878
2

3

4

5

6

7

8

9

Time(s)

S
ch

ed
u
li
n

g
 G

ra
p
h

s 
o

f 
th

e 
R

el
ev

a
n
t 
7

 N
o

d
es



40 

 

 

 

Figure 13. Motor Section 1 Delay-Time Graph (Topology A) (the signals with pink, green, 

blue, pink colors from left to right between 0s-0.25s belong to motor driver 1, motor driver 2, 

motor driver 3, motor driver 4, respectively) 

In order to observe delay distributions in each motor section, histogram graphs are created. 

The results are explained in the following paragraphs. Small changes can be observed in each 

message transmission due to the network traffic and the arbitrary choosing process of 

TrueTime CAN protocol for two messages with the same priority seek transmission 

simultaneously as explained in Section 4. 

In order to easily compare the results, x and y axes are set to the same ranges in each graph. 

X axis represents the delays in the range of 0-0.0005s with an increment of 0.00001s and y 

axis represents the number of the correlated delay in the range of 0-450.  

Figure 14 represents the distribution in delay for the motor drivers of motor section 1. For the 

first three motor drivers, delay amount is intensely at 63µs and for the last motor driver, it is 

intensely at 189µs. These values are the same as the values expected as 63µs and 189µs for 

the first three motor drivers and the last motor drivers, respectively.  

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

Time(s)

D
el

a
y(

s)



41 

 

 

Figure 14. Delay Distribution for Motor Section 1(Topology A) 

 

Figure 15 belongs to motor drivers of motor section 2 in the same experiment. Similar results 

are observed for motor section 2, as well. For the first three motor drivers, delay amount is 

intensely at 63µs and for the last motor driver, it is intensely at 189 µs as expected. 

 

Figure 15.  Delay Distribution for Motor Section 2 (Topology A) 

 

The results for motor section 3 are seen in Figure 16. For the first three motor drivers, delay 

amount is intensely at 63µs and for the last motor driver, it is intensely at 189µs as expected. 

0 0.0002 0.0004
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver4

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver4

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys



42 

 

 

Figure 16. Delay Distribution for Motor Section 3 (Topology A) 

 

The results for motor section 4 are seen in Figure 17. Since this is the last group in the system, 

MD4 of the motor section 4 does not receive any message in this direction. Hence, we only 

have 3 graphs for MD1, MD2, MD3 with a delay intensely at 63µs.  

 

Figure 17. Delay Distribution for Motor Section 4 (Topology A) 

 

In all the results presented in previous paragraphs, different delay amounts are observed due 

to the network traffic, caused by the periodic messages sent by the main computer via the 

gateway computers. 

0 0.0002 0.0004
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver4

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys



43 

 

We observe that for all motor sections, while the delay amount of the first three motor drivers 

is mostly 63 µs, the delay amount of the last motor drivers increase to 189 µs with an extra 

delay of 126 µs. Since these extra delays cause torque fluctuations and vibrations while the 

mover is passing the motor sections, topology A is not a good choice. 

 

5.2. Topology B 

In these simulations, the chosen protocols and the values such as data rate, minimum frame 

size etc. are the same as topology A. Unlike to Topology A, gateway computers are not used 

to relay information between motor drivers. So, we expect to decrease the delay occurred in 

the message transmission between adjacent motor sections. The message transmission 

between the motor drivers is carried out on either the left or right connection network, 

whichever is suitable. Therefore, the motor drivers of the adjacent motor sections 

communicate without any need to gateway computers. The simulation results below show 

that we have almost the same amount of delays for each node, as expected. Small differences 

are ignored. This can be obviously seen in the Figure 18 representing the distribution of delay 

for the motor drivers of motor section 1 with respect to time. It is seen that there is a constant 

delay at 63 µs, and spikes caused by the messages sent from the main computer to the motor 

drivers through the gateway computers. The communication between the motor drivers of 

each motor section in topology B is almost the same as the communication of the first three 

motor drivers of each motor section in topology A. Because similar to the communication of 

the first three motor drivers of each section in topology A, all motor drivers of topology B 

communicate without any need of using the gateway computers. Therefore, the same 

explanations about the first three motor drivers of each motor sections in topology A are valid 

for the all motor drivers of topology B.  

 

Figure 18. Motor Section 1 Delay-Time Graph (Topology B) (the signals with pink, green, 

blue, pink colors from left to right between 0s-0.25s belong to motor driver 1, motor driver 2, 

motor driver 3, motor driver 4, respectively) 

Figure 19 represents the delays in the motor drivers of the motor section 1. It is seen that 

delay amount is intensely at 63 µs for all motor drivers.  

 

0 0.05 0.1 0.15 0.2

6

7

8

9

10

11

12
x 10

-5

Time(s)

D
el

a
y(

s)



44 

 

 

Figure 19. Delay Distribution for Motor Section 1 (Topology B) 

 

Figure 20 represents the delays in the motor drivers of the motor section 2. It is seen that 

delay amount is intensely at 63 µs for all motor drivers. 

 

 

Figure 20. Delay Distribution for Motor Section 2 (Topology B) 

 

Figure 21 represents the delays in the motor drivers of the motor section 3. It is seen that 

delay amount is intensely at 63 µs for all motor drivers. 

0 0.0002 0.0004 0
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver4

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver4

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys



45 

 

 

Figure 21. Delay Distribution for Motor Section 3 (Topology B) 

 

Figure 22 represents the delays in the motor drivers of the motor section 4. It is seen that 

delay amount is intensely at 63 µs for all motor drivers. 

 

Figure 22. Delay Distribution for Motor Section 4 (Topology B) 

 

The statistical results explained in the previous paragraphs for both topologies indicate that 

topology B is better than topology A with respect to delay amounts. Due to the structure of 

topology A, extra delays occur in the last motor drivers of each motor section. These extra 

delays in the last motor drivers may cause torque fluctuations and vibrations while the mover 

is passing the motor sections. On the other hand, the structure of topology B enables all motor 

drivers to have almost the same amount of delays. Thanks to these uniformly distributed 

0 0.0002 0.0004 0
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver4

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver1

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver2

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys

0 0.0002 0.0004 0
0

200

400

Motor Driver3

Delay Amount (s)

N
u

m
b

er
 o

f 
D

el
a

ys



46 

 

delay amounts, the problems such as torque fluctuations and vibrations are not encountered in 

topology B. Moreover, it has a higher speed since there is no extra delay like topology A. As 

a result, topology B can be considered as a better choice for the communication of long 

armature linear motor compared to topology A. 

 

 

 

 

 

 

 

 

 

 

 



47 

 

 

 

 

Chapter 6 

Conclusions 
 

In this thesis, two different network topologies for the control of long armature linear motor 

are introduced and simulated, and a general purpose simulation environment was written in 

Matlab to enable the simulation of other topologies. Simulations were performed using 

TrueTime, a toolbox for simulating of distributed real-time systems in low level detail. The 

advantages and disadvantages of both topologies are discussed and their results are compared 

in terms of communication delay. 

In topology A, the communication between the motor drivers of the same motor section can 

be carried out easily and expeditiously. However, while the mover is passing the borders of 

the motor sections, the gateway computers must be used to communicate with the motor 

drivers of the adjacent motor sections. This causes an extra delay in the communication 

between adjacent motor sections. These extra delays cause torque fluctuations and vibrations 

while the mover is passing the motor sections.  

In topology B, the gateway computers are used only to relay messages from main computer 

to the motor drivers. It is not required to use the gateway computers to relay messages 

between the motor drivers of the adjacent motor sections. This structure of topology B 

enables all motor drivers to have almost the same amount of communication delays. Thanks 

to these uniformly distributed delay amounts, the problems such as torque fluctuations and 

vibrations are not encountered in topology B. Therefore, we can recommend topology B for 

the communication of long armature linear motor. Still, we have spikes in delays caused by 

the messages sent from the gateway computers carrying the necessary information to manage 

the mover, sent from the main computer. Since these messages are crucial for the mover to 

arrive to the correct floor, it is not possible to eliminate them. However, the spikes can be 

decreased to the lower levels by reducing the amount of these messages sent by the main 

computer to the sufficiently minimum level.  

As another crucial contribution of this thesis, we used a Matlab script based method in order 

to easily create and modify the simulation models in Simulink and TrueTime toolboxes. For 

large models, it is nearly impossible to use the standard Matlab graphical user interface based 

mouse operations to create a model. Since such kind of models consist of a large number of 

sections and modules that are repeated, we can easily create and modify the repeated blocks 

from the scripts. Moreover, after creating a Matlab scripts for the model, it is very easy to 

modify it if it is required. Even enlarging the model is possible with a few changes in the 

scripts. Moreover, since the changes in the scripts are applied to the all related computers 

automatically, it is more reliable than the standard Matlab graphical user interface based 

mouse operations requiring that changes to be accomplished one by one in each node in the 

system. Although developing such an algorithm may be time consuming in the beginning, it 

saves time in the future works. 



48 

 

 

 

Appendix 
 

Matlab Scripts Creating Simulation Model 

 
 

 

 
% Specify the name of the model to create 
fname = 'topology_A'; 

  
% Introduce the parameters 
Outer_Network_No=50000; %outer network number 
Num_of_Gate=4;  %number of gateway computers 
Num_of_Drivers=4; %number of motor drivers 
Const=1000; %max group number can be 1000 
Const2=40000; %parameter used for naming the 2nd scope of the Gateway 
init_function='initialization';  %initialization function for all Truetime 

blocks 

  
% Check if the file already exists and delete it if it does 
if exist(fname,'file') == 4 
    % If it does then check whether it's open 
    if bdIsLoaded(fname) 
        % If it is then close it (without saving!) 
        close_system(fname,0) 
    end 
    % delete the file 
    delete([fname,'.mdl']); 
end 

  
% Create the system 
new_system(fname); 

  
% Open truetime library and the created system to copy(add) blocks 
open_system('truetime'); 
open_system('topology_A'); 

  
% Add Clock and Display 
add_block('built-in/Clock', [gcs,'/Clock'],'Position', [800 20 830 50]); 
add_block('built-in/Display',[gcs,'/Display'],'Position', [850 20 900 50]); 
% Connect Clock and Display 
add_line('topology_A','Clock/1','Display/1'); 

  
% Add Gain 
add_block('built-in/Gain', [gcs,'/Gain'],'Position', [850 150 880 180],... 
    'Gain','4','SampleTime','-1'); 
% Connect Clock and Gain 
add_line('topology_A','Clock/1','Gain/1'); 

  
% Add Sum 
add_block('built-in/Sum',[gcs,'/','Sum']) 



49 

 

  
% Set Sum Block Parameters 
set_param([gcs,'/','Sum'],'inputs','++','position',[900,150,930,180]) 

  
% Connect Gain and Sum 
add_line('topology_A','Gain/1','Sum/1'); 

  
% Add Constant 
add_block('built-in/Constant', [gcs,'/Constant'],'Position', ... 

    [850 250 880 280],'Value','0.25','SampleTime','inf'); 

  
% Connect First Output of Constant Block to Second Input of Sum Block 
add_line('topology_A','Constant/1','Sum/2'); 

  
% Generate OUTER NETWORK BLOCK (Set Block Parameters, Add Scope, Connect 

Blocks) 
add_block('truetime/TrueTime Network','topology_A/Outer Network',... 
    'Position', [10 (20) 70 (70)]); 
set_param('topology_A/Outer Network','nnodes', num2str(Num_of_Gate+1), ...  

    'nwnbr',num2str(Outer_Network_No),'nwtype','CSMA/CD (Ethernet)', ... 

    'rate','10000000','minsize','1144'); 
add_block('built-in/Scope', [gcs,['/Scope' num2str(Outer_Network_No)]],... 
    'Position', [100 (10) 130 (40)],'LimitDataPoints','off'); 
add_line('topology_A','Outer Network/1',... 
    ['Scope' num2str(Outer_Network_No) '/1']); 

  

  
% Generate MAIN COMPUTER BLOCK (Set Block Parameters, Add Sine Wave Block, 

Add Scope, Connect Blocks) 
add_block('built-in/Sin', [gcs,'/Sine Wave'],... 
    'Position', [10 120 30 140],'SampleTime','0' ); 
add_block('truetime/TrueTime Kernel', 'topology_A/Main Computer',... 
    'Position', [60 110 120 160]); 
set_param('topology_A/Main Computer','sfun',init_function,'args', ...  

    ['[' num2str(Outer_Network_No) ']'],'ninputsoutputs','[1 1]',... 
    'nwnodenbr',['[',num2str(Outer_Network_No) ,' ', ...  

    num2str(Num_of_Gate+1),']']); 
add_line('topology_A','Sine Wave/1','Main Computer/1' ); 
add_block('built-in/Scope', [gcs,['/Scope'num2str(Outer_Network_No+1)]],... 
    'Position', [160 120 190 150],'LimitDataPoints','off'); 
add_line('topology_A','Main Computer/2', ... 

    ['Scope'num2str(Outer_Network_No+1) '/1']); 

  
% Nested for loop is used to create Driver Networks,Gateway Networks,Motor 
% Drivers and Gateway Computers.if-else statement is necessary for 
% satisfying the conditions related to different blocks. 
for j=0:1:(Num_of_Gate-1) 
    Network_ID=j+1;  %network number 
    Gate_ID=j*11+1;  %used for naming Gateway Computers 

     
    % Generate DRIVER NETWORKS (Set Block Parameters, Add Scope, Connect 

Blocks) 
    add_block('truetime/TrueTime Network',['topology_A/Driver Network'...   

        num2str(Network_ID)],'Position',[210 (400+900*j) 270 (450+900*j)]); 
    set_param(['topology_A/Driver Network' num2str(Network_ID)],...     

        'nnodes',num2str(Num_of_Drivers+1),'nwnbr',num2str(Network_ID), ... 

        'nwtype','CSMA/AMP (CAN)','rate','1000000','minsize','60'); 

    add_block('built-in/Scope', [gcs,['/Scope' num2str((j+1)*1000)]],... 
        'Position',[310 (390+900*j) 330 (410+900*j)],'LimitDataPoints', ...   



50 

 

        'off'); 

    add_line('topology_A',['Driver Network' num2str(Network_ID) '/1'],... 
        ['Scope' num2str((j+1)*1000) '/1']); 

     

     
    % Generate GATEWAY NETWORKS (Set Block Parameters, Add Scope, Connect 

Blocks) 
    if j<(Num_of_Gate-1) 
        add_block('truetime/TrueTime Network', ...  

            ['topology_A/Gateway Network'num2str(Network_ID)],'Position', 

            [300 (850+900*j) 360 (900+900*j)]); 
        set_param(['topology_A/Gateway Network' num2str(Network_ID)],...      
            'nnodes',num2str(2),'nwnbr',num2str(Const+Network_ID), ... 

            'nwtype','CSMA/AMP (CAN)','rate','1000000','minsize','60'); 

        add_block('built-in/Scope', [gcs, ...  

            ['/Scope' num2str(Const+Network_ID)]],'Position', ... 

            [400 (840+900*j) 420 (860+900*j)],'LimitDataPoints','off'); 
        add_line('topology_A',['Gateway Network' num2str(Network_ID) '/1'], 

            ['Scope' num2str(Const+Network_ID) '/1']); 
    end 

     

     
    % Generate GATEWAY(GW) COMPUTERS 
    add_block('truetime/TrueTime Kernel', ['topology_A/Gateway Computer'... 

        num2str(Network_ID)],'Position', ... 

        [(370) (400+900*j) (430) (450+900*j)]); 

     
    % Set Block Parameters of First GW 
    if j==0 
        set_param(['topology_A/Gateway Computer' num2str(Network_ID)],... 
            'sfun',init_function,'args',['[' num2str(Network_ID*Const+1)   

            ']'],'ninputsoutputs','[0 9]',... 
            ['[', num2str(Network_ID),' ', '1',';' ...   

            num2str(Outer_Network_No),' ', '1',';' ...  

            num2str(Network_ID*Const+1),' ', '1]']); 
    end 

     
    % Set Block Parameters of Inner GWs 
    if j>0 && j<(Num_of_Gate-1) 
        set_param(['topology_A/Gateway Computer' num2str(Network_ID)],... 
            'sfun',init_function,'args',['[' num2str(Network_ID*Const+1)  

            ']'],'ninputsoutputs','[0 9]',... 
            'nwnodenbr',['[', num2str(Network_ID),' ', '1' , ';' ...  

             num2str(Outer_Network_No),' ', num2str(Network_ID), ';'...  

             num2str(Const+Network_ID-1),' ', '2', ';'...  

             num2str(Const+Network_ID),' ','1',']']); 
    end 

     
    % Set Block Parameters of Last GW 
    if j>0 && j==(Num_of_Gate-1) 
        set_param(['topology_A/Gateway Computer' num2str(Network_ID)],... 
            'sfun',init_function,'args',['[' num2str(Network_ID*Const+1)  

            ']'],'ninputsoutputs','[0 9]',... 
            'nwnodenbr',['[', num2str(Network_ID),' ', '1' , ';' ... 

            num2str(Outer_Network_No),' ', num2str(Network_ID), ';' ... 

            num2str(Const+Network_ID-1),' ', '2]']); 
    end 

     
    % Add Scope, Connect Blocks 
    add_block('built-in/Scope', [gcs,['/Scope' num2str(Gate_ID)]],... 



51 

 

        'Position', [(470) (360+900*j) (490) (380+900*j)], ...   

        'LimitDataPoints','off'); 
    add_line('topology_A',['Gateway Computer' num2str(Network_ID) '/1'],  

        ['Scope' num2str(Gate_ID) '/1']); 

     
    add_block('built-in/Scope', [gcs,['/Scope' num2str(Const2+Gate_ID)]], 
        'Position', [(470) (440+900*j) (490) (460+900*j)], ...  

        'LimitDataPoints','off'); 
    add_line('topology_A',['Gateway Computer' num2str(Network_ID) '/2'], ..  

        ['Scope' num2str(Const2+Gate_ID) '/1']); 

     
    % Add Mux 

     
    %Mux 1 
    add_block('built-in/Mux',[gcs,'/Mux' num2str(Network_ID)],... 
        'orientation','right','inputs',num2str(Num_of_Drivers),... 
        'position',[1050 (150+80*((Num_of_Drivers/2)-1)+900*j) 1100  

        (180+80*((Num_of_Drivers/2)-1)+900*j)]); 
    add_block('built-in/Scope',[gcs,['/Scope' num2str(Const*Const+   

        Network_ID)]],'Position',[1150 (150+80*((Num_of_Drivers/2)-1)   

        +900*j) 1200 (180+80*((Num_of_Drivers/2)-1)+900*j)] ...  

        ,'LimitDataPoints','off'); 
    add_line('topology_A',['Mux' num2str(Network_ID) '/1'],['Scope'   

        num2str(Const*Const+Network_ID) '/1'  ]); 

     
    %Mux 2 
    add_block('built-in/Mux',[gcs,'/Mux' num2str(Const*Network_ID)],... 
        'orientation','right',... 
        'inputs',num2str(Num_of_Drivers),... 
        'position',[1050 (300+80*((Num_of_Drivers/2)-1)+900*j) 1100   

        (330+80*((Num_of_Drivers/2)-1)+900*j)]); 
    add_block('built-in/Scope',[gcs, ...  

        ['/Scope'num2str(Const2*Const+Network_ID)]] ,... 

        'Position', [1150 (300+80*((Num_of_Drivers/2)-1)+900*j) 1200  

        (330+80*((Num_of_Drivers/2)-1)+900*j)],'LimitDataPoints','off');  
    add_line('topology_A',['Mux' num2str(Const*Network_ID) '/1'], ... 

        ['Scope' num2str(Const2*Const+Network_ID) '/1'  ]); 

       
    % Generate MOTOR DRIVERS (Set Block Parameters, Add Scope, Connect 

Blocks) 
    for i=1:1:(Num_of_Drivers) 

 
        Driver_ID=j*11+i+1; %used for naming Motor Drivers 

         
        add_block('truetime/TrueTime Kernel', ['topology_A/Motor Driver'... 

            num2str(Network_ID*Const+i)],... 
            'Position', [(570 ) (20+80*(i-1)+900*j) (590 ) ... 

            (60+80*(i-1)+900*j)]); 
        set_param(['topology_A/Motor Driver' num2str(Network_ID*Const+i)],  
            'sfun',init_function,'args',['[' num2str(Network_ID*Const+i+1)  

            ']'],'ninputsoutputs','[1 4]','nwnodenbr',['[', num2str(j+1),   

            ' ', num2str(i+1) ']']); 
        add_block('built-in/Scope', [gcs,['/Scope' num2str(Driver_ID)]],... 
            'Position', [(650 ) (10+80*(i-1)+900*j) (680)  

            (40+80*(i-1)+900*j)],'LimitDataPoints','off'); 

         
        add_line('topology_A',['Motor Driver' num2str(Network_ID*Const+i)  

            '/1'],['Scope' num2str(Driver_ID) '/1']); 
        add_block('built-in/Scope', [gcs,['/Scope'   



52 

 

            num2str(Const2+Driver_ID)]], 'Position',... 
            [(650 ) (50+80*(i-1)+900*j) (680) (80+80*(i-1)+900*j)], ...   

            'LimitDataPoints','off'); 

         
        add_line('topology_A',['Motor Driver' num2str(Network_ID*Const+i) 

            '/2'] , ['Scope' num2str(Const2+Driver_ID) '/1']); 
        add_line('topology_A','Sum/1',['Motor Driver' ... 

            num2str(Network_ID*Const+i) '/1']); 

         
        %mux1 
        add_line('topology_A',['Motor Driver' num2str(Network_ID*Const+i)  

            '/1'],['Mux' num2str(Network_ID) '/' num2str(i) ]); 

         
        %mux2 
        add_line('topology_A',['Motor Driver' num2str(Network_ID*Const+i)  

            '/2'],['Mux' num2str(Const*Network_ID) '/' num2str(i) ]);    
    end 
 end 

  
% Set a couple of model parameters to eliminate warning messages 
set_param(gcs,'StartTime','0.0'); 
set_param(gcs,'StopTime','2.0'); 
set_param(gcs,'Solver','ode45'); 

  
% Save the model 
save_system(fname); 

  
% Open the model 
uiopen('C:\Program Files\MATLAB\R2012a\truetime-2.0-beta7\ examples\ kubra\ 

TTcreate_block_set_param\120513\7ekim-AO(timestamp)(19kasim)\ 

topology_A.mdl',1) 

  

  

  

 

 

 

 

 

 

 

 

 

 



53 

 

 

 

 

Bibliography 

 

[1] W.D. Jones. How to build a mile-high skyscraper. Spectrum, IEEE, 44(6):52-53, June 

2007. 

[2] T. Ishii. Elevators for skyscrapers. Spectrum, IEEE, 31(9):42-46, Sep 1994 

[3] Kita H. Markon, S. and H. Kise. Control of Traffic Systems in Buildings:Applications of 

Modern Supervisory and Optimal Control (Advances in Industrial Control). Springer-Verlag 

New York, Inc. Secaucus, NJ, USA, 2006 

[4] L. Farkas, J. Hnat. Simulation of Networked Control Systems Using TrueTime. In 

Mezinarodni Conference Technical Computing, Prague, 2009. 

[5] G. Nicolescu, P. J. Mosterman. TrueTime: Simulation Tool for Performance Analysis  

Real-Time Embedded Systems. In Model-Based Design for Embedded Systems, CRC Press, 

November 2009. 

[6] D. Henriksson, A. Cervin, K-E Årzén. TrueTime: Real-time Control System Simulation 

with MATLAB/Simulink In Proceedings of the Nordic MATLAB Conference, Copenhagen, Denmark, 

October 2003. 

[7] Kita H. Suzuki H. Sudo T. Takahashi, S. ans S. Markon. Simulation-based optimization 

of a controller for multi-car elevators using a genetic algorithm for noisy fitness function. The 

2003 Congress on Evolutionary Computation, CEC ’03, 3:1582-1587 Vol.3, Dec. 2003 

[8] Koseki T. Miyatake, M. and S. Sone. Design and traffic control of multiple cars for an 

elevator system driven  by linear synchronous motors.In Proc. Symposium on Linear Drives 

for Industry Applications, number AP-22, pages 94-97, 1998. 

[9] F. Hanssen , P. G. Jansen. Real-Time Communication Protocols: An Overview (2003) 

[online]. Available at http://eprints.eemcs.utwente.nl/862/01/000000df.pdf 

[10] Koseki T. Miyatake, M. and S. Sone. Scheduling for high density transport in ropeless 

lift systems using multiple cars with transferability between shafts. Computers in Railways, 

pages 375-384, Aug. 1996 

[11] Koseki T. Miyatake, M. and S. Sone. A proposal of a ropeless lift system and evaluation 

of its feasibility,. IEEJ Trans. IA, 119(11):1353-1360, 1999 

[12] Osawa Watanable T. Yamaguchi, H. and H. Yamada. Brake control characteristics of  a 

linear synchronous motor for roplesess elevator. IEEE Trans. On Magnetics, 37(5):3732-

3736, 2001. 

http://eprints.eemcs.utwente.nl/862/01/000000df.pdf


54 

 

[13] Lorenz R.D. Jansen P.L. Transducerless position and velocity estimation in induction 

and salient ac machines. IEEE INDUSTRY APPLICATION, 31(2):240-247, 1995. 

[14] Testa A. Consili A., Scarcella G. Sensorless control of ac motors at zero speed. In IEEE 

ISIE, 1999. 

[15] M. Mihalachi and P. Mutschler. Position acquisition for long primary linear drives with 

passive vehicles. In Industry Applications Society Annual Meeting, 2008. IAS ’08. IEEE, 

pages 1-8, 2008. 

[16] M. Mihalachi and P. Mutschler. Position acquisition for linear drives a comparison of 

optical and capacitive sensors. In Industrial Electronics, 2008. IECON 2008. 34
th

 Annual 

Conference of IEEE, pages 2998-3005, 2008.  

[17] Phong C. Khong, Roberto Leidhold, and Peter Mutschler. Magnetic guiding and 

capacitive sensing for a passive vehicle of a long-primary linear motor. In Power Electronics 

and Motion Control Conference (EPE/PEMC), 2010 14
th

 International, pages S3-1-S3-8, 

2010. 

[18] M. Mihalachi and P. Mutschler. Capacitive sensors for position acquisition of linear 

drives with passive vehicles. In Optimization of Electrical and Electronic Equipment 

(OPTIM), 2010 12
th

 International Conference on, pages 673-680, May 2010. 

[19] S. Markon, A. Onat, E. Kazan, and C. Gurbuz. Linear motor coils as position sensors. In 

Linear Drives for Industry Applications, Proc. LDIA, 2009. 

[20] C. Gurbuz, E. Kazan, A. Onat and S. Markon, Lineer motorlu asansörler için güvenilir 

sürüş yöntemleri, In Automatic Control International Congress 2009 (TOK'09), Istanbul, 

Turkey, October 2009. 

[21] Broadcast Communication Networks. In National Programme on Technology Enhanced 

Learning (NPTEL) [online]. June 2013. Available at http://nptel.iitk.ac.in/ courses/ 

Webcourse-contents IIT/ %20Kharagpur/Computer%20networks/pdf/ 

[22] Carrier Sense Multiple Access [online]. December 2013. Available at http://en. 

wikipedia. org /wiki/Carrier_sense_multiple_access>  

[23] C. M. Krishna, K. G. Shin. Real Time Systems, McGraw-Hill Higher Education, New 

edition, May 1997. 

[24] Javvin Company. In Protocol Dictionary [online]. Available at http://www.javvin.com/ 

protocolToken.html 

[25] Renesas Electronics Corporation [online]. April 2010. Available at                           

http:// documentation.renesas. com/doc/products/mpumcu/apn/rej05b0804_m16cap.pdf 

[26] D. Henriksson. TrueTime Simulation of Networked Computer Control Systems. In 

preprints of 2
nd

 IFAC Conference on Analysis and Design of Hybrid Systems. Alghero, Italy, 

7-9 June 2006. 

[27] M. Andersson. Simulation of Wireless Networked Control Systems. In 44
th

 IEEE 

Conference on Decision and Control, and the European Control Conference 2005. Seville, 

Spain, December 12-15, 2005,476-481. 

http://nptel.iitk.ac.in/%20courses/%20Webcourse-contents%20IIT/%20%20Kharagpur/Computer%20networks/pdf/
http://nptel.iitk.ac.in/%20courses/%20Webcourse-contents%20IIT/%20%20Kharagpur/Computer%20networks/pdf/
http://nptel.iitk.ac.in/%20courses/%20Webcourse-contents%20IIT/%20%20Kharagpur/Computer%20networks/pdf/
http://www.javvin.com/%20protocolToken.html
http://www.javvin.com/%20protocolToken.html
http://www.javvin.com/%20protocolToken.html


55 

 

[28] S. Cojocaru, C. Radoi, S. Stancescu. The Analysis of CAN and Ethernet in Distributed 

Real-Time Systems. In U.P.B. Scientific Bulletin Series C, Vol. 71, Iss. 4, 2009 ISSN 1454-

234x  

[29] A. Cervin, M. Ohlin, D. Henriksson. Simulation of Networked Control Systems Using 

TrueTime. In 3
rd

 International Workshop on Networked Control Systems. Nancy, France, 

2007  

[30] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, K. Arzen. How Does Control Timing 

Affect Performance? Analysis and Simulation of Timing Using Jitterbug and TrueTime. In 

Control Systems, IEEE 23(3):16-30. 

[31] K. Etschberger. Comparing CAN and Ethernet Based Communication. In IXXAT 

Automation GmbH [online]. November 2009 Available at 

http://www.ixxat.com/download/artikel_ comparison_can_and_ethernet.pdf. 

[32] D. Henriksson, O. Redell, J. El-Khoury, A. Cervin, M. Törngren, K. Arzen. Tools For 

Real Time Control Systems Co-Design. In H. Hansson (ed.), ARTES- A Network For Real 

Time Research and Graduate Education in Sweden 1997-2006, Department of Information 

Technology, Uppsala University. Sweden, 2006. 

[33] A. Cervin, D. Henriksson, M. Ohlin. TrueTime 2.0 Beta Reference Manual, Department 

of Automatic Control, Lund University, June, 2010 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

http://www.ixxat.com/download/artikel_%20comparison_can_and_ethernet.pdf

