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Özet

Birçok hesaplama probleminde ana amaç iyi tanımlanmış ölçütlere uygun en iyi
çözümü (örneğin, en cok tercih edilen ürün yapılanışını, en kısa planı, en cimri filojeniyi)
bulmaktır. Öte yandan, birçok gerçek uygulamada daha iyi karar verebilmek için bir küme
birbirine benzer veya birbirinden farklı iyi çözümler hesaplamak istenebilir. Özellikle,
üzerinde çalışılan problemin birçok iyi çözümü olabilir ve kullanıcılar birkaç çözümü in-
celeyerek birini seçmek isteyebilir; bu durumda, birbirine benzer veya birbirinden farklı
iyi çözümler bulmak faydalı olur. Ayrıca, birçok uygulamada kullanıcılar optimizasyon
probleminin formülasyonunda olmayan başka kriterleri de göz önünde bulundururlar; bu
durumda, daha önceden belirlenmiş belirli bir çözüm kümesine yakın ya da uzak birkaç
iyi çözüm bulmak faydalı olabilir.

Bu motivasyon ile bu tezde Çözüm Kümesi Programlama’da (ÇKP) benzer/farklı
(yakın/uzak) çözümlerin hesaplanması ile alakalı çeşitli problemleri belirleyip, bu prob-
lemleri çözmek için çeşitli yeni hesaplama yöntemleri geliştirdik. Bu yöntemlerden bir
tanesinde ÇKP çözücülerden birinin algoritmasini değiştirerek, birçok ÇKP uygulaması
için kullanışlı olabilecek yeni bir ÇKP çözücü (CLASP-NK) geliştirdik. Bu yöntemlerin
uygulanabilirliğini ve etkinliğini filojeni çıkarımı, planlama ve biyomedikal sorgu cevap-
lama alanlarında gösterdik. Elde ettigimiz ümit verici deneysel sonuçlar neticesinde, bu
alanlardaki uzmanlar tarafından kullanılabilecek yazılımlar geliştirdik.
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Abstract

For many computational problems, the main concern is to find a best solution (e.g.,
a most preferred product configuration, a shortest plan, a most parsimonious phylogeny)
with respect to some well-described criteria. On the other hand, in many real-world ap-
plications, computing a subset of good solutions that are similar/diverse may be desirable
for better decision-making. For one reason, the given computational problem may have
too many good solutions, and the user may want to examine only a few of them to pick
one; in such cases, finding a few similar/diverse good solutions may be useful. Also, in
many real-world applications the users usually take into account further criteria that are
not included in the formulation of the optimization problem; in such cases, finding a few
good solutions that are close to or distant from a particular set of solutions may be useful.

With this motivation, we have studied various computational problems related to find-
ing similar/diverse (resp. close/distant) solutions with respect to a given distance func-
tion, in the context of Answer Set Programming (ASP). We have introduced novel of-
fline/online computational methods in ASP to solve such computational problems. We
have modified an ASP solver according to one of our online methods, providing a use-
ful tool (CLASP-NK) for various ASP applications. We have showed the applicability
and effectiveness of our methods/tools in three domains: phylogeny reconstruction, AI
planning, and biomedical query answering. Motivated by the promising results, we have
developed computational tools to be used by the experts in these areas.
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Chapter 1

Introduction

For many computational problems, the main concern is to find a best solution (e.g., a most
preferred product configuration, a shortest plan, a most parsimonious phylogeny) with re-
spect to some well-described criteria. On the other hand, in many real-world applications,
computing a subset of good solutions that are similar/diverse may be desirable for better
decision-making. For one reason, the given computational problem may have too many
good solutions, and the user may want to examine only a few of them to pick one; in
such cases, finding a few similar/diverse good solutions may be useful. Also, in many
real-world applications the users usually take into account further criteria that are not in-
cluded in the formulation of the optimization problem; in such cases, finding a few good
solutions that are close to or distant from a particular set of solutions may be useful. Here
are some examples from several domains in which computing a subset of similar/diverse
solutions could be useful. Consider, for instance, the problem of generating grid puzzles
as in [104]. The authors introduce methods to generate puzzles with different difficulty
levels automatically. For each difficulty level, it is desirable to generate many puzzles that
are as diverse as possible, since users prefer to solve very different puzzles even if they
have the same difficulty. As another example, consider a variation of the scenario in [57]
about product advisor systems where we want to develop a system which recommends
users products (e.g., cars) based on their preferences and constraints. Suppose that there
are many products each of which suits a user’s preferences. In such a case, instead of rec-
ommending all those products to the user, it is desirable to suggest a set of few products
that are as diverse as possible. If the user likes one particular product, then the system
may recommend a set of similar products to the selected one.

Motivated by such examples, we have studied various computational problems re-
lated to computing similar/diverse solutions in the context of Answer Set Programming
(ASP) [74]. We have introduced general offline/online methods in ASP to find simi-
lar/diverse solutions. Then, we have applied these methods to specific domains such as
phylogeny reconstruction, planning, and query answering.
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In ASP, a combinatorial search problem is represented as a “program” whose models
(called “answer sets”) correspond to the solutions. The answer sets for the given program
can be computed by special systems called answer set solvers, such as SMODELS [83],
DLV [70], CMODELS [54] and CLASP [49]. Due to the expressive formalism of ASP
that allows us to represent, e.g., negation, defaults, aggregates, recursive definitions, and
due to the continuous improvements of the efficiency of the solvers, ASP has been used in
a wide-range of knowledge-intensive applications from different fields. For many of these
applications, finding similar/diverse solutions (and thus the methods we have developed
for computing similar/diverse solutions in ASP) could be useful.

The main contributions of this thesis can be summarized as follows.

• We have described mainly two kinds of computational problems, namely n k-
SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS) and k-CLOSE SOLUTION

(resp. k-DISTANT SOLUTION), related to finding similar/diverse solutions of a
given problem, in the context of ASP. Both kinds of problems take as input an
ASP program P that describes a problem, a distance measure ∆ that maps a set of
solutions of the problem to a nonnegative integer, and two nonnegative integers n
and k.

– n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS) asks for a set S
of size n that contains k-similar (resp. k-diverse) solutions, i.e., ∆(S) ≤ k

(resp. ∆(S) ≥ k).

– k-CLOSE SOLUTION (resp k-DISTANT SOLUTION) asks, given a set S of n
solutions, for a k-close (resp. k-distant) solution s (s �∈ S), i.e., ∆(S∪{s}) ≤
k (resp. ∆(S ∪ {s}) ≥ k).

• We have introduced four methods to compute a set of n k-similar (resp. k-diverse)
solutions to a given problem.

– Offline Method computes all solutions in advance using ASP and then finds
similar (resp. diverse) solutions using some clustering methods, possibly in
ASP as well.

– Online Method 1 reformulates the given program to compute n-distinct so-
lutions and formulates the distance function as an ASP program, so that all
n k-similar (resp. k-diverse) solutions can be extracted from an answer set for
the union of these ASP programs.

– Online Method 2 does not modify the ASP encoding of the problem, but for-
mulates the distance function as an ASP program, so that a unique k-close
(resp. k-distant) solution can be extracted from an answer set for the union of
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these ASP programs and previously computed solutions; by iteratively com-
puting k-close (resp. k-distant) solutions one after other, we can compute
online a set of n k-similar (or k-diverse) solutions.

– Online Method 3 does not modify the ASP encoding of the problem, and does
not formulate the distance function as an ASP program, but it modifies the
search algorithm of an ASP solver, in our case CLASP [49], to compute all n
k-similar (or k-diverse) solutions incrementally at once. The distance func-
tion is implemented in C++; in that sense, Online Method 3 allows for find-
ing similar/diverse solutions when the distance function cannot be defined in
ASP. Since the solutions are computed incrementally by a branch-and-bound
like algorithm, Online Method 3 requires a heuristic function to estimate the
distance function.

• We have illustrated the applicability of these approaches on three sorts of problems:
phylogeny reconstruction, planning, and biomedical query answering.

– For phylogeny reconstruction, we have defined novel distance measures for a
set of phylogenies, described how the offline method and the online methods
are applied to find similar/diverse phylogenies, and compare the efficiency
and effectiveness of these methods on the family of Indo-European languages
studied in [12].

Since there is no phylogenetic system that helps experts analyze phylogenies
by comparing them, this particular application of our methods also plays a
significant role in phylogenetics. Therefore, we have developed two tools:

∗ PHYLOCOMPARE-ASP helps users analyze the given phylogenies by
computing their distance matrix and by grouping them with respect to
their similarity/diversity.

∗ PHYLORECONTRUCTN-ASP computes similar/diverse set of phyloge-
nies from a given matrix about the shared traits of the species.

Both these two tools are integrated into the phylogenetics system PHYLO-
ASP [36].

– For planning, we have considered the action-based Hamming distance of [99]
to measure the distance among plans, and compare the efficiency and effec-
tiveness of the offline method and the online methods on some Blocks World
problems.

– For answering queries about similar/diverse genes, we have considered the
distance measure for genes introduced in [108]. Since there is no such system
that can answer complex queries related to similar/diverse genes, we have
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integrated our method into the query answering system BIOQUERY-ASP [38].
This system is useful for crucial research such as drug discovery.

In each application above, we have analyzed the complexity of computing the dis-
tance function. Also, to estimate the distance functions, we have introduced novel
heuristic functions and proved their admissibility.

Outline of the rest of the thesis is as follows. In Chapter 2, we give preliminaries for
answer set programming along with a summary of ASP applications and ASP solvers. We
describe the computational problems and offline/online methods to solve these problems
in Chapter 3. Then, in Chapter 4, we show the applicability of our methods on simi-
lar/diverse phylogeny reconstruction problem, along with the description of the software
systems PHYLOCOMPARE-ASP and PHYLORECONSTRUCTN-ASP. In Chapter 5, we
show the applicability of our approaches to the planning problems and compared the effi-
ciency of the methods on a Blocks World domain. In Chapter 6, we describe the applica-
bility of Online Method 3 to compute similar/diverse genes, as a part of BIOQUERY-ASP.
After that, we summarize related work in Chapter 7 and conclude the thesis in Chapter 8
by providing a summary of our contributions and their significance and by discussing
possible future research directions.
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Chapter 2

Answer Set Programming

Answer Set Programming [74, 4] is a declarative programming paradigm oriented to-
wards, primarily NP-Hard, knowledge-intensive search problems. The idea is to represent
a problem as a “program” whose models (called “answer sets” [52]) correspond to the so-
lutions. The answer sets for the given program can be computed by special systems called
answer set solvers. ASP is similar to SAT solving [7] in the sense that both paradigms
are for solving problems declaratively using propositional formulas, but ASP has a more
expressive input language and different semantics. In particular ASP allows recursive
definitions such as transitive closure and nonmonotonic negation. In addition, a range
of special constructs, such as aggregates and weight constraints are supported by vari-
ous ASP solvers. Due to the continuous improvement of the ASP solvers and expressive
representation language, ASP has been applied to a wide range of areas.

In the following, we explain the syntax and semantics of ASP programs. Then we
briefly overview, by providing specific examples, how computational problems can be
represented as an ASP program and solved using ASP solvers. After that, we give a
comprehensive list of applications that use ASP. Then we explain the answer set solver
CLASP and its algorithm to find answer sets.

2.1 Programs

Syntax ASP programs are composed of three sets namely constant symbols, predicate
symbols, and variable symbols where intersection of constant symbols and variable sym-
bols is empty. The basic elements of the ASP programs are atoms. An atom p(�t) is com-
posed of a predicate symbol p ∈ P and terms �t = t1, . . . , tk where each ti (1 ≤ i ≤ k) is
either a constant or a variable. A literal is either an atom p(�t) or its negated form not p(�t).

An ASP program is composed of a finite set of rules of the form:

A ← A1, . . . , Ak, not Ak+1, . . . , not Am (2.1)

5



where m ≥ k ≥ 0 and each Ai is an atom; whereas, A is an atom or ⊥.
For a rule r of the form (2.1), A is called the head of the rule and denoted by H(r).

The conjunction of the literals A1, . . . , Ak, notAk+1, . . . , notAm is called the body of r.
The set {A1, ..., Ak} of atoms (called the positive part of the body) is denoted by B+(r),
and the set {Ak+1, ..., Am} of atoms (called the negative part of the body) is denoted
by B−(r), and all the atoms in the body are denoted by B(r) = B+(r) ∪B−(r).

We say that a rule r is a fact if B(r) = ∅, and we usually omit the ← sign; furthermore,
we say that a rule r is a constraint if the head of r is ⊥, and we usually omit the ⊥ sign.

Semantics (Answer Sets) Answer sets of a program are defined over ground programs.
We call an atom, rule, or program ground, if it does not contain any variables. The
set UΠ represents all the constants in Π, and the set BΠ represents all the ground atoms
constructible from atoms in Π with constants in UΠ. Given a program Π, Ground(Π)

denotes the set of all the ground rules which are obtained by substituting each variable in
the rule with the set of all possible constants in UΠ.

Given a program Π, a subset I of BΠ is called an interpretation for Π. A ground atom
p is true with respect to an interpretation I if p ∈ I; otherwise, it is false; similarly, a set
S of atoms is true (resp. false) with respect to I if each atom p ∈ S is true (resp. false)
with respect to I . An interpretation I satisfies a ground rule r, if B+(r) is true and B−(r)

is false whenever H(r) is true with respect to I . An interpretation I is called a model of
a program Π if it satisfies all the rules in Π.

The reduct ΠI of a program Π with respect to an interpretation is defined as follows:

ΠI = {H(r) ← B+(r) | r ∈ Ground(Π) s.t. I ∩ B−(r) = ∅}

An interpretation I is an answer set for a program Π, if it is a subset-minimal model
for ΠI , and AS(Π) denotes the set of all the answer sets of a program Π.

For example, consider the following program Π1:

p ← not q (2.2)

and take an interpretation I = {p}. The reduct ΠI
1 is as follows:

p (2.3)

I is a model of the reduct (2.3). Let’s take a strict subset I � of I which is ∅. Then reduct
ΠI�

1 is again equal to (2.3); however, I � does not satisfy (2.3); therefore, I = {p} is a
subset-minimal model; hence an answer set of Π1. Note also that {p} is the only answer
set of Π.

The not in the ASP programs is called negation as failure and is different from classi-
cal negation in SAT in terms of its nonmonotonicity. Let the conclusion of a program be
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the intersection of its all answer sets. In order to understand the nonmonotonicity of ASP
programs, we need to observe the changes in the conclusion of programs when we extend
them.

Consider the following program Π2:

p ← not q

q ← not p
(2.4)

Note that Π2 has one extra rule compared to Π1 and has two answer sets {p} and {q}.
Adding a rule to the program Π1 decreases the size of its conclusion from {p} to ∅. Now,
consider that we add a constraint to Π2 and obtain the following program Π3:

p ← not q

q ← not p

← p

(2.5)

Π3 has a single answer set {q}. Note that the size of the conclusion of Π2 increases from
∅ to {q} when we add the new constraint. We can observe that when we extend an ASP
program by adding new rules, the change in the size of its conclusion is neither monotonic
nor anti-monotonic. This is why the semantics of ASP is considered to be nonmonotonic
unlike SAT.

2.2 Representing a Problem in ASP

The idea of ASP [74] is to represent a computational problem as a program whose an-
swer sets correspond to the solutions of the problem, and to find the answer sets for that
program using an answer set solver.

When we represent a problem in ASP, two kinds of rules play an important role: those
that “generate” many answer sets corresponding to “possible solutions”, and those that
can be used to “eliminate” the answer sets that do not correspond to solutions. Rules (2.4)
are of the former kind: they generate the answer sets {p} and {q}. Constraints are of the
latter kind. For instance, adding the constraint

← p

to program (2.4) as in (2.5) eliminates the answer sets for the program that contains p.
In ASP, we use special constructs of the form

{A1, . . . , An}c (2.6)
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(called choice expressions), and of the form

l ≤ {A1, . . . , Am} ≤ u (2.7)

(called cardinality expressions) where each Ai is an atom and l and u are nonnegative
integers denoting the “lower bound” and the “upper bound” [94]. Programs using these
constructs can be viewed as abbreviations for normal nested programs defined in [43].
For instance, the following program

1 ≤ {p, q}c ≤ 1 ←

stands for program (2.4). The constraint

← 2 ≤ {p, q, r}

stands for the constraints
← p, q

← p, r

← q, r.

Expression (2.6) describes subsets of {A1, . . . , An}. Such expressions can be used in
heads of rules to generate many answer sets. For instance, the answer sets for the program

{p, q, r}c ← (2.8)

are arbitrary subsets of {p, q, r}. Expression (2.7) describes the subsets of the set
{A1, . . . , Am} whose cardinalities are at least l and at most u. Such expressions can be
used in constraints to eliminate some answer sets.

For instance, adding the constraint

← 2 ≤ {p, q, r}

to program (2.8) eliminates the answer sets for (2.8) whose cardinalities are at least 2.
Adding the constraint

← not (1 ≤ {p, q, r}) (2.9)

to program (2.8) eliminates the answer sets for (2.8) whose cardinalities are not at least 1.
We abbreviate the rules

{A1, . . . , Am}c ← Body
← not (l ≤ {A1, . . . , Am})
← not ({A1, . . . , Am} ≤ u)

8



by
l ≤ {A1, . . . , Am}c ≤ u ← Body.

For instance, rules (2.8), (2.9) and ← not ({p, q, r} ≤ 1) can be written as

1 ≤ {p, q, r}c ≤ 1 ←

whose answer sets are the singleton subsets of {p, q, r}.

2.3 Example: Representing the c-Clique Problem in ASP

A clique in an undirected graph is a set of vertices that are pairwise adjacent. Given
an undirected graph the c-clique problem is to decide whether a clique of size c exists.
Consider, for instance, the use of the generate-and-test representation methodology above
to represent the c-clique problem in ASP. Consider that we want to find a clique of size c.
A solution can be described by a set of atoms of the form clique(i); including clique(i)

in the set indicates that the ith vertex is in a clique of size c.
The “generate” part of our program will be:

c ≤ {clique(v1), clique(v2), . . . , clique(v|V |)}c ≤ c (vi ∈ V, 1 ≤ i ≤ |V |) (2.10)

(exactly c vertex for a clique). The “test” part consists of the constraints expressing that
each member of a clique will be adjacent:

← clique(v), clique(v�), not edge(v, v�) (v �= v�) (2.11)

Every answer set of the program consisting of the rules (2.10) ∪ (2.11) describes a clique
of size c in a given graph.

2.4 Finding a Solution using an Answer Set Solver

Once we represent a computational problem as a program whose answer sets correspond
to the solutions of the problem, we can use an answer set solver to compute the solutions
of the problem. To present a program to an answer set solver, like CLASP, we need to
make some syntactic modifications.

The syntax of the input language of CLASP is more limited in some ways than the
class of programs defined above, but it includes many useful special cases. For instance,
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% Generate a candidate set of c vertices

c{clique(V) : vertex(V)}c.

% Ensure that the candidate set corresponds to a clique

:- clique(V1), clique(V2), not edge(V1,V2), V1 != V2.

Figure 2.1: Representation of the c-clique problem in ASP.

the head of a rule can be an expression of one of the forms

{A1, . . . , An}c

l ≤ {A1, . . . , An}c

{A1, . . . , An}c ≤ u

l ≤ {A1, . . . , An}c ≤ u

but the superscript c and the sign ≤ are dropped. The body can contain cardinality expres-
sions but the sign ≤ is dropped.

In the input language of CLASP, :- stands for ←, and each rule is followed by a
period.

Variables in a program are represented by strings whose initial letter is capitalized.
The constants and predicate symbols, on the other hand, start with a lowercase letter. For
instance, the program Πn

pi ← not pi+1 (1 ≤ i ≤ n)

can be presented to CLASP as follows:

index(1..n).

p(I) :- not p(I+1), index(I).

Here index is a “domain predicate” used to describe the range of variable I.
Variables can be also used “locally” to describe the list of formulas in a cardinality

expression. For instance, the rule

1 ≤ {p1, . . . , pn} ≤ 1

can be expressed in CLASP as follows

index(1..n).

1{p(I) : index(I)}1.

For instance, the program consisting of the rules (2.10) ∪ (2.11) describing the c-
clique problem can be presented to CLASP as in Figure 2.1.

The expression {clique(V) : vertex(V)} is an abbreviation for {clique(v1),
clique(v2), . . . } for each vertex vi ∈ V . To use this program, we can combine it with
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vertex(1..4).

edge(1,2).

edge(2,3).

edge(3,1).

edge(X,Y) :- edge(Y,X).

Figure 2.2: Representation of a sample undirected graph.

a description of a graph as shown in Figure 2.2. The first rule indicates that the input
graph has four vertices. Subsequent rules represent the edges in the graph, and the last
rule ensures the symmetricity of the edges (i.e., the graph is undirected). CLASP finds the
following answer set where c = 3 for the union of these programs:

{vertex(1), vertex(2), vertex(3), vertex(4),
edge(1, 2), edge(2, 1), edge(2, 3), edge(3, 2), edge(3, 1), edge(1, 3),

clique(1), clique(2), clique(3)}

The vertex and edge atoms correspond to the given graph and the clique atoms
correspond to a clique in the graph. We can understand from this answer set that the set
{1, 2, 3} of vertices corresponds to a clique of size three in the given graph.

2.5 Applications of ASP

Due to the continuous improvements in efficiency of answer set solvers and its expressive
representation language, ASP has been applied to a wide range of areas in science. Here
are some examples:

• Decision Support Systems: An ASP-based system was developed to solve planning
and diagnostic tasks related to the operation of the space shuttle [84].

• Automated Product Configuration: A web-based commercial system1 uses the ASP-
based product configurator technology [102].

• Semantic Web: ASP-based semantic web applications provide advanced reason-
ing which require declarative methods to describe user preferences [17, 34, 101].
With the growing interest in the semantic web applications, there is a continuous
improvement in the ASP tools for the semantic web.

Table 2.1 contains references for ASP applications in other fields.
1http://www.variantum.com/en/
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Table 2.1: Applications of ASP.

Area Refenreces

planning [25] [72] [97]
theory update/revision [64]
preferences [92] [11]
diagnosis [32] [3] [29]
learning [90]
description logics and semantic web [17] [34] [101]
probabilistic reasoning [5]
data integration and question answering [1] [69]
multi-agent systems [97] [98] [106]
wire routing [40] [27]
decision support systems [84]
bounded model checking [59]
game theory [78] [107]
logic puzzles [44]
phylogenetics [30] [15] [39] [36]
systems biology [103]
combinatorial auctions [6]
haplotype inference [37] [105]
systems biology [103] [45] [91] [51]
automatic music composition [10] [9]
verification of cryptographic protocols [24]
assisted living [80] [81]
context [29]

2.6 CLASP

Since ASP is applied to many areas of science successfully, there is a growing interest
in developing and optimizing answer set solvers. There exists several ASP solvers which
have been developed and maintained by different universities. Table 2.2 lists some of the
available ASP solvers.

In our experiments and systems, we used the ASP solver CLASP since it is open-
source and the winner of the ASP Competitions 2009 and 2010. In the following, we
describe the answer set solver CLASP and its algorithm for computing answer sets.

CLASP is a conflict-driven answer set solver [47, 49, 48]. CLASP finds an answer set
for a program in two stages: first it gets rid of the schematic variables using a “grounder”,
like GRINGO2, and then it finds an answer set for the ground program using a DPLL-like
[23] branch-and-bound algorithm (outlined in Algorithm 1). CLASP goes through three
main steps to find an answer set. In the PROPAGATION step, it decides the literals that

2http://potassco.sourceforge.net/
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Table 2.2: ASP solvers.

Name Year University Reference
SMODELS 1996 Helsinki University of Technology [83]
DLV 1997 Vienna Technical University [70]
CMODELS 2002 University of Texas-Austin [54]
ASSAT 2003 Hong Kong University of Science and Technology [76]
PBMODELS 2005 University of Kentucky [77]
CLASP 2006 University of Potsdam [47]

have to be included in the answer set due to the current assignment and conflicts. In the
RESOLVE-CONFLICT step, it tries to resolve the conflicts encountered in the previous step.
If there is a conflict, then CLASP learns it and does backtracking to an appropriate level.
Learning a conflict helps CLASP prevent redundant search. If there is no conflict and the
currently selected literals do not represent an answer set, then, in SELECT, CLASP selects
a new literal based on several heuristics to continue search.

Algorithm 1 CLASP
Input: An ASP program Π
Output: An answer set A for Π
A ← ∅ // current assignment of literals
� ← ∅ // set of conflicts
while No Answer Set Found do

PROPAGATION(Π, A,�) // propagate literals
if There is a conflict in the current assignment then

RESOLVE-CONFLICT(Π, A,�) // learn and update conflicts, and backtrack
else

if Current assignment does not yield an answer set then

SELECT(Π, A,�) // select a literal to continue search
else

return A
end if

end if

end while

CLASP’s algorithm differs from DPLL in some aspects. First, DPLL is designed to
solve SAT problems whereas CLASP is for ASP programs and solutions to SAT may not
correspond to the answer sets of the problems [76]. Consider for instance the following
program:

p ← q (2.12)

The answer set of this program is ∅. This program can be translated into the following
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SAT program:
¬p ∨ q (2.13)

Models of this SAT problem are ∅ and {p}. As can be seen from this example, there
is no one-to-one correspondence between SAT models and answer sets. However, there
is a close relation between these two paradigms. CLASP exploits this relationship by
using loop formulas [76] and Clark completion [20] to solve ASP programs with local
compilations to SAT formulas; then uses DPLL search over these local inferences. Sec-
ond, CLASP enhances the DPLL search with concepts from constraint processing such as
Nogoods [89] and other heuristics from SAT such as literal watching [82].
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Chapter 3

Finding Similar/Diverse Solutions in ASP

For many computational problems, the main concern is to find a best solution (e.g., a
most preferred product configuration, a shortest plan, a most parsimonious phylogeny)
with respect to some well-described criteria. On the other hand, in many real-world ap-
plications, there are multiple solutions to a given problem. In such cases, one may be
interested in computing a solution, some of the solutions, or all the solutions to the given
problem. When the solution space is large, computing only one solution might not be de-
sirable. On the other hand, computing all the solutions might be intractable because of the
large number of solutions. Therefore, users may be interested in computing a set of few
“informative” solutions to work on. With this motivation, we are interested computing

• a set of similar/diverse solutions, and

• a solution that is close/distant to a given set of solutions.

In the following, we introduce the main computational problems related to computing
similar/diverse solutions in ASP and offline/online methods to solve these problems.

3.1 Computational Problems

We are mainly interested in the following problems related to computation of a simi-
lar/diverse collection of solutions:

n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measure ∆ that maps a set of solutions for P to a nonnegative integer, and two
nonnegative integers n and k, find a set S of n solutions for P such that ∆(S) ≤ k

(resp. ∆(S) ≥ k).

k-CLOSE SOLUTION (resp. k-DISTANT SOLUTION)
Given an ASP program P that formulates a computational problem P , a distance
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measure ∆ that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P , and a nonnegative integer k, find a solution s (s �∈ S) for P such
that ∆(S ∪ {s}) ≤ k (resp. ∆(S ∪ {s}) ≥ k).

For instance, consider the ASP program P = (2.10) ∪ (2.11) that describes the c-
clique problem for a given graph and nonnegative integer c. By providing this ASP pro-
gram to an ASP solver, one can compute many cliques for the same input graph. In such
a case, one may be interested in computing a set of similar or diverse cliques in the given
graph. Suppose that the similarity of a set of cliques is defined by some distance mea-
sure ∆. Then finding a set of 3 cliques whose distance is at least 20 is an instance of n
k-DIVERSE SOLUTIONS where n = 3 and k = 20. On the other hand, we may already
have two cliques C1 and C2 and we may want to compute a clique whose distance from
{C1, C2} is at most 10; this problem is an instance of k-CLOSE SOLUTION where k = 10.

Complexities of the decision versions of these problems are NP-Complete under rea-
sonable assumptions [31]. In [31], we have also defined various decision/optimization
problems which are variations of these problems and presented algorithms to solve them.

3.2 Computing n k-Similar/Diverse Solutions

To compute a set of n solutions whose distance is at most (resp. at least) k, we introduce
an offline method and three online methods. Offline Method computes all solutions in
advance and finds a set of n k-similar (resp. k-diverse) solutions afterwards. On the other
hand, the online methods find a set of n k-similar (resp. k- diverse) solutions on the
fly. We denote the given ASP program P with Solve.lp; in other words, Solve.lp
describes a solution to the given problem P . Online Method 1 modifies this program to
find n k-similar (resp. k-diverse) solutions; whereas, other methods use this program as
it is.

Overviews of Offline Method and Online Methods are given in Figures 3.1 and 3.2
respectively. In the following, we describe each method in detail. Although we gener-
ally consider n k-similar solutions, the methods are applicable to computing n k-diverse
solutions as well.

3.2.1 Offline Method

In the offline method, we compute the set S of all the solutions for P in advance using the
ASP program Solve.lp, with an existing ASP solver. Then, we use some clustering
methods to find similar solutions in S. The idea is to form clusters of n solutions, measure
the distance of each cluster, and pick a cluster whose distance is less than or equal to k.

We can compute clusters of n solutions whose distance is at most k by means of solv-
ing a graph problem: build a complete graph G whose nodes correspond to the solutions
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Figure 3.1: Offline Method for computing n k-similar solutions.

Method Offline Method

Distance Function ASP
Compute all the solutions in advance,

Approach and find a cluster of size n whose
distance is at most k among those solutions

ASP Solver CLASP

Figure 3.2: Online Methods for computing n k-similar solutions.

Method Online Method 1 Online Method 2 Online Method 3

(Reformulation) (Iterative Computation) (Incremental Computation)
Distance Function ASP ASP C++

Reformulate Solve.lp Compute n k-similar Modify the search algorithm
Approach to compute n k similar solutions iteratively of CLASP to compute

solutions at once using Solve.lp n k-solutions at once
ASP Solver CLASP CLASP CLASP-NK

in S and edges are labeled by distances between the corresponding solutions; and decide
whether there is a clique C of size n in G whose weight (i.e., the distance of the set of
solutions denoted by the weight of the clique) is less than or equal to k. The set of vertices
in the clique represents n k-similar solutions.

The weight of a clique (or the distance ∆ of the solutions in the cluster) can be com-
puted as follows: Given a function d to measure the distance between two solutions, let
∆(S) be the maximum distance between any two solutions in S. Then n k-similar so-
lutions can be computed by Algorithm 2, where the graph G is built as follows: nodes
correspond to solutions in S, and there is an edge between two nodes s1 and s2 in G if
d(s1, s2) ≤ k. Nodes of a clique of size n in this graph correspond to n k-similar solu-
tions. Such a clique can be computed using the ASP formulation in Figure 2.1, or one of
the existing exact/approximate algorithms discussed in [55].

Note that this method is sound and complete. On the other hand, however, when
the solution space is very large, it might be intractable to compute all the solutions in
advance and build a distance graph. In such a case, we may compute the distance graph
of a tractable subset of all the solutions, and find n k-similar solutions among this subset.
Although such an approach is not complete, it is still sound.

3.2.2 Online Method 1: Reformulation

Instead of computing all the solutions in advance as in the offline method, we can com-
pute n k-similar solutions to the given problem P on the fly. First we reformulate the
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Algorithm 2 Offline Method
Input: A set S of solutions, a distance function d : S × S �→ N, and two nonnegative

integers n and k.
Output: A set C of n solutions whose distance is at most k.
V ← Define a set of |S| vertices, each denoting a unique solution in S;
E = {{vi, vj} | vi �= vj, vi, vj denote si, sj ∈ S, d(si, sj) ≤ k};
C ← Find a clique of size n in �V,E�;
return C

Figure 3.3: Computing n k-similar solutions, with Online Method 1.

ASP program Solve.lp in such a way to compute n-distinct solutions; let us call the
reformulation as SolveN.lp. Such a reformulation can be obtained from Solve.lp

as follows:

1. We specify the number of solutions: solution(1..n).

2. In each rule of the program Solve.lp, we replace each atom p(T1,T2,...,Tm)

(except the ones specifying the input) with p(N,T1,T2...,Tm).

3. Add solution(N) to the body of each rule which is not safe1.

4. Now we have a program that computes n solutions. To ensure that they are dis-
tinct, we add a constraint which expresses that every two solutions among these n

solutions are different from each other.

Next we describe the distance function ∆ as an ASP program, Distance.lp. In
addition, we represent the constraints on the distance function (e.g., the distance of the
solutions in S is at most k) as an ASP program Constraint.lp. Then we can compute
n-distinct solutions for the given problem P that are k-similar, by one call of an existing
ASP solver with the program SolveN.lp ∪ Distance.lp ∪ Constraint.lp,
as shown in Figure 3.3. Let us give an example to illustrate Online Method 1.

1The ASP grounder GRINGO expects rules to be safe, i.e., all variables that appear in a rule have to
appear in some positive literal (a literal not preceded by not) in the body.
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solution(1..n).

c{clique(S,X) : vertex(X)}c :- solution(S).

:- clique(S,X), clique(S,Y), not edge(X,Y), not edge(Y,X), X!=Y.

different(S1,S2) :- clique(S1,X), clique(S2,Y), S1 != S2, X != Y.

:- not different(S1,S2), solution(S1;S2), S1!=S2.

Figure 3.4: ASP formulation that computes n distinct c-cliques.

same(S1,S2,V) :- clique(S1,V), clique(S2,V), S1 < S2.

hammingDistance(S1,S2,c-H) :- H{same(S1,S2,V): vertex(V)}H,

maximumDistance(H), S1 < S2.

Figure 3.5: ASP formulation of the Hamming distance between two cliques.

:- hammingDistance(S1,S2,H), H > k.

Figure 3.6: A constraint that forces the distance among any two solutions is less than or
equal to k.

Example 1. Suppose that we want to compute n k-similar cliques in a graph. Assume that
the similarity of two cliques is measured by the Hamming Distance: the distance between
two cliques C and C � is equal to the number of different vertices, |(C \ C �) ∪ (C � \ C)|.
The distance of a set S of cliques can be defined as the maximum distance among any two
cliques in S.

The clique problem can be represented in ASP (Solve.lp) as in [74], also shown
in Figure 2.1. We can obtain the SolveN.lp as described above. The reformulation
(SolveN.lp) given in Figure 3.4. This reformulation computes n distinct cliques.

The Hamming Distance between any two cliques can be represented by the ASP pro-
gram (Distance.lp) shown in Figure 3.5.

Finally, Figure 3.6 shows the constraint (Constraint.lp) that eliminates the sets
whose distance is above k.

An answer set for the union of these three programs, SolveN.lp ∪ Distance.lp

∪ Constraint.lp, corresponds to n k-similar cliques.

3.2.3 Online Method 2: Iterative Computation

This method does not modify the given ASP program Solve.lp as in Online Method 1,
but still formulates the distance function and the distance constraints as ASP programs.
The idea is to find similar solutions iteratively, where the ∆(S) is always less than or
equal to k after each new solution computed (Figure 3.7). Here n iterations lead to n

solutions whose distance is at most k (i.e., n k-similar solutions).
Note that, like Offline Method and Online Method 1, this method is sound; however,

unlike Offline Method and Online Method 1, it is not complete since the computation of
a solution depends on the previously computed solutions. The method may not return

19



����������������	
���
�������
������	���	�������	����
�	
���������������	
���	��
����	������	�
������
������
���
��
���	������������	
���	�
������
���������	��
����	�����	��

�������

� ���
	�
������

�	���������	 ������	��

������
 �

�!"��

Figure 3.7: Computing n k-similar solutions, with Online Method 2. Initially S = ∅. In
each run, a solution is computed and added to S, until |S| = n. The distance function and
the constraints in the program ensure that when we add the computed solution to S, the
set stays k-similar.

n k-similar solutions (even it exists) if the previously computed solutions comprise a bad
solution set.

3.2.4 Online Method 3: Incremental Computation

This method is different from the other two online methods in the sense that it does not
modify the ASP program Solve.lp describing the given computational problem P , it
does not formulate the distance function ∆ and the distance constraints as ASP programs.
Instead, it modifies the search algorithm of an existing ASP solver in such a way that the
modified ASP solver can compute n k-similar solutions (Figure 3.8). In this method, we
modify the search algorithm of the ASP solver CLASP (Version 2.0.1) and the modified
version is called CLASP-NK. The given distance measure ∆ is implemented as a C++
program.

We modify CLASP’s algorithm as shown in Algorithm 3 to obtain CLASP-NK: the
red parts show these modifications. To use CLASP-NK, one needs to prepare an options
file, NKoptions, to describe the input parameters to compute n k-similar solutions, such
as the values n and k, along with the names of predicates that characterize solutions and
that are considered for computing the distance between solutions. Note that since an
answer set (thus a solution) is computed incrementally in CLASP-NK, we cannot compute
the distance between a partial solution and a set of solutions with respect to the given
distance function ∆. Instead, one needs to implement a heuristic function to estimate a
lower bound for the distance between any completion s of a partial solution with a set S
of previously computed solutions. If this heuristic function is admissible then it does not
underestimate the distance of S ∪ {s} (i.e., it returns a lower bound that is less than or
equal to the optimal lower bound for the distance).
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Figure 3.8: Computing n k-similar solutions, with Online Method 3. CLASP-NK is a
modification of the ASP solver CLASP, that takes into account the distance function and
constraints while computing an answer set in such a way that CLASP-NK becomes biased
to compute similar solutions. Each computed solution is stored by CLASP-NK until a set
of n k-similar solutions is computed.

Note that similar to Online Method 2, this method is also sound but not complete.

3.3 Computing k-Close/Distant Solution

We can solve the problem k-CLOSE SOLUTION utilizing the methods for n k-SIMILAR

SOLUTIONS. For instance, we can modify Online Method 1 by modifying the ASP pro-
gram P (Solve.lp) that describes the computational problem P , by adding constraints,
to ensure that the answer sets for P characterize solutions for P except for the ones in-
cluded in the given set S of solutions. Let us call the modified ASP program P �. Next, we
define a distance measure ∆� that maps a set of solutions for P to a nonnegative integer,
in terms of the given measure ∆ as follows: ∆�(X) = ∆(S ∪X). Then, an answer set of
P � along with an ASP description of ∆� and a constraint that eliminates each solution X

such that ∆(X) > k, corresponds to k-close solution.
Alternatively, we can modify Online Method 2 by starting with a set S of solutions,

then find a solution which is k-close to S.
Similarly, we can encode the solutions S into the DISTANCE-ANALYZE function of

CLASP-NK; so that, DISTANCE-ANALYZE returns a lower bound for the distance between
any completion of the partial solution and the solutions in S. Then, we can ask CLASP-NK

to return one solution which will correspond to a k-close solution.

3.4 Computing Similar/Diverse Weighted Solutions

Although CLASP-NK is designed to compute similar/diverse solutions, it turns out that it
could be useful to solve more general problems. We can consider DISTANCE-ANALYZE

as a function that defines some preferences over answer sets. Using this function, we can
ensure that the answer set solver computes answer sets that satisfy a preference function
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Algorithm 3 CLASP-NK
Input: An ASP program Π, nonnegative integers n, and k
Output: A set X of n solutions that are k similar (n k-similar solutions)
A ← ∅ // current assignment of literals
� ← ∅ // set of conflicts
X ← ∅ // computed solutions
while |X| < n do

PartialSolution ← A
LowerBound ← DISTANCE-ANALYZE(X,PartialSolution) // compute a lower
bound for the distance between any completion of a partial solution and the set of
previously computed solutions
PROPAGATION(Π, A,�) // propagate literals
if Conflict in propagation OR LowerBound > k then

RESOLVE-CONFLICT(Π, A,�) // learn and update conflicts, and backtrack
else

if Current assignment does not yield an answer set then

SELECT(Π, A,�) // select a literal to continue search
else

X ← X ∪ {A}
A ← ∅

end if

end if

end while

return X

which is defined externally. More precisely, we can solve problems of the following sort
studied in [15, 14]:

AT LEAST (resp. AT MOST) w-WEIGHTED SOLUTION: Given an ASP program
P that formulates a computational problem P , a weight measure ω that maps a
solution for P to a nonnegative integer, and a nonnegative integer w, find a solution
S for P such that ω(S) ≥ w (resp. ω(S) ≤ w).

This problem asks for a single solution instead of a set of solutions; but this single
solution should have a weight above/below some threshold. In order to solve this problem,
we modified CLASP as in Algorithm 4, and call this modified version CLASP-W.

CLASP-W is similar to CLASP-NK in the sense that the WEIGHT-ANALYZE function
is called at each step of the search. However, WEIGHT-ANALYZE function only considers
the current partial solution unlike DISTANCE-ANALYZE which considers also the previ-
ously computed solutions. Partial solution may extend to many complete solutions, the
WEIGHT-ANALYZE function computes instead an upper bound (resp. a lower bound) for
the weight of a solution that extends the current partial solution. Computing an exact
upper bound (resp. a lower bound) might be hard and inefficient; therefore, one may
be interested in implementing a heuristic function that computes an approximate upper
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bound (resp. lower bound) for a solution. To guarantee to find a complete solution, the
heuristic function should be admissible. In other words, the upper bound (resp. lower
bound) computed by the heuristic function shall be greater (resp. less) than or equal to
the exact upper bound (resp. lower bound). If this is not the case, then we have a risk of
missing a solution.

Once the WEIGHT-ANALYZE function is defined to estimate the weight of a solution,
we can check whether the estimated weight is less (resp. greater) than or equal to the
given weight threshold w. If the upper bound (resp. the lower bound) computed by the
heuristic function is already less (resp. greater) than the given weight threshold w, then
there is no solution that can be characterized by the current assignment of literals and that
has a weight greater (resp. smaller) than w. Therefore, the current assignment of literals
can be set as conflict in that case. After setting an assignment as a conflict, CLASP-W

learns that assignment and does backtracking and never selects those assignments in the
further stages of the search.

Algorithm 4 CLASP-W
Input: An ASP program Π and a nonnegative integer w
Output: An answer set for Π, that describes an at least (resp. at most) w-weighted solu-

tion
A ← ∅ // current assignment of literals
� ← ∅ // set of conflicts
while A does not represent an answer set do

// propagate according to the current assignment and conflicts;update the current
assignment
PROPAGATION(Π, A,�)
// compute an upper (resp. lower) bound for the weight of a solution that contains A
weight ← WEIGHT-ANALYZE(A)
// if the upper bound weight is less than the desired weight value w
// then no need to continue search to find an at least w-weighted solution
if There is a conflict in propagation OR weight < w then

RESOLVE-CONFLICT (Π, A,�) // learn and update the conflict set and do back-
tracking

end if

if Current assignment does not yield an answer set then

SELECT(Π, A,�) // select a literal to continue search
else

return A
end if

end while

return false

We also defined a more general problem which is a combination of similar/diverse
and weighted solutions in [15] as follows:

23



Algorithm 5 CLASP-NKW
Input: An ASP program Π and nonnegative integers w, n and k
Output: A set of n k-similar at least w-weighted solutions
A ← ∅ // current assignment of literals
� ← ∅ // set of conflicts
X ← ∅ // previously computed answer sets
while |X| < n do

PROPAGATION(Π, A,�)
weight ← WEIGHT-ANALYZE(A) // Related to CLASP-W
distance ← DISTANCE-ANALYZE(A,X) // Related to CLASP-NK
if (There is a conflict in propagation) OR (weight < w) OR (distance > k) then

RESOLVE-CONFLICT (Π, A,�)
end if

if Current assignment does not yield an answer set then

SELECT(Π, A,�)
else

return X ← X ∪ A
end if

end while

return X

n k-SIMILAR (resp. k-DIVERSE) AT LEAST (resp. AT MOST) w-WEIGHTED SO-
LUTIONS: Given an ASP program P that formulates a computational problem P ,
a weight measure ω that maps a solution for P to a nonnegative integer, a distance
measure ∆ that maps a set of solutions to a nonnegative integer, nonnegative inte-
gers w and k, decide whether a set S of n solutions for P exists such that ∆(S) ≤ k

(resp. ∆(S) ≥ k) and for each s ∈ S, ω(s) ≥ w (resp. ω(s) ≤ w).

We modified the algorithm of CLASP as in Algorithm 5 to compute n k-similar (resp.
k-diverse) at least (resp. at most) w-weighted solutions in ASP, this version is called
CLASP-NKW. At each step of the search CLASP-NKW calls both WEIGHT-ANALYZE

and DISTANCE-ANALYZE; so it ensures that any completion of the partial solution both
has a weight of greater than or equal to w and the distance to the previously computed
solutions smaller than or equal to k; therefore, we can compute n k-SIMILAR AT LEAST

w-WEIGHTED SOLUTIONS.
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Chapter 4

Finding Similar/Diverse Phylogenies

Phylogenetic systematics developed by Willi Hennig [60, 61, 62] is the study of evolu-
tionary relations among group of species (or “taxonomic units”). These relations can be
modelled as a tree whose leaves represent species, internal vertices represent their an-
cestors and edges represent the genetic relationship among them. Such a tree is called a
“phylogeny” (or a “phylogenetic tree”).

Phylogenetic systematics deals with the problem of reconstructing phylogenies based
on the given traits of the species; so that, one can analyze how the given set of species
evolve through time. This problem is important for research areas as disparate as genetics,
historical linguistics, zoology, anthropology, archeology, etc.. For example, a phylogeny
of parasites may help zoologists to understand the evolution of human diseases [13]; a
phylogeny of languages may help scientists to better understand human migrations [109].

There are several software systems, such as PHYLIP [42], PAUP [100] or PHYLO-
ASP [36], that can reconstruct a phylogeny for a set of taxonomic units, based on “max-
imum parsimony” [28] or “maximum compatibility” [18] criterion. With some of these
systems, such as PHYLO-ASP, we can compute many good phylogenies (most parsimo-
nious phylogenies, perfect phylogenies, phylogenies with highest number of compatible
traits, etc.) according to the phylogeny reconstruction criteria. In such cases, in order to
decide the most “plausible” ones, domain experts manually analyze these phylogenies,
since there is no available phylogenetic system that can analyze/compare these phyloge-
nies.

For instance, PHYLO-ASP computes 45 plausible phylogenies for the Indo-European
languages based on the dataset of [12]. In order to pick the most plausible phylogenies,
in [12], the historical linguist Don Ringe analyzes these phylogenies by trying to cluster
them into diverse groups, each containing similar phylogenies. In such cases, having
a tool that reconstructs similar/diverse solutions would be useful: with such a tool, an
expert can compute (instead of computing all solutions) few most diverse solutions, pick
the most plausible one, and then compute phylogenies that are close to this phylogeny.

25



In the following, we show how our methods for computing similar/diverse solutions
can be used to compute similar/diverse phylogenies. Before that, we define the phylogeny
reconstruction problem and some distance functions to measure the similarity/diversity of
phylogenies.

4.1 Phylogeny Reconstruction Problem

There are two main approaches to reconstruct phylogenies: character-based and distance-
based. Our approach is the character-based as in [87, 12]. In character-based phylogenet-
ics, shared traits are “(qualitative) characters”. A character is a trait in which taxonomic
units can instantiate a variety of ways. If a character is instantiated by a set of taxonomic
units in the same way, then these taxonomic units are assigned the same “state” of the
character.

There are two main criteria in character based phylogenetics: Maximum parsimony
and maximum compatibility. In maximum parsimony [28], the aim is to minimize charac-
ter state changes along the edges. In maximum compatibility [18], the aim is to maximize
the number of “compatible” characters. Intuitively, a character is compatible if it evolves
without backmutation1 or parallel evolution.2 We consider the latter criterion while re-
constructing phylogenies.

Before we describe the problems related to weighted phylogenetic tree reconstruction,
we need to introduce some definitions as in [12].

A directed graph (digraph) is an ordered pair �V, E�, where V is a set and E is a
binary relation on V . In a digraph �V, E�, the elements of V are called vertices, and the
elements of E are called the edges of the digraph. The out-degree of a vertex v is the
number of edges (v, u) such that u ∈ V , and the in degree of v is the number if edges
(u, v) such that u ∈ V . A digraph �V �, E �� is a subgraph of a digraph �V E� if V � ⊂ V

and E � ⊂ E.
In a digraph �V, E�, a path from vertex u to a vertex u� is a sequence v0, v1, .., vk of

vertices such that u = v0 and u� = vk and (vi−1, vi) ∈ E for 1 ≤ i ≤ k. If there is a path
from a vertex u to a vertex v, then we say that v is reachable from u. If V � is a subset of
V , a path from u to v whose vertices belong to V � is a path from u to v in V �. If there
exist a path from u to v in V �, v is reachable from u in V �.

A rooted tree is a digraph with a vertex of in-degree 0, called the root, such that every
vertex different from the root has in-degree 1 and is reachable from the root. In a rooted
tree, a vertex of out-degree 0 is called a leaf.

A phylogeny for a set of taxonomic units is a finite rooted binary tree �V, E� along
1If a character evolves from one state to another and then back to the earlier state, then backmutation

occurs in the evolution of that character.
2If a state appears independently in the different lines of descent, then parallel evolution occurs.
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with two finite sets I and S and a function f from L x I to S, where L is the set of leaves
of the tree. The set L represents the given taxonomic units, whereas the set V describes
their ancestral units and the set E describes the genetic relationships between them. The
elements of I are usually positive integers (“indices”) that represent, intuitively, qualita-
tive characters, and elements of S are possible states of these characters. The function f

“labels” every leaf v by mapping every index i to the state f(v, i) of the corresponding
character in that taxonomic unit.

A character i ∈ I is compatible with a phylogeny (V,E, L, I, S, f) if there exist a
function g : V × {i} → S such that

• For every leaf v of the phylogeny, g(v, i) = f(v, i)

• For every s ∈ S if the set

Vis = {x ∈ V : g(x, i) = s}

is nonempty, then the digraph �V, E� has a subgraph with the set Vis of vertices that
is a rooted tree.

A character is incompatible with a phylogeny if it is not compatible with that phy-
logeny.

Consider the example (Figure 4.1) given in [12]. Character 2 is compatible with the
phylogeny: take g to be a function that maps every internal vertex to 1, and every leaf x
to f(x). The vertices labelled 1 by g form a tree; the vertices labelled 0 by g also form
a tree. On the other hand, Character 1 is incompatible: there is no way of labelling the
internal vertices of the tree so that the vertices labelled 1 form a tree and that the vertices
labelled 0 form a tree.

The phylogeny reconstruction problem is defined as follows: Given the sets L, I , S,
and the function f , build a phylogeny (V,E, L, I, S, f) with the minimum number of in-
compatible characters. In [12], the authors describe and solve this problem using ASP. In
our experiments, we used this ASP program (as Solve.lp) to compute similar/diverse
phylogenies.

4.2 Distance Measures for Phylogenies

The labellings of leaves denote the values of shared traits at those nodes. We consider
distance measures that depend on topologies of phylogenies, therefore, while defining
them we discard these labelings.

There are various measures to compute the distance between two phylogenies [85, 88,
63, 67, 22]. In the following, we first consider one of these domain-independent functions,
the nodal distance measure [8], to compare two phylogenies; and then we define a distance
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Figure 4.1: A phylogeny for the species a, b, c, d.

measure for a set of phylogenies based on the nodal distances of pairwise phylogenies, to
show the applicability of our methods for finding n k-similar phylogenies. Then we define
a novel distance function that measures the distance of two phylogenies, and a distance
function that measures the distance of a set of phylogenies, taking into account some
expert knowledge specific to evolution. With this measure we also show the effectiveness
of our methods.

4.2.1 Nodal Distance of Two Phylogenies

The nodal distance NDP (x, y) of two leaves x and y in a phylogeny P is defined as
follows: First, transform the phylogeny P to an undirected graph G where there is an
undirected edge {i, j} in the graph for each directed edge (i, j) in the phylogeny. Then
NDP (x, y) is equal to the length of the shortest path between x and y in the undirected
graph G. For example, consider the phylogeny, P1 in Figure 4.2; the nodal distance
between a and b is 3, whereas the nodal distance between b and c is 2. Intuitively, the nodal
distance between two leaves in a phylogeny represents the degree of their relationship in
that phylogeny.

Given two phylogenies P1 and P2 both with same set L of leaves, the nodal distance
Dn(P1, P2) of two phylogenies is calculated as follows:

Dn(P1, P2) =
�

x,y∈L

|NDP1(x, y)− NDP2(x, y)|.

Here the difference of the nodal distances of two leaves x and y represents the contribution
of this pair of leaves to the distance between the phylogenies.

Proposition 1. Given two phylogenies P1 and P2 with same set L of leaves and the same
leaf-labeling function, Dn(P1, P2) can be computed in O(|L|2) time.

Proof. In order to compute Dn(P1, P2), we need to perform
�|L|

2

�
nodal distance compu-

tations where |L| is the number of leaves. The nodal distance between each pair (x, y) of
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Figure 4.2: Two phylogenies P1 = (a, (b, c)) and P2 = (b, (a, c)).

Table 4.1: In order to compute the nodal distance Dn(P1, P2) between the phylogenies
P1 = (a, (b, c)) and P2 = (b, (a, c)) shown in Figure 4.2, we compute the nodal distances
of the pairs of leaves, {a, b}, {a, c} and {b, c}, and take the sum of the differences. In this
case the distance between P1 and P2 is 2.

Pairs of leaves Distance in P1 Distance in P2 Difference
{a,b} 3 3 0
{a,c} 3 2 1
{b,c} 2 3 1

Total distance 2

leaves in a tree T can be computed as depthT (x) + depthT (y) − 2 × depthT (lcaT (x, y))

where lcaT (x, y) is the lowest common ancestor of x and y in T . Note that, once the low-
est common ancestor of x and y is given, the computation of the nodal distance between
x and y takes constant time. Therefore, the nodal distance between each pair of nodes in
P1 (resp. P2) can be computed in O(|L|2) time.

In [56], the authors introduced an algorithm that finds the lowest common ancestor of
two nodes in a tree in constant time after preprocessing the whole tree in linear time in
the size of the number of nodes in that tree. Then, the lowest common ancestor of every
two nodes in phylogeny P1 (resp. P2) can be computed in O(2× |L|− 1) = O(|L|) time.

Therefore, the total time complexity of finding Dn(P1, P2) is O(|L|) + O(|L|2) =

O(|L|2).

Table 4.1 shows an example of computing the nodal distance between two phyloge-
nies. Here, the phylogenies are presented in the Newick format, where the sister sub-
phylogenies are enclosed by parentheses. For instance, the first tree, P1, of Figure 4.2 can
be represented in the Newick format as (a, (b, c)).
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4.2.2 Descendant Distance of Two Phylogenies

Nodal distance measure computes the distance between two rooted binary trees and does
not consider the evolutionary relations between nodes. In that sense, it is a domain-
independent distance measure for comparing phylogenies. A distance measure that takes
into account these relations might give more accurate results. Therefore, we define a
new distance function based on our discussions with the historical linguist Don Ringe. In
particular, we take into account the following domain-specific information in phylogenet-
ics: the similarities of phylogenies towards their roots are more significant; and thus two
phylogenies are more similar if the diversifications closer to their roots are more similar.

For each vertex v of a tree T = �V,E�, let us define the descendants of x as follows:

descT (v) =

�
{v} v is a leaf in V

descT (u) ∪ descT (u�) otherwise (v, u), (v, u�) ∈ E, u �= u�

and the depth of a vertex v as follows:

depthT (v) =

�
0 v is the root of T
1 + depthT (u) otherwise(u, v) ∈ E.

To define the similarity of two phylogenies T = �V,E� and T � = �V �, E ��, let us first
define the similarity of two vertices v ∈ V and v� ∈ V �:

f(v, v�) =

�
1 descT (v) �= descT �(v�)

0 otherwise

For every depth i (0 ≤ i ≤ min{maxv∈V depthT (v),maxv�∈V � depthT �(v�)}), let us
also define a weight function weight(i) that assigns a number to each depth i. The idea
is to assign bigger weights to smaller depths so that two phylogenies are more similar
if the diversifications closer to the root are more similar. This is motivated by the fact
that reconstructing the evolution of languages closer to the root is more important for
historical linguists.

Now we can define the similarity of two trees T = �V,E� and T � = �V �, E ��, with the
roots R and R� respectively, at depth i (0 ≤ i ≤ min{maxv∈V depth(v), maxv�∈V � depth(v�)}),
by the following measure:

g(0, T, T �) = weight(0)× f(R,R�)

g(i, T, T �) = g(i− 1, T, T �)+

weight(i)×
�

x∈V,y∈V �,depthT (x)=depthT � (y)=i f(x, y), i > 0
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Table 4.2: In order to compute the descendant distance Dl(P1, P2) between the phyloge-
nies P1 = (a, (b, c)) and P2 = (b, (a, c)) shown in Figure 4.2, for each depth level, we
multiply the number of vertices that have different descendants with the weight of that
depth level. Then, we add up the products to find the total distance between P1 and P2.
The descendant distance between P1 and P2 is 4.

Depth Weight P1 Number of pairs of vertices that
have different descendant sets

0 (root) 2 0
1 1 4
2 0 3

Distance = 2× 0 + 1× 4 + 0× 3 = 4

and the similarity of two trees as follows:

Dl(T, T
�) = g(min{max

v∈V
depthT (v),max

v�∈V �
depthT �(v�)}, T, T �).

Proposition 2. Given two trees P1 and P2 with same set L of leaves and the same leaf-
labeling function, Dl(P1, P2) can be computed in O(|L|3) time.

Proof. Let v be the number of vertices in one tree, then v2 is an upper bound for the
number of the pairs that we can compare their descendants. Therefore, we have at most
O(v2) comparisons.

Since the number of descendants is bounded by |L| (after obtaining the descendants
of each vertex by preprocessing in O(v·|L|) time), each comparison takes time O(|L|).

Since v = 2× |L|−1, Dl(P1, P2) can be computed in (2× |L|−1)2× |L| steps which
is O(|L|3).

Table 4.2 shows an example of computing the distance between two trees shown in
Figure 4.2.

4.2.3 Distance of a Set of Phylogenies

In the previous subsections, we defined distance functions for measuring the distance
between two phylogenies. However, the problems that we defined in Section 3.1 require
a distance function that measures the distance of a set of phylogenies. We can define the
distance of a set of phylogenies based on the distances among pairwise phylogenies. For
instance, the distance of a set S of phylogenies can be defined as the maximum distance
among any two phylogenies in S.

Let D be one of the distance measures defined in the previous subsection. Then, to be
able to find similar phylogenies, the distance of a set S of phylogenies (∆D) is defined as
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follows:
∆D(S) = max{D(P1, P2) | P1, P2 ∈ S}.

To be able to find diverse phylogenies, the distance of a set S of phylogenies (∆D) is
defined as follows:

∆D(S) = min{D(P1, P2) | P1, P2 ∈ S}.

4.3 Computing n k-Similar/Diverse Phylogenies

Analogous to the n k-similar (resp. diverse) solutions, we define the n k-similar (resp.
diverse) phylogenies as follows:

n k-SIMILAR PHYLOGENIES (RESP. n k-DIVERSE PHYLOGENIES)
Given an ASP program P that formulates a phylogeny reconstruction problem P , a
distance measure ∆D that maps a set of phylogenies for P to a nonnegative integer,
and two nonnegative integers n and k, find a set S of n phylogenies such that
∆D(S) ≤ k (resp. ∆D(S) ≥ k).

Recall that in order to compute n k-similar (resp. diverse) solutions we need an ASP
program that computes a solution and a distance measure. We consider the ASP program
phylogeny-improved.lp described in [12] as our main program that computes a
phylogeny. We represent the nodal distance Dn (resp. the descendant Dl) of two phylo-
genies as the ASP program in Figure A.3 (resp. Figure A.4) in Appendix A. In addition,
we consider the program in Figure A.5 that computes the total distance of a set of solu-
tions with ∆D and eliminates the ones whose total distance is greater than k.

For Offline Method, we compute all the phylogenies using
phylogeny-improved.lp. Then we build a graph of phylogenies as in Sec-
tion 3.2.1. Then, we use the ASP program in Figure 2.1 of Section 2.1 to find a clique of
size n in the constructed graph. This clique corresponds to n k-similar phylogenies.

For Online Method 1, we reformulate the main program
phylogeny-improved.lp to obtain a program that computes n distinct phy-
logenies as in Section 3.2.2. The reformulation is shown in Figures A.1 and A.2 in
Appendix A.

For Online Method 3, we define a heuristic function to estimate a lower bound for the
distance between any completion of a given partial phylogeny and a complete phylogeny.

Let Pc be any complete phylogeny, Pp be any partial phylogeny and Lp be the set of
pairs of leaves that appear in Pp. Consider the nodal distance (Section 4.2.1) for compar-
ing two phylogenies. Then we can define a lower bound as follows:

LBn(Pp, Pc) =
�

x,y∈Lp

|NDPc(x, y)− NDPp(x, y)|.
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This lower bound does not overestimate the distance between a phylogeny and any com-
pletion of a partial phylogeny.

Proposition 3. Given a partial phylogeny Pp and a complete phylogeny Pc, LBn(Pp, Pc)

is admissible.

Proof. Let S �
p be a set of all completions of the partial phylogeny Pp. For every P ∈ S �

p,
we need to prove that

LBn(Pp, Pc) ≤ Dn(P, Pc)

holds.
Let Pl ∈ argminP∈S�

p
(Dn(P, Pc)) be a completion with smallest distance. Then it

will be enough to prove that

LBn(Pp, Pc) ≤ Dn(Pl, Pc)

holds. If we replace LBn and Dn with their equivalents, the inequality will look like the
following:

�

x,y∈Lp

|NDPc(x, y)− NDPp(x, y)| ≤
�

x,y∈L

|NDPl
(x, y)− NDPc(x, y)|

We can break the right hand side summation into two for Lp and L\Lp as follows:

�
x,y∈Lp

|NDPc(x, y)− NDPp(x, y)| ≤�
x,y∈Lp

|NDPl
(x, y)− NDPc(x, y)|+

�
(x,y)∈L2\L2

p
|NDPl

(x, y)− NDPc(x, y)|

The distance between x and y is the same for Pp and Pl where x, y ∈ Lp. Therefore, terms
cancel each other and we have the following:

0 ≤
�

(x,y)∈L2\L2
p

|NDPl
(x, y)− NDPc(x, y)|

Since the right hand side is a summation of absolute values, the inequality holds which
completes the proof.

Similarly, we can define an upper bound for the differences of nodal distances measure
as follows:

UBn(Pp, Pc) =
�

x,y∈LP

|NDPc(x, y)−NDPp(x, y)|+ (

�
l

2

�
−
�
|Lp|
2

�
)× l.

where l denotes the number of leaves in the complete tree.
This upper bound does not underestimate the distance between a phylogeny and any

completion of a partial phylogeny.
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Proposition 4. Given a partial phylogeny Pp and a complete phylogeny Pc, UBn(Pp, Pc)

is admissible.

Proof of Proposition 4. Let S �
p be a set of all completions of the partial phylogeny Pp. For

every P ∈ S �
p, we need to prove that

UBn(Pp, Pc) ≥ Dn(P, Pc).

Let Pu ∈ argmaxp∈S�
p
(Dn(p, Pc)) be a completion at largest distance. Then it will be

enough to prove that
UBn(Pp, Pc) ≥ Dn(Pu, Pc).

If we replace UBn and Dn with their definition, the inequality is

�

x,y∈Lp

|NDPc(x, y)−NDPp(x, y)|+(

�
l

2

�
−
�
|Lp|
2

�
)×l ≥

�

x,y∈L

|NDPl
(x, y)−NDPc(x, y)|.

We can break the right hand side summation into two for Lp and L\Lp as follows:

�
x,y∈Lp

|NDPc(x, y)− NDPp(x, y)|+ (
�
l
2

�
−
�|Lp|

2

�
)× l ≥

�
x,y∈Lp

|NDPu(x, y)− NDPc(x, y)|+
�

x,y∈L\Lp
|NDPu(x, y)− NDPc(x, y)|

The distance between x and y is same for Pp and Pu where x, y ∈ Lp. Terms cancel each
other:

(

�
l

2

�
−

�
|Lp|
2

�
)× l ≥

�

x,y∈L\Lp

|NDPu(x, y)− NDPc(x, y)|.

The maximum nodal distance in a tree is equal to the number of leaves; therefore, each
term in the right hand side of the inequality is at most l. Since, there are (

�
l
2

�
−

�|Lp|
2

�
)

terms in the right hand side summation, (
�
l
2

�
−

�|Lp|
2

�
) × l is greater than or equal to the

summation.

As regards the descendants distance measure, we could not find a tight lower and
upper bound. In our experiments, we consider that the lower bound (resp. upper bound)
between a complete phylogeny and any completion of a partial phylogeny is 0 (resp. ∞).

We implement the admissible distance functions defined above, and give it to CLASP-
NK along with the main phylogeny reconstruction program phylogeny-improved.lp.

In the following section, we show the experimental results that compare offline and
online methods individually for similar/diverse phylogeny reconstruction.
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4.4 Experimental Results

We performed experiments on reconstructing similar/diverse phylogenies based on the
methods described in the previous section. In these experiments, we used the dataset
assembled by Don Ringe and Ann Taylor [87] for reconstructing phylogenies for Indo-
European languages. As in [12], to compute similar/diverse phylogenies, we considered
the language groups Balto-Slavic (BS), Italo-Celtic (IC), Greco-Armenian (GA), Anato-
lian (AN), Tocharian (TO), Indo-Iranian (IIR), Germanic (GE), and the language Albanian
(AL). While computing phylogenies, we also took into account some domain-specific in-
formation about these languages.

In our experiments, we considered the distance measures described in Section 4.2 as
in Section 4.3.

In Tables 4.3 and 4.4, we present the results for the following computations: 2 most
similar phylogenies, 2 most diverse phylogenies, 3 most similar phylogenies, 3 most di-
verse phylogenies, 6 most similar phylogenies with respect to the nodal distance and the
descendant distance respectively. We solve these optimization problems by iteratively
solving the corresponding problems (n k-SIMILAR/DIVERSE PHYLOGENIES). In the ex-
periments, we consider the phylogenies with at most 17 incompatible characters. For
each method, we present the computation time, the size of the memory used in compu-
tation, and the optimal value of k. All CPU times in the tables are in seconds, for a
workstation with a 1.5GHz Xeon processor and 4x512MB RAM, running Ubuntu Server
(Version 10.10). For Offline Method, Online Method 1, and Online Method 2 we used the
ASP solver CLASP (Version 2.0.1), for Online Method 3, we used CLASP-NK. GRINGO

(Version 3.0.3) is used as a grounder for both CLASP and CLASP-NK.
Let us first examine the results of experiments, considering the distance measure ∆n,

based on the nodal distance (Table 4.3).
Offline method first computes all the phylogenies and then finds similar/diverse phy-

logenies among them using ASP, as explained in Section 3.2.1. Offline method is more
efficient, in terms of both computation time and memory, than the online methods. It
computes all the answer sets using the projected solutions option of CLASP [50]; in other
words, it computes all the phylogenies by projecting the answer sets onto edge atoms.
Since there are only 8 different phylogenies (with at most 17 incompatible characters),
computing all the phylogenies, building the graph of size 8, and finding a clique in this
graph do not take so much time and space.

Let us compare the online methods. In terms of both computation time and memory
size, Online Method 3 performs best, and Online Method 2 performs better than Online
Method 1. These results conform with our expectations. Online Method 1 takes as input
an ASP representation of computing n k-similar/diverse phylogenies, which is almost n
times as large as the ASP program describing the phylogeny reconstruction problem used
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Table 4.3: Computing similar/diverse phylogenies using the nodal distance ∆n.

Problem Offline Method Online Methods
Reformulation Iterative Comp. Incremental Comp.

2 most similar 0.51 sec. 4.33 sec. 0.78 sec. 0.32 sec.
(k = 12) 3MB 23MB 4MB 4MB

k = 12 k = 12 k = 12 k = 12
2 most diverse 0.51 sec. 3.29 sec. 0.59 sec. 0.37 sec.

(k = 32) 3MB 19MB 10MB 4MB
k = 32 k = 32 k = 24 k = 32

3 most similar 0.51 sec. 28.14 sec. 1.43 sec. 0.5 sec.
(k = 15) 3MB 70MB 10MB 4MB

k = 15 k = 15 k = 20 k = 20
3 most diverse 0.52 sec. 20.31 sec. 1.1 sec. 0.63 sec.

(k = 26) 3MB 40MB 10MB 4MB
k = 26 k = 26 k = 26 k = 26

6 most similar 0.52 sec. 297.49 sec. 4.04 sec. 0.99 sec.
(k = 25) 3MB 173MB 12MB 4MB

k = 25 k = 25 k = 25 k = 25

in other methods. Therefore, its computational performance may not be as good as the
other online methods. Online Methd 2 takes as input an ASP representation of phylogeny
reconstruction, and an ASP representation of the distance measure, and then computes
similar/diverse solutions by computing k-close/distant phylogeny n times. Since com-
puting k-close/distant phylogeny from scratch is easy, this method provides a significant
performance gain over Online Method 1. Online Method 3 computes n k-similar/diverse
phylogenies with an incremental approach using CLASP-NK. It deals with the distance
computation at the search level. In addition, it does not restart the search process to
compute a new phylogeny; instead, it learns the conflicts caused by distance difference
while computing a new phylogeny and backtracks to approximate levels to compute sim-
ilar/diverse phylogenies. Therefore, it is better than Online Method 2.

Here both Offline method and Online Method 1 guarantee finding optimal solutions by
iteratively solving the corresponding problems (n k-SIMILAR/DIVERSE PHYLOGENIES).
On the other hand, Online Methods 2 and 3 compute similar/diverse phylogenies with
respect to the first computed phylogeny, and thus may not find the optimal value for k, as
observed in the computation of 3 most similar phylogenies.

Now, let us consider the distance measures ∆l, based on preference over diversifica-
tions (Table 4.4): two phylogenies are more similar if the diversifications closer to the
root are more similar. Here we consider the similarities of diversifications until depth
3 (inclusive). The results are similar with Table 4.3 in terms of computation time and
memory.
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Table 4.4: Computing similar/diverse phylogenies using the descendant distance ∆l.

Problem Offline Method Online Methods
Reformulation Iterative Comp. Incremental Comp.

2 most similar 0.57 sec. 1.67 sec. 0.55 sec. 0.34 sec.
(k = 18) 3MB 13MB 7MB 8MB

k = 18 k = 18 k = 18 k = 18
3 most diverse 0.57 sec. 3.87 sec. 0.91 sec. 0.63 sec.

(k = 20) 3MB 21MB 7MB 8MB
k = 20 k = 20 k = 20 k = 20

6 most similar 0.57 sec. 32.68 sec. 2.26 sec. 0.97 sec.
(k = 18) 3MB 68MB 9MB 8MB

k = 18 k = 18 k = 18 k = 18

In [12], after computing all 34 plausible phylogenies, the authors examine them man-
ually and come up with three forms of tree structures, and then “filter” the phylogenies
with respect to these tree structures. The phylogenies computed with our systems comply
with this grouping. For example, while 2 most similar phylogenies are in the same group,
3 most diverse phylogenies are in different groups.

These results (in terms of computational efficiency and accuracy) show the effective-
ness of our methods in phylogeny reconstruction: we can automatically compare many
phylogenies in detail; therefore, we have developed tools to analyze and compute simi-
lar/diverse phylogenies. The features of these tools are explained in the next section.

4.5 Computational Tools

Motivated by the promising experimental results, we have developed computational
tools called PHYLOCOMPARE-ASP and PHYLORECONSTRUCTN-ASP to be used by
the experts in phylogenetics. PHYLOCOMPARE-ASP is useful to analyze phylogenies
at hand by measuring their similarity/diversity and by grouping them. On the other
hand, PHYLORECONSTRUCTN-ASP is useful to analyze a given set of species by re-
constructing similar/diverse phylogenies. Since there were no such phylogenetic systems,
our tools have fulfilled this need. We have integrated these tools in the phylogenetic
system PHYLO-ASP [36]. In the following, we describe PHYLOCOMPARE-ASP and
PHYLORECONSTRUCTN-ASP in detail.

4.5.1 PHYLOCOMPARE-ASP

Given a set of phylogenies, PHYLOCOMPARE-ASP is for computing a set of similar
(resp. diverse) phylogenies among them. It takes as input:
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• A set S of phylogenies (in Newick format),

• nonnegative integers n and k (optional),

• a distance function (Nodal Distance or Descendant Distance),

• a similarity/diversity option,

and outputs

• a set S � ⊆ S of n phylogenies such that the distance of S � is at most (resp. at least)
k (if k is provided),

• a set S � ⊆ S of n phylogenies with the minimum (resp. maximum) distance (if k is
not provided).

PHYLOCOMPARE-ASP utilizes the offline method to compute similar (resp. diverse)
phylogenies in such a way that it builds a graph G whose nodes correspond to the phyloge-
nies in S and edges are labelled by the distances between the corresponding phylogenies.
In case k is provided, PHYLOCOMPARE-ASP finds a clique of size n in G, such that the
distance of the set of phylogenies in the clique is less (resp. greater) than or equal to k,
as in Algorithm 2. Such a clique is computed using the ASP program in Figure 2.1. In
case k is not provided, PHYLOCOMPARE-ASP optimizes it using a similar program with
additional optimization statements, such as #minimize and #maximize available in
GRINGO [46].

Figure 4.3 shows a screen shot of the web interface of PHYLOCOMPARE-ASP which
is for computing n phylogenies with the minimum (resp. maximum) distance. The user
enters 4 phylogenies, and wants to compute a set of 3 phylogenies among them with the
minimum total distance (with respect to the Nodal Distance). Figure 4.4 shows the result
of the computation, where the distance matrix of the given phylogenies is provided as
well as a set of 3 phylogenies with the minimum total distance.

4.5.2 PHYLORECONSTRUCTN-ASP

PHYLORECONSTRUCTN-ASP differs from PHYLOCOMPARE-ASP in the sense that it
does not find similar (resp. diverse) phylogenies in a given set; instead, it reconstructs sim-
ilar (resp. diverse) phylogenies from a given character-state matrix. PHYLORECONSTRUCTN-
ASP takes as input

• a matrix M ,

• nonnegative integers n, k (optional), and c,

• a distance function (Nodal Distance or Descendant Distance),
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Figure 4.3: A screen shot of PHYLOCOMPARE-ASP where the user enters four phyloge-
nies in newick format.

• a similarity/diversity option,

and outputs (in newick format)

• n k-similar (resp. k-diverse) phylogenies (if k is provided),

• n most similar (resp. most diverse) phylogenies (if k is not provided),

where each phylogeny has at most c incompatible characters. In matrix M , the rows rep-
resent the leaves L, columns represent the characters I and, for each l ∈ L and i ∈ I ,
M [l, i] = f(l, i). The problem of computing n most similar (reps. most diverse) phylo-
genies is an instance of n MOST SIMILAR (resp. MOST DIVERSE) SOLUTIONS defined
in [31]. It is an optimization version of n k-SIMILAR (resp. k-DIVERSE) SOLUTIONS (k
is minimized (resp. maximized)) where the aim is to compute a set of solutions with the
minimum (resp. maximum) distance. If k is provided as an input, the system uses CLASP-
NK to find n k-similar phylogenies, as shown in Section 4.3. If k is not provided then the
system optimizes k and find n most similar (resp. most diverse) phylogenies. Algo-
rithm 6 shows how PHYLORECONSTRUCTN-ASP computes n most similar phylogenies
with respect to a given input. PHYLORECONSTRUCTN-ASP first transforms the given
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Figure 4.4: PHYLOCOMPARE-ASP computes a set of 3 phylogenies with the minimum
total distance among the given phylogenies shown in Figure 4.3.

input matrix into an ASP representation. This is done by using the PHYLOANALYZE-
ASP3 tool of PHYLO-ASP. Then the system performs a binary search between an upper
bound and a lower bound for k. A natural lower bound for k is 0, since the distance
cannot be negative. Similarly, since we need to minimize k, the maximum pairwise dis-
tance in a set of n phylogenies is used as an upper bound. CLASP is used to compute
such a set of n different phylogenies. In each step of the binary search, the algorithm
checks whether n k-similar phylogenies exist (using CLASP-NK) and sets the bounds of
the search accordingly.

3http://krr.sabanciuniv.edu/projects/Phylo-ASP/PhyloAnalyze-ASP/
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Algorithm 6 PHYLORECONSTRUCTN-ASP
Input: Input matrix M , nonnegative integers c and n.
Output: A set S of n most similar phylogenies.
P ← ASP program that describes a phylogeny for M which has at most c incompatible
characters
S ← Compute a set of n different phylogenies using CLASP with P
k ← Maximum pairwise distance in S
UpperBound := k
LowerBound := 0
while UpperBound− LowerBound > 1 do

k := �(UpperBound+ LowerBound)/2�
S � ← Compute a set of n k-similar phylogenies using CLASP-NK with P
if |S �| = n then // n k-similar phylogenies exists
S := S �

UpperBound ← Maximum pairwise distance in S
else // n k-similar phylogenies does not exist
LowerBound := k

end if

end while

if |S| = n then

return S
else

return “No solution”
end if
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Chapter 5

Finding Similar/Diverse Plans

Given an initial state, goal conditions, and a description of actions, planning is the prob-
lem of finding a sequence of actions (i.e., a plan) that would lead the initial state to a
goal state. Planning is applied in various domains, such as robotics, web service compo-
sition, and genome rearrangement. In planning, it may be desirable to compute a set of
similar or diverse plans in different situations. For instance, consider a variation of the
example given in [99] in connection with modeling web service composition as a plan-
ning problem [79]: suppose that the web service engine computes a plan/composition;
then it can compute a set of compositions similar to this particular one, so that if a failure
occurs while executing one composition, an alternative composition which is less likely
to be failing simultaneously can be used [19]. Alternatively, let us consider planning in
the context of robotics in a dynamic environment with uncertainties. If the plan failure
occurs, for instance, due to some collisions with an obstacle as in the scenarios presented
in [16], the agent may want to find a plan that is distant from the previously computed
plan so that it does not collide with the obstacle again.

Motivated by these examples, we study the problem of finding similar/diverse plans
using answer set programming. In the following, we define the planning problem, a
distance measure for plans and the n k-similar/diverse plans problem. Then, we show that
how our methods for computing n k-similar/diverse solutions are useful for computing
similar/diverse plans.

5.1 Problem Description

A Planning domain is a 5-tuple �S,A, f, s0, G� where S is a finite set of states, A is a
finite set of actions, f : S × A → S is a state transition function, s0 ∈ S is the initial
state, and G ⊆ S is a set of goal states. Planning problem is defined as follows: Given S,
A, f , s0, G and a nonnegative integer l; find a plan (i.e., a sequence of actions) of length
at most l that transforms s0 into a state g ∈ G.
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A planning problem can be described as an ASP program [71, 73, 33] such that each
answer set corresponds to a plan; therefore, we can apply our methods for finding sim-
ilar/diverse solutions to find similar/diverse plans. In particular, we study the following
instance of n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS):

n k-SIMILAR PLANS (RESP. n k-DIVERSE PLANS)
Given an ASP program P that formulates a planning problem P , a distance measure
∆h that maps a set of plans for P to a nonnegative integer, and two nonnegative
integers n and k, find a set S of n plans for P such that ∆h(S) ≤ k (resp. ∆h(S) ≥
k).

In order to compute similar/diverse plans, we need to define a distance function ∆h

for a set of plans. The distance function may be specific to the planning domain we
are interested in. On the other hand, there are domain-independent distance functions to
measure the distance of two plans based on the hamming distance. We define the distance
∆h(S) of a set S of similar plans as follows:

∆h(S) = max{Dh(P1, P2) | P1, P2 ∈ S, |P1| ≤ |P2|}

Similarly, the distance ∆h(S) of a set S of diverse plans is defined as follows:

∆h(S) = min{Dh(P1, P2) | P1, P2 ∈ S, |P1| ≤ |P2|}

based on the action-based hamming distance Dh defined in [99] to measure the distance
between two plans. Intuitively, Dh(P1, P2) is the number of differentiating actions in each
time step of two plans P1 and P2. More precisely: let us denote a plan X of length l by
a function actX that maps every nonnegative integer i (1 ≤ i ≤ l) to the i’th action of
the plan X , and let us denote by |X| the length of a plan X; then the Hamming Distance
Dh(P1, P2) between two plans P1 and P2 such that |P1| ≤ |P2| can be defined as follows:

Dh(P1, P2) = |{i | actP1(i) �= actP2(i), 1 ≤ i ≤ |P1|}|+ |P2|− |P1|

Proposition 5. Given two plans P1 and P2 such that |P1| ≤ |P2|, Dh(P1, P2) can be
computed in O(|P1|) time.

Proof. In order to compute Dh(P1, P2), we need to compare actP1(i) and actP2(i) for each
i (1 ≤ i ≤ |P1|). Therefore, this step takes O(|P1|) time. In addition, the difference |P2|−
|P1| can be calculated in constant time; hence the total time complexity of computing
Dh(P1, P2) is O(|P1|) +O(1) = O(|P1|).

Example 2. Suppose that a planning problem asks for a plan of length less than or equal
to 7. Consider two plans, P1 and P2, that are characterized by the functions actP1 and
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actP2 respectively, as follows:

actP1(1) = a1 actP1(2) = a2

actP1(3) = a3 actP1(4) = a4

actP1(5) = a5 actP1(6) = a6

actP2(1) = a1 actP2(2) = a2

actP2(3) = a7 actP2(4) = a4

actP2(5) = a3 actP2(6) = a5

actP2(7) = a6

The distance Dh(P1, P2) between P1 and P2 is 4 since the actions at time steps 3, 5 and 6
are different and P2 has an additional action (at time step 7).

5.2 Computing Similar/Diverse Plans

We apply our methods for computing n k-similar/diverse solutions (Section 3.2) to com-
pute n k-similar/diverse plans for the blocks world planning problem. In this problem, we
have blocks on a table arranged in several towers. Each block is on top of either another
block or the table. There is a single action called move which takes one block from top of
a tower and puts it on top of another tower or on the table.

We take P as the ASP formulation of the non-concurrent Blocks World1 as in [35]
to compute a plan of length at most l (Figure A.6 in Appendix A), together with an ASP
description of the Blocks World instance given in Figure 5.1. ASP formulations of the
distance functions Dh and ∆h(S) for Blocks World are presented in Figures A.8 and A.9
in Appendix A.

For Online Method 1, we reformulate the main program to obtain a program that
computes n distinct plans as in Section 3.2.2. The reformulation is shown in Figure A.7
in Appendix A.

To be able to apply our Online Method 3 with CLASP-NK to compute n k-similar
plans of length at most l, we define a heuristic function LBh to estimate a lower bound for
the distance between a plan Pc and any plan-completion of a “partial” plan Pp. Intuitively,
a partial plan consists of parts of a plan. Let us characterize a partial plan Pp by a partial
function actPp from {1, ..., l} to the set of actions; that is, actPp is a function from a subset
of {1, ..., l} to the set of actions. A plan-completion of a partial plan Pp is a plan Y of
length l� (l� ≤ l) for the planning problem P such that actY is an extension of actPp to

1Although we only consider non-concurrent Blocks World, it is also possible to perform experiments on
a concurrent version by easily modifying the ASP formulation by removing the restriction for concurrency,
and by defining a similar distance function for concurrent plans.
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{1, ..., l�}. Then we can define LBh(Pp, Pc) for a partial plan Pp and a plan Pc as follows:

LBh(Pp, Pc) = |{i | actPp(i) �= actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}|
+ |{i | i ∈ dom actPp , |Pc| < i ≤ l}|

In Example 2, consider a partial plan Pp characterized by the function actPp as follows:

actPp(2) = a2 actPp(4) = a4

actPp(5) = a3 actPp(7) = a6

The lower bound LBh(Pp, P1) for the distance between any completion of Pp and P1 is
computed as follows:

LBh(Pp, P1) = |{i | actPp(i) �= actP1(i), i ∈ dom actPp , 1 ≤ i ≤ 6}|
+ |{i | i ∈ dom actPp , 6 < i ≤ 7}|

= |{5}|+ |{7}| = 2.

One completion of Pp is P2. Note that LBh(Pp, P1) ≤ Dh(P1, P2). Indeed, the following
proposition expresses that LBh does not overestimate the distance between Pc and any
plan-completion X of Pp.

Proposition 6. For a partial plan Pp and a plan Pc for the planning problem P , LBh(Pp, Pc)

is admissible.

Proof of Proposition 6. Take any plan-completion X of the partial plan Pp. Consider two
cases.

Case 1: |X| ≤ |Pc|. Our goal is to prove that

LBh(Pp, Pc) ≤ Dh(X,Pc).

By the definition of Dh, the distance between X and Pc is:

Dh(X,Pc) = |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}|+ |Pc|− |X|.

Since X is a plan-completion of Pp and |X| ≤ |Pc|, dom actPp ⊆ dom actPc ; then, by the
definition of LBh:

LBh(Pp, Pc) = |{i | actPp(i) �= actPc(i), i ∈ dom actPp}|.

Since X is a plan-completion of Pp,

{i | actPp(i) �= actPc(i), i ∈ dom actPp} ⊆ {i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}.
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Hence,

LBh(Pp, Pc) ≤ |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}|+ |Pc|− |X| = Dh(X,Pc).

Case 2: |X| > |Pc|. Our goal is to prove that

LBh(Pp, Pc) ≤ Dh(Pc, X).

By the definition of Dh, the distance between X and Pc is:

Dh(Pc, X) = |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |Pc|}|+ |X|− |Pc|.

By the definition of LBh:

LBh(Pp, Pc) = |{i | actPp(i) �= actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}|+
|{i | l ≥ i > |Pc|, i ∈ dom actPp}|.

Since X is a plan-completion of Pp, actX extends actPp , and then

{i | actPp(i) �= actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}
⊆ {i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}.

Since |X| > |Pc|,

|X|− |Pc| > |{i | i ∈ dom actPp , |X| ≥ i > |Pc|}| = |{i | i ∈ dom actPp , l ≥ i > |Pc|}|.

Hence,

LBh(Pp, Pc) ≤ |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}|+ |X|− |Pc| = Dh(Pc, X).

Similarly, to be able to apply our Online Method 3 with CLASP-NK to compute n

k-diverse plans of length at most l, we define a heuristic function UBh(Pp, Pc) to estimate
an upper bound for the distance between a plan Pc and any plan-completion of Pp:

UBh(Pp, Pc) = l − |{i | actPp(i) = actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}|.

For instance, for the partial plan Pp and P1 above,

UBh(Pp, P1) = 7− |{i | actPp(i) = actPc(i), i ∈ dom actPp , 1 ≤ i ≤ 6}|
= 7− |{2, 4}| = 7− 2 = 5
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and UBh(Pp, P1) ≥ Dh(P1, P2). Indeed, the following proposition expresses that this
upper bound function does not underestimate the distance between Pc and any plan-
completion X of Pp.

Proposition 7. For a partial plan Pp and a plan Pc for the planning problem P , UBh(Pp, Pc)

is admissible.

Proof of Proposition 7. Take any plan-completion X of partial plan Pp. Consider two
cases.

Case 1: |X| ≤ |Pc|. Our goal is to prove that

UBh(Pp, Pc) ≥ Dh(X,Pc)

where

UBh(Pp, Pc) = l − |{i | actPp(i) = actPc(i), i ∈ dom actPp}|,
Dh(X,Pc) = |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}|+ |Pc|− |X|.

Since |X| ≤ |Pc| and X is a plan-completion of Pp, the set

{i | actPp(i) = actPc(i), i ∈ dom actPp}

does not intersect with the set

Y = {i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|} ∪ {i| |X| < i ≤ |Pc|}.

Then
{1, ..., l} \ {i | actPp(i) = actPc(i), i ∈ dom actPp}

is a superset of Y . Therefore,

UBh(Pp, Pc) = l − |{i | actPp(i) = actPc(i), i ∈ dom actPp}|
≥ |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |X|}|+ |Pc|− |X|
= Dh(X,Pc).

Case 2: |X| > |Pc|. Our goal is to prove that

UBh(Pp, Pc) ≥ Dh(Pc, X)

where

UBh(Pp, Pc) = l − |{i | actPp(i) = actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}|,
Dh(Pc, X) = |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |Pc|}|+ |X|− |Pc|.
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Figure 5.1: Blocks World problem.

Since |X| > |Pc| and X is a plan-completion of Pp, the set

{i | actPp(i) = actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}

does not intersect with the set

Y = {i | actX(i) �= actPc(i), 1 ≤ i ≤ |Pc|} ∪ {i| |Pc| < i ≤ |X|}.

Then
{1, ..., l} \ {i | actPp(i) = actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}

is a superset of Y . Therefore,

UBh(Pp, Pc) = l − |{i | actPp(i) = actPc(i), i ∈ dom actPp , 1 ≤ i ≤ |Pc|}|
≥ |{i | actX(i) �= actPc(i), 1 ≤ i ≤ |Pc|}|+ |X|− |Pc|
= Dh(Pc, X).

5.3 Experimental Results

We performed some experiments (based on the methods in the previous section) to find
2 most similar plans, 2 most diverse plans, 3 most similar plans, 3 most diverse plans,
6 most similar plans for the Blocks World instance in Figure 5.1. We solve these optimiza-
tion problems by iteratively solving the corresponding problems (n k-SIMILAR/DIVERSE

PLANS). In the experiments, we consider the plans of length at most 22. Table 5.1 sum-
marizes the results of these experiments. All CPU times are in seconds, for a workstation
with a 1.5GHz Xeon processor and 4x512MB RAM, running Ubuntu Server (Version
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10.10). For the offline method, online method 1, and online method 2 we used the ASP
solver CLASP (Version 2.0.1), for the online method 3, we used CLASP-NK. We used
GRINGO (Version 3.0.3) as the grounder for both CLASP and CLASP-NK.

It can be observed that the planning problem in Figure 5.1 has too many solutions
(more than 50.000), and it is intractable to compute all of them in advance and then
the distances between all pairwise solutions. Therefore, instead of computing all the
solutions in advance, we compute a subset of them (around 200) which is small enough
to construct a distance graph, and apply our Offline Method in this way (as mentioned in
Section 3.2.1). However, these 200 solutions are not diverse enough, and thus, although
we can find many very similar solutions, it is hard to find diverse solutions; for instance,
we can find 6 1-similar plans but we can find only 3 6-diverse plans.

Online Method 1 performs worst in comparison with the other online methods, as in
our experiments with phylogeny reconstruction problems, due to the large ASP program
(Figure A.7 in Appendix A) used for computing n distinct plans.

Online Method 2 is comparable with Online Method 3 in terms of computing similar
solutions. After computing a solution, computing a 1-close plan has a very small search
space and CLASP can find a similar solution in a short time. On the other hand, computing
a 21-distant solution has a huge search space. Therefore, performance of computing
diverse solutions with Online Method 2 is worse than that of Online Method 3.

Online Method 3 deals with the Hamming distance computation at the search level.
In addition, it does not restart the search process to compute a new plan; instead, it learns
the conflicts caused by distance difference while computing a new plan and backtracks to
approximate levels to compute similar/diverse plans. Especially, for the computation of
diverse plans, such a search strategy creates a significant performance gain.
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Table 5.1: Computing similar/diverse plans for the blocks world problem. OM denotes
“Out of memory.”

Problem Offline Method Online Methods
Reformulation Iterative Comp. Incremental Comp.

2 most similar - 6 min. 45 sec. 6 min. 53 sec. 7 min. 17 sec.
(k = 1) OM 106 MB 73 MB 111 MB

- k = 1 k = 1 k = 1
2 most diverse - 33 min. 28 sec. 11 min. 7 min. 40 sec.

(k = 22) OM 213 MB 73 MB 112 MB
- k = 22 k = 22 k = 21

3 most similar - 7 min. 5 sec. 7 min. 3 sec. 7 min. 21 sec.
(k = 1) OM 141 MB 73 MB 112 MB

- k = 1 k = 1 k = 2
3 most diverse - 78 min 42 sec. 18 min. 49 sec. 12 min. 40 sec.

(k = 22) OM 333 MB 73 MB 167 MB
- k = 22 k = 21 k = 21

6 most similar - 64 min. 42 sec. 7 min. 32 sec. 7 min. 18 sec.
(k = 1) OM 584 MB 73 MB 112 MB

- k = 1 k = 1 k = 2
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Chapter 6

Finding Similar/Diverse Genes

Recent advances in health and life sciences have led to generation of a large amount of
biomedical data. To facilitate access to its desired parts, such a big mass of data has
been represented in structured forms, like biomedical ontologies and databases. On the
other hand, representing these biomedical ontologies and databases in different forms,
constructing them independently from each other, and storing them at different locations
have brought about many challenges for answering queries about the knowledge repre-
sented in these ontologies and databases. Consider, for instance, the following complex
query which requires integrating several knowledge resources:

Q1 What are the genes that are targeted by the drug Epinephrine and that interact with
the gene DLG4?

In order to answer this query, an expert needs to obtain information about drug-gene
relations and gene-gene relations which can be found in two different databases or web
servers. Therefore, the expert should have the knowledge of finding these sources and
retrieve the relevant information to perform the reasoning manually.

In addition, some complex queries have multiple answers which necessitates further
analysis. Consider, for instance, the query “What are the genes that are targeted by the
drug Epinephrine?”, which has more than thirty answers according to the CTD database.
In order to analyze Epinephrine and discover a new drug that targets these genes, it might
be desirable to group the genes with respect to their functionality. Therefore, an expert
might be interested in finding answers to complex queries related to similar/diverse genes
as follows:

Q2 What are the 3 most similar genes that are targeted by the drug Epinephrine?

To answer this query, an expert needs to find the genes that are targeted by the drug
Epinephrine using one knowledge resource, and needs to obtain information about the
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Figure 6.1: System overview of BIOQUERY-ASP.

functional similarity of these genes from another resource. However, because the man-
ual discovery of this knowledge requires significant time and effort, there is a crucial
need to build automated tools that can answer such complex queries. With this moti-
vation, we develop an ASP-based system called BIOQUERY-ASP1 to answer complex
biomedical queries. As a part of BIOQUERY-ASP, we apply our methods for computing
similar/diverse solutions to answer complex queries related to similar/diverse genes. In
the following, we explain BIOQUERY-ASP in detail.

6.1 BIOQUERY-ASP

The system overview of the query answering part of the BIOQUERY-ASP is given in
Figure 6.1. As can be seen from the figure, the system consists of three parts.

Underlying Databases/Ontologies BIOQUERY-ASP uses several knowledge resources
about relations among biomedical concepts. In our experiments, we used large biomedi-
cal knowledge resources about genes, drugs and diseases, such as PHARMGKB2 DRUG-
BANK3, BIOGRID4, CTD5, and SIDER6. The types of the relations retrieved from these
databases are shown in Figure 6.1. The data coming from these sources are converted into
and stored as ASP facts. We defined a “rule layer” over these knowledge resources. This
ASP program contains rules to integrate the knowledge resources, such as:

1http://krr.sabanciuniv.edu/projects/BioQuery-ASP/
2http://www.pharmgkb.org/
3http://www.drugbank.ca/
4http://thebiogrid.org/
5http://ctd.mdibl.org/
6http://sideeffects.embl.de/
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Table 6.1: The retrieved relations among biomedical concepts.

Source Relation

BIOGRID gene-gene
DRUGBANK drug-drug

drug-category
SIDER drug-sideeffect
PHARMGKB drug-disease

drug-gene
disease-gene

CTD drug-disease
drug-gene
disease-gene

drug_gene(D,G) :- drug_gene_pharmgkb(D,G).

drug_gene(D,G) :- drug_gene_ctd(D,G).

which integrates the knowledge extracted from PHARMGKB and CTD, about “which drug
targets which gene.” The rule layer also includes auxiliary definitions, such as chains of
gene-gene relations from a starting gene Y whose length is at most L:

gene_reachable_from(X,1) :- gene_gene(X,Y), start_gene(Y).

gene_reachable_from(X,N+1) :- gene_gene(X,Z),

gene_reachable_from(Z,N), 0<N, N<L, max_chain_length(L).

User Interface BIOQUERY-ASP allows users to construct queries like Q1 and Q2 as
shown in the Figure 6.2. Using the auto-completion feature, users can construct queries in
the grammar of BIOQUERY-ASP. Then, the user interface transforms these queries into
ASP programs. For example, query Q1 is represented in ASP as follows:

what_be_genes(GN) :- drug_gene("Epinephrine",GN),

gene_gene("DLG4",GN).

Query Answering The reasoner of BIOQUERY-ASP takes the ASP program coming
from the rule layer and the ASP program of the query, and finds an answer to the query
using the efficient solvers of ASP. Let Π be the program that corresponds to the rule
layer (including the facts coming from knowledge resources) and Q be the program that
represents the query. Then an answer set of Π ∪ Q corresponds to the answer of the
query. Most of the queries do not require the entire knowledge coming from the rule
layer. Consider, for instance, the query Q1 which requires knowledge about drugs and
genes. Then, in order to answer this query, knowledge about diseases and side-effects are
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Figure 6.2: A screenshot of BIOQUERY-ASP. Users construct queries with the help of
the intelligent user interface.

unnecessary. In that sense, in [38], we introduced an approach for finding the “relevant
part” of the rule layer. Intuitively, R ⊆ Π is a relevant part of the rule layer Π with respect
to Q, if answer sets of Π ∪Q and R ∪Q coincide. Therefore, we can compute an answer
to a query without considering the entire knowledge; instead we just use the relevant
part of the rule layer. This helps BIOQUERY-ASP compute answers of the queries more
efficiently in terms of computation time and memory.

6.2 Computing Similar/Diverse Genes

Functional similarity/diversity of genes is useful to perform further analysis while answer-
ing complex queries about genes. There are various measures to compute the similarity
of two genes ([65, 75, 86, 66, 68]). We consider one of the recent systems GOSEMSIM7

to measure the similarity of genes. GOSEMSIM uses the gene ontology to measure the
semantic and functional similarity of genes as in [108]. It takes two gene IDs as input
and outputs a value between [0, 1] that corresponds to the similarity of the genes. Let

7http://www.bioconductor.org/packages/2.4/bioc/html/GOSemSim.html
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Sg(G1, G2) be the similarity of the genes G1 and G2 due to GOSEMSIM. Then, the
distance Dg(G1, G2) between G1 and G2 is defined as follows:

Dg(G1, G2) = 1− Sg(G1, G2)

We use this distance measure to compute the answers of the queries asking similar/diverse
genes. Analogous to the n k-similar/diverse solutions, we define n k-similar/diverse
genes. Since each solution is characterized by a gene, the ASP programs that represent
similar/diverse queries should describe a single gene. For example, BIOQUERY-ASP
transforms the query Q2 into the following ASP program:

1{similargene(GN):condition1(GN)}1.

condition1(GN) :- drug_gene("Epinephrine", GN).

answer_exists :- similargenes(GN).

:- not answer_exists.

We apply Online Method 3 to compute similar/diverse solutions for such queries. The
distance function Dg is integrated into CLASP-NK. Whenever, we encounter a gene in
the answer set, we compute the distance Dg by calling the GOSEMSIM software. Recall
that in order to use CLASP-NK, we need to implement an admissible heuristic function
to estimate the distance between any completion of a partial solution and the previously
computed solutions. However, in queries about genes, each solution corresponds to a
single gene; therefore, a partial solution can only be an empty set. Hence, we set the
lower bound (resp. upper bound) for a partial solution as 0 (resp. ∞).

6.3 Experimental Results

Recall, in Section 6.1, that BIOQUERY-ASP identifies the relevant part of the rule layer in
order to perform efficient reasoning. In order to show the effectiveness of this approach,
we applied our methods to find answers to the queries Q1 and Q2.

To answer these queries, we considered the biomedical knowledge resources about
genes, drugs and diseases, such as PHARMGKB, DRUGBANK, BIOGRID, CTD and SIDER.
In particular, we extracted 347965 triples (as ASP facts) from BIOGRID, 17266 triples
from DRUGBANK, 61102 triples from SIDER, 1809 triples from PHARMGKB, 1877799
triples from CTD.

Table 6.2 shows the computation times and the program sizes, with the complete rule
layer and with the relevant part of the rule layer. All computation times are for a work-
station with two 1.60GHz Intel Xeon E5310 Quad-Core Processor and 16 GB RAM,
running Centos 64bit (Version 5.3). We used the ASP solver CLASP (Version 2.0.1) and
CLASP-NK along with the grounder GRINGO (Version 3.0.3).
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Table 6.2: Experimental results for answering queries Q1 and Q2.
Query with the complete program with the relevant part
Q1 36.1 sec. 7.3 sec.

Rules: 3662195 Rules:797129
Q2 104 sec. 65 sec.

Rules: 3662159 Rules: 309488

For the query Q1, CLASP takes 36.1 seconds to find an answer with the complete
program containing 3662195 rules, whereas it takes 7.3 seconds to find an answer with
the relevant part of the program containing 797129 rules. For the query Q2, CLASP-NK

takes 104 seconds with the complete program containing 3662159 rules, whereas it takes
65 seconds to find an answer with the relevant part of the program containing 309488
rules. As can be seen from the results for both queries, it is advantageous to apply our
method of query answering with respect to the relevant part of the program. In [38],
we show the results of a more comprehensive list of queries which also indicates the
effectiveness of identifying relevant part of a program for a given query.
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Chapter 7

Related Work

Finding similar/diverse solutions has been studied in other areas such as propositional
logic [2], constraint programming [58, 57], and planning [99].

Related Work in Propositional Logic In [2], the authors propose two algorithms,
DPdistance and DPdistance+lasso, to solve DISTANCE-SAT—determining that a propositional
CNF formula has a model that disagrees with a given partial interpretation on at most d
variables. Our modification of CLASP’s algorithm is similar to the first algorithm in that
both algorithms check whether a partial interpretation computed in the DPLL-like search
obeys the given distance constraints. On the other hand, unlike DPdistance, CLASP also
uses conflict-driven learning: when it learns a conflicting set of literals, it will never try
to select them in the later stages of the search. DPdistance+lasso offers manipulations while
selecting a new variable: it creates a set of candidate variables with respect to the dis-
tance function, computes weights of these variables relative to the distance function, and
selects one with the maximum weight. On the other hand, in SELECT, CLASP creates a
set of candidate variables, and selects one of the candidates to continue the search. Using
the idea of DPdistance+lasso, we can modify CLASP further to manipulate the selection of
variables with respect to the distance function.

Related Work in Constraint Programming In [58, 57], the authors study various com-
putational problems related to finding similar/diverse solutions, considering Hamming
distance as in [2]. They present an offline method (similar to our method) that applies
clustering methods, and two online methods: one based on reformulation (similar to On-
line Method 1), the other based on a greedy algorithm (similar to Online Method 2) that
iteratively computes a solution that maximizes similarity to previous solutions. The com-
putation of a k-close solution is due to a Branch & Bound algorithm (similar to the idea
behind Online Method 3) that propagates some similarity/diversity constraints specific to
the given distance function. Our offline/online methods are inspired by these methods of
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[58, 57].

Related Work in Planning In [99], the authors study domain independent approaches
to compute diverse plans. They use Hamming distance to measure the distance among
plans. They present a method (similar to our Online Method 1), where they add global
constraints to the underlying constraint satisfaction solver of the GP-CSP planner [26]. As
another method they present a greedy approach (similar to our Online Method 2), where
they add global constraints which force the solver to compute k-diverse solutions in each
iteration until it computes n solutions. They also present a method (similar to our Online
Method 3) which modifies an existing planner’s [53] heuristic function and computes n

k-similar solutions in the search level.

Discussion Our work can be considered as complementary with this line of research,
since we have studied finding similar/diverse solutions in the context of ASP. On the
other hand, our methods have three main advantages compared to other approaches:

• they are not restricted to some domain-independent distance function, like (partial)
Hamming distance considered in all the methods/tools mentioned above;

• depending on the particular ASP-based method, we can represent domain-independent
or domain-specific distance functions in ASP or implement them in C++;

• we can use the definitions of distance functions modularly, without modifying the
main problem description or without modifying the search algorithm or the imple-
mentation of the solver.

Thus, our ASP-based methods/tools for computing similar/diverse or close/distant solu-
tions are applicable to various problems with different (often domain-specific) distance
measures.

It might be possible to extend the SAT, CP, and planning based methods mentioned
above to consider domain-specific distance measures. But even in such a case, our ASP-
based methods/tools may be preferred when it is easier to represent the main problem
in ASP, due to advantages inherited from the expressive representation language of ASP,
which allows sophisticated definitions. For instance, reachability in a graph can be de-
fined in ASP with a few rules, whereas with other approaches we need numerous rules
to enumerate all possible paths. Some sample applications that exploit such features and
point out the advantages of ASP over other approaches include phylogenetic network
reconstruction [39] and wire routing [21, 41].
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Chapter 8

Conclusion

In this thesis, we have studied computing similar/diverse solutions in the context of ASP.
Our contributions are as follows:

• We have defined mainly two kinds of computational problems related to simi-
lar/diverse solutions: n k-similar (resp. k-diverse) solutions, and k-close (resp.
k-distant) solution.

• We have introduced an Offline Method and three Online Methods to solve these
problems.

• We have showed the applicability and effectiveness of these general methods on
specific application domains such as phylogeny reconstruction, planning, and biomed-
ical query answering. We have compared offline/online methods from the point of
view of computational time and memory. The results of this work are summarized
in [30, 31]. In this thesis, we have performed the experiments in [31] with newer
versions of GRINGO (Version 3.0.3) and CLASP (Version 2.0.1), and we have im-
proved the ASP programs in [31] with the help of the recent advances in the input
language of these systems. In addition, we have developed and used a newer ver-
sion of CLASP-NK that extends CLASP Version 2.0.1. In these new experiments,
we have observed the followings.

– Offline Method is useful when the solution space is small and it is easy to
compute a single solution (e.g., phylogeny experiments).

– Online Method 1 is preferable when we want to guarantee to find n k-similar
(resp. k-diverse) solutions in a large solution space (so that Offline Method is
not applicable).

– Online Method 2 and Online Method 3 are efficient when computing approx-
imate solutions in a large solution space (e.g., planning experiments).
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– Online Method 3 is useful when the distance function cannot be represented as
an ASP program (e.g., computing similar (resp. diverse) genes using GOSEM-
SIM software).

• We have developed novel tools PHYLOCOMPARE-ASP and PHYLORECONSTRUCTN-
ASP for comparing a given set of phylogenies, and reconstructing similar (resp.
diverse) phylogenies directly. There was no such phylogenetic system that help
experts analyze phylogenies by comparing or grouping them.

• No planner could compute similar (resp. diverse) plans with respect to a domain-
specific measure; our methods have fulfilled this need in planning.

• We have developed BIOQUERY-ASP that can answer queries about the relations of
biomedical concepts (e.g., drugs, diseases, genes, etc.). There was no biomedical
query answering system that can integrate several knowledge resources to answer
complex queries related to similar (resp. diverse) genes. In that sense, BIOQUERY-
ASP is useful for drug discovery research which requires answering such complex
queries. The results of this work are summarized in [38].

Future Work One line of future research can be improving the efficiency of the meth-
ods to find similar/diverse solutions. In particular:

• After computing all solutions with Offline Method, different clustering methods,
such as nearest neighborhood search [93], can be applied to compute a set of simi-
lar/diverse solutions or a close/distant solution. Especially, when the distance mea-
sure has the metric property, we can model the problem as a proximity problem,
where each solution corresponds to a point. Then we can apply the techniques
mentioned in [95] to find collections of close/distant points.

• It might be possible to obtain a complete method using Online Method 2 or Online
Method 3. Since the incompleteness of these methods is due to the initial solutions,
by restarts one can guarantee to find n k-similar/diverse solutions.

• In addition, we may improve the performance of CLASP-NK by allowing it to prop-
agate new literals with respect to the distance function which may lead to a more
efficient solver.

Another line of future work could be to apply our methods for computing simi-
lar/diverse solutions to other appealing application domains. For instance, we may com-
pute similar/diverse puzzles with the puzzle generation methods of [104], or configure
similar/diverse products with respect to the user preferences using the approaches in [96].
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It may also be useful to extend BIOQUERY-ASP to allow more specific and useful
queries about biomedical concepts. For instance, we can define distance measures for
drugs and answer complex queries related to similar/diverse drugs, which could help per-
form better decision making in drug discovery research.

Computing similar/diverse solutions could be useful to the fields outside the ASP.
For instance, computing similar/diverse solutions may be helpful for better clustering;
therefore, such an approach could be useful for learning techniques. We may also consider
investigating the studies in local search since it is one of most widely used approaches
in combinatorial optimization. It might be interesting to study finding similar/diverse
approximate solutions with local search techniques and compare them with our ASP-
based methods.
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Appendix A

ASP Formulations

% generate n rooted trees

solution(1..x).

vertex(0..2*k).

root(2*k).

internal(X) :- vertex(X), not leaf(X).

2 {edge(S,X,Y) : vertex(Y) : X > Y} 2 :- internal(X), solution(S).

reachable(S,X,Y) :- edge(S,X,Y), X > Y.

reachable(S,X,Y) :- edge(S,X,Z), reachable(S,Z,Y), X > Z.

:- vertex(Y), not reachable(S,X,Y), root(X), Y != X, solution(S).

:- reachable(S,X,X).

maxY(S,X,Y) :- edge(S,X,Y), edge(S,X,Y1), Y > Y1.

:- maxY(S,X,Y), maxY(S,X1,Y1), Y > Y1, X < X1.

Figure A.1: A reformulation of the phylogeny reconstruction program of Brooks et. al.,
to find n distinct phylogenies: Part 1
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% ensure that no tree has more than n incompatible characters

g0(N,X,I,S) :- f(X,I,S), informative_character(I),

essential_state(I,S), solution(N). g0(N,Y,I,S) :- g0(N,X,I,S),

g0(N,X1,I,S), edge(N,Y,X), edge(N,Y,X1), X>X1.

marked(N,X,I) :- g0(N,X,I,S).

g(N,X,I,S) :- g0(N,X,I,S).

{g(N,X,I,S): essential_state(I,S)} 1 :- internal(X),

not marked(N,X,I), informative_character(I), solution(N).

{root_is(N,X,I,S)} :- g(N,X,I,S).

:- root_is(N,X,I,S), root_is(N,Y,I,S), X < Y.

% we need to consider every antecedent of x below

:- root_is(N,X,I,S), g(N,Y,I,S), reachable(N,Y,X), Y > X.

reachable_is(N,X,I,S) :- root_is(N,X,I,S).

reachable_is(N,X,I,S) :- g(N,X,I,S), reachable_is(N,Z,I,S),

edge(N,Z,X), Z > X.

incompatible(N,I) :- g(N,X,I,S), not reachable_is(N,X,I,S).

:- n+1 {incompatible(N,I) : informative_character(I)}, solution(N).

% make sure that these n trees are distinct

different(S1,S2) :- edge(S1,X1,Y), edge(S2,X2,Y),

S1 != S2, X1 != X2.

:- not different(S1,S2), solution(S1;S2), S1 != S2.

Figure A.2: A reformulation of the phylogeny reconstruction program of Brooks et. al.,
to find n distinct phylogenies: Part 2
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maxdist(0..m).

vertexvertexdistancedomain(1..k+1).

% length of a path between vertices X and Y

tempnodaldistance(S,X,Y,T1+T2) :- distance_v(S,CA,X,T1),

distance_v(S,CA,Y,T2), X < Y, leaf(X;Y).

notminnodal(S,X,Y,D1) :- tempnodaldistance(S,X,Y,D1),

tempnodaldistance(S,X,Y,D2), D2 < D1.

% compute the nodal distances using distance_v.

% nodaldistance(S,X,Y,T): the nodal distance between X and Y

% in the S’th tree is T.

nodaldistance(S,X,Y,D) :- tempnodaldistance(S,X,Y,D),

not notminnodal(S,X,Y,D).

% distance_v(S,X,Y,T): the distance between the vertex X and

% its descendant Y is T in the S’th tree.

distance_v(S,X,Y,1) :- edge(S,X,Y).

distance_v(S,X,Z,D+1) :- distance_v(S,X,Y,D), edge(S,Y,Z),

vertexvertexdistancedomain(D).

% compute the differences of nodal distances of each pairs of

% leaves in each pairs of trees.

diffnodal(S1,S2,X,Y,#abs(D1-D2)) :- nodaldistance(S1,X,Y,D1),

nodaldistance(S2,X,Y,D2), S2 > S1.

% compute the distance between each pairs of trees.

distance_t(S1,S2,K) :- solution(S1;S2), maxdist(K), S1 < S2,

K#sum[diffnodal(S1,S2,X,Y,D) : leaf(X;Y) = D]K.

Figure A.3: A formulation of the nodal distance function Dn in ASP.
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% Consider the vertices whose depth is 1,2,3

depthRange(0..r).

dist(0..m).

w(0,0).w(1,4).w(2,3).w(3,2).w(4,1).

% at each solution N, define reachability of leaf Y from X

reachableN(N,X,Y) :- edge(N,X,Y), vertex(X), leaf(Y), X > Y,

solution(N).

reachableN(N,X,Y) :- edge(N,X,Z), reachableN(N,Z,Y), X > Z.

% at each solution S, assign depths to vertices Y

depth(S,2*k,0) :- solution(S).

depth(S,Y,T+1) :- depth(S,X,T), edge(S,X,Y), T<r.

diff(N1,V1,N2,V2) :- solution(N2), vertex(V2), N1 < N2,

reachableN(N1,V1,X), not reachableN(N2,V2,X).

diff(N1,V1,N2,V2) :- solution(N1), vertex(V1), N1 < N2,

not reachableN(N1,V1,X), reachableN(N2,V2,X).

fN(N1,V1,N2,V2,1) :- diff(N1,V1,N2,V2), N1 < N2.

fN(N1,V1,N2,V2,0) :- not diff(N1,V1,N2,V2), solution(N1;N2),

vertex(V1;V2), N1 < N2.

depthFN(D,N1,N2,V1,V2,VAL) :- fN(N1,V1,N2,V2,VAL),

depth(N1,V1,D), depth(N2,V2,D).

gN(0,N1,N2,0) :- solution(N1;N2), N1 < N2.

gN(D,N1,N2,D3) :- gN(D-1,N1,N2,D2),

D1#sum[depthFN(D,N1,N2,V1,V2,VAL) : vertex(V1;V2) = VAL]D1,

w(D,W), minmaxdepth(N1,N2,Y), D < Y+1, D3 = D2 + W*D1,

dist(D1;D3), D > 0.

maxdepth(N1,N2,X) :- depth(N1,Y1,X), depth(N2,Y2,X), N1 < N2.

minmaxdepth(N1,N2,X) :- maxdepth(N1,N2,X),

not maxdepth(N1,N2,X+1), N1 < N2.

% distance_t finds the distance between 2 phylogenies

distance_t(N1,N2,X) :- gN(D,N1,N2,X), N1 < N2, minmaxdepth(N1,N2,D).

Figure A.4: An ASP formulation of the descendant distance function Dl for two phylo-
genies.

65



% distance of a set of phylogenies

notmaxdistance_t(P1,P2,T1) :- distance_t(P1,P2,T1),

distance_t(P3,P4,T2), T1 < T2.

delta(T) :- distance_t(P1,P2,T), not notmaxdistance_t(P1,P2,T).

% constraints on the distance function, for similarity

:- delta(T), T > k.

Figure A.5: An ASP formulation of the distance function ∆D for a set of phylogenies,
and the constraints for k-similarity.

goal :- time(T), goal(T).

:- not goal.

% effect of moving a block

on(B,L,T1) :- moveop(B,L,T), next(T,T1).

% a block can be moved only when it’s clear

:- moveop(B,L,T), on(B1,B,T).

% any two blocks cannot be on the same block at the same time

:- 2{on(B1,B,T):block(B1)}, time(T), block(B).

% wherever a block is, it’s not anywhere else

non(B,L1,T) :- location(L1),on(B,L,T), L != L1.

% every block is supported by the table

supported(B,T) :- on(B,table,T).

supported(B,T) :- on(B,B1,T),supported(B1,T), B != B1.

:- block(B), time(T), not supported(B,T).

% no concurrency

:- 2{moveop(B,L,T):block(B):location(L)},time(T).

% inertia

on(B,L,T1) :- on(B,L,T), not non(B,L,T1), next(T,T1).

% initial values and actions are exogenous

1{non(B,L,0),on(B,L,0)}1 :- block(B), location(L).

{moveop(B,L,T)} :- block(B), location(L), time(T), T < lasttime.

:- non(B,L,T), on(B,L,T).

% auxiliary predicates

time(0..lasttime).

next(T,T+1) :- time(T), T < lasttime.

location(L) :- block(L).

location(table).

Figure A.6: Blocks World Formulation.
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solution(1..x).

goal(S) :- goal(S,T).

:- not goal(S), solution(S).

% effect of moving a block

on(S,B,L,T1) :- moveop(S,B,L,T), next(T,T1).

% a block can be moved only when it’s clear

:- moveop(S,B,L,T), on(S,B1,B,T).

% any two blocks cannot be on the same block at the same time

:- 2{on(S,B1,B,T):block(B1)}, time(T), block(B), solution(S).

% wherever a block is, it’s not anywhere else

non(S,B,L1,T) :- on(S,B,L,T), location(L1), L != L1.

% every block is supported by the table

supported(S,B,T) :- on(S,B,table,T).

supported(S,B,T) :- on(S,B,B1,T), supported(S,B1,T), B != B1.

:- block(B), time(T), not supported(S,B,T), solution(S).

% no concurrency

:- 2{moveop(S,B,L,T):block(B):location(L)},time(T), solution(S).

% inertia

on(S,B,L,T1) :- on(S,B,L,T), not non(S,B,L,T1), next(T,T1).

% initial values and actions are exogenous

1{non(S,B,L,0),on(S,B,L,0)}1 :- block(B), location(L), solution(S).

{moveop(S,B,L,T)} :- block(B), location(L), time(T), T <

lasttime, solution(S).

:- non(S,B,L,T), on(S,B,L,T).

% auxiliary predicates

time(0..lasttime).

next(T,T+1) :- time(T), T < lasttime.

location(L) :- block(L).

location(table).

% find distinct solutions

different(S1,S2) :- moveop(S1,X,Y,T), not moveop(S2,X,Y,T),

solution(S2), S1 < S2.

different(S1,S2) :- not moveop(S1,X,Y,T), moveop(S2,X,Y,T),

solution(S1), S1 < S2.

:- not different(S1,S2), solution(S1;S2), S1 < S2.

Figure A.7: A reformulation of the Blocks World program shown in Fig. A.6, to compute
n distinct plans.
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% for every time step T, check that the T’th actions

% of Plans P1 and P2 are different:

maxDist(0..lasttime).

different(S1,S2,T) :- moveop(S1,X,Y,T), not moveop(S2,X,Y,T),

S1 < S2, solution(S2).

different(S1,S2,T) :- not moveop(S1,X,Y,T), moveop(S2,X,Y,T),

S1 < S2, solution(S1).

% and define the hamming distance between two plans P1 and P2

% in terms of these differences:

hammingdistance(S1,S2,H) :- H{different(S1,S2,T): time(T)}H,

maxDist(H), solution(S1;S2), S1 < S2.

Figure A.8: An ASP formulation of the Hamming distance Dh for two plans.

somedistance(H) :- hammingdistance(P1,P2,H).

notmaxdistance(H1) :- somedistance(H1), somedistance(H2), H2 > H1.

totaldistance(H) :- not notmaxdistance(H), somedistance(H).

:- totaldistance(H), H > k.

Figure A.9: An ASP formulation of the distance ∆h for a set of plans and the constraint
for k-similarity.
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[105] F. Türe and E. Erdem. Efficient haplotype inference with answer set programming.
In Proc. of AAAI, pages 1834–1835, 2008.

[106] M. D. Vos, T. Crick, J. Padget, M. Brain, O. Cliffe, and J. Needham. A multi-
agent platform using ordered choice logic programming. In In Declarative Agent
Languages and Technologies (DALT’05), pages 72–88, 2005.

[107] M. D. Vos and D. Vermeir. Extending answer sets for logic programming agents.
Ann. Math. Artif. Intell., 42(1-3):103–139, 2004.

[108] J. Z. Wang, Z. Du, R. Payattakool, S. P. Yu, and C. F. Chen. A new method to
measure the semantic similarity of go terms. Bioinformatics, 23:1274–1281, 2007.

[109] J.P White and J.F. O’Connell. A Prehistory of Australia, New Guinea, and Sahul.
Academic, San Diego, CA, 1982.

76


