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1 Introduction

After-sales services include inspection, repair, and provisioning of service parts, and represent

a lucrative part of the overall operations in such industries as aerospace, automotive, and high-

technology. For example, service parts management is an integral part of original equipment

manufacturers’ after-sales operations that may account for 40-50% of total profits [1, 2]. After-

sales service is particularly critical for the success of high-technology equipment manufacturers

whose clients rely on the availability of equipment for their daily operations and therefore,

expect high quality and fast service. On the one hand, advances in information technology

led to increased practice of after-sales contracts by allowing clients to monitor the terms of

the contracts and design performance-based incentive schemes [3]. On the other hand, global

competition reduced profit margins and forced firms to differentiate themselves by the after-sales

services they offer.

To provide high quality service, a responsive service-parts logistics (SPL) system is needed.

In such a system each customer has a service center (or, warehouse hereafter) within its close

proximity to provide the necessary parts when needed. Responsiveness, however, comes at a

significant cost as a typical SPL system may consist of tens or hundreds of warehouses and

hundreds of stock-keeping units. Therefore, it is important that firms design their SPL systems

rationally to control costs while providing the desired level of responsiveness.

There are two important sets of decisions that determine the responsiveness of a SPL sys-

tem. The first set of decisions concerns location and allocation and determine the proximity of

warehouses to customers. These decisions are strategic in nature and are part of logistics net-

work design (LND). The second set of decisions concerns inventory and are operational/tactical

in nature. They determine the responsiveness of the system in terms of stock availability. Tra-

ditionally, the two sets of decisions are made at different levels of management and are generally

analyzed separately. However, integrating LND decisions with inventory decisions leads to bet-

ter network design and potentially better inventory policies, enabling firms to offer similar or

improved responsiveness at lower cost.

In this paper, we study a series of integrated models for designing SPL systems that model
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LND decisions and inventory control policies at the warehouses to minimize the total cost of

warehouse opening, transportation and inventory holding. The models belong to the general

class of integrated location-inventory models. Both LND and inventory decisions, in isola-

tion, are studied extensively in the Operations Management literature. There is also growing

literature on integrated location-inventory models. However, our models have a number of

differentiating features. Primarily, we consider only service parts that are expensive, reliable,

and experience low and random demand, for which base-stock (s − 1, s) policies are known to

be optimal. Most of the past location-inventory literature consider generic items and usually

use the economic-order-quantity reorder-point (EOQ-ROP) approach as an approximation to

(s, S) policy. Most importantly, we consider time-based service level requirements whereby the

manufacturer guarantees delivery of service parts within a specified time window at a specified

percent of the time. To the best of our knowledge, the first attempt to model and solve a

problem of this class is given by [4]. Their model is equivalent to one of the models we study

here and will be elaborated on later.

We consider a two-echelon SPL system with one distribution center, a number of potential

warehouse locations, and a set of customers dispersed across a geographical market. The

LND part is modeled as a multi-product fixed-charge facility location problem, and involves

warehouse opening and customer allocation decisions. Figure 1 shows an SPL system with three

open warehouses and ten customers. The inventory decisions depend on the underlying SPL

system, and concern setting inventory levels to satisfy customer demand as prescribed in the

service agreements.

Stocking decisions depend on how the service level measures are defined and incorporated

into inventory management. In practice, after-sales service contracts may be quite complex and

may involve basket products, composite or indirect measures, incentive or penalty schemes, etc.

Here we consider two time-based service level measures. The part-specific service level measure

is an aggregate measure where the manufacturer makes a system-wide target service level for

each part, which has to be achieved by the warehouses collectively. A typical requirement

may read: “A part’s overall demand is satisfied 90% of the time within a 4 hour time window
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Figure 1: A two-echelon service-parts logistics system.

across all customers and warehouses.” In the part-warehouse service level, the manufacturer

exogenously sets target service levels for each warehouse and part, then determines the inventory

stocking decisions at the warehouses. A typical service level requirement in this case may read:

“At least 90% of a part’s demand assigned to a warehouse must be satisfied within 4 hours.”

The part service level is a more aggregate measure, whereas the part-warehouse service level

gives an upper bound when the same target level is set across all warehouses.

Location and allocation decisions that take inventory decisions into account are known to

be different from those that do not [5]. Nevertheless, inventory considerations even under de-

terministic assumptions present nonlinearities that may be quite challenging [6, 7]. A number

of integrated models are studied by [8, 9, 10] and [11, 12] who introduce joint location-inventory

models and exploit various heuristics or approximations to solve the resulting nonlinear opti-

mization problems. Nonlinear location models with risk pooling are studied in [13, 14] and [15].

An extension that considers customer service levels is presented in [16]. All of these works are

different from ours, as they consider generic products which have relatively high demand. We,

on the other hand, deal with service parts that generally have very low demand. This difference
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naturally leads to different inventory control policies and substantially different models.

Integrated models that consider LND and inventory decisions for service parts have been

the subject of research only recently. To the best of our knowledge, [4] was the first to

propose a mixed-integer nonlinear formulation to model time-based service level requirements

with multiple parts and backorders. The authors present a linear approximation based on the

discretization of the fill rate functions at the warehouses. The approximation however does

not guarantee feasibility with respect to service level requirements and may find solutions that

violate target service level. In a post-processing step, they solve a pure inventory problem to

boost stock levels. The work in [17] studies a single-part case with lost sales and proposes a

mixed-integer nonlinear formulation. The authors develop an outer approximation to find a

heuristic solution and a lower and an upper bound. The lower bound is found by ignoring the

customers outside the time-window, whereas the upper bound is found by solving a series of

approximate models with relaxed service requirements. The authors in [18] describe a network

design and inventory control project undertaken at Applied Materials, the largest semiconductor

equipment producer in the world. They consider both service parts and generic products and

propose a piece-wise linear underestimation for the inventory costs that is updated progressively.

This is then solved in a proprietary solution platform with two underestimation pieces to obtain

an approximate solution. Since they do not provide any detailed results, we could not make a

comparison with their model. The work in [19] studies the expected behavior of an SPL system

and presents a mixed-integer programming model to minimize the expected cost of inventory

and backorder subject to an upper bound limit on the expected wait time.

In this work, we propose two mixed-integer nonlinear formulations for integrated location

and inventory decisions under part-warehouse and part service level requirements. The model

under part service level is similar to that studied in [4], while both models are substantially

different from that in [17]. There are three differentiating features. We consider multiple

parts and backorders, and require that all customers are served from a warehouse within the

time-window. The authors in [17] consider single part and lost sales, and allow customers to be

served from a warehouse outside the time-window. Since the fill rate functions under backorders
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and lost sales are substantially different [20], the corresponding models and approximations are

not directly comparable. Furthermore, it is straightforward to treat the single-part case using

a multiple-part model but extending a single-part model to multiple parts presents serious

challenge.

The integrated models are extremely difficult to solve given the large number of nonlin-

earities introduced by service level constraints. We develop a novel approach to approximate

these nonlinearities to lead to linear reformulations that are effectively solved by a commercial

optimizer in a modest computing environment. We replace the fill-rate function by its inverse

in the part-warehouse specific case, and discretize a special function of the fill rate in the part

specific case. A significant contribution is that in the case of part-warehouse service levels, the

linear formulation is equivalent to the nonlinear model. Moreover, the part-warehouse specific

case provides an upper bound on the more difficult part-specific case when the same target ser-

vice level is used across all warehouses. The results suggest that our approach is more effective

than those reported in the literature both in terms of solution quality and computational time.

The proposed formulations are shown to be effective in solving larger instances.

The rest of the paper is organized as follows. In Section 2, we present models for part-

warehouse, and part specific cases and develop their linear counterparts. In Section 3, we

report on computational experiments. Finally, in Section 4 we provide concluding remarks and

potential future research directions.

2 Linear location-inventory models

In this section, we present models and analysis for the part-warehouse and part service levels.

We first specify the assumptions common to both models and to related literature.

• The distribution center (DC) has an unlimited capacity.

• Warehouses use a continuous review and (s−1, s) replenishment policy with backordering.

• Customer demands arrive one at a time according to an independent Poisson distribution.

• Parts are shipped directly to corresponding customers without consolidation or bundling.
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• Customers are served on a first-come first-serve basis regardless of their location.

• Lateral transshipments are not allowed among warehouses.

Let Im = {1, 2, . . . ,m}, In = {1, 2, . . . , n}, and Ip = {1, 2, . . . , p} denote the index sets for

potential warehouse locations, customers, and parts, respectively. Designing and operating an

SPL system involves incurring an annual fixed cost fi for each open warehouse i, a unit holding

cost hik for part k at warehouse i, and a unit transportation cost cijk for part k from warehouse

i to customer j. The service time, which includes the transportation time, from warehouse i

to customer j for part k is denoted by τijk. The lead time for part k from the distribution

center to warehouse i is tik. The demand of customer j for part k is a random variable d̃jk with

Poisson distribution and mean annual demand djk.

The models use three main sets of decision variables. Variable xijk ∈ [0, 1] represents

the long-run fraction of customer j’s demand for part k fulfilled from warehouse i. Binary

variable yi takes value 1 if warehouse i is open, and 0 otherwise. Integer variable sik ∈ ISmax =

{1, 2, . . . , Smax} represents the base stock level of part k at warehouse i, where Smax is the

stocking capacity set a priori on the stock level of a part at a warehouse. The notation is

summarized in Table 1.

Table 1: Summary of notation.

fi Annual fixed location cost for warehouse i.

cijk Unit transportation cost from warehouse i to customer j for part k.

hik Unit holding cost for part k at warehouse i.

τijk Transportation time from warehouse i to customer j for part k.

tik Lead time from DC to warehouse i for part k.

d̃jk Random customer j demand for part k with mean annual demand djk.

Smax Upper bound on stock level.

yi Binary location variable.

xijk Long-run fraction of customer j demand for part k served from warehouse i.

sik Stock level of part k at warehouse i.

wk Time window for part k.
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We require that there exists at least one warehouse within the time window wk of each

customer for each part, i.e.,

τijk ≤ wk, ∀j ∈ In ∀k ∈ Ip ∃i ∈ Im. (1)

Note that without condition (1), the problem may be infeasible since not every customer can

be serviced by a warehouse within the time window. On the practical side, it is not possible to

promise a customer delivery within a specified time window when there is no open warehouse

within that window. To overcome this, we require that customers are allocated to warehouses

within the time window. Therefore, in all cases we have

∑
i∈Im : τijk≤wk

xijk = 1, ∀j ∈ In, ∀k ∈ Ip. (2)

This is different from the assumption made by [4] and [17] where customer demand may be

satisfied from a warehouse outside the time window. Since the demand of customer j for part

k is a random variable with Poisson distribution, it follows that demand for part k experienced

at warehouse i during lead time is a Poisson random variable λ̃ik with mean

λik = tik
∑

j∈In : τijk≤wk

djkxijk. (3)

Given the mean demand λik and the stock level sik for part k at warehouse i, the achieved

service level for part k at each warehouse is defined as β(λik, Sik) = Pr(λ̃ik ≤ Sik − 1). This is

known as the Type II service level or fill rate in the case of backorders [20]. Finally the target

service levels are denoted by αik and αk for part-warehouse specific, and part specific service

levels, respectively.

2.1 Part-warehouse specific service levels

In the part-warehouse case, warehouse i is required to deliver the assigned demand of part k

100αik% of time within the time window wk. This is achieved when “the probability that stock
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availability during lead time is strictly larger than demand” is at least αik. In other words, the

stock level Sik of part k at an open warehouse i satisfies

Sik ≤ Smaxyi, ∀i ∈ Im, ∀k ∈ Ip. (4)

Pr(λ̃ik ≤ Sik − yi) ≥ αik, ∀i ∈ Im, ∀k ∈ Ip. (5)

We now present a nonlinear model for the location-inventory problem with part-warehouse

specific service levels, denoted by SM.

SM : min
∑
i∈Im

fiyi +
∑

(i,j,k)∈Im×In×Ip

cijkdjkxijk +
∑

(i,k)∈Im×Ip

hikSik (6)

s. t.
∑

i∈Im : τijk≤wk

xijk = 1, ∀j ∈ In, ∀k ∈ Ip (7)

0 ≤ xijk ≤ yi, ∀i ∈ Im, ∀j ∈ In, ∀k ∈ Ip (8)

Sik ≤ Smaxyi, ∀i ∈ Im, ∀k ∈ Ip (9)

β(λik, Sik) = Pr(λ̃ik ≤ Sik − yi) ≥ αik, ∀i ∈ Im, ∀k ∈ Ip (10)

yi ∈ {0, 1} , ∀i ∈ Im (11)

Sik ∈ {0, 1, 2, . . . , Smax} , ∀i ∈ Im ∀k ∈ Ip. (12)

The objective function (6) minimizes the total cost of opening warehouses, transportation,

and inventory holding. Constraints (7) ensure that customer demand for part k is assigned

to warehouses that are within the time window. Constraints (8) restrict customer allocation

to open warehouses. Constraints (9) allow positive stock levels for open warehouses only.

Constraints (10) are service level constraints and state that the stock level should be high

enough so that the probability of the part available is larger than the target service level αik.

Constraints (10) are highly nonlinear and present the main source of complication in SM.

By exploiting properties of the fill-rate function β(λik, Sik), we are able to reformulate SM as

a linear mixed integer program. For ease of presentation, we drop the indices i and k in the
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rest of this section. Under Poisson demand, the function β(λ, S) in (10) is given by

β(λ, S) = e−λ
S−1∑
r=0

λr

r!
, λ ∈ [0,∞), S ∈ {1, 2, . . .} . (13)

and has the following properties. First, for all positive integer S the fill-rate equals 1 when the

demand rate is 0, β(0, S) = 1. Second, when the demand rate tends to ∞, the fill-rate tends

to 0, lim
λ→∞

β(λ, S) = 0. Finally, function β is strictly monotonically decreasing with respect to

λ ∈ (0,∞) since

dβ(λ, S)

dλ
= −e−λ λS−1

(S − 1)!
< 0. (14)

In other words for a given stock S, fill rate decreases when demand rate increases. It follows

that for any α ∈ (0, 1), the equation β(λ, S) = α has a unique solution denoted by λ(S, α).

That is to say for a given stock S the service level α is achieved exactly for only one demand

rate λ(S, α). Therefore, β(λ, S) meets or exceeds the service level α for demand rate λ(S, α) or

lower, i.e., β(λ, S) ≥ α if and only if λ ≤ λS(α). These results are illustrated in Figure 2 for

α = 0.5, 0.9 and S = 1, 2, . . . , 6.
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Figure 2: Graphs of β(λ, S) with respect to λ for S = 1, 2, . . . , 6. The λ values corresponding
to dashed-dotted vertical lines are λS(α), the unique solutions of β(λ, S) = α for α = 0.5, 0.9.

Based on the properties of the function β, we replace nonlinear constraints (9) and (10) by
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the following linear equivalents

∑
s∈ISmax

Viks ≤ yi, ∀i ∈ Im, ∀k ∈ Ip, (15)

λik ≤
∑

s∈ISmax

λs(αik)Viks, ∀i ∈ Im ∀k ∈ Ip. (16)

where ISmax = {1, 2, . . . , Smax} and Viks is a binary variable that takes value 1 if the base stock

level for part k at warehouse i is s ∈ ISmax , and 0 otherwise.

Replacing (9) and (10) by (15) and (16), we obtain an equivalent reformulation of the

nonlinear mixed integer problem SM as a mixed integer linear program, denoted by LMPW.

LMPW : min
∑
i∈Im

fiyi +
∑

(i,j,k)∈Im×In×Ip

cijkdjkxijk +
∑

(i,k,s)∈Im×Ip×ISmax

shikViks (17)

s. t.
∑

i∈Im : τijk≤wk

xijk = 1, ∀j ∈ In, ∀k ∈ Ip (18)

0 ≤ xijk ≤ yi, ∀i ∈ Im, ∀j ∈ In, ∀k ∈ Ip (19)∑
s∈ISmax

Viks ≤ yi, ∀i ∈ Im, ∀k ∈ Ip (20)

tik
∑

j∈In : τijk≤wk

djkxijk ≤
∑

s∈ISmax

λs(αik)Viks, ∀i ∈ Im,∀k ∈ Ip (21)

yi ∈ {0, 1} , ∀i ∈ Im, (22)

Viks ∈ {0, 1} , ∀i ∈ Im,∀k ∈ Ip, ∀s ∈ ISmax . (23)

In this model, the integer variables Sik are removed and new binary variables Viks are

introduced. For any open warehouse i and any part k, there must exist only one s such

that Viks = 1, and for all closed warehouses we must have Viks = 0; these are modeled by

inequalities (20). The stock level of warehouse i for part k is given by Sik =
∑

s∈ISmax

sViks. The

values λs(α) are input data of LMPW, calculated as the unique solutions of β(λ, s) = α with

respect to λ for given α and s using a Newton method.
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2.2 Part specific service levels

In this scenario the manufacturer sets a system-wide target service level, which needs to be

achieved by all warehouses collectively. A typical service requirement may read “demand for

part k is satisfied in 100αk% of the time within time window wk.” To model this requirement,

we use a weighted average of service levels achieved at each warehouse to determine the overall

service level. The service level constraints are expressed as:

∑
(i,j)∈Im×In : τijk≤wk

djkxijk Pr(λ̃ik ≤ Sik − 1)∑
j∈In

djk
≥ αk, ∀k ∈ Ip. (24)

In the left hand side, the numerator is the sum of the service levels achieved at each warehouse

Pr(λ̃ik ≤ Sik−1) weighted by the demand assigned to the warehouse djkxijk. The denominator

is the total demand rate for part k. Inequalities (24) allow individual part-warehouse service

levels Pr(λ̃ik ≤ Sik − 1) to be higher or lower than the part target level αk but guarantee

that their weighted sum satisfies αk. Therefore, they are relaxations of constraints (10) and

provide more flexibility for the suppliers in fulfilling the service level requirements. A major

disadvantage of these service level constraints is that they are highly nonlinear.

Using definition (3), we rewrite (24) as

∑
i∈Im

1

tik
λikβ(λik, Sik) ≥ αk

∑
j∈In

djk, ∀k ∈ Ip. (25)

To linearize (25), we propose an approach that directly approximates the left-hand-side of the

above constraints. This resolves all nonlinearities at once and leads to an effective reformulation

as shown in the computational study. We define z̄s = max
λ

λβ(λ, s) for all s ∈ ISmax . Let

N be a positive integer number, which denotes the number of discretization points in the

approximation. We define zfs = f
N z̄s for all f ∈ IN = {1, 2, . . . , N} and denote the two roots

of λβ(λ, s) = zfs by λ1fs and λ2fs where λ1fs ≤ λ2fs; see Figure 3 for an illustration.

Define variable Zik which equals zfs, for some f and s; and binary variable Vikfs which
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Figure 3: Graphs of λβ(λ, s) with respect to λ for s = 1, 2, . . . , 5. The function values corre-
sponding to dashed-dotted vertical lines are z̄s = max

λ
λβ(λ, s). The λ values corresponding to

the dots are λ1fs and λ2fs, the two roots of λβ(λ, s) = zfs with f = z̄s − 0.3.

takes value 1 if Zik = zfs. It follows that Zik =
∑
f,s

zfsVikfs. Using variables Zik to approximate

λβ(λ, s), the nonlinear constraints (25) are approximated by

∑
(i)∈(Im)

1

tik
Zik ≥ αk

∑
j∈In

djk, ∀k ∈ Ip, (26)

λikβ(λik, Sik) ≥ Zik, ∀i ∈ Im, ∀k ∈ Ip, (27)

Now, replacing Zik by
∑
f,s

zfsVikfs and using λ1fs and λ2fs, the two roots of λβ(λ, s) = zfs, we

rewrite (26) and (27) by the linear constraints

∑
(i,f,s)∈(Im×IN×ISmax )

1

tik
zfsVikfs ≥ αk

∑
j∈In

djk, ∀k ∈ Ip. (28)

∑
(f,s)∈(IN×ISmax )

λ1fsVikfs ≤ λik ≤
∑

(f,s)∈(IN×ISmax )

λ2fsVikfs, ∀i ∈ Im,∀k ∈ Ip, (29)

The approximate linear model with part-specific service level constraints is denoted by LMP

and is presented as
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LMP : min
∑
i∈Im

fiyi +
∑

(i,j,k)∈Im×In×Ip

cijkdjkxijk +
∑

(i,k,f,s)∈Im×Ip×IN×ISmax

shikVikfs

(30)

s. t.
∑

i∈Im : τijk≤wk

xijk = 1, ∀j ∈ In, ∀k ∈ Ip (31)

0 ≤ xijk ≤ yi, ∀i ∈ Im, ∀j ∈ In, ∀k ∈ Ip (32)∑
(f,s)∈IN×ISmax

Vikfs ≤ yi, ∀i ∈ Im, ∀k ∈ Ip (33)

∑
(i,f,s)∈(Im×IN×ISmax )

1

tik
zfsVikfs ≥ αk

∑
j∈In

djk, ∀k ∈ Ip (34)

tik
∑

j∈In : τijk≤wik

djkxijk ≥
∑

(f,s)∈(IN×ISmax )

λ1fsVikfs, ∀i ∈ Im, ∀k ∈ Ip

(35)

tik
∑

j∈In : τijk≤wk

djkxijk ≤
∑

(f,s)∈(IN×ISmax )

λ2fsVikfs, ∀i ∈ Im,∀k ∈ Ip (36)

yi ∈ {0, 1} , ∀i ∈ Im (37)

Vikfs ∈ {0, 1} , ∀i ∈ Im ∀k ∈ Ip ∀f ∈ IN ∀s ∈ ISmax . (38)

Any optimal solution of LMP is a feasible solution of the nonlinear integrated model with

part-specific service level constraints (25). Similarly, as N → ∞, optimal solutions of LMP

converge to an optimal solution of the nonlinear model.

3 Computational Study

In this section, we discuss implementation issues as well as numerical results obtained by solving

instances of the location-inventory problem with service levels using our models and those in

the literature. We generate random instances and solve them using model LMPW under part-

warehouse service levels, and model LMP under part service levels. We also solve the same

instances using the the approximate model described in [4] and denoted by CK, and using the
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decoupled approach denoted by DeC. The approximate model CK uses a discretization of

the fill rate functions at the warehouses. The decoupled approach DeC first solves a logistics

network design (LND) problem to determine open warehouses and customer allocations, then

uses this information to solve a pure inventory stocking (IS) problem.

Second, we run tests to investigate the effect of problem parameters on the location and

inventory decisions. Finally, we compare our part-specific model LMP with the models in [17]

referred to as JKP. It is important to note that the comparison with [17] is to be taken with

caution because the underlying assumptions are different. We treat the case of backorders as

in [4], while [17] treats the case of lost sales. Because the fill rate functions under backorders

and lost sales are different [20], the approximations developed in this paper do not apply to the

models in [17] and vice-versa. The comparison of LMP and JKP is useful to compare SPL

systems operating under backorders and lost sales. The models analyzed are summarized in

Table 2.

Table 2: List of models compared.

LMPW Exact linear reformulation under part-warehouse service levels with backorders.

LMP Approximate linear reformulation under part service levels with backorders.

CK Approximate model under backorders given in [4].

DeC Solution of the location problem followed by the inventory stocking problem.

JKP Approximate approach under lost sales given in [17].

We used MATLAB version 7 computing software package and CPLEX version 11 optimiza-

tion software package in our computational experiments. These applications were run on a

machine with a 64bit Windows XP operating system, a 3GHz quad core Intel processor, and

8GBs of RAM. We devise a random generation procedure to generate instances to compare

LMPW, LMP, CK, and DeC and to investigate the effect of problem parameters. Then, we

use the same random instances from [17] to compare LMP and JKP.
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3.1 Generating random data

The random instances are constructed by generating uniformly distributed random points for

customer and warehouse locations in the unit square. The distance between a warehouse and a

customer distij is calculated as the Euclidean distance. The parameters are generated to reflect

the characteristics of service parts, i.e., expensive parts and low demand. Inventory holding cost

per unit ranges between 12.5% and 37.5% of part value vk which is in turn uniformly distributed

in [2000, 3000]. On the other hand the fixed cost is uniformly distributed in [500, 1500]. Holding

cost is then relatively high compared to fixed costs. The time window wk is 4 hours and the

transportation time τijk is 5 times the distance distij . Since the distances are in the unit square,

wk and τijk are within range and customers are not necessarily reachable from all locations.

To ensure the instances are feasible, we check that every customer has at least one warehouse

within the time window. Transportation cost cijk is generated in function of transportation

time τijk. Mean demand for part k γk for all customers is uniform in [0, 1] and mean customer

demand djk is Poisson distributed with mean γk. This leads to low demand levels. Finally, lead

time tik is set to one week which is significantly higher than the time window wk. Consequently,

we expect to hold stock to satisfy demand during lead time and to achieve the target service

levels. Parameter generation is detailed in the following list.
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fi Uniform[500, 1500] annual fixed cost at warehouse i,

vk Uniform[2000, 3000] value of part k,

hik Uniform[0.125vk, 0.375vk] holding cost of part k at warehouse i,

τijk 5 distij transportation time between warehouse i and customer j,

cijk (a+ bτijk) transportation cost between warehouse i and customer j,

where a ∼ Uniform[100, 300] and b ∼ Uniform[10, 20]

γk Uniform[0, 1] mean customer demand for part k,

djk Poisson[γk] customer j’s demand for part k,

wk 4 hours time window,

tik 1 week lead time.

Table 3: Sizes of the solved instances.

Description (m,n, p) Smax N{CK,LMP}
Small-scale (5, 50, 3) 5 {10,100}
Medium-scale (10, 100, 3) 5 {10,100}
Large-scale (20, 300, 5) 10 {10,10}
Single-part (50, 1000, 1) 10 {10,10}

We generate four categories based on size with 10 instances in each category. The small-

scale instances have 5 warehouses, 50 customers, and 3 parts. The medium-scale instances have

10 warehouses, 100 customers, and 3 parts. The large-scale instances have 20 warehouses, 300

customers, and 5 parts. The single-part instances have 50 warehouses and 1000 customers. As

suggested in [4], we set N = 10 for the CK model. Although increasing N results in more

accurate solutions, it takes longer time or fails to find a solution due to memory limitations.

On the other hand, setting N = 100 was reasonable for LMP in small and medium instances

to obtain more accurate solutions in a relatively short time. The maximum stock is set to 5

for the small and medium scale instances and to 10 for large-scale and single-part instances.

The sizes of solved instances are given in Table 3 where m,n, p, Smax, and N are the number
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of candidate warehouses, number of customers, number of parts, maximum number of units

in stock at each warehouse, and number of discretization points used in the approximations,

respectively. To make all the models comparable, we set αik = αk, and choose αk randomly

from the set {0.5, 0.6, 0.7, 0.8, 0.9}.

While problem size in these types of formulations is not necessarily suggestive of the diffi-

culty, we summarize the number of variables and constraints for each model in Table 4. It is

observed that LMP has substantially more variables than LMPW and CK.

Table 4: Number of continuous and binary variables, and number of constraints of all models.
Number of variables

Number of constraints
continuous binary

DeC
LND mnp m p(1 + n+mn)
IS 0 mpSmax p(1 +mn)

LMPW mnp m(1 + pSmax) p(2m+mn+ n)
LMP mnp m(1 + pNSmax) p(1 + 3m+mn+ n)
CK mnp+mpNSmax m(1 + 2pN + pSmax) p(1 + n+m(1 + n+ 3N + 4NSmax))

3.2 Comparison of models under backorders

Tables 5, 6, and 7 report average statistics on the location and inventory decisions and CPU

time. The tables display the average over 10 instances of the number of open warehouses

(whouse), number of units in stock (stock), cost of location (loc), transportation (transp), and

inventory holding (inv), and total cost (total). Performance measures in terms of solution

quality (%diff) and CPU time (CPU) are also reported. The percentage difference in total cost

between LMP and the other models %diff is computed as 100 ∗ (X − LMP)/LMP, where

X=DeC, LMPW, and CK.

Table 5: Average number of open warehouses, total stock, and total cost of 10 small-scale
problems.

whouse stock loc transp inv total %diff CPU

DeC 1.5 6.2 1402.80 4519.75 4009.55 9932.11 2.22 0.09 sec
LMPW 1.6 6.3 1530.34 4575.20 3798.61 9904.15 1.15 0.27 sec
LMP 1.6 6.4 1530.34 4475.27 3835.55 9841.17 0 13.51 sec
CK 2.0 6.3 1887.02 4436.60 3777.89 10101.51 6.04 18.20 sec
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Referring to Tables 5, 6, and 7, both LMPW and LMP were solved to optimality for all

instances while CK was out of memory in 10 large-scale problems. LMPW and LMP always

find feasible solutions with respect to service constraints, but CK found solutions with slight

violations of service level constraints in 5 out of 10 medium-scale problems. As suggested in [4],

pure inventory stocking problems must be solved to improve the actual service levels, which

in turn increases total stock. In small-scale instances, the total cost obtained by CK is worse

than that of DeC. Increasing the number of discretization points N in CK from 10 to 30

did not improve the total cost in these cases. LMP finds feasible solutions that improve over

DeC by 2.22%, which suggests that CK found feasible solutions that are far from optimal

(6.04% higher than LMP). In terms of solution time, LMP is substantially more difficult than

LMPW, which in turn is more difficult than DeC, as expected. When it finds a solution, CK

takes much longer time. This is due to the larger size and lower sparsity of the CK model

compared to LMP, as shown in Table 8.

Table 6: Average number of open warehouses, total stock, and total cost of 10 medium-scale
problems.

whouse stock loc transp inv total %diff CPU

DeC 2.0 8.4 1495.69 6124.92 5416.66 13037.26 8.81 0.31 sec
LMPW 1.6 7.2 1268.08 6680.02 4337.42 12285.52 0.59 2.65 sec
LMP 1.8 7.6 1641.02 6555.58 4064.83 12261.43 0 2.65 min
CK 2.6 7.8 2030.88 6368.85 4419.14 12818.87 5.50 3.66 hr

Table 7: Average number of open warehouses, total stock, and total cost of 10 large-scale
problems.

whouse stock loc transp inv total %diff CPU

DeC 5.11 30.78 3726.44 20206.02 17866.50 41798.95 12.92 3 sec
LMPW 3.78 22.33 2988.23 24029.25 10565.83 37583.31 0.92 25 min
LMP 3.89 23.11 3221.39 23339.08 10656.13 37216.59 0 5 hr
CK failed for all 10 large-scale problems with out-of-memory status.

LMP provided on average 6.04% and 5.50% improvement over CK in small and medium

cases, respectively. The savings over a decomposed approach are significant: 2.22, 8.81, and

12.92% for small, medium and large-scale instances, respectively. These numbers suggest that

savings increase with size.
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Theoretically, the optimal solution to the nonlinear model of the part-warehouse specific

case SM is a feasible solution to the nonlinear model of the part specific case with constraints

(25) when the part service level is enforced at every warehouse. Consequently, we expect LMP

to give lower total cost than LMPW when both are solved to optimality. However, it is

possible for the opposite to occur since LMP is an approximation of the part-specific case

with constraints (25) while LMPW is equivalent to SM. We observed such behavior in three

instances, which are excluded from the calculation of %Diff.

Table 8: Average size, sparsity, and number of binary variables of 10 large-scale problems.
row column nonzero elements % sparsity binary

DeC
LND 26707.5 25227.5 75622.5 99.9888 20
IS 30 194.4 388.8 93.2190 194.4

LMPW 26798.5 25444.2 101145.4 99.9852 345.7
LMP 27012.5 30746.1 148211.9 99.9821 5538.6
CK 60069.6 35470.3 4703068.7 99.7815 2440.8

Finally, we solved 10 large-scale single-part problems for benchmark purposes. The results

are summarized in Table 9. CK stopped with out-of-memory status, while LMPW and LMP

were solved to optimality. The total cost obtained by LMP is the lowest among all models.

This comparison once more confirms that the number of open warehouses, total stock, and total

cost on average are lower in the integrated models than in the decoupled one.

Table 9: Average number of open warehouses, total stock, and total cost of 10 large-scale
single-part problems.

whouse stock loc transp inv total %diff CPU

DeC 2.9 6.6 1716.24 7178.23 5138.02 14032.50 19.64 5.63 sec
LMPW 1.9 5.4 1370.26 8167.66 2239.89 11777.81 1.24 4.32 min
LMP 1.9 5.4 1355.89 8083.71 2274.00 11713.61 0 7.12 min
CK failed for all 10 large-scale single-part problems with out-of-memory status.

3.3 Impact of service levels

In this part of testing, we use medium-scale instances to analyze the impact of service levels

on the location and inventory decisions. The service levels are set to {0.5, 0.6, 0.7, 0.8, 0.9} for

LMPW, and are set to {0.7, 0.8} for LMP. The results are summarized in Table 10.
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Table 10: The impact of service levels on the average number of open warehouses, total stocks,
and total costs of 10 medium-scale problems.

α whouse stock loc transp inv total CPU

LMPW
0.5 1.8 5.7 1476.46 5611.74 3150.19 10238.40 2.70 sec
0.6 1.8 6.2 1532.99 5602.77 3351.13 10486.89 2.21 sec
0.7 1.6 7.3 1316.28 5827.82 4061.44 11205.54 3.12 sec
0.8 1.7 8.8 1395.45 5882.24 4572.09 11849.79 4.08 sec
0.9 1.8 10.2 1512.95 6135.91 5235.34 12884.19 5.23 sec

LMP
0.7 1.7 7.4 1379.84 5762.54 4053.05 11195.43 3.68 min
0.8 1.6 8.4 1389.15 5626.56 4468.23 11483.94 3.81 min

The general trend in both models is that total cost increases as service level increases. This

is largely due to increased stocks and inventory holding costs. While these results are expected,

there is no such trend in location and transportation costs. As service level increases, the average

number of open warehouses and fixed cost may increase or decrease, showing no particular

trend. In fact, the prescribed location/allocation decisions could actually be quite different for

different service levels, which suggests that inventory control structure can profoundly impact

the network design decisions. The models seem to prescribe relocation of warehouses in addition

to stock increases to respond to service level increases.

Generally, there is an increase in transportation costs when service levels increase, but it

is not consistent. It is somewhat hard to predict how service levels impact the transportation

cost because warehouse locations and service levels have complex interactions. One possible

explanation is that increased service levels puts pressure to carry more inventory; perhaps

to mitigate its effect, the optimal solution shifts to another less expensive location/allocation

solution. Or, after a threshold a new warehouse is opened to mitigate the countering effects,

etc. Consequently, making LND decisions and inventory control decisions separately is likely

to lead to suboptimal solutions.

3.4 Comparison of models with backorders and lost sales

We carry out tests to investigate the impact of operating under backorders versus lost sales. We

solve the single-part instances from [17] using model LMP, and compare in terms of system

measures like total costs, stock levels, and network structure; as well as in terms of solution
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quality and computational time requirements. The single-part instances are built on a network

with 15 warehouse locations, and 50 customers generated randomly on a grid of 150×150. The

generation procedure is detailed in [17]. The inventory cost hi is the same for all warehouses in

each instance and is set to {1, 10, 20, 50, 100}. Transportation cost from warehouse i to customer

j, cij , is found by rounding one-tenth of the Euclidean distance to a positive integer. The annual

mean demand for each customer is generated uniformly within (1, 3). Replenishment lead time

is set to 1 week. The maximum stock level Smax is set to 5. The target service level α is set to

one of {0.4, 0.6, 0.8}. The time window is set to 40.Fifteen instances are generated by varying

the inventory cost hi and the target service level α. Then, the 15 instances are replicated twice

with the same parameter settings but with different random seeds to obtain instances 1 − 15,

16−30, and 31−45. The results on the 45 instances are summarized in two tables where the fixed

cost fi is set to 0 in Table 11 and to 1000 in Table 12. In the tables, αA stands for the actual

achieved service level determined by the total number of open warehouses (whouse) and units

in stock (stock). While the solution of LMP provides one objective function value which is an

upper bound on the optimal objective value of the nonlinear model with constraints (25), JKP

provides a heuristic solution with a lower bound (LB) and an upper bound (UB) obtained

from the outer approximation approach developed in the paper. The lower bound is found

by ignoring the demand of customers outside the time window. The upper bound is found by

solving a series of models starting with a higher service level than the required α and decreasing

it iteratively until the solution of the relaxed model satisfies α. The gap (gap) between the lower

and upper bounds shows the quality of the heuristic solution and is calculated as 100UB−LBLB .

The last column gives the percentage difference in cost denoted by (diff) and calculated as

100 total−UBtotal .

Unlike [17] we require that every customer has at least one warehouse within the time

window. Together with the fact that there are no lost sales, some of the instances turn out

to be infeasible, i.e., some customers are not within the time window of any warehouse. To

make these instances feasible, we set the time window so that the condition is satisfied. Another

major difference is that we assume backorders while [17] assumes lost sales. These assumptions
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lead to different fill rate functions [20], and should be kept in mind when interpreting the results

in Tables 11 and 12.

When comparing the number of open warehouses, the number of units in stock and the

total cost in both tables, we note that the models under backorders and lost sales assumptions

seem to lead to comparable decisions in most instances. Under zero fixed cost fi = 0, LMP

finds the same number of open warehouses and number of units in stock as JKP in about 69%

of the instances, and slightly lower numbers in 29% of the instances. Under nonzero fixed cost

fi = 1000, LMP finds fewer units in stock in 87% of the instances. The total cost of LMP

solutions are slightly cheaper that those of JKP with 0.35% and 1.03% under zero and nonzero

fixed costs, respectively. Keeping in mind that both models do not guarantee optimality, the

differences in cost and network structure are not significant. Intstead, the analysis implies that

operating under backorders and lost sales lead to comparable systems. This is explained by

the fact that under both assumptions, most of the demand is satisfied within the window as

enforced by the high target service levels.

Computational times in Tables 11 and 12 indicate that instances become more difficult as

α and h increase for both LMP and JKP. When fi = 0, LMP and JKP use comparable

time except for 3 instances where LMP uses significantly more time. On the other hand, for

fi = 1000, LMP uses consistently less time. Comparing Tables 11 and 12, JKP takes much

longer time when fi = 1000 than when fi = 0. This suggests that instances with nonzero fixed

cost become more difficult for JKP. This is not the case for LMP where all instances take

similar or less time to solve when fi = 1000 than when fi = 0.

4 Conclusions

We presented two integrated inventory location models for a service parts logistics network

design problem. To the best of our knowledge, this paper presents the most comprehensive

treatment of the problem with backorder assumption to date. The models arise from two classes

of service levels and their corresponding inventory control structures. Each of the cases, i.e.,

part-warehouse and part specific, relates to some important type of inventory control structure
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Table 11: Results of (15× 50) problem instances with zero fixed cost (fi = 0).
Instance LMP JKP

h α total αA whouse stock time LB UB gap αA whouse stock time diff
1 1 0.4 232 0.806 11 11 1 232 232 0 0.806 12 12 0 0
2 1 0.6 232 0.803 12 12 0 232 232 0 0.806 12 12 0 0
3 1 0.8 232 0.813 12 12 1 232 232 0 0.806 12 12 0 0
4 10 0.4 314 0.734 7 7 0 314 314 0 0.738 7 7 0 0
5 10 0.6 314 0.733 7 7 1 314 314 0 0.735 7 7 0 0
6 10 0.8 327 0.812 8 9 2 321 321 0 0.802 9 9 12 1.83
7 20 0.4 368 0.588 4 4 1 369 369 0 0.654 5 5 0 -0.27
8 20 0.6 369 0.661 5 5 1 369 369 0 0.653 5 5 0 0
9 20 0.8 414 0.808 7 8 1 410 411 0.23 0.801 9 9 26 0.72

10 50 0.4 478 0.446 3 3 1 491 491 0 0.584 4 4 0 -2.72
11 50 0.6 519 0.662 5 5 4 491 519 5.32 0.654 5 5 18 0
12 50 0.8 654 0.808 7 8 2 650 652 0.35 0.805 7 8 82 0.31
13 100 0.4 628 0.446 3 3 1 659 665 0.8 0.414 3 3 140 -5.89
14 100 0.6 769 0.661 5 5 19 691 769 10.09 0.653 5 5 58 0
15 100 0.8 1054 0.808 7 8 13 1050 1052 0.22 0.803 7 8 127 0.19
16 1 0.4 279 0.775 15 15 1 279 279 0 0.778 15 15 0 0
17 1 0.6 279 0.78 15 15 0 279 279 0 0.776 15 15 0 0
18 1 0.8 281 0.83 15 17 6 280 280 0 0.802 15 16 0 0.36
19 10 0.4 363 0.714 8 8 1 368 368 0 0.737 9 9 0 -1.38
20 10 0.6 363 0.718 8 8 1 368 368 0 0.737 9 9 0 -1.38
21 10 0.8 391 0.808 9 11 4 385 388 0.81 0.806 9 11 15 0.77
22 20 0.4 438 0.59 6 6 1 443 443 0 0.651 7 7 0 -1.14
23 20 0.6 439 0.657 7 7 1 443 443 0 0.666 7 7 0 -0.91
24 20 0.8 501 0.809 9 11 46 489 490 0.21 0.8 8 10 30 2.20
25 50 0.4 564 0.451 4 4 5 583 583 0 0.43 4 4 0 -3.37
26 50 0.6 620 0.607 6 6 4 626 629 0.43 0.602 6 6 45 -1.45
27 50 0.8 819 0.807 7 10 1653 789 790 0.13 0.8 8 10 61 3.54
28 100 0.4 764 0.45 4 4 85 740 783 5.52 0.43 4 4 47 -2.49
29 100 0.6 920 0.605 6 6 3 926 929 0.29 0.6 6 6 139 -0.98
30 100 0.8 1319 0.807 7 10 109 1289 1290 0.08 0.8 8 10 122 2.20
31 1 0.4 290 0.684 11 11 1 290 290 0 0.679 11 11 0 0
32 1 0.6 290 0.683 11 11 0 290 290 0 0.683 11 11 0 0
33 1 0.8 299 0.81 11 20 6 296 298 0.67 0.802 11 19 35 0.33
34 10 0.4 366 0.617 6 6 1 366 366 0 0.605 6 6 0 0
35 10 0.6 366 0.614 6 6 1 366 366 0 0.605 6 6 0 0
36 10 0.8 441 0.805 7 14 8 427 438 2.52 0.801 7 14 159 0.68
37 20 0.4 414 0.486 4 4 1 416 416 0 0.541 5 5 0 -0.48
38 20 0.6 426 0.617 6 6 1 426 426 0 0.605 6 6 1 0
39 20 0.8 581 0.805 7 14 105 556 579 3.88 0.804 7 14 224 0.34
40 50 0.4 512 0.426 3 3 1 524 533 1.62 0.405 3 3 1 -4.10
41 50 0.6 606 0.612 6 6 2 588 606 2.86 0.606 6 6 35 0
42 50 0.8 1001 0.805 7 14 1952 916 999 8.25 0.804 7 14 269 0.20
43 100 0.4 662 0.426 3 3 3 674 683 1.26 0.405 3 3 9 -3.17
44 100 0.6 906 0.618 6 6 5 838 906 7.43 0.606 6 6 78 0
45 100 0.8 1701 0.805 7 14 3714 1516 1699 10.74 0.803 7 14 363 0.12
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Table 12: Results of (15× 50) problem instances with nonzero fixed cost (fi = 1000).
Instance LMP JKP

h α total αA whouse stock time LB UB gap αA whouse stock time diff
1 1 0.4 2443 0.434 2 4 1 2443 2444 0.04 0.405 2 5 35 -0.04
2 1 0.6 3365 0.616 3 6 1 3365 3366 0.03 0.601 3 7 59 -0.03
3 1 0.8 4299 0.822 4 8 1 4299 4300 0.02 0.809 4 9 18 -0.02
4 10 0.4 2479 0.434 2 4 1 2479 2489 0.4 0.404 2 5 56 -0.40
5 10 0.6 3419 0.616 3 6 1 3419 3435 0.45 0.608 3 7 85 -0.47
6 10 0.8 4371 0.822 4 8 2 4371 4381 0.23 0.803 4 9 39 -0.23
7 20 0.4 2519 0.434 2 4 0 2519 2539 0.79 0.405 2 5 70 -0.79
8 20 0.6 3479 0.616 3 6 1 3479 3505 0.73 0.606 3 7 67 -0.75
9 20 0.8 4451 0.822 4 8 1 4451 4471 0.45 0.803 4 9 54 -0.45

10 50 0.4 2633 0.402 2 3 1 2639 2689 1.89 0.405 2 5 70 -2.13
11 50 0.6 3659 0.616 3 6 2 3659 3715 1.51 0.606 3 7 55 -1.53
12 50 0.8 4691 0.822 4 8 1 4691 4741 1.07 0.809 4 9 47 -1.07
13 100 0.4 2783 0.402 2 3 0 2824 3024 7.08 0.417 2 5 86 -8.66
14 100 0.6 3959 0.616 3 6 1 3959 4065 2.66 0.606 3 7 161 -2.68
15 100 0.8 5091 0.822 4 8 1 5091 5191 1.96 0.809 4 9 65 -1.96
16 1 0.4 2534 0.438 2 4 1 2533 2535 0.08 0.409 2 5 36 -0.04
17 1 0.6 3448 0.612 3 8 1 3447 3449 0.06 0.605 3 9 10 -0.03
18 1 0.8 6343 0.807 6 17 12 6340 6342 0.03 0.805 6 16 210 0.02
19 10 0.4 2570 0.44 2 4 1 2560 2580 0.78 0.409 2 5 59 -0.39
20 10 0.6 3520 0.612 3 8 1 3510 3530 0.57 0.609 3 9 19 -0.28
21 10 0.8 6464 0.815 6 11 8 6454 6464 0.15 0.8 6 13 277 0
22 20 0.4 2610 0.44 2 4 1 2590 2630 1.54 0.409 2 5 64 -0.77
23 20 0.6 3600 0.611 3 8 1 3580 3620 1.12 0.605 3 9 28 -0.56
24 20 0.8 6574 0.809 6 11 4 6574 6594 0.3 0.803 6 12 806 -0.30
25 50 0.4 2730 0.438 2 4 1 2680 2780 3.73 0.415 2 5 80 -1.83
26 50 0.6 3840 0.612 3 8 1 3790 3890 2.64 0.609 3 9 57 -1.30
27 50 0.8 6904 0.815 6 11 7 6934 6954 0.28 0.8 6 12 422 -0.72
28 100 0.4 2930 0.442 2 4 3 2830 3030 7.07 0.403 2 5 54 -3.41
29 100 0.6 4240 0.612 3 8 1 4140 4340 4.83 0.609 3 9 74 -2.36
30 100 0.8 7454 0.814 6 11 4 7534 7554 0.26 0.803 6 12 428 -1.34
31 1 0.4 2460 0.427 2 4 1 2460 2462 0.08 0.414 2 6 12 -0.08
32 1 0.6 3381 0.607 3 7 1 3383 3385 0.06 0.601 3 11 8 -0.12
33 1 0.8 6330 0.804 6 20 5 6325 6326 0.02 0.8 6 16 40 0.06
34 10 0.4 2496 0.427 2 4 1 2496 2530 1.35 0.421 2 5 23 -1.36
35 10 0.6 3443 0.612 3 6 1 3443 3453 0.29 0.602 3 7 12 -0.29
36 10 0.8 6493 0.803 6 18 22 6460 6470 0.15 0.8 6 16 87 0.35
37 20 0.4 2536 0.427 2 4 1 2536 2580 1.73 0.421 2 5 23 -1.74
38 20 0.6 3503 0.612 3 6 1 3503 3523 0.57 0.607 3 7 11 -0.57
39 20 0.8 6666 0.802 6 17 47 6610 6630 0.3 0.8 6 16 126 0.54
40 50 0.4 2656 0.427 2 4 1 2656 2730 2.78 0.421 2 5 39 -2.79
41 50 0.6 3683 0.612 3 6 1 3683 3733 1.36 0.601 3 7 19 -1.36
42 50 0.8 7176 0.802 6 17 28 7060 7110 0.71 0.8 6 16 139 0.92
43 100 0.4 2856 0.427 2 4 1 2856 2980 4.33 0.421 2 5 40 -4.34
44 100 0.6 3983 0.612 3 6 1 3983 4083 2.51 0.604 3 7 30 -2.51
45 100 0.8 8026 0.802 6 17 50 7810 7910 1.29 0.801 6 16 211 1.45
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that can widely be observed in practice. Regardless of the environment, our results provide a

further justification for an integrated approach to network design, which can greatly improve

the system cost over a two-step approach. Furthermore, the results suggest that our approach

is more effective than those reported in the literature both in terms of solution quality and

computational time.

Although our approach is particularly well-suited to the service parts environment, it could

have wider applicability in other settings that involve difficult nonlinear constraints. In addi-

tion, our work can be extended in many ways. Some of the assumptions made may be relaxed,

which would lead to more realistic models. For example, one may include multiple distribution

centers with limited inventories, different service level measures, and part bundling or consol-

idation. Perhaps among the most important and difficult extensions is accurate modeling of

environments where inventories are controlled centrally or collaboratively, which potentially

involves rationing policies and emergency lateral shipments among warehouses. Finally, all ap-

proaches in the literature including this work use the ideas of outer or inner approximations and

linearization of the nonlinear service constraints. An alternative promising approach is the use

of decomposition methods like Lagrangian relaxation and Benders decomposition to decompose

the models possibly into LND and inventory decisions.
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