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Abstract

In this thesis, we propose an FPGA cluster infrastructure which can

be utilized in implementing cryptanalytic attacks and accelerating crypto-

graphic operations. The cluster can be formed using simple and inexpen-

sive, off-the-shelf FPGA boards featuring an FPGA device, local storage,

CPLD, and network connection. Forming the cluster is simple and no effort

for the hardware development is needed except for the hardware design for

the actual computation. Using a softcore processor on FPGA, we are able to

configure FPGA devices dynamically and change their configuration on the

fly from a remote computer. The softcore on FPGA can execute relatively

complicated programs for mundane tasks unworthy of FPGA resources. Fi-

nally, we propose and implement a fast and efficient dynamic configuration
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switch technique that is shown to be useful especially in cryptanalytic appli-

cations. Our infrastructure provides a cost-effective alternative for formerly

proposed cryptanalytic engines based on FPGA devices.
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KRİPTOLOJİK HESAPLAMALAR İÇİN, BASİT SPKD

ÇEVRİM KARTLARINDAN OLUŞMUŞ KÜMELERİN

GERÇEKLENMESİ

Yarkın DORÖZ

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Doç. Dr. Erkay Savaş

Anahtar Kelimeler: Kriptografi İçin Yeniden Yapılandırabilinen Hesaplama,

Kripto-analitik Saldırılar, Kriptografik Hızlandırma, Kriptografik Algoritmaların

Donanımsal Gerçeklenmesi

Özet

Bu tez ile, kripto-analitik saldırıların gerçeklenmesi ve kriptografik operasy-

onların hızlandırılması için tasarlanmış, SPKD’lerden (Sahada Programlanabilir

Kapı Dizileri) oluşan bir küme altyapısı sunuyoruz. Bahsi geçen küme altyapısı,

SPKD cihazı, yerel depolama, KPMC (Karmaşık Programlanabilir Mantıksal Ci-

haz) ve ağ bağlantısı içeren ucuz ve kullanıma hazır SPKD çevrim kartlarından

oluşmaktadır. Küme oluşturma işleminin basit olmasının yanısıra hesaplamalar

için gerekli olan donanım tasarımı hariç herhangi bir donanım geliştirme gerek-

tirmemektedir. SPKDlerde gerçeklenebilen bir işlemci çekirdeği sayesinde, SPKD
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cihazlarını dinamik olarak yapılandırmak ve hatta yapılandırma ayarlarını, işlem

sırasında bile, uzaktaki bir bilgisayar üzerinden değiştirmek mümkündür. Aynı za-

manda bu işlemci çekirdeği, karmaşık programları SPKDnin kaynaklarını kullan-

maksızın yürütülebilmektedir. Ek olarak, bu tez ile dinamik yapılandırma değişim

tekniği de öneriyoruz. Uygulamasını gerçeklediğimiz bu teknik özellikle kripto-

analitik saldırılarda hızlı ve verimli bir şekilde kullanılabildiğinden, SPKD ta-

banlı geleneksel kripto-analitik makinalara göre daha uygun maliyetli bir alter-

natif oluşturmaktadır.
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1 Introduction

Cryptographic operations usually contain high degree of parallelism, which favors

repetitive instantiation of the same basic block for the cryptographic primitives.

Thus, hardware-based cryptographic accelerators, harnessing the aforementioned

parallelism, have become the focus of both industrial and academical interests

especially in the last two decades.

Cryptanalytic studies aim to discover the strength of cryptographic algorithms

against certain attack techniques, efficiency of which is determined by, to a large

extent, amount of computational power available at affordable costs. As it is pos-

sible to make relatively accurate predictions (at least so far) for the increase in

computational power and decrease in their associate costs in future (e.g. Moore’s

Law), we can provide some predictions for the future strength of certain crypto-

graphic algorithms and their key lengths. Moreover, since increase in raw com-

putational power does not necessarily lead to the same level of increase in our

capacity for breaking ciphers, it is important to work on new architectures that

will make an efficient use of the new computing capabilities. As in the case of

cryptographic operations, even more so, cryptanalytic applications are character-

ized by a vast degree of inherent parallelism that can be utilized best by hardware

architectures.

Recent developments in Field Programmable Gate Array (FPGA) technology,

especially in terms of increased resources and declining costs, emphasize the con-

figurable logic devices as the economic alternative for both cryptographic accel-

eration and cryptanalytic computations. Grasping this great potential, previous
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works in literature propose FPGA-based designs and architectures for both cryp-

tographic acceleration [26, 20] and cryptanalytic purposes [19, 7, 8]. Combining

the power of hardware, especially by taking advantage of the parallelism, with the

flexibility of software based design through rapid prototyping, FPGAs are yet to

offer their great potential in cryptologic applications.

Nowadays, many FPGAs can be configured to implement microprocessor cores

that can handle mundane tasks, which are not performance bound and unworthy

of valuable FPGA resources. Implementing a communication protocol such as

TCP/IP stack or interacting with peripherals are examples of such tasks. MicroB-

laze, which is a soft processor core (referred as softcore henceforth) by Xilinx

and can be implemented even on the most inexpensive FPGAs using the general-

purpose logic available on all FPGAs [37], can be utilized in this context.

In addition, FPGAs can be dynamically configured to implement multiple

hardware designs. Relatively fast dynamical switching between configurations

provides agility as well as flexibility to meet computational diversity of crypto-

logic applications. Moreover, the configuration files for multiple designs can be

sent over a network (if the device is connected). If different configuration files are

stored in a local memory, the configuration switch between hardware designs can

be very fast.

Last, but not the least, simple FPGA boards featuring low-end FPGA devices

such as Spartan-3E [36] offer network interface and local storage, and come at

a very low cost. One such board, Spartan-3E Starter Kit [38], proves that it is

possible to have the best of both software and hardware worlds in a very cost-

effective manner.
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In this thesis, we propose an FPGA cluster for cryptologic purposes using

Spartan-3E family FPGAs. Our approach differs from similar and the closest

works in [19, 7, 8] in the sense that a super computer does from a server cluster.

Our FPGA cluster can be formed using a host-PC acting as the cluster head and

any off-the-shelf FPGA board featuring an FPGA, a network interface, local stor-

age, and a simple Complex Programmable Logic Device (CPLD). A router that

provides fast connection is beneficial, but not necessary.

The cluster head is not only responsible for coordinating the computational ac-

tivities, but also for configuring the FPGA devices in the cluster. In every FPGA,

there is one permanent configuration for the softcore stored in the flash memory.

The softcore runs on an FPGA in idle times, and performs essential tasks in load-

ing new hardware configurations besides other non-specialized tasks. The cluster

head can also send code segments for the softcore to run software applications

contributing to the agility of the overall system.

The proposed cluster can be efficiently used for cryptanalytic purposes such

as exhaustive search. For certain cases, it can also be used as an accelerator to

speedup the cryptographic applications. By supporting a fast, dynamic config-

uration switch, each FPGA board can combine the versatility of general-purpose

computer with the parallel computing capability of hardware designs, even for FP-

GAs in the low-end of the cost spectrum. The software components we develop

and denote as proxies running both in the cluster head and the softcore enables

a transparent programing experience similar to the one provided only by middle-

ware for parallel programing and remote procedure call.

Outline of the thesis is as follows: Section 2 gives background information on
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efficient modular arithmetic, followed by elliptic curve cryptography and Pollard

Rho Attack. Section 3 gives information about the Programmable Logic Devices

that are used in the process and their features in detail. Section 4 provides the de-

tails of the proposed architecture for FPGA cluster, its operational steps, usage of

the proposed cluster for cryptographic acceleration and cryptanalysis. Implemen-

tation details and experimental results are provided in Section 5. Finally, Section 6

concludes the thesis by summarizing the achievements.
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2 Background Information

In this section, we start by giving background information on asymmetrical cryp-

tography and give mathematical background on the modular arithmetic algorithms.

Later, we give details on elliptic curves and one of its forms known as Huff curves.

Afterwards, we describe the usage of Pollard Rho attack algorithm and give fea-

tures of the reconfigurable logic devices and softcores on FPGAs. Lastly, we give

detailed information on related works.

2.1 Modular Arithmetic

In this section we give detailed information on the algorithms for big integer mod-

ular arithmetics, such as modular multiplication, modular inversion and modular

addition/subtraction. Efficient algorithms are introduced in the following sections

for each of the modular arithmetic operations in order to perform faster arith-

metics on computers and electronic devices. Also, these algorithms require form

conversions for their operands which is described in Section 2.1.4.

2.1.1 Modular Multiplication

Modular multiplication is a costly operation, especially the cryptographic opera-

tions are taken into account. For instance, in ECRYPT II [12] the suggested key

length for legacy RSA systems is N > 1024 bits and for new systems is N > 2432

bits. The multiplication of such big numbers have huge costs both in software and

in hardware.
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There are different methods to make modular multiplication efficient and one

of the fastest algorithms is Montgomery multiplication [23]. The algorithm simply

utilizes addition, subtraction and shifting operations to perform modular multipli-

cation. Montgomery multiplication exchanges the division operation of the classi-

cal methods, which is used for reduction, with simple shift operations, so that the

algorithm works faster. On the down side of the algorithm, the multiplier and the

multiplicand should be converted into another form which is called Montgomery

form. The conversion operation along with the multiplication operation is costlier

than classical modular multiplications. However, for operations require multiple

multiplications, such as modular exponentiation, only two conversion operations

are required and therefore extra costs due to conversions are negligible. Therefore,

Montgomery multiplication is beneficial when many multiplication operations in

a cryptographic algorithm is required. The steps of Montgomery multiplication

given in Algorithm 1 is defined in equation (1) (T and S are two numbers that

will be multiplied and are smaller than the modulus N ):

Modular Multiplication(T, S,N) = 2−k T S mod N (1)

2.1.2 Modular Inversion

Modular inversion operation is frequently used in cryptographic applications. Since

it is usually the costliest arithmetic operation when implemented both in hard-

ware and software, an efficient inversion algorithm is needed in order to increase

the performance of cryptosystems. The Montgomery inversion [15] is one of the
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Algorithm 1 Modular Multiplication
Input: X = Multiplicand, (Xk−1, Xk−2, Xk−3, . . . X2, X1, X0), X < N

Y = Multiplier, Y < N
N = Modulus
k = Bit Size of N

Output: R = X Y 2−k mod N

R← 0
for i = 0→ k − 1 do

if Xi == 1 then
R← R + Y

end if
if R0 == 1 then
R← R +N

end if
R← R�2

end for
if R > N then
R← R−N

end if
return R
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fastest algorithm to perform inversion of big numbers.

Similar to the modular multiplication, the division operation is replaced by

simple shift operations. The operand also needs to be converted into Montgomery

form in order to be used in the Montgomery inversion algorithm. Conversion of an

operand to the Montgomery form and from the Montgomery form are costly op-

erations, but Montgomery inversion can be used in conjunction with Montgomery

multiplication in cryptographic applications, which will eventually have a higher

performance over classical modular multiplication and inversion methods. The

Montgomery inversion algorithm is composed of two phases and the output of the

first algorithmic step is used as an input by the second algorithmic step. These

phases are given in Algorithm 2 and Algorithm 3 which computes the following:

Mod Inv(R) = 2−2k R mod N (2)

where R = 2m, m = dlog2Ne.

2.1.3 Modular Addition/Subtraction

Modular addition and subtraction are the simplest modular arithmetic operations.

They can be implemented efficiently both in hardware and software. Even for

large bit sizes, addition and subtraction operation can be implemented in a few

clock cycles in hardware. The modular addition and subtraction operations are

divided into blocks and every block is processed one at a time to have a higher

clock frequency and lower the area size in hardware.

8



Algorithm 2 Modular Inversion / Phase - I
Input: X = Operand

N = Modulus
m = Bit Size of N

Output: R = N − r, r = X−1 2k, m ≤ k ≤ 2 m

u← N ; v ← X; r ← 0; s← 1; k ← 0
while v > 0 do

if u0 == 0 then
u← u�2; s← s× 2

else if v0 == 0 then
v ← v�2; r ← r × 2

else if u > v then
u← (u− v)/2�2; r ← r + s; s← s× 2

else
v ← (v − u)/2�2; s← r + s; r ← r × 2

end if
k ← k + 1

end while
if r > N then
r ← r −N

end if
return N − r, k

Algorithm 3 Modular Inversion / Phase II
Input: k = k value fromAlgorithm 2

t = N − r value from Algorithm 2
N = Modulus

Output: w = X−1 2m mod N

w ← t
for i = 1→ (2 m− k) do
w ← w/2
if w > N then
w ← w −N

end if
end for
return w

9



2.1.4 Montgomery Form

Efficient modular multiplication and inversion algorithms are based on Mont-

gomery arithmetic. The operands used by the algorithms should be converted into

Montgomery form in order to be used by the algorithms. The conversion opera-

tions are costly operations, so their usage for only one multiplication or inversion

will not be efficient. However, the extra cost of conversion will be negligible when

many multiplication operations are executed as in the case of cryptography.

The conversion of the operands can be achieved by multiplying the operands

with 2m. An operand, say T , should be taken the form of 2m T mod N , where

m is the bit size of N . This conversion can be performed by using only Mont-

gomery Multiplication Algorithm, so that no extra logic or function needed to be

implemented. If operands need to be converted, then the Modular Multiplication

is used as following for the conversion:

Modular Multiplication(T, 22m, N) = 2m T = R mod N (3)

When the operands are in Montgomery form, the arithmetic operations will

output the results in Montgomery form as well. Therefore, result of a multipli-

cation operation can be used as an operand in another multiplication or inversion

operation. As long as the calculations continue, no conversions are needed to

turn them back to their original form. After the calculations the results can be
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converted back to the original forms by using Montgomery multiplication again:

Modular Multiplication(R, 1, N) = 2−m R = T mod N (4)

Modular addition and subtraction is also compatible with Montgomery multi-

plication and inversion. The operands from the Montgomery form can be used in

the addition and subtraction algorithms and being in a Montgomery form or not

will not affect the calculations. For instance, for the operands that are in the Mont-

gomery forms addition and subtraction operations will also output in the Mont-

gomery form: 2m A ± 2m B = 2m (A ± B) mod N . Therefore, Montgomery

multiplication and inversion can be used with modular addition and subtraction in

an algorithm without the need of any form conversions between the operations.

2.2 Asymmetrical Cryptography

In Public Key Cryptosystems [PKCs], each communicating parties poses a public

key and a private key. The public key of a party is open to the public and it

is used by other parties to encrypt messages and send them to the public key

owner. The private key is used to decrypt these messages. These public and

private keys are different from each other, while they are linked in a mathematical

way. This mathematical relation is computationally infeasible to solve by modern

day computers for adequate key lengths.

PKCs are widely used to solve modern day security problems for daily com-

puter users. Many PKCs are proposed to solve different security problems, such
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as anonymity, integrity and authentication. Some of the main PKCs are RSA [32],

Diffie-Hellman [3], Elliptic Curve Cryptography [18], El-Gamal [5], Digital Sig-

nature Standard [25] and Paillier Cryptosystem [29].

2.3 Elliptic Curve Cryptography

Elliptic Curve Cryptography [ECC] is a public key cryptography system based on

the elliptic curve algebra using finite field arithmetic, which is proposed indepen-

dently by Victor S. Miller [22] and Neal Koblitz [18]. The security of the ECC is

based on the discrete logarithm problem for the points of an elliptic curve. ECC

systems provide the same level of security against RSA based systems using much

smaller bit sizes. This is especially beneficial in small systems that are limited in

energy and memory, like RFIDs and embedded systems.

2.3.1 Curve Property

Most of the ECC systems use the Weierstrass equation [35] for their curve struc-

ture with different parameters:

y2 = x3 + a x+ b mod p (5)

The a and b are two coefficients that are 0 ≤ a, b < p and p is a prime number.

Different coefficients, a and b, define different curves over Fp. Selection of bigger

primes for p will increase the number of points defined on the curve and their

group order which will eventually increase its security level.
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2.3.2 Point Property

In ECC, points that are solutions to the equation (5) form an Abelian group [16]

together with elliptic curve group operation and with an extra point called point of

infinity, which behave as the identity element of the group and denoted as∞. The

elliptic curve group operations of two group elements will result in an element

that is in the same group, because of the closure property. Therefore, it is possible

to create points in the same group using elliptic curve operations such as point

addition, point doubling and scalar multiplication.

2.3.3 Point Addition

The point addition is the basic operation that takes two points on the curve and

outputs a point on the curve. The addition operation can be applied to any two

points on the curve which will result in a new point on the curve. The calculation

of the addition between two points, say P and Q, can be done as follows:

1. A line is drawn that passes through P and Q is added to the graph.

2. All the intersection points of the curve and the line are determined.

3. If there is a point Z in an intersection which is not P and Q, then result is

the projection of point Z with respect to x axis.

4. If there is not a point rather than P and Q, then result of the addition is∞.

An example of the addition operation is illustrated in Figure 1. There are three

intersection points and the addition of these points will be P + Q + Z = ∞.

13



Therefore, P +Q = −Z.

P

Q
Z

-Z

P + Q + Z =   ∞

Figure 1: Point Addition

Algebraically, calculating the addition operation of the points P and Q can be

performed using the formulae:

1. The slope of the line that passes through P and Q is calculated as, t =

(yp−yq)

(xp−xq)
.

2. Then, xz = t2 − xp − xq.

3. Then, yz = −yp + t (xp − xz).

2.3.4 Point Doubling

The doubling operation of a point is basically addition of a point by itself. Calcu-

lation of point doubling is similar for the geometric approach. As for the algebraic

approach the doubling operation for a point, say P , can be done as follows:

14



1. A tangent line is drawn to the curve that passes through the point P .

2. All the intersection points of the curve and the line are determined.

3. If there is a point Z in an intersection which is not P , then result is the

inverse of point Z.

4. If there is not a point rather than P , then result of the addition is∞.

An example of the doubling operation is illustrated in Figure 2. There are

two intersecting points and the addition of these points will be 2 P + Z = ∞.

Therefore, 2 P = −Z.

P Z

-Z

P + P + Z = ∞

Figure 2: Point Doubling

Algebraically, calculating the doubling operation cannot be done by using the

formula for the point addition operation. If the point addition formula is used,

while calculating t = (yp−yq)

(xp−xq)
, the divisor will result in zero. Thus, for doubling

operations the formula is as the following:
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1. By taking the differential of the both sides in the equation y2p = x3
p+axp+b,

we find t =
(3 x2

p−a)

2yp
.

2. Then, xz = t2 − 2xp.

3. Then, yz = yp + t (xz − xp).

2.3.5 Scalar Multiplication

In ECC, scalar point multiplication is the main cryptographic operation. Scalar

multiplication is basically to multiply a point P with a scalar k to calculate a point

Q. One way of calculating the scalar multiplication is through addition of P by

itself k times. However, this approach is not feasible in a cryptographic case,

because scalars are too big in order to satisfy the security needs. Therefore, it

is computationally infeasible to calculate a scalar multiplication only using point

addition. In order to calculate the scalar multiplication in a feasible time Double-

and-Add Algorithm is used:

Algorithm 4 reduces the time complexity of the scalar point multiplication

from O
(
k
)

to O
(
log2 k

)
. This time reduction makes scalar multiplication feasi-

ble, which makes usage of elliptic curves in cryptography possible.

2.3.6 Order of an Elliptic Curve Group

A point in an elliptic curve group can generate all or a subgroup of the elliptic

curve group points by scalar multiplication. The smallest scalar value in a scalar
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Algorithm 4 Scalar Multiplication
Input: P = Point to be multiplied

k = Scalar value to multiply point
Output: Q = kP, output of the scalar multiplication

Q← 0
for i = m→ 0 do
Q← 2 Q (point doubling)
if ki == 1 then
Q← Q+ P (point addition)

end if
end for
return Q

multiplication that results in point of infinity is the order of that point. The order

of a point is cryptographically important, since it gives the number of points that

a point can generate in the group. For cryptographic purposes, the order of a point

must be large enough.

The order of a point is defined by the prime factors of number of points that

satisfies the curve equation. If total number of points satisfies the equation is

a prime number then the order of the point is that prime number. However, if

the total number of points on a curve is a composite number, then order of a

point is one of the prime factors or any multiplicative combination of those prime

numbers. Therefore, oder of a point should be prime and a large number, so that

the system can be cryptographically secure.
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2.3.7 Elliptic Curve Discrete Logarithm Problem (ECDLP)

The security of the Elliptic Curve Cryptography depends on the hardness of solv-

ing discrete logarithm problem in elliptic curve group. The discrete logarithm

problem can be defined on an elliptic curve as follows:

1. Let E be an elliptic curve defined over finite field Fq.

2. Find a point P element of E.

3. Take a scalar number l and compute Q = l P .

4. Elliptic Curve Discrete Logarithm Problem is finding l when P and Q are

given.

The order of the scalar l should be large enough in bit sizes so that it should

be infeasible to compute l. Therefore, in cryptographic applications a curve with

a large prime order is chosen so that the points’ orders are also large primes.

Many well known protocols are implemented on elliptic curves using Discrete

Logarithm Problem. One of the many algorithms is Elliptic Curve Diffie-Hellman

[EDCH] Protocol which will be descried in detail in the section 2.3.8.

2.3.8 Elliptic Curve Diffie-Hellman

EDCH is a protocol to set a shared secret between two parties over an insecure

channel using elliptic curves. The Elliptic Curve Diffie-Hellman protocol realized

as follows:
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1. Alice and Bob uses an elliptic curve E and a point P on E.

2. Alice selects a private scalar ka, and calculates kaP and sends it to Bob.

3. Bob selects a private scalar kb, and calculates kbP and sends it to Alice.

4. Bob takes kaP and calculates kb(kaP ) = Qb.

5. Alice takes kbP and calculates ka(kbP ) = Qa.

6. kb(kaP ) = ka(kbP )→ Qb = Qa, so Alice and Bob shares a secret.

7. Eve only learns kaP and kbP by eavesdropping.

Alice and Bob can use the x coordinate of the shared secret as a key or it can

be used to create a key for symmetric encryption. Although Eve can eavesdrop on

values of E,P, kaP and kbP , she cannot calculate ka and kb using kaP , kbP and

P , since doing so necessitates solving ECDL in a feasible amount of time.

2.4 Huff Curves

Huff curves are introduced by Huff [11] in 1948 as a new form of elliptic curves.

Every elliptic curve, which contains points that are order of 2 and 4 (Z/4Z ×

Z/2Z), can be mapped to a Huff Curve. In other words, an elliptic curve, which

holds points with the order of 2 and 4 is isomorphic [17] to a Huff Curve. The

form of a Huff curve is as follows:

ax(y2 − 1) = by(x2 − 1) where a2 6= b2 and a, b 6= 0 (6)
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Huff curves have both advantageous and disadvantageous properties over el-

liptic curves. Usage of Huff curves is beneficial since, Joye et al. [13] proposed

an efficient unified addition formula that can also be used for doubling operations.

The design of a new hardware is not needed for the doubling operations and thus

hardware area is smaller. Another advantage of the Huff Curve is that the addition

formula does not depend on the curve parameters. Every point addition operation

for any curve equation can be calculated through the same addition formula with-

out changing any parameters. Therefore, parameters of the curve equation can be

changed easily without the need of setting new parameters in the hardware. Huff

curves are disadvantageous since, they need more arithmetic operations to calcu-

late point addition and doubling than elliptic curves do. Like in most cases, the

usage of the Huff curve should be determined by the time-memory trade-off.

2.4.1 Huff Curve Point Addition/Doubling

Point addition for points in a Huff curve is calculated as follows:

1. P1, P2 are two points that are elements of the curve.

2. Lets, y = lx +m be line passing through points P1(x1, y1) and P2(x2, y2)

that intersects with a third point −P3(−x3,−y3).

3. We can calculate the slope l = y1−y2
x1−x2

and m = y1 −mx1

4. ax(y2 − 1) = by(x2 − 1) → ax((lx + m)2 − 1) = b(lx + m) (x2 −

1) by using y = lx+m
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5. We can obtain:

(a) x3 = x1 + x2 +
m(2al−b)
l(al−b)

(b) y3 = lx3 −m

6. If we expand and simplify the formula, when x1x2 6= 1 and y1y2 6= ± 1:

(a) x3 =
(x1+x2) (1+y1y2)
(1+x1x2) (1−y1y2)

(b) y3 =
(y1+y2) (1+x1x2)
(1−x1x2) (1+y1y2)

Unlike in an elliptic curve the cases where x1 = x2 or y1 = y2 will not cause

the divider to be zero. Therefore, the addition formula can also be used for point

doubling by adding the point to itself.

2.5 Pollard Rho Attack

Pollard Rho Algorithm [30] is basically an integer factorization algorithm in-

vented by John Pollard in 1975. However, its method can also be used in the

calculation of discrete logarithm problem for elliptic curves. The algorithm is

based on finding a collusion using a random-walk in a cyclic group. The algo-

rithm selects a random starting point and calculates the next point with a random

function. Calculations of points create a tail first and as the calculations con-

tinue they will form a cycle which will result in a collusion that will help to solve

ECDLP. Figure 3 shows progress of the calculation on a random-walk.

The algorithm needs fewer number of point calculations than its order to find

collusion because of the birthday paradox. Collusion can be found in (πn/2)
1
2 + c
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Figure 3: Point Behaviour

calculations on average, where n is the order of the point on the elliptic curve and

c is a constant for calculation of the points on the tail.

The original algorithm takes into account only single thread of calculation

without parallelism. However, Oorschot and Wiener [27] proposed a parallel ver-

sion of the algorithm. Even though collusion still can be calculated with same

amount of point calculations, the calculations can be divided into multiple pro-

cesses with a linear decrease in the calculation time with each number of pro-

cesses. Using the parallel algorithm, collusion can be found in (πn/2)
1
2

W
+ c cal-

culations by each process, where W is the number of processes. The Figure 4

depicts the calculation of the points and finding a collusion on a parallel Pollard
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Rho attack.
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Figure 4: Parallel Point Collusion Calculation

The generic algorithm for multiprocess Pollard Rho attack is shown in Algo-

rithm 5. In the algorithm random function for the random walk can be set to any

random function which can be decided according to the specifications or limita-

tions of the platforms. The importance of the selection of the random function

and distinguished point property, which is used in the Pollard Rho Algorithm, is

described in the sections 2.5.1 and 2.5.2.
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Algorithm 5 Pollard Rho Attack Algorithm
Inputs: P ∈ E(Fp)

l = Scalar to multiply point P
n = ord(P )
Q = l P
W = Number of total processors

Outputs: l, which is the discrete logarithm problem l = logpQ

Select a random function G that takes a point
as input and creates a random point
for i = 0→ W − 1 do
ci = rand() mod n
di = rand() mod n

end for
for each processor do
Compute a random point Ri ← ci P + di Q
while No Point Collusion in the database do

if Ri is a distinguished point then
Store (Ri, ci, di) in the database

end if
Ri ← G(Ri); ci ← g(ci); di ← g(di)

end while
end for
if Any Point collusion found, where Rj == Rk and ck 6= ck then
l← (cj−ck)

(dk−dj)
mod N

else
Rerun the algorithm

end if
return l
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2.5.1 Distinguished Point Property

The Pollard Rho Attack Algorithm is basically based on finding a collusion of two

points with different coefficients (i.e. Rj = Rl → cjP + djQ = clP + dlQ). This

is achieved by adding all the calculated points into a database and running a search

algorithm to find a collusion. However, this approach is impractical since the total

number of points to be calculated is (πn/2)
1
2 + c where n is the order. This ne-

cessitates huge storage requirements to perform a successful attack. For instance,

in the attack c, d, x, y values are stored and they require a space of 80 bytes for

160 bit field. In practical applications, n should be at least 160 bit for a sufficient

level of security, where the attack reduces its security level approximately to 80

bit. This will create a storage requirement of 280 × 80 bytes to perform the at-

tack, which is practically impossible. Even in a case where the security level is

30 bit, the attack requires 80 gigabytes of space. In addition to the huge space re-

quirement, communication between the database and the processes and collusion

search will also create prohibitively huge overhead.

Overcoming the problem of huge space requirement is to add a distinguished

point property, which will decrease the throughput of the point calculation. The

addition of a distinguished point function will selectively send the points to the

database after the calculation of the points. Generally, the distinguished point

property is set to check if the most significant k-bit of a point is zero or not. It

is simple and efficient because it does not take much resources and comparison

is a fast process. Another benefit of this k bit comparison is that the ratio of the

reduction can be determined accordingly. The function searches for a k-bit pattern

in general case, therefor the points sent to the database will be reduced by a factor
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of 2k. In other words, the process will send points to the database approximately

after every 2k points calculation.

2.5.2 Random Function

A random function is needed to determine the coefficients in generating random

number (ei and di in ciQ + diP ). Pseudorandomness can also be used while

calculating points, but true randomness can give better results while finding dis-

tinguished points. In a pseudorandom case, the points may stay in a loop without

any distinguished points being calculated. However, if the function is truly ran-

dom then, the chance of such a case is very low. Although usage of a true random

function is more beneficial, it is complex to design such a function. A pseudoran-

dom function is easier to implement and it is more practical in terms of calculation.

There are different ways to implement pseudorandom functions. One of the sim-

plest and most common implementation is to use the two least significant bits of

the point R as selection inputs as shown in Algorithm 6.

Another approach, which also creates more random results, is to form a ta-

ble by selecting multiple, random c and d coefficients and computing multiple

R points. As in the Algorithm 6, depending on the size of the table the least

significant bits of R can be used as selection inputs for the table and R, c and

d can be updated by using the table. However, this approach has more storage

requirements, since a table of coefficients and points are stored. The storage re-

quirement may not be much of a problem in a software implementation, but it

may be problematic in small FPGAs. Therefore, the random function should be

selected depending on the platform features.
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Algorithm 6 Random Function
Inputs: Rin, P, Q, cin, din, N

Rin = Input Point, where Rin = Rink−1
, Rink−2

, . . . , Rin1 , Rin0

P = l ×Q, l is a scalar for the discrete logarithm problem
cin, din = coefficients for Rin

Outputs: Rout, where it is a calculated random point
cout, dout = coefficients for Rout

if Rin1 == 0 and Rin0 == 0 then
Rout ← Rin + P ; cout = cin + 1

else if Rin1 == 0 and Rin0 == 1 then
Rout ← Rin +Q; dout = din + 1

else
Rout ← Rin +Rin; cout = cin + cin; dout = din + din

end if
return Rout, cout, dout

3 Programmable Logic Devices

Programmable Logic Devices (PLDs) are electronic circuits that are used for hard-

ware programming. Their functionalities are not fixed during their manufacturing,

users can program and configure them to implement any functionality later dur-

ing the usage. There are different types of PLDs and their usage area is different

from each other, due to their specifications. Among these different types of PLDs,

two of the important PLDs are Field-Programmable Gate Arrays (FPGAs) and

Complex Programmable Logic Device (CPLDs).
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3.1 FPGA

Field-Programmable Gate Array (FPGA) is an integrated circuit that is designed

to be configured after its production by using a Hardware Description Language

(HDL). Although FPGAs are also integrated circuits, they are different from application-

specific integrated circuits (ASICs) for their configurability property. ASICs op-

erate in much higher clock frequencies in contrast with the FPGAs, but FPGAs

have reconfiguration option changing the chip. Having a configuration option also

discards the manufacturing process of a chip and creates a rapid development, im-

plementation and production. Another benefit is availability of update for bugs or

additional features while the device is in the hand of end-users.

FPGAs contain logic blocks to be used for configuration and these blocks

can be used for creation of and, or , xor and other simple logic gates as well

as complex logical functions. FPGAs are richer in resource and can be used for

configuration of highly complex state machines, which is harder or impossible to

implement in other PLDs. In a configuration process of an FPGA, Look-Up Tables

(LUTs) of logic blocks are programmed. The LUTs are volatile. Therefore, in

every power loss reconfiguration of the FPGA is required. In most self-systems it

is achieved by dumping the configuration files in to Flash Memories from which

auto-configuration is performed on power-up.

3.1.1 Microblaze (Softcore)

Microblaze is a 32 bit soft-core processor that is designed by Xilinx for FPGAs.

The processor generally consists of a Local Memory Bus (LMB) for Block-RAM
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(BRAM) access and Processor Local Bus (PLB) for communication with the pe-

ripherals connected to Microblaze. Since it is a soft-core processor, it has the

flexibility of adjusting its specifications according to applications. For instance,

a cache can be added with a user defined size, its pipeline depth can be set as

3 or 5 stages by taking into account area-time ratio, memory management mod-

ules can be added to the buses to communicate with external storage devices (i.e.

external RAMs, flash drives), barrel shifter and floating point arithmetic unit can

also be added to improve time performance or any user hardware module can be

added through PLB for specific applications. These user hardware modules can

be controlled by software that runs on Microblaze. The availability of this op-

tion makes Microblaze a practical instrument to be used for hardware-software

co-development.

Microblaze’s architecture is suitable to be used with two types of RAMs. The

first one is the external RAMs, which are larger in capacity and have higher ac-

cess times. Microblaze can access the RAM using a memory controller module

and any code can be dumped inside of the RAM, from which it can be executed.

The second one is internal RAM, which is actually BRAM inside the FPGA. The

FPGA uses its resources and creates an interface to use the BRAMs of the FPGA

in Microblaze as an internal RAM. It still functions as a RAM with having the ad-

vantage of low access time. However, the BRAMs on the FPGAs are too limited

and the Microblaze’s internal RAM option generally limits to few KBytes. Hence,

internal RAMs cannot be an option to execute complex and high resource-oriented

codes Therefore, external RAMs are required in such cases.

Xilinx have a Software Development Kit (SDK) that enables the development
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of software applications for Microblaze. SDK offers a C/C++ programming plat-

form with built-in libraries for usage of the general purpose functions and control

of the Xilinx hardware modules that can be embedded into Microblaze. SDK uses

GNU toolchain for development of the software. Since software designs are more

flexible in contrast to hardware designs, it is easier to test, control and operate

hardware modules by a software interface. The platform shows two options for

software developments for different usages. The first one is a standalone software

development for simple software applications, which is advantageous for limited

memories. Another option that SDK provides is a small microlinux environment

for software development. It can provide more complicated software development

options such as threads, sockets and many other options by using a microlinux ker-

nel. However, the microlinux kernel creates an overhead on the codes, therefore it

needs more memory space to function, where in most designs this high memory

need is provided by external memory resources.

User hardware modules are generally implemented to improve performance

when the software implementations provide low level of performance. Although

hardware implementations have a higher performance, usage of these hardware

modules are harder without a proper interface. Microblaze can provide the in-

terface and can ease the control of the hardware module. The communication be-

tween the processor and hardware module is performed by a software program us-

ing the PLB. Microblaze provides the software-hardware interface in an effective

way. For instance, a hardware RSA engine might be connected to the Microblaze

and the inputs might be supplied to the engine by Microblaze. Microblaze basi-

cally executes the software and gets the input values from the software and writes

them to the internal registers of the hardware module, so that hardware will use
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those values as inputs. After hardware completes its process, it puts the outputs

in the registers and Microblaze takes the results from those registers. Therefore,

Microblaze can provide an easy interface to control the hardware to give inputs

and receive outputs in order to use the hardwares’ functionality.

3.1.2 Executable and Linkable Format for Microblaze

As mentioned in section 3.1.1 Microblaze can run software programs and it is

also capable of running a small kernel such as microlinux. It uses Executable and

Linkable Format (ELF) for its executable files. ELF format is suitable for Microb-

laze, since it is flexible and extensible as Microblaze. Any change or additions in

the Microblaze can be adapted also to the software level with additions to the ELF

specifications. An ELF have a file structure that consist of sections. The basic

sections are text, data, bss and rodata. The features of those basic sections are as

follows:

Text Section: It is the section where instructions of the executable code is placed.

It is used to read the instructions and perform the operations accordingly. It

covers a fixed size in the memory and it is a read-only section in most cases.

Data Section: It holds the initialized static and global variables.It uses a fixed

size in the memory. Since initialized data can be changed during the execu-

tion of the program, both read and write operations can be performed in the

section.

BSS Section: This section has a similar usage as data section. It stores the global

and static variables which are either initialized to zero or uninitialized.
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Rodata Section: This section includes variables that are declared as constants in

the program. The rodata section is also a read-only memory with a fixed

size.

Besides the basic sections, an ELF file contains other sections to handle dy-

namic memory operations in a program. These memory sections are called stack

and heap. Heap is used to handle dynamic memory that are dynamically allo-

cated during the execution of a program. Stack, on the other hand, is used to store

registers, return addresses and in many other situations where a Last-In-First-Out

(LIFO) data structure is needed. The heap and stack are consecutive sections in the

memory. Heap stores its data starting from higher address memory location and

stack stores its data starting from lower address memory location. Since hap and

stack are adjoined sections and they store the variables in the opposite direction,

an overflow may cause a distortion on the other section. Unlike basic segments

in an ELF file, heap and stack sizes are not fixed since they are used to handle

dynamic memory operations. Required size of a dynamic memory will change

form application to application and their size values should be set accordingly. In

Microblaze, using the SDK heap and stack sizes can be set to any value as long as

there is available area in the memory.

As an ELF file not always consists of basic segments, many other segments

can be added through the linker. These segments can be used to store specific data

or any part of the code segments. This flexibility is beneficial in Microblaze, since

important and frequently used functions can be stored in a specific segment and

those segments can be mapped to BRAMs. As explained in section 3.1.1 BRAMs

are too to hold complex programs, but they feature much faster access times com-
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pared to external RAMs. When most frequently used functions are executed from

BRAM, the time performance of the software program will be increased.

Microblaze uses virtual addresses for memory and register mapping. It assigns

a default starting address to BRAMs, external RAMs and flash memories. Those

virtual addresses are fixed values and they are used during the compilation of

software programs. Therefore, the segments in the ELF file should be mapped to

the right addresses. Otherwise, code execution will fail since the pointers will use

fixed addresses in memory operations. For instance, if the segments of the ELF

file is linked in the external RAM, where virtual address is 0x1C000000, the code

should be directly imported into the RAM starting from the address 0x1C000000.

3.2 CPLD

Complex Programmable Logic Device (CPLD) is a PLD that is similar to FPGAs

with some differences. They have moderate amount of sea-of-gates to be config-

ured. Unlike FPGAs, they cannot be configured to implement highly complex de-

signs. Although they are much less powerful than FPGAs, they have non-volatile

configuration memory. It is beneficial since reconfiguration is not needed in a

power-loss. When power is on, it will automatically start its functionality; for ex-

ample a state machine will start from its initial state and perform its functionality.

Reconfiguration of electronic devices is not possible every time they are turned

off for end-users. Therefore, CPLDs play important role for in bootstrapping

electronic devices.
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3.3 Related Works

Huerta et al. [10] describes a parallel computation scheme using Microblazes.

They propose three different network topologies for message transmission be-

tween multiple Microblazes that are configured in a single FPGA. Their work

measures the communication overhead between the processors to calculate the

speedup and efficiency of the systems. Furthermore, the work contains an exper-

imental implementation of AES encryption/decryption algorithm to measure the

achieved increase in throughput by multi-core implementations. In their scheme,

the speedup of the system depends on the software parallelism using multiple

Microblazes and does not achieve any hardware parallelism. In other words a Mi-

croblaze based Multiprocessor architecture is used for speedup. Although, paral-

lelism is achieved in the software by multi-core, the frequency of the Microblazes

are lower compared to modern day CPUs, so the Microblaze based Multiproces-

sor may result in a lower performance compared to modern day CPUs. Another

drawback of the system is that it does not include the usage of multiple FPGAs

and their communication interface, so the design is only limited to a single FPGA

and the number of Microblazes that can be fit into the single FPGA.

Saldana et al. [1] proposes a TMD-MPI implementation for multiple embed-

ded processors across multiple FPGAs. This work also takes into account the soft-

ware parallelism using multiple Microblazes by a middle-ware application called

TMD-MPI. One of the advantages of their work is that TMD-MPI interface can be

used to control multiple FPGAs, so their work does not depend on a single FPGA

parallelism. The design still lacks of hardware parallelism to benefit which is im-

plemented in an extended version of their work in [33]. In the extended work, they
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implemented the TMD-MPI interface to the x86 Intel processors and to the special

purpose hardware modules. Their design enables the usage of x86 Intel proces-

sors, Microblazes, Power-PC and special purpose hardware engines by a simple

software interface. The special purpose hardware modules are controlled by an in-

terface called TMD-MPE which is a hardware implementation. The TMD-MPE

is an interface between the spacial purpose hardware and the internal network

inside a single FPGA. The internal network of an FPGA is controlled with an

on-chip network interface for package distribution. Whenever a package is ad-

dressed to the special purpose hardware, the internal network passes the packages

to the TMD-MPE. The package contains data and message parameters and MPE

performs the desired function using the message parameters. Since TMD-MPI

contains large number of functions, TMD-MPE contains a small number of them

and it might not be able to perform every functionality that TMD-MPI needs.

The external network communication is sustained by an Off-Chip Communica-

tion Controller (OCCC) engine. Basically, every FPGA sends and receives the

packages via OCCC and forwards them to the on-chip network interface to be

distributed. Their scheme does not contain the dynamic configuration option of

the special purpose hardware modules. Therefore, the hardware designs should

be configured into FPGAs beforehand, in order to be used by the TMD-MPI in-

terface. Another drawback is that the design needs OCCC for every FPGA and

a TMD-MPE for every special purpose hardware modules which may be ineffi-

cient since, they may cover a large area in the FPGA. Also, FPGAs are connected

to a motherboard by Front-Side-Bus using an OCCC. If the total number of FP-

GAs exceeds a volume than the motherboard can hold, another Host PC should be

added to the system which increases the total cost of the system.
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Güneysu et al. [7] proposes an FPGA cluster based special purpose hardware

to solve discrete logarithm problem for elliptic curves. Their work focus on crypt-

analytic attacks by using special purpose architectures. The design is built to at-

tack and measure the security levels of the elliptic curves. The attack is performed

by using a special purpose hardware for elliptic curve point addition and a Host

PC to manage the control of the hardware designs. Unlike the previous paper in

[33], the design does not aim to build a generic architecture for hardware control.

However, the work is similar in sense of having a Host PC as the controller and

the FPGAs as the work horses. The Host PC is used to send/receive data and to

form a database to perform the ECDLP attack. The possibility of hardware accel-

eration is shown with the work, but it does not contain any protocol for dynamic

configuration option for the FPGAs and it does not contain a generic architecture

to control multiple FPGAs for massive computations.

In [6] and [8] Güneysu et al. present cryptographic and cryptanalytic works on

a special machine called COPACOBANA. COPACOBANA is a machine that is

consists of 120 Spartan-3e1000 FPGAs that are connected to a Host-PC by using

an FPGA interface. The Host-PC uses software libraries to control and configure

the FPGAs which ease the control of the machine. The machine is specifically de-

signed for high performance computing in any field of science where computation

power is essential. The papers basically focus on efficient hardware architectures

and use the parallelism of the FPGAs to measure the security levels of widely

used security algorithms like DES, 3DES, AES, Elliptic Curve Digital Signature,

etc. The COPACOBANA machine is moderate in price-performance ratio when

compared to computers which have same level of computation power. Although

it has a moderate price-performance ratio, it is still an expensive device to obtain.
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In this thesis, we try to eliminate the disadvantages of the proposed systems

and create an FPGA-cluster with an ease of control mechanism. In Huerta et

al. and Saldana et al. the proposed systems either use only Microblazes for par-

allelism or uses communication interfaces for the hardware engines. We try to

eliminate the software parallesim, since hardware parallelism is better, and the

interfaces for the communications, because they will utilize area in the FPGAs.

We try to take advantage of the software control like TMD-MPI architecture in

Saldana et al. with additions of having reconfigurability options on the FPGAs.

Güneysu et al. tries to measure the security levels of the widely sued algorithms

with a high priced device, but it is not always possible to purchase such devices.

Our work aims to use the low level FPGAs to form clusters and estimate the secu-

rity levels of the algorithms based on the speed of the performed attacks.
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4 General Overview of the Proposed Scheme

In this section, we give details on the proposed architecture for FPGA cluster,

our scheme and its operational steps, usage of FPGA cluster for acceleration of

cryptographic computations and cryptanalysis.

4.1 Proposed Architecture for FPGA cluster

The architectural overview of the FPGA cluster we use in our work is depicted in

Figure 5. Since our architecture uses TCP/IP for communication, any FPGA board

connected to the Internet can be a part of our cluster and individually accessed

from anywhere in the network.

CLUSTER HEAD

FPGA-1

FPGA-2

FPGA-3

ROUTER

Figure 5: General overview of the FPGA cluster

Our aim is to create a platform consisting of various hardware and software

components that can be used for time- and resource-consuming tasks with a spe-

cific emphasis on cryptologic applications. The application we target is of the type

where direct interprocess communication is not necessary such as exhaustive key

search.
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As pointed out earlier, our goal is to harness especially the computation power

of inexpensive FPGA boards for the use in cryptologic applications. Therefore,

we use Spartan-3E Starter Kit board, which is one of the basic equipment used

in logic design courses. A Spartan-3E Starter Kit [38] is a board that consists

of the following hardware components: i) volatile programmable unit (FPGA -

XC3S500E), ii) a nonvolatile programmable unit (CPLD - XC2C64A), iii) 128

Mbit parallel flash memory, iv) 64 MB DDR SDRAM (MT46V32M16), v) Stan-

dard Microsystems LAN83C185 10/100 Ethernet physical layer (PHY) interface

and vi) a RJ-45 connector. In what follows, we give details of these components

and how we utilize them in our cluster.

FPGA: Spartan-3E Starter Kit features an FPGA chip [36] (XC3S500E) of

500K equivalent gates.

For flexibility, we adopt a configuration scheme so that a user not only sends

computation tasks to FPGA device, but also configures it remotely via Internet.

By configuration, we mean sending small software applications that will run on

the softcore as well as configuring hardware resources for the actual computation.

These software applications function as proxies, which handle the communication

with the cluster head to receive jobs and deal with other management tasks. The

softcore (MicroBlaze) is a 32-bit RISC processor which can be implemented on

an FPGA device using the general-purpose configurable logic.

CPLD: Unlike FPGA, CPLD configuration is not lost when the power is

switched off. Thus, it can be used to implement a state machine that will bootstrap

the device and perform simple configuration steps such as loading the softcore to

the FPGA during the startup. The CPLD plays an essential role in configuration
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switch operation as well.

Storage Units - SDRAM and Parallel Flash: Two types of storage de-

vices on the Spartan-3E Starter Kit play an important role in our application. The

first one is a 512 Mbit DDR RAM (MT46V32M16), which is a volatile memory

(hereafter referred as SDRAM) used mainly for running our proxy codes. The

second one is a 128 Mbit (16 MB) Intel Strata Flash parallel NOR Flash PROM

(JS28F128-J3D75), which is used for storing configuration files of the softcore

and hardware for the computation, proxy code, and finally the computation re-

sults in some cases. We will refer this non-volatile memory as the parallel flash.

The utilized components on the FPGA board are shown in Figure 6.

Figure 6: Components of the FPGA board

For flexibity and transparency purposes, the proposed infrastructure is de-

signed as a self-configuring system, which becomes ready for remote configu-

ration once it is connected to the Internet. In addition, multi-configuration tech-
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nology allows to switch between configurations dynamically.

The CPLD controls the most significant four bits of the address lines of the

parallel flash as shown in Figure 6 allowing it to store up to 16 different config-

uration files in the parallel flash. The multi-configuration technology is available

in many FPGA devices.

4.2 Our Scheme and Its Operational Steps

Our scheme can be understood better if the following four key steps of its opera-

tion are explained in detail as follows:

Softcore Configuration: The FPGA device is expected to start automatically

and become ready for remote configuration through the network when the device

is turned on. For this, the configuration bit stream of the softcore is stored at ad-

dress (0x000000)1 of the parallel flash and the CPLD is configured with a state

machine which will help to configure FPGA automatically. The memory map of

the parallel flash illustrated in Figure 7 shows the exact location of the configura-

tion file for the softcore.

Following the softcore configuration, a special program called boot-loader is

executed by the softcore.

Execution of Boot-loader: The boot-loader is a small piece of code, which

comes as a part of configuration file of the softcore and stored in internal Block

RAM (BRAM) of the FPGA. It is responsible of moving the proxy code (cf.
1We use 24-bit address for the parallel flash.
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0x000000

0x100000
Proxy Code

Microblaze Configuration Bitstream

Hardware Configuration Bitstream
0x300000

0x400000

0xFFFFFF

Available for 

User 

Configuration

Figure 7: Memory map of the parallel flash and placement of configuration and
data

0x010000 in Figure 7) from the parallel flash to the SDRAM since the latter is

too large to fit in the internal BRAM.

Execution of Proxy for Implementing Client/Server Communication Model:

To assign tasks, the cluster head communicates with FPGA boards using reliable

TCP/IP protocols which are implemented by the proxy code on the softcore side.

In our communication model, the cluster head and the softcore plays the roles of

server and clients interchangeably.

Automatic, Remote Configuration of FPGA Device and Configuration

Switch: The actual computations for specific tasks are performed by hardware

implementations, optimized for FPGA devices. Once the configuration file for a
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hardware implementation is available, the cluster head can send it through net-

work to the FPGA device. The proxy code running on the softcore is responsible

of receiving the hardware configuration file and storing it in the parallel flash (cf.

address of 0x300000 of the parallel flash in Figure 7).

The cluster head can send commands to the softcore to perform write, read,

erase and configure operations. A write command can be used to up-

load a configuration file for a specific hardware to the parallel flash. Then, the

configure command is used to configure the FPGA with this hardware. Be-

fore configuration of the hardware, the softcore can be removed from the FPGA

to use its space for the former. Naturally, when the computation by the hard-

ware is finished, the FPGA device should be re-configured back to the softcore.

However, the hardware will need to relay the results of the computation to the

softcore before its re-configuration. The results are written in a specific location

in the parallel flash, whose address is sent to the softcore with the configure

command.

More precisely, configuration switch necessitates the execution of the the fol-

lowing steps in this order: i) Communication 1: the softcore receives input data

and stores it in the parallel flash, ii) Configuration switch 1: the softcore is re-

moved and the hardware is loaded in the FPGA, iii) Computation: The hardware

works on the task, and writes the results to the parallel flash iv) Configuration

switch 2: The hardware is removed and the softcore is loaded in the FPGA, v)

v) Communication 2: the softcore reads the results from the parallel flash, and

sends them to the cluster head.

Alternatively, especially for applications and FPGAs where the area overhead
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of the softcore is not important, the hardware design and the softcore can run

simultaneously in FPGA, which eliminates the need for configuration switch as

described above. In subsequent sections, we will demonstrate applications that

benefit from the configuration switch.

4.3 Using FPGA Cluster for Acceleration of Cryptographic Com-

putations

A simple and inexpensive FPGA device such as Spartan-3 running at a low clock

frequency of 119 MHz can perform an RSA exponentiation operation in about

8 ms using 1553 slices and 10 hardwired multipliers [26]2. Similarly, the same

FPGA device can achieve an encryption rate of 429 Mbps for the AES standard

block cipher algorithm using only 103 slices at 161 MHz [9]. Since the FPGA

device can realize more than one block of AES encryption engine, it is possi-

ble to reach much higher throughput values for encryption operation either using

multi-message encryption techniques or a suitable working mode (e.g. counter

mode). Therefore, using simple, inexpensive FPGA clusters can be cost-effective

alternatives for accelerating cryptographic operations.

When the configuration switch is not used, cryptographic operations can be

overlapped with the communication. In other words, as the softcore receives the

new requests for cryptographic operation the hardware can perform the calcula-

2Note that RSA timings for one signature operation vary between 0.15 ms and 8 ms on a PC
depending on the processor (cf. http://bench.cr.yp.to/results-sign.html). In order to obtain accel-
eration over common PCs, a larger FPGA device that can accommodate more than one instance
of crypto unit should be used. Otherwise, many FPGA boards will be needed to outperform PC
implementations.
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tions for old requests simultaneously. The biggest problem in using inexpensive

FPGA boards as cryptographic accelerators is that the softcore consumes a signif-

icant portion of FPGA resources leaving only a fraction of them for cryptographic

computations. For example, while we can accommodate several AES encryp-

tion/decryption blocks [9] on a Spartan-3E along with the softcore, an RSA circuit

may not co-exist with the softcore in our FPGA device. Therefore, in RSA case

we may need to switch between RSA circuit and the softcore configurations.

During the configuration switch, the SDRAM loses its content since it is es-

sentially a dynamic memory and needs refreshment operations in regular periods

due to the fact that data stored as charges decays in time. Therefore, the only way

the softcore and the hardware can communicate is through writing to the paral-

lel flash memory. Writing data to the parallel flash, on the other hand, is a very

slow operation compared to the execution time of the cryptographic operation for

the same data. Consequently, cryptographic acceleration through a simple FPGA

board may not be feasible if configuration switching is needed as in the case of

RSA circuit. In Section 5, we provide a scenario where cryptographic accelera-

tion may be possible even in the case of configuration switch. But, block cipher

acceleration is always possible since the FPGA device can be shared between the

softcore and the hardware.

4.4 Using FPGA Cluster for Cryptanalysis

Depending on the cryptographic algorithm, different cryptanalytic attack meth-

ods and algorithms are proposed. For recent block cipher algorithms, perhaps

45



the most successful attack method is exhaustive search, which relies on trying

out all keys. Exhaustive search or more precisely the effectiveness of exhaustive

search made possible through our computational ability also provides a reliable

metric for security of many cryptographic algorithms. We tend to quantify the

difficulty of breaking cryptographic algorithms in terms of the difficulty of ex-

haustive search (more precisely the number of basic operations we perform in an

exhaustive search) [21, 24, 4]. This is due to the fact that we perform an eventual

exhaustive search within a reduced set of secret key candidates in many cryptana-

lytic attack methods.

Most cryptanalytic algorithms can be adjusted to alleviate the time overhead

incurred in inter-process communication between the cluster head and the FPGA

boards. Both designs in [7] for exhaustive key search and [8] for solving discrete

logarithm problem (DLP) rely on a massively parallel computer of inexpensive

FPGA devices as the computational work horses. Exhaustive key search is one of

the easiest cryptanalytic problems to parallelize since each FPGA device can run

in isolation for a very long period of time that is adjustable with the size of the

search interval. Also, as stated in [8], certain computations in the Pollard’s Rho

method [31, 28] for solving elliptic curve DLP (ECDLP) can be so adjusted to

meet any bandwidth restriction between the cluster head and the FPGA boards.

For instance, in an exhaustive search for an AES key using the implementation

in [9], one AES block (103 slices) can try approximately 3.3 million key candi-

dates in one second. In a single computation task submitted to an FPGA, which

takes about one minute, one additional AES block implemented on the FPGA

resources gained by removing the softcore can try out an extra 200 million key
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candidates. This value commensurates with the number of AES instances that can

fit in the space saved through removing the softcore. Since the communication

between the cluster head and FPGA device is not intense (in fact only the key

interval is needed to be communicated to the FPGA), overlapping communication

and computation would not help. Therefore, in such cases it is always beneficial

to apply the configuration switch.
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5 Implementation and Experimental Results

In this section, we provide some implementation details and experimental results

to evaluate the true potential of the proposed FPGA cluster for cryptologic com-

putations. We start by giving the required resources to implement the softcore

in Spartan-3E (XC3S500E) devices, which consumes 4,270 out of 9,312 (45%)

4-input LUTs and occupies 3,526 out of 4,656 (75%) slices. The utilization per-

centage for such a small FPGA device is relatively high and leaving limited con-

figurable FPGA resources for the hardware unit that will perform the actual com-

putation. While the remaining resources are significant in implementing many

instances of block cipher algorithms, the public key algorithms may not be imple-

mented in a low end FPGA device. This is, in fact, one of the primary motivations

for the scheme that will allow an efficient configuration switch between the soft-

core and the hardware unit.

In our experiments, we used a Linux-based PC (cluster head) and ASUS RT-

N13U router in addition to multiple Spartan-3E boards. We used Verilog for all

hardware designs and C/C++ language for software components on the softcore

and the cluster head.

5.1 Software Implementations

In this section, we give detailed information on the software implementations for

both the softcore and cluster head.
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5.1.1 Bootloader

As mentioned in Section 3.1.1 softcore can run both standalone and µlinux appli-

cations that are written in C/C++ language. However, it is not always possible to

fit the entire code into BRAM of the softcore, especially µlinux applications, since

the BRAM sizes of the softcores are generally too small. Therefore, codes, which

requires huge amount of storage, are executed from SDRAM. To this end, a boot-

loader application is used. The bootloader can be embedded into the BRAM of the

softcore and the configuration file of the softcore can be updated with the informa-

tion in the BRAM. When the softcore is configured using the configuration file,

the bootloader application is also imported to the FPGA. Once the configuration

is completed, the softcore starts its execution from the BRAM, and the bootloader

application starts. The job of the bootloader is to copy the proxy code to SDRAM

and start its execution. For the bootloader to perform the operations, the proxy

code is put into a file format (referred to as proxy-file-format henceforth) which

is described in detail in section 5.1.3. The bootloader uses the following steps to

start the execution of the proxy code:

1. The bootloader reads the header of the proxy-file-format from a specific

offset3 from the flash driver. This header contains necessary information to

copy and run the proxy code. The structure of the header is given in table 1.

2. The bootloader copies the proxy code from the flash to the SDRAM using

the size of the proxy code to allocate sufficient storage for the proxy.

3In our case, offset of the flash is 0x100000
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Elements of the Structure Vector Memory Addresses Size(In Bytes)
in the Softcore

Size of the Proxy Code - 4
Reset Vector 0x00000000-0x00000004 4

User Exception Vector 0x00000008-0x0000000C 4
Interrupt Vector 0x00000010-0x00000014 4

Break Point Vector 0x00000018-0x0000001C 4
Hardware Exception Vector 0x00000020-0x00000024 4

3. The bootloader sets the reset, exception and interrupt vector values of the

proxy code in the softcore to start its execution. These vectors are impor-

tant to start the execution flow of the proxy code correctly. The values of

the vectors differ in each application and they are also different in the boot-

loader and the proxy code, since the bootloader uses the virtual addresses

of the BRAM and the proxy code uses the virtual addresses of the SDRAM.

If the values are not set correctly before launching the proxy application,

the execution flow of the proxy code will be damaged in the first exception

or interrupt event. The features of these vector values is as in the follow-

ing: Reset Vector: It holds the first instruction to start the execution. When

the softcore is started or a reset operation is performed, the instructions

starts fetching from the reset vector whose address is 0x00000000. User-

Hardware Exception Vectors: These vectors are used to handle software

exceptions and hardware exceptions. The causes of the software exceptions

is to the running program on the softcore. The hardware exceptions are gen-

erally caused by situations like illegal instructions, instructions and data bus

errors and many other hardware related errors. These exception vectors are

used to handle exception problems by storing the memory address of the

problem, jumping to necessary functions to handle the exception and per-
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forming further operations to continue the execution flow correctly. Inter-

rupt Vectors: The interrupt vector is used to handle the interrupts occurred

by the hardware peripherals. In an interrupt operation, the return address

of the execution is stored in the registers and jumps to the interrupt vec-

tor to execute the handling process. Later, the address is restored from the

registers to continue execution flow.

4. The bootloader resets the internal registers of the softcore to prevent any

disturbance that may occur due to the stored values in the registers.

5. The bootloader resets the Program Counter (PC) of the softcore to start the

execution flow from the beginning. Because the bootloader resets to the

value of the reset vector, the processor directly jumps to execute the proxy

code from the SDRAM.

5.1.2 Cluster-Head

In our work, we want to form an FPGA cluster in which FPGAs can be used

in their full potentials with an easy control mechanism. In order to create an

easy control mechanism, developing a software library was crucial to handle the

communication and manage the FPGAs. Since software programs are easier to

develop and more flexible relative to hardware designs, we developed a C/C++

software library for the control mechanism. In the development of the software

library, we aimed to create middleware services between the cluster-head and the

FPGAs in order to use the cluster-head as the data manager and controller, while

FPGAs are used as workhorses. The software library is designed to work on
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Linux operating system and it uses TCP/IP socket to handle the communication

and Posix-Thread library to handle thread applications. In the following, details

of the software library structure will be explained and the protocols between the

cluster-head and FPGAs will be given:

Software Library Structure

The software library is formed in a hierarchy of structures to store information

on FPGAs and manage the communication. In the low level, the library holds

a structure called FPGA Structure that stores information about a single FPGA.

The FPGA Structure contains information on network, socket, thread, data and

flags for an FPGA. The detailed information on the structures is below:

• Network Structure: The network structure holds the information about the

IP address of the FPGA and input-output port numbers, which are used in

the communication process.

• Socket Structure: The cluster-head will run both a server and a client ap-

plication. The structure holds the socket numbers for both applications.

• Thread Structure: The threads are used to parallelize the communications

and handle server and client applications simultaneously. For that purpose,

applications requires the usage of thread indexes, locks and signals which

will be described in detail in Software Library Protocols.

• Data Structure: The data structure holds information about the offset and

size of the data which will be sent to the FPGA or received from the FPGA.

It also contains pointers to sending/receiving data.
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• Flag Structure: The flags are set to handle usage of server and client ap-

plications without a conflict in the cluster-head. The flags contain the fol-

lowing information on the FPGA: whether the FPGA is server or client,

connected or not and busy or not.

While the library has a structure FPGA Structure in the low level implemen-

tation to store information for an FPGA, a class FPGAS Class is implemented,

using the FPGA Structure, in the upper level to create functions to control the

FPGAs. This class is used to create applications for distributed computing in the

FPGAs which is serving as a middleware application. The FPGAS Class holds the

FPGA Structure as a linked list and any number of FPGAs can be added to the

list at any time in the application. Any FPGA Structure in the list can be selected

by an index to access its information. Usage of indexes helps to set information

for every FPGA separately which is useful while assigning different tasks for each

FPGA.

Software Library Protocols

As the first step, a server application need to be started in the cluster-head to

handle the data exchange in a configuration switch operation. Before any connec-

tions are performed by the cluster-head, the IP and port numbers of the FPGAs

should be entered. After that, any connection request can be sent to the FPGAs as

a client. After a connection is established, any read, write, erase or configuration

operations can be requested from the FPGAs. The details of the operations are

given in the following:
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• Erase Operation: In an erase operation, the informations sent to the FP-

GAs are erase command, offset and size of the flash memory need to be

erased. When the job request is completed, the FPGA sends an acknowl-

edgement to the cluster-head, so the cluster-head continues to execute its

application.

• Read Operation: A read operation may be a time consuming operation in

some cases. Therefore, rather than communicating with a single FPGA at

a time, a thread application is created in order to receive data from mul-

tiple FPGAs in parallel. Before starting the read operation, the size and

the offset values of the memory area which will be read should be set in

the FPGA Structure structure. Then, the necessary memory should be al-

located, using the receive pointer in the FPGA Structure to store the re-

ceiving data from the FPGA. When the read operation is executed for a

specific FPGA, a thread application is started. This application sends the

read command, offset and size information to the FPGA. Then, the cluster-

head receives the data in chunks of 0x400 Bytes and to synchronize the

communication, for every received chunk an acknowledgement is sent to

the FPGA. This process continues until all the data is received from the

FPGA and after that the data can be accessed from the allocated memory.

The visualization of protocol of the read operation is illustrated in Figure

8. The usage of threads creates an asynchronous communication between

the FPGA and cluster-head. In other words, while a read operation is oc-

curring for an FPGA, other operations may also continue on other FPGAs.

Although asynchronous communication is useful to fasten the processes and

to run the FPGAs in parallel, a problem may occur if the read operation is
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not finished while the data is required for an operation in the cluster-head.

The problem is handled using signals in the thread which will be described

in detail in Waiting Operation.
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Figure 8: The Protocol of Read Operation

• Write Operation: The write operation is similar to the read operation. Be-

fore starting the operation, size and offset values of the memory area which

will be written should be set in the FPGA Structure. Later, the necessary

memory should be allocated, using the send pointer in the FPGA Structure,

to store the sending data. After the allocation, the data should be copied into

the allocated memory so that a writing operation can be performed. Similar

to a read operation, a write operation opens a thread application and the data

can be sent in parallel while the cluster-head can continue to perform other

operations. In the protocol, the cluster-head sends the data in chunks of
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0x400 Bytes and for every chunk, it receives an acknowledgement from the

FPGA until all the data is sent to the FPGA. The visualization of the write

operation protocol is illustrated in Figure 9. Like in the read operation, the

write operation should be handled with a thread-safe method not to cause a

race condition between the threads. The problem is handled using signals

in the threads which will be described in detail in Waiting Operation.
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Figure 9: The Protocol of Write Operation

• Configuration Switch Operation: As described in Section 4.2, in a con-

figuration switch event, the result of the hardware process, will be sent back

to the cluster-head. In order to perform the operation, the server applica-

tion on the cluster-head should be started in the first place. Then the, offset

and size values of the resulting data and configuration command are sent

to the FPGA. Later, the operation continues by closing the connection with
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the FPGA. After the connection is closed, the cluster-head continues to run

its other operations, while its server application waits to receive the results.

When the FPGA is connected to the server of the cluster-head, which means

that hardware operation finished its job and ready to send the results, the

cluster-head searches the IP address of the connected device from the linked

list and opens a receiving application thread to receive the results. Since it is

a thread application, the main part of the application may need to await the

results to use them afterwards. This situation is handled like the write and

read operation which will be described in detail in Waiting Operation.

• Waiting Operation: Since the library aims to control the FPGA clusters in

parallel to perform read, write and configuration switch operations, it needs

a thread handling function to prevent race conditions and create thread-safe

applications using the library. Therefore, we added a WAIT function to the

library to create thread-safe applications. The function is used for waiting

an operation that should complete its execution before the other operations

can continue. It checks the client/server, busy and connected flags in order

to decide whether the FPGA is doing a configuration switch or read/write

operation. Once the decision is made, the function waits for the selected

operation to complete its process. After the operation is completed, the

function finishes its waiting condition and the application continues to exe-

cute.
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5.1.3 Proxy Code

The softcore contains a large complex software application (the proxy code) to

perform the tasks that are sent from the cluster-head. The proxy code is put into

a file format for the bootloader to start it. In our setup, all proxy code instruc-

tions are executed from the SDRAM and its virtual address is used in the process.

Converting the program to a file format is realized with the following steps:

1. The proxy code is compiled and an ELF file is formed.

2. The ELF file is converted into a binary file(referred as input-binary hence-

forth), where the sections of the ELF file are mapped into their virtual ad-

dress.

3. From the input-binary file, size of the proxy code, reset, user exception,

interrupt, break point and hardware exception vectors are copied into an

output binary file (referred as output-binary henceforth).

4. From the input-binary file, all the instructions are copied to the output-

binary file and the file format is ready to be transferred into the flash to

be started by the bootloader application.

When the bootloader starts the proxy code it performs some steps to com-

municate with the cluster-head and waits for tasks to perform. As the first step

the proxy code initializes the network peripherals to make available the network

interface for communication. Then, it sets the MAC and IP addresses of the soft-

core which should be set differently for every softcore in the network. After that,
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the proxy code is ready to run the protocol with the cluster-head. The protocol

between the cluster-head and the proxy code is required to perform both server

and client applications in both sides. A server/client state bit is stored in the flash

memory to keep track of the proxy is acting as a server or client. When the proxy

runs a server process, the following process is executed:

1. The proxy code reads the status register from the flash memory location to

decide whether to run client application or server application.

2. If the server application is started, which means there is not any job assigned

to the softcore, it waits for connection request from the cluster head.

3. When a connection request comes from the cluster-head, it accepts the con-

nection and performs the tasks that are given by the cluster-head. As de-

scribed in Section 4.2, these tasks can be writing, reading, erasing or and

configuration switch operations. A read and write operation in flash mem-

ory is a costly operation, so these operations are handled in large arrays. For

each operation, the protocol for the proxy code is as follows:

• Reading Operation: The cluster-head sends the offset and size of the

data that will be read from the flash memory. The proxy code allocates

0x50000 B of memory in the SDRAM. If the size does not exceeds

the allocated space, it stores all the data from the flash memory to the

allocated location in SDRAM and sends the data in chunks of 0x400

B to the cluster-head. In case when the size exceeds the allocated

memory, it stores the first 0x50000 bytes from the flash memory and

sends it to the cluster-head in chunks of 0x400 B. After 0x50000 B
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of data is sent, allocated space is used to store the second 0x50000

B of data. This process continues until the proxy-code sends all the

necessary data. After the task is finished, the allocated space is freed

to be used for later operations.

• Writing Operation: The cluster-head sends the offset and size of

the data that will be written to the flash memory. In order to write

in flash memories, the area should be erased with a erase operation

first. After the erasing the necessary memory, the proxy code allo-

cates 0x50000 bytes of memory from the SDRAM. Later, it receives

the data in chunks of 0x400 B from the cluster-head and stores it until

the allocated space is full. If the size does not exceed the allocated

space, the proxy code writes the data into the flash memory. In case,

where the size exceeds the allocated space, the proxy code stops re-

ceiving data when the allocated space is full and it writes all the data

in the allocated space to the flash memory. After the writing process

is completed, proxy code continues to receive the data since the allo-

cated memory is available. This process continue until all the data is

received and written into the flash memory.

• Erasing Operation: In flash memories the erasing operation can be

performed in the entire sector. Even to erase a few bytes of the memory

in the flash drive, the entire memory sector needs to be erased com-

pletely. In our case, Parallel Flash divided into sectors of 0x20000

bytes. In order to perform erase operation, the cluster-head sends the

size and offset of the erase operation. The proxy code calculates the

number of sectors that need to be erased. Later on, it performs erase
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operations for each sector.

• Configuration Switch Operation: As described in Section 4.2, the

cluster-head sends the configuration switch command along with the

offset and size values of the flash memory location that the hardware

process writes its results. The proxy code forms a status register for-

mat to write it into the flash memory for itself to use it in a config-

uration switch operation. The first byte of the status register holds

the client-server status information, which in our case, is set to client

state. The following 4 bytes holds the IP address of the cluster-head

and the last 8 bytes holds the offset and size information. After the

status register format is formed, it is copied into a specific part of the

flash 4. Then, the proxy code erases the flash memory starting from

the offset by the amount of size to make space in the flash memory

for the hardware to write its results. As the last step, the proxy code

closes its connection with the cluster-head and sends a bit-stream to

the CPLD to start configuration switch to configure the hardware.

After the hardware completes its job, it starts another configuration switch to

configure the softcore. This time when the proxy code starts, the client-server

status register holds the information to start the client application in the proxy

code. In the client case of the proxy code, the communication protocol between

the proxy code and cluster-head is explained in the following:

1. The proxy code reads the status register from the flash memory and runs the

client application.
4Address 0x60000 offset in our application
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2. Using the information in the status register, proxy code connects to the

server in the cluster-head.

3. The proxy code performs a reading operation and sends the results that is

obtained by the hardware to the cluster-head using the offset and size values

in the status register.

4. After the completion of the transmission, it erases the status register and

starts its server application to be ready for the future job requests.

5. When the server application is ready, it disconnects its client application

from the cluster-head.

5.2 Hardware Implementations

In this section, we give detailed information on the hardware implementations.

Our implementations use word blocks for storage, therefore arithmetic operations

are implemented to handle the data as a form of word blocks. Since our implemen-

tations are parametrized, bit size and word block size of the hardware architectures

can be set to any value. Therefore, they are flexible designs that are able to be used

in any architecture by changing their parameters. Since we are performing an at-

tack on 160-bit Huff curves, we set the bit size to 160 bits and the word block

number to 10.
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5.2.1 Inversion

In this section the hardware implementation of the Montgomery inversion will be

described in detail, which is mentioned in section 2.1.2. The Montgomery inver-

sion Algorithm aims to produce X−12m mod N as an output, for the operand X .

The algorithm consists of two phases which are given in Algorithm 2 and 3. In

the first phase, required inputs are the X as the inversion operand and N as the

modulus of the operation. The output of the first phase is: X−12k−m mod N .

The first phase will run the while loop for k iterations. Every iteration in the

while loop is designed to finish the if-else statements in W + 1 clock cycles,

where W is the total number of word blocks, in our hardware implementation.

The total number of clock cycles to finish the while loop is: k ∗ (W + 1). Af-

ter the while loop is finished in the first phase, the if statement at the end will

add W clock cycles to the overall timing. Therefore, the total number of clock

cycles to finish the phase one is: k ∗ (W + 1) + W . When the first phase is

completed, it passes the X−12k−m mod N and k to the second phase in oder

to compute the Montgomery inversion. The second phase is basically calculates

the multiplication of the given input by 22m−k. Using the first phase’s outputs,

the second phase will calculate: X−12k−m ∗ 22m−k mod N , which will result in

X−12m mod N . In the second phase, the for loop will iterate 2m − k times. In

every iteration the calculation will take W + 1 clock cycles and the total number

of clock cycles for the second phase will be (2m− k) ∗ (W + 1). This will result

in the total number of clock cycles for the Montgomery inversion algorithm as

(2m− k) ∗ (W + 1) + k ∗ (W + 1) +W → 2m ∗ (W + 1) +W .

The implementation of the Montgomery inversion algorithm is a generic and
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flexible one. As mentioned before, the implementation can be set to any bit length

and word length for the desired usage. The algorithm is implemented by dividing

the hardware architecture into two main architectures which are named as u-v

architecture and r-s architecture. In the following the details of the architectures

are given:

• U-V Architecture: The most complex part of the architecture is the u −

v part, which is used to update u and v values in the algorithm and the

architecture is illustrated in Figure 10. Inside the while loop, an if-else

statement is required to check if u is greater than v or not, when they both

are not even. The decision of begin u or v is even only takes a clock cycle by

checking the least significant bits of these values. However, in a case where

they are both odd, the decision of whether u or v is bigger will require a

subtraction operation between u and v. In order to reduce the total clock

cycles, two subtracters are used for the case which u and v are both odd

numbers. In one of the subtracters, u is subtracted from v and in the other

one v is subtracted from u. The decision, to select the bigger one, is made

by checking the borrow bits from the results of the subtraction operations.

Further clock cycle reduction is done by using the division operation in

the same clock cycle with the subtraction operations. Since the division

operation is a division by 2, a simple one bit shifter is used to perform the

division. Since, the decisions of the if-else statements in the while loop

can be made after performing the subtraction operations, extra storage is

needed in order to store temporary results. Therefore, one extra RAM block

is implemented for each of the u and v values. The RAM blocks are named
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as RAM u, RAM v, RAM u temp and RAM v temp. The selection

process of the RAM blocks is decided with a control mechanism. There

are two signals, u change and v change, which are used as write enable

and output selection signals. In the beginning of the process, u change

and v change are set accordingly; to store u and v values into RAM u

and RAM v and use the RAMs to read real u and v values. Then, in the

while loop if any u or v value is changed, its change signal also changes

to store temporary calculations to other RAM. For instance, RAM u holds

the real value of the u and for few iterations of the while loop (i.e. u did

not change). Because u is store in RAM u, all the temporary calculated

u values are stored in RAM u temp. When, in an if-else statement the

u changes, then RAM u temp will be used as the real u source and the

temporary calculations will be stored in RAM u. Since this architecture is

used to make the decision of the if-else statement, the decisions are sent to

the r − s architecture for r and s calculation.

• R-S Architecture: As in the u − v architecture, the r − s architecture can

also be implemented with extra RAMs to hold temporary values. However,

this approach increase the slice usage of the FPGA. Therefore, we imple-

mented another method to decrease the usage of LUTs without an increase

in the total clock cycles for the operations, which is illustrated in Figure 11.

In this method, the r − s architecture waits for decisions from the u − v

architecture. Since this decisions are made after each iteration in the u− v

architecture, the r − s architecture receives the decisions by one iteration

behind. For instance, when the u− v architecture is in the third iteration of

the while loop, the r − s architecture performs the second iteration. since
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Figure 10: U-V Architecture

the decisions are known beforehand, r− s architecture needs one RAM per

r and s values.

The r − s architecture also holds the design to perform the second part

of the algorithm for Montgomery inversion. The algorithm 3 is simple to

implement by shift and subtraction operations, and to reduce area utilization

it was implemented within the r − s architecture. After the calculation of

the r and s values, the RAM r holds the r value and the RAM s is free

for further usage. The second part of the Montgomery inversion algorithm

66



is realized as follows: At start RAM r is used as the source of r to perform

the calculations. In each iteration, r is stored with a shift operation in one

RAM and with a shift and a subtraction operation in the other. At the end

of each iteration, by looking at the borrow bits, one of the RAM blocks is

selected as the updated r for the next iteration.

r s
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Mux Mux

<<1

RAM_r RAM_s

  temp
W_e W_ew_control_r
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real_r real_r

dec_signal dec_signal

phase_select

r s

w_control_s
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N
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real_r_select

Phase I/II

Phase II

Figure 11: R-S Architecture
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5.2.2 Point Addition

The point addition implementation is performed on Huff Curves. Since the design

is complex, the point addition is performed by creating a processor that performs

modular arithmetic to reduce its complexity. A general overview of the architec-

ture is illustrated in Figure 12. The architecture is formed in three parts which

are control logic, ram block and arithmetic unit. The detail information on the

architectures is as follows:

Arithmetic Unit: The arithmetic unit consist of four sub-arithmetic operations.

The first sub-arithmetic operator is the Montgomery inversion, which was de-

scribed in detail in Section 5.2.1. The second sub-arithmetic operator is the mod-

ular addition/subtraction operation and the same architecture is used for both ad-

dition and subtraction with a selection input. Both addition and subtraction are

a simple operations and timing for the operations is as follows: W , which is the

total number of word blocks, clock cycle to enter the input, two clock cycles to

perform the calculation and W clock cycles to output the result. Hence, the to-

tal number of clock cycles will be 2 ∗ W + 2 for all the addition process. The

last sub-arithmetic unit is Montgomery multiplication. This arithmetic unit is not

implemented rather an efficient, existing design is used from [26].

The arithmetic unit is designed to handle the sub-arithmetic operations with

the given inputs. The arithmetic unit takes the operands along with the modulus

as inputs and these parameters are transferred in to the sub-arithmetic units. The

selection of the sub-arithmetic unit is realized by a opcode. Since there are four

arithmetic operations, the opcode takes 2 bit input for operation selection. The
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input responses of the arithmetic unit for the opcodes is as follows: 2’b00: The

arithmetic unit performs a modular addition. 2’b01: The arithmetic unit performs

a modular subtraction. 2’b10: The arithmetic unit performs a Montgomery in-

version. 2’b11: The arithmetic unit performs a Montgomery multiplication. Any

calculation performed in the sub-arithmetic units, will be given as output with a

finished signal. After the completion of the sub-arithmetic operations, the results

will take W clock cycles to be outputted from the sub-arithmetic architectures and

the results are inserted into the RAM Block by the Control Logic.

RAM Block: The RAM Block holds eleven RAMs for storage. It takes three

address buses to select three RAMs that will be used in the calculation process.

Two buses are used to select two inputs to feed the Arithmetic Unit for calculations

and one bus is used to take the address of the RAM to store the results from

the Arithmetic Unit. The Control Logic gives a read signal to the RAM Block

so that two selected RAMs will output the values to the Arithmetic Unit to use

them in sub-arithmetic operations. After sub-arithmetic operations finish their

calculations, the results are written to the selected RAM by activating a write

signal by the Arithmetic Unit.

Control Logic: The Control Logic is used to control the arithmetic unit and

RAM Block to produce the desired output, which is point addition for the Huff

Curve. The calculation algorithm for the point addition of the Huff Curve was

given in Section 2.4.1. In our Control Logic, we implemented the point addition

operation in twenty steps of arithmetic logic operations. Every step has the fol-

lowing structure to perform the desired operation: Opcode, RAM Address of the
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operator 1, RAM Address of the operator 2, RAM address of the result. Con-

trol Logic manages the execution of the structures in each step by distributing the

elements of the structure and performing the steps one at a time.

In order to reduce the total timing in point addition, a trick is performed in

the arithmetic of point addition. The costliest operation among the sub-arithmetic

units is the Montgomery inversion. The point addition calculation needs to per-

form this costly operation twice, once to calculate the x coordinate of the point

addition and once to calculate the y coordinate of the point addition. In order

to reduce the cost, two inversion operations are converted into one inversion and

three multiplication operations. The reduction is performed as follows:

1. Lets, a and b are two numbers to be inverted.

2. In two inversion case:

(a) The a will be inversed by performing one inversion, a−1 mod N

(b) The b will be inversed by performing one inversion, b−1 mod N

3. In one inversion and three multiplication case:

(a) The a will be multiplied by b, which will result in ab mod N

(b) Then, one inversion operation will be performed on ab mod N →

(ab)−1 mod N

(c) Later, to find the inversion of a a multiplication operation will be per-

formed as: (ab)−1 × b mod N → a−1 mod N

(d) Lastly, to find the inverse of b another multiplication will be performed

as: (ab)−1 × a mod N → b−1 mod N
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In the below the twenty steps to calculate the point addition is given for P1 +

P2 = P3. The coordinates for the points Pi is shown with the same index i as xi

and yi. Also, among the eleven RAMs, six of them hold the necessary information

that will be used in the calculation process such as x1, y1, x2, y2, n as modulus

and 2n for Montgomery arithmetic. The other five RAMs are used for temporary

storage and their names are R0, R1, R2, R3, R4.

1. R0 ← x1 × x2

2. R1 ← y1 × y2

3. R2 ← R0 ×R1

4. R3 ← 2n −R2

5. R4 ← R3 +R0

6. R4 ← R4 −R1

7. R3 ← R3 −R0

8. R3 ← R3 +R1

9. R2 ← R3 ×R4

10. R2 ← R2
−1

11. R3 ← R2 ×R3

12. R4 ← R2 ×R4

13. R0 ← 2n +R0
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14. R1 ← 2n +R1

15. R0 ← R0 ×R3

16. R1 ← R1 ×R4

17. R2 ← x1 + x2

18. R3 ← y1 + y2

19. R0 ← R0 ×R2 (output 1 : x3)

20. R3 ← R1 ×R3 (output 2 : y3)

Control Logic
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Multiplication

Operand 1

Operand 2

ModulusRAM Block

Operand 1

Address
Operand 2

Address

Result

Address

Read

Enable

Opcode

Done

Result

Write

Enable

Arithmetic Unit

Modular 

Inversion

Modular 

Addition /
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Figure 12: Point Addition Architecture
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5.2.3 Pollard Rho

We have implemented the Pollard Rho attack algorithm for Huff curves in our

cluster. The computation part of the attack is performed by FPGAs and the data

management and FPGA controls are handled by the cluster-head. The attack can

be divided into two main parts, as the Server and Huff Curve Attack Architecture:

Server

The cluster-head is our server in the Pollard Rho attack algorithm. It is used

to handle the parts that is hard or impossible to handle with hardware, such as

data storage, management, control flow of the attack, etc. The server consists of

the following modules: Pollard Rho Point Generator: The module is used to

create a random P , Q and l to create a test attack. It is also used to create random

starting points for Huff Curve Attack Architecture. Database: The database is

used to store distinguished points along with their coefficients. Also it is used in

searching distinguished point collusions. Communication Interface: It is used

to handle the communication between the server and the FPGAs. The realization

of the communication is performed via the software library which was described

in section 5.1.2. Modular Arithmetic: This module is used in case of a collusion

to calculate the lcal from the collusion and compare the result with l to check its

correctness.

Huff Curve Attack (HCA) Architecture

We have implemented the computational part of the Pollard Rho Attack in

hardware to benefit from the parallelization. The HCA architecture consists of
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several inner architectures to perform the attack. These are configuration switch

controller, calculation modules and a control logic. Configuration Switch Ar-

chitecture: Since, the implementation is done by using the configuration switch

architecture, a controller is implemented to manage the configuration switch op-

eration when the hardware module completes its operation. HCA Control Logic:

The HCA Control Logic is used to control the flow of the attack. For instance,

it manages the calculation modules to read/write data from/to the flash memory

to prevent collusions, since there is only one flash bus. Also it manages order

of calculation steps for the calculation modules to operate them in synchronous.

Calculation Module: The calculation modules are used to calculate the point ad-

ditions for the attack. Any number of module can be implemented as long as there

is available not utilized area in the FPGA. For instance, only two modules can

fit into Spartan-3E 500 FPGAs and Spartan-3E 1600 can hold up to six modules.

The calculation module consist of the following architecture:

• Ram Tables: The ram tables contain the initial and updating values for the

calculation. These are Qx, Qy, Px, Py, Rx, Ry, Rc, Rd and n as the modulus.

The points are stored into the RAMs before starting the attack and Rx, Ry,

Rc and Rd are the values that are updated in every point calculation.

• Point Addition Architecture: The point addition architecture, that is used,

was described in section 5.2.2. It takes the inputs from the Ram Tables

and calculates the next point and later outputs the results to the RAM Table

again.

• Modular Adder: The modular adder is used to update the Rc and Rd val-

ues. According to the random walk function, only Rc, only Rd or both Rc
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and Rd are updated.

• Flash Module: The Flash module is used to read/write data from/to the

flash memory.

• Distinguished Point Checker: The Distinguished Point Checker checks

distinguished point property of the calculated output. In our case it means

the 15 most significant bits of the point is zero. It is a simple comparator

logic and when a point is featured as a distinguished point, a signal is send

to the Calculation Module Controller Logic so the point can be written into

the flash memory.

• Calculation Module Controller Logic: The controller logic controls the

flow of the Calculation Module by communicating with the HCA Controller

Logic. It manages the flow of point calculations, as well as writing oper-

ations of the distinguished points to the flash memory. It waits for a write

signal from the HCA Controller Logic to prevent collusions while using

Flash Module, since there may exist multiple Calculation Modules in the

design.

The visual overview of the Calculation Module and the Pollard Rho Attack

Architecture are illustrated in Figures 13 and 14.

These two main parts, the Server and the HCA architecture, are used by cre-

ating a protocol between them to perform the Huff Curve Pollard Rho attack on

FPGAs. The details of the protocol and the realization of the attack is given as

follows:

75



RAM Table

Modular Adder

Rc

Rc_update

Rd

Rd_update

Point 1

Point 2

Point Addition 

Architecture

Calculation Module 

Control Logic

StartRead

Done

Distinguished

Point Checker

Result

Flash

Module

DataData
Flash 

Memory

Point_write

Read_signal

Figure 13: Calculation Module

1. The Server creates a random l for two random points P and Q such as

l × P = Q.

2. The Server creates random starting points according to the number of calcu-

lation module engines in the FPGA device. Two points per Spartan-3e500

and six points per Spartan-3e1600.

3. The Server converts the points to the Montgomery form. Later, it converts

the points into point packages, so that calculation module can use them.

4. The Server connects to all the FPGAs and sends the point data packages to

the FPGAs.

5. The Server sends configuration command to the FPGAs and waits for the

76



Calculation Module

Calculation Module

Calculation Module

HCA

Control 

Logic

start

start

start

Configuration Switch

Architecture

CPLD

Flash 

Module
Mux

Figure 14: Pollard Rho Attack Architecture

results.

6. The Huff Curve Attack Architecture, distributes the points to the calculation

engines and they start to calculate random points.

7. If any point has distinguished point feature, the point is stored with its co-

efficients in the flash memory.

8. All the calculation module engines need to calculate 25 distinguished points

per engine. In other words a total of 50 distinguished points in Spartan-

3e500 and 150 points in Spartan-3e1600.

9. When the points are calculated, a configuration switch occurs and the soft-

core sends the results to the Server.
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10. The Server takes the results and put into a distinguished point list.

11. The distinguished point list is searched for a collusion with the new added

points.

12. If a collusion is found, the points are converted back from Montgomery

form and the l is calculated. Then, the server waits for other FPGAs to

finish their jobs.

13. If there is not a collusion, the last distinguished points5 of every calculation

module engine is converted into point packages.

14. These point packages are send to the FPGA and configuration command is

sent so that more distinguished points will be calculated.

15. The Server continues this operation until it finds a collusion and stops the

process.

5.3 Experiments

In this section, we give detailed information on the experiments that we performed

in our FPGA cluster to measure its performance.

5The last distinguished points are chosen, so the calculation module engines can continue to
calculate points where they left
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5.3.1 First Experiment

The first experiment is intended to find out the efficiency of using the FPGA

boards mainly for cryptographic acceleration if the hardware unit and the soft-

core cannot co-exist in the FPGA board and therefore, configuration switch is

necessary. The experiment is performed as follows: the cluster head sends input

values (e.g. messages to be encrypted or signed) to the FPGA device which are

written in the parallel flash thereafter. To alleviate the timing overhead in commu-

nication and writing operations, the data are sent in relatively large chunks since

writing large arrays of data to a flash memory gives better timing results. After the

transmission is completed, a configuration switch command is sent to the FPGA.

Since we are interested only in the overhead the whole process creates, the

hardware unit reads the data from the parallel flash first and then writes it back

to it. Without doing anything else, it switches immediately back to the softcore

configuration. Following the startup of the softcore, a connection to the cluster

head is initiated and the same data in the parallel flash is sent back.

The data exchanged between the cluster head and the FPGA are sent in dif-

ferent packet sizes (i.e. sizes of send/receive buffers in both sides). The timing

values obtained through averaging for the first experiment are enumerated in rows

2-4 of Table 1. As can be observed, using large buffer sizes and larger arrays

of data helps reducing the overhead. To give an idea what these overhead val-

ues actually mean, we study the case where the FPGA board is used for RSA

acceleration. Timing overhead for handling 1 MB of data is about 27.31 s, on

average. 1 MB of data, for example, means 8192 RSA operation (e.g. signature),
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where the modulus is 1024 bit. This results in an overhead of 3.33 ms per 1024-

bit RSA operation. Considering that the state-of-the-art implementation of RSA

for Spartan-3E in [26] executes the same operation in about 8 ms, this roughly

increases the effective time per RSA operation by 37% percent, on average. Note

that this overhead would be about 0.87 s for 1 KB data size, which is definitely

not an acceptable performance for a cryptographic accelerator. In summary, our

FPGA cluster may be useful in case the configuration switch is necessary only

when we are able to group the input data in large chunks.

Packet Storage
Size (B) Device 1 KB 10 KB 100 KB 1 MB

256 Parallel Flash 15.74 17.38 32.70 216.81
512 Parallel Flash 14.40 15.50 21.11 102.90

1024(opt.3) Parallel Flash 6.96 7.44 8.79 27.31
1024(opt.3) SDRAM 0.27 0.35 1.06 7.81

Table 1: Timing overhead (in seconds) for different data and packet sizes

5.3.2 Second Experiment

In the second experiment, we measured the time to send and receive data of differ-

ent sizes when configuration switch is not needed for the scenario where the cryp-

tographic unit and the softcore fit in the FPGA device. The cryptographic hard-

ware unit can be directly connected to the softcore peripheral within the FPGA.

The SDRAM can be used to store the data since there is no configuration switch

that causes the SDRAM to miss refreshment cycles. The timing values for the

second experiment are enumerated in the last row of Table 1 only for buffer size

of 1024 B. As can be observed from the table, using the SDRAM rather than the
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parallel flash, decreases the total time by 19.50 s for 1 MB of data.

However, the timing values in the last row of Table 1 should not really be con-

sidered as actual overhead for two reasons. Firstly, operations for sending/receiving

data and writing/reading to/from the SDRAM can be overlapped with the actual

cryptographic computation. Secondly, since the softcore is a microprocessor that

can implement any server process reachable from the network, the time spent on

the communication and SDRAM access will be similar to the overhead that a PC

would incur for the same reason. Therefore, using FPGA without configuration

switch does not add significant overhead for many scenarios.

5.3.3 Third Experiment

In the third experiment, we tried to measure the total overhead time when the

data transfer is not intense and configuration switch can be used, which is typical

mostly for cryptanalytic purposes. The cluster head sends a message of 32 B to the

FPGA board, which contains the task description as well as the input parameters.

Assuming that hardware unit is a special-purpose design that implements a limited

number of interfaces, the task description occupies only a small fraction of the

message, leaving the rest for input parameters. Moreover, increasing the message

size to a certain extent (double or triple) does not lead to any significant increase

in timing spent on communication.

After the task description and input parameters are received, configuration

switch occurs and the hardware unit that will accomplish the task takes over the

FPGA. On job completion, it writes the results back to the parallel flash and hands

81



over the FPGA back to the softcore via another configuration switch. The softcore

reads the results and sends them back to the cluster head. With this, the FPGA

becomes available for further tasks. In the experiment, we performed all these

steps except for the actual computation time of the task to determine the overhead

in time. The timing results for one, two, and three FPGA boards are measured as

7.06 s, 7.09 s, and 7.14 s, respectively.

The interpretation of these timing values can be as follows. When there is

one FPGA board available for tasks, 7.06 s after a task is sent to it (excluding

the duration of the task itself), the cluster head can send another job. In order to

compensate these overhead values, the cluster head should send jobs that will take

relatively higher execution times to an FPGA board6.

The timing values can also be seen as the throughput of the cluster. Assuming

one unit of task is sent to the FPGA boards every time, the throughput (number

of task units sent in a unit time) increases linearly by the number of FPGAs. For

instance, with three FPGA boards, we can initiate approximately three times more

task units compared to one FPGA board case.

5.3.4 Fourth Experiment

In the next experiment, we performed an exhaustive key search for PRESENT

algorithm [2], which is a lightweight block cipher intended for embedded appli-

6Another motivation of sending long lasting jobs to the FPGA boards every time is the fact that
there is a constraint on the number of writes that can be performed on the parallel flash memory.
Since each task assignment necessitates writings to the flash memory, tasks that will run longer
will significantly increase the lifetime of the board.
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Area Max/Usable no of keys
Conf. LUT + Slice Freq. (MHz) tried in ≈ 60s

Single
PRESENT 3% + 3% 187.37/NA NA

13 928,628,190
PRESENT 74% + 99% 65.23/50 in 61.76 s

7 PRESENT 510,656,511
+ Softcore 83% + 99% 53.709/50 in 60.10 s

Table 2: Experimental results for exhaustive key search

cations. The results for a single FPGA board are listed in Table 2.

The second row gives the implementation results for a single encryption en-

gine of the PRESENT algorithm. As can be seen in the third row, the maxi-

mum number of encryption engines that will fit in Spartan-3E is only 13 and

there is a significant decrease in the clock frequency. This is natural due to

two reasons: i) additional control circuit that enables the parallel execution of

13 encryption engines incurs some overhead, and ii) successful optimization for

placement-and-routing steps becomes harder for larger designs. With configu-

ration switch and communication costs included, we are able to test about 928

million keys in 61.76 s. Note that in this part of the experiment, the softcore

is able to run at a clock rate of 83 MHz since it executes alone in the entire

FPGA chip. This 60% increase in operation frequency allows us to accelerate

operations in the softcore mode. The last row enumerates the experimental re-

sults when there is no configuration switch and the softcore and seven encryption

engines run concurrently at the same frequency value of 50 MHz. This experi-

ment demonstrate the advantage of configuration switch for exhaustive key search

applications. Note that speed optimized C implementation of the PRESENT al-
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gorithm (cf. http://www.lightweightcrypto.org/present/) on a single-threaded PC

implementation with an AMD 3.2 GHz quad-core processor and 4 GB RAM can

try roughly 106 million keys in 62 s, which also demonstrates that acceleration of

PRESENT algorithm is possible.

5.3.5 Fifth Experiment

Finally, we implemented Pollard’s Rho method [31, 28], whose experimental

setup can be observed in Figure 15, to compute discrete logarithms in elliptic

curves over prime fields of odd characteristics. For elliptic curve arithmetic we

used Huff model to take advantage of the fast explicit formulae for point addi-

tions on Huff curves [14]. Functional units for modular arithmetic operations (i.e.

addition, multiplication, and inversion) are designed and optimized for FPGA im-

plementation. The FPGA boards are used to find the distinguished points, which

constitutes the most time-consuming part of the computation in Pollard’s Rho

method. Since a similar approach to the one in [7] is adopted, we only need to

implement elliptic curve addition. The hardware implementation of the circuit

to find the distinguished points (i.e. distinguished points-generating engine) con-

sumes 50% of the total LUTs, 19% of slice flip-flops, and 5% of the block RAMs.

While the design can be synthesized at maximum clock frequency of 70.4 MHz,

we operate it at 50 MHz, which is one of the applicable clock frequency values

for the FPGA board. In the experiments, we used an elliptic curve defined over

a prime field where the prime is a 160-bit integer. The order of the base point

is chosen as a 25-bit integer to demonstrate that the discrete logarithm can be

computed within a reasonable amount of time using several FPGA boards. Using

84



three boards, each with one instance of the distinguished point-generating engine,

our experiments demonstrate that we can compute one discrete logarithm over

the described elliptic curve in about 30 minutes, on average. A single-threaded

PC implementation on an AMD 3.2 GHz quad-core processor with 4 GB RAM

completes the same task in about 6 minutes, on average, using NTL package [34].

Therefore, in order to outperform the single-threaded PC implementation, at least

16 instances of the distinguished point-generating engine must be implemented in

the FPGA cluster.

Figure 15: Experimental Setup of FPGA cluster

In order to demonstrate that the time performance of the attack improves lin-

early with the number of FPGA boards (and the total number of distinguished

point-generating engines), we conducted several experiments. Firstly, we opti-

mized the distinguished point-generating engine to fit two instances of it in one

Spartan-3E500 and six instances of it in one Spartan-3E1600 devices. Secondly,

we employed different number of FPGA boards in our experiments. Using the
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same curve and the base point mentioned above, we solved different number of

elliptic curve discrete logarithm problems and enumerated the timing statistics in

Figure 16. As can be observed from the table, we can solve one elliptic curve

discrete logarithm problem in about 5.03 minutes using seven FPGA boards (i.e.

22 instances of distinguished point-generating engine), on average7.

Figure 16: Timing statistics (in seconds) for Pollard Rho’s alg. on different num-
ber of FPGA boards

In addition, newer versions of the Spartan devices can accommodate more

instances of the engine than the FPGA devices used in the experiments. Table 3

7We used Asus GIGAX1008B 8 Port 10/100 Layer2 Switch to connect seven FGPA boards.
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shows implementation results for the distinguished points-generating engine for

different target devices. The FPGA device used in the experiments is very modest

in available resources (cf. XC3S500E in the second column of Table 3) while

a slightly better and more recent Spartan-3E device (XC3S1600E) is capable of

implementing six instances of distinguished points-generating engine resulting

in a much higher throughput in a single FPGA device. A new technology in

Spartan family, Spartan 6, offers more resources and more than doubles the clock

frequency for the design. Much more advanced, yet relatively expensive FPGA

devices such as Virtex 6 in Table 3 can offer far more superior performance by

accommodating many more instances of distinguished points-generating engine.

Reconfigurable LUT Mult./DSP Max. Clock
device usage usage Frequency (MHz)

XC3S500E 4687/9317 4/20
(Spartan 3E) (50%) (20%) 70.4
XC3S1600E 4660/29504 4/36
(Spartan 3E) (15%) (11%) 70.4
XC6SLX45T 3313/27288 4/58
(Spartan 6) (12%) (6%) 179.5

XC6SL150T 3313/92152 4/180
(Spartan 6) (3%) (2%) 179.5

XC6VLX240T 3316/150720 4/768
(Virtex 6) (< 1%) (< 1%) 222.5

XC6VLX550T 3316/343680 4/864
(Virtex 6) (< 1%) (< 1%) 222.5

Table 3: Critical resource usage of the distinguished points-generating engine on
different FPGA devices

8In these experiments, we performed the attack using three and seven boards of Spartan-3E500,
which can fit two instances of Pollard Rho Attack.

9In this experiment, we performed the attack using two Spartan-3E1600, which can fit six
instances of Pollard Rho Attack, along with five boards of Spartan-3E500.
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6 Conclusion and Future Works

FPGAs are powerful candidates to parallelize the cryptographic operations that

will be used as to measure the security levels of the cryptographic algorithms

against cryptanalytic attacks. On top of it, a cluster formed by a number of FP-

GAs can increase the computational power linearly. However, there is a trade-

off between the utilization of the communication interfaces and the parallelized

hardware resources: the more the communication interfaces utilized, the less the

parallelized hardware resources. Therefore, it is important to minimize the cost

imposed by the communication interfaces.

The experiments demonstrate that the proposed FPGA cluster can be useful

for both cryptographic acceleration and implementing cryptanalytic attacks. Dy-

namic configuration switch between the softcore and the hardware unit, proposed

as among the foremost contributions of this work, proves to be useful especially

in exhaustive search applications in cryptanalysis, where the need for interprocess

communication is very limited (if not absent). Dynamic configuration switch can

be useful even for more powerful FPGA devices since FPGA resources salvaged

from the softcore can be put into effective use. Moreover, running the softcore

alone in the FPGA can be beneficial in increasing the operating frequency.

The proposed FPGA cluster offers advantages (by means of hardware par-

allelism) over PC-based implementations, when a single FPGA device can ac-

commodate as many instances of the main computation unit as possible. While

exhaustive search for simple algorithms, such as PRESENT, can be substantially

accelerated, relatively heavy-weight algorithms, such as RSA, does not benefit
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from the cluster if only one instance of RSA circuit is implemented in one FPGA

device. For the acceleration of heavy-weight algorithms, either more advanced

FPGA devices or a multitude of simple FPGA devices should be used. There

are also the moderate-weight algorithms that lie between the simple- and heavy-

weight algorithms, through which an improvement, compared to PCs, can be ob-

served by using sufficient number of FPGAs (i.e. Huff curve attack). Naturally,

price performance analysis of the FPGA cluster must be performed on the basis

of the specific operation we are trying to accelerate.

In addition to our contributions, the developed software library provides a

transparent interface to process data within the hardware modules, yielding even a

software programmer to utilize them easily. Besides, our FPGA cluster can benefit

from both hardware resources of FPGAs and software resources of the cluster

head. For instance, if there were no software resources, i.e. database and control

mechanism, in the Huff curve attack, described in Section 5.2.3, it would not be

possible to perform the Pollard Rho parallel attack. Nonetheless, the idea of using

software resources can be extended to multi-core parallelism of the cryptographic

computations in the cluster head, to further decrease the corresponding latency,

along with the use of the FPGA cluster.
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