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1 Introduction

We analyze contracting between a principal and a team of agents, where the outcome process

is governed by a Brownian motion. Agents have CARA utilities and jointly determine the drift

and diffusion rates. Each of them can observe the others’ behavior and exploit any collusion and

renegotiation opportunities at every instant via enforceable side–contracts contingent on effort levels

and realized outcomes. We establish a theoretical justification for the use of linear contracts by

proving that there are optimal stationary and linear sharing rules that are immune to collusion and

renegotiation.1 Thus, it is as if the agents were to choose the mean and variance only once and the

principal were restricted to employ stationary and linear sharing rules.

Agents’ ability to observe and verify others’ actions and their knowledge of how each one of them

affects the mean and variance as well as how these contribute to their costs bring about collusion

and renegotiation concerns.2 These, in turn, imply that agents’ agreements have to be efficient.

Alternatively, they have to solve a utilitarian bargaining in every date and state. The principal

who cannot observe or verify agents’ behavior only knows that the agents’ bargaining (induced

by her own offer) must result in an efficient outcome. Hence, the optimal contract she offers (i.e.

individually rational sharing rules and control laws, drift and diffusion rates) must solve in every

date and state agents’ bargaining problem for some bargaining weights. Efficiency with CARA

preferences delivers a useful aggregation result which we employ to establish that the principal

can contract with the team as if she is contracting with a representative agent having CARA

preferences, because we prove the following: Given optimal control laws for the drift and diffusion

rates and an optimal compensation for the team, agents’ compensations obtained from the efficient

distribution of team’s compensations employing the stationary bargaining weights that are stated

1Contacts generally have simpler forms (such as linear) compared to the ones predicted by the theory. As far as
empirical evidence is concerned, Lafontaine (1992) reports that “franchise contracts generally involve the payment,
from the franchisee to the franchisor, of a lump–sum franchise fee as well as a proportion of sales in royalties, with
the latter usually constant over all sales levels.” And, Slade (1996) notes that only linear contracts are used by the
oil companies engaged in franchising in retail–gasoline markets in Vancouver.

2This formulation is plausible when agents are better informed than the principal about the managerial details
and interim outcomes of the project. This can occur when the principal does not have the necessary technical training
(e.g., lacking the expertise to operate a nuclear power plant) to deal with the associated details which agents (well
trained in nuclear physics and details about how to operate that power plant) are supposed to be fluent with in
the first place. Or, when she is far away (e.g., in another country) from the agents (working in an overseas factory
producing a technical product) and information technologies are not sufficient (possibly due to language barriers) so
that the principal has to base her contract only on the final output, while agents working together (and speaking the
same language) can observe and verify others’ choices.
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in our main result and the very same control laws, also solve agents’ bargaining problem with their

“real” date and state specific bargaining weights starting every date and state. Therefore, the fact

that these particular bargaining weights are not necessarily agents’ real bargaining weights (that

the principal is not necessarily aware of) turns out not to be important. Due to the fact that, now,

the principal is contracting with a representative agent having CARA preferences, her problem can

be analyzed using techniques in Sung (1995) which enable us to establish that there is an optimal

and stationary linear contract for the team. As linearity is preserved during the corresponding

efficient redistribution of team’s compensation to agents, our main result is established.3

Holmstrom and Milgrom (1987), the pioneer work displaying the optimality of linear contracts

in a repeated agency setting with exponential utilities, considers a principal–agent pair where the

agent determines the drift rate of a Brownian motion.4 Schättler and Sung (1993) extends this

setting by considering a larger class of stochastic processes. The key restriction in both models is

that the agent is not allowed to control the variance of the outcome process. Sung (1995) extends

Holmstrom and Milgrom (1987)’s Brownian model to the case where the agent can also control the

diffusion rate of the Brownian motion. The resulting problem becomes similar to that in Holmstrom

and Milgrom (1987) with an additional time–state independent constraint for which the linearity in

outcome result holds. Koo, Shim, and Sung (2008), on the other hand, presents a continuous–time

agency model under moral hazard with many agents.5 They show that optimal contracts are also

linear in all outcomes produced separately by each agent. For their linearity result, the formulation

involving the simultaneous–move game played by agents is important to preserve stationary decision

making environment. Meanwhile, our model does not feature separate production processes and

our agents can perfectly observe each other and can engage in renegotiable side–contracting.

The paper is organized as follows. While section 2 contains the model and the principal’s

problem, section 3 presents the main result and its proof and section 4 concludes.

3We thank an anonymous referee for pointing out that our analysis can be associated with bonus pools in invest-
ment banks. Bonus pools are allocated to divisions based on their performances. A division manager, who is given
much flexibility, allocates the bonus to the employees. While some criticize nonuniform bonus allocations among
employees on basis of fairness, our paper provides a justification: the bonus of an employee is determined through a
utilitarian bargaining within the division, hence, depends on his relative bargaining power and risk preferences. The
assumptions needed in this setting are: the employees cannot communicate with the shareholders; and the division
manager knows the bargaining weights and risk aversion parameters of the employees, but the shareholders do not.

4Lack of income effects with exponential utilities and time–state independent cost functions, imply that the
optimal control the agent chooses is time–state independent. Stationarity of the environment implies that among all
possible compensation schemes, an optimal one is stationary and linear in the final output.

5Their model is a continuous–time counterpart of Holmstrom (1982) and an extension of Holmstrom and Milgrom
(1987) with N agents. The principal has N production tasks one for each agent who cannot observe each other.
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2 Model and Preliminaries

The principal and N agents interact over time interval t ∈ [0, 1]. At an instant t, agent i ∈ N ≡

{1, . . . , N} chooses an effort level ei
t ∈ Ei, Ei a compact interval, and these choices are observable

and verifiable by all the other agents, but not the principal. The probability space is given by

(Ω,F , P ) where Ω is the space C = C([0, 1]) of all continuous functions on the interval [0, 1] with

values in <. So a particular event w ∈ Ω is of the form w : [0, 1] → <. The effort choices

e : [0, 1] → ×i∈NEi, where et = (ei
t)i∈N , imply control laws µ and σ which are assumed to be Ft–

predictable mappings, µ : [0, 1]×Ω → U and σ : [0, 1]×Ω → S, where U is a bounded open subset

of < and S is a compact subset of <++. Controls µ and σ determine the instantaneous drift, µt,

and the diffusion rates, σt, of a stochastic process, {Xt}t, governed by a Brownian motion defined

by dXt = µtdt + σtdBt. Indeed, µt ≡ µ(t,X) and σt ≡ σ(t,X).6

The intermediate outcome Xt should be thought of as the total returns up to period t ∈ [0, 1],

and Bt is the standard Wiener process. The drift and diffusion rates and intermediate accumulated

returns are neither observable nor verifiable by the principal. However, X1, the level of accumulated

returns at the end of the project, is observable and verifiable by the principal. At the beginning of

the project, the principal and the agents agree upon a contract, i.e. salary rules S = (Si)i∈N with

Si : Ω → < for all i ∈ N and control laws (µ, σ) with the restriction that salaries are payable at the

end of the project according to the rules agreed upon at time 0 which depend only on X1.
7

Instantaneous time–state independent cost functions are given by ci(µt, σt) where ci : U×S → <

is twice continuously differentiable, i ∈ N . ci and ciµ (derivative with respect to mean) are bounded,

and both ciµ and ciµµ (second derivative with respect to mean) are strictly positive. The total costs

incurred by agent i ∈ N is given by
∫ 1

0
ci(µt, σt)dt. In this setting there is an interaction effect

on the two moments of the outcome process and on the costs of agents. Yet, it also handles the

standard environment with two agents in which one agent determines only the mean and the other

agent only the variance, and the interaction effect on the costs is assumed to be minimal.

6We assume σ satisfies a uniform Lipschitz condition: There exists a constant K such that for Z, Z̄ ∈ C[0, 1],
|σ(t, Z) − σ(t, Z̄)| ≤ K sup0≤s≤t |Z(s) − Z̄(s)|. Even though this condition may be weakened (as was suggested
by an anonymous referee) by noticing that our process is one dimensional and by employing Revuz and Yor (1999,
Theorem 3.5, p.390; Exercises 3.13-14, p.397) (while it would still hold for the optimal contract), we use this Lipschitz
condition (so, Revuz and Yor (1999, Theorem 2.1, p.375)) in order to have a parallel presentation with Sung (1995).

7This formulation is consistent with our hypothesis of the mean and variance being unobservable and nonverifiable
by the principal. If (Si)i∈N were to depend on the entire process {Xt}t, implying that {Xt}t is observable and
verifiable by the principal, then she could infer {µt}t and/or {σt}t. For more, see footnotes 7 and 8 of Sung (1995).
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All have CARA utilities where the coefficients of the principal and agent i ∈ N are given by R

and ri, respectively. The reservation certainty equivalent agent i ∈ N is given by Wi0. We assume

that at each t ∈ [0, 1], agents observe ht ≡ {Xs, µs, σs, (e
i
s)i∈N}s≤t. Agent i’s expected utility at time

t given ((Si)i, µ, σ) (computed with the information at time t) is E
[
− exp

{
−riW

S
i (X; µ, σ)

}∣∣Ft

]
where W S

i (X; µ, σ) =
(
Si(X)−

∫ 1

0
ci(µs, σs)ds

)
is his net payoff at the end of the project.

At any t, ht is observable and verifiable by all the agents but not the principal, and (Si)i∈N

is determined by the principal at the beginning of the project. Any communication between the

principal and the agents is not allowed as in Che and Yoo (2001).8 Thus, at any instant a utilitarian

bargaining problem among the agents emerges due to collusion opportunities. Its outcome can be

implemented via state–contingent binding contracts drafted and agreed upon in date 0, specifying

an allocation among the agents for each possible date and state. As for any given history agents’

arrangement ensures optimality from that state onwards, our formulation involves renegotiation.

Collusion implies that the outcome of agents’ bargaining is ex–ante efficient; so there is no history,

state, and any other feasible contract that every agent (strictly) prefers to the one that was agreed

upon. This brings about optimal risk sharing. Given Ft–predictable salaries Si : [0, 1] × Ω → <,

i ∈ N , agent i’s induced salary at time t under S ≡ (Si)i∈N is Si(t) : Ω → <, denoting the salary

arrangement (on compensations to be made at the end of the project) to i under S at t. Below we

define the agents’ problem where the first requirement is a natural feasibility constraint, the second

a balanced budget condition, and the third agent i’s date–t participation constraint.9

Definition 1 (The Agents’ Problem) Given the principal’s offer, salaries Si : Ω → < for i ∈ N

and Ft–predictable control laws µ : [0, 1] × Ω → U and σ : [0, 1] × Ω → S and bargaining weights

θ : [0, 1]×Ω → int(∆) (where int(∆) denotes the interior of the N dimensional simplex), the side–

contracting via control laws S̃i : [0, 1]×Ω → < for i ∈ N , µ̃ : [0, 1]×Ω → U and σ̃ : [0, 1]×Ω → S
solves the agents’ problem at θ if for a.e. t and ht

∑
i∈N

θitE
[
− exp

{
−riW

Ŝ(t)
i (X; µ̂, σ̂)

}∣∣∣Ft

]
(1)

8Otherwise by offering additional payoffs the principal can make the agents report others’ choices and implement
the first-best, at least in a one-shot setting. While the value of this communication is not trivial due to agents’ abilities
to punish “snitches” in a repeated setting, not allowing any communication between the principal and the agents
helps us to abstract from these complications. For more see footnote 13 of Barlo and Özdoğan (2013). Moreover,
footnote 2 of the current paper provides examples when this abstraction is plausible.

9The date–t participation constraint considers the grand coalition/team, and not sub–coalitions. This can be
justified when one assumes that each player has a right to veto the outcome of the agents’ bargaining.
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is maximized where W
Ŝ(t)
i (X; µ̂, σ̂) ≡

(
Ŝi(t)(X)−

∫ 1

0
ci(µ̂s, σ̂s)ds

)
, X ∈ Ω, and

dXτ = µ̂τdτ + σ̂τdBτ , τ ≥ t, (2)
N∑

i=1

Ŝi(t)(X) ≤
N∑

i=1

Si(X), X ∈ Ω, (3)

E
[
− exp

{
−riW

Ŝ(t)
i (X; µ̂, σ̂)

}∣∣∣Ft

]
≥ E

[
− exp

{
−riW

S
i (X; µ, σ)

}∣∣Ft

]
, i ∈ N. (4)

The principal is aware of the collusion capabilities and bargaining among agents. Hence, she

knows that while she is restricted to offer contracts that solve the agents’ problem starting any date

and state for some bargaining weights, she is not aware of agents’ “real” bargaining weights.

Definition 2 (The Principal’s Problem) Principal chooses salary functions Ŝi : Ω → < for

i ∈ N and control laws µ̂ : [0, 1]× Ω → U and σ̂ : [0, 1]× Ω → S such that

(
(Ŝi)i∈N , µ̂, σ̂

)
∈ argmax((Si)i∈N ,µ,σ) E

[
− exp

{
−R

(
X1 −

N∑
i=1

Si(X)

)}∣∣∣∣∣F0

]

subject to

i. Feasibility: dXt = µtdt + σtdBt, t ∈ [0, 1];

ii. Individual Rationality: E
[
− exp

{
−riW

S
i (X; µ, σ)

}∣∣F0

]
≥ − exp{−riWi0}, i ∈ N ;

iii. The Agents’ Problem: (Si)i∈N and (µ, σ) must be such that there exists a profile of control laws

Si : [0, 1]×Ω → < satisfying Si(1)(X) = Si(X), i ∈ N and X ∈ Ω, so that ((Si)i, µ, σ) solves

the agents’ problem at some bargaining weights θ : [0, 1]× Ω → int(∆) given ((Si)i, µ, σ).

In Definition 2, feasibility and individual rationality are standard. Collusion, on the other hand,

is handled by requiring that the principal’s offer solves the agents’ problem.

3 Optimality of Linearity

Our main theorem proves that the linearity results of Holmstrom and Milgrom (1987), Schättler

and Sung (1993), and Sung (1995) are robust with respect to collusion and renegotiation.

Theorem 1 There exists a stationary and linear optimal collusion proof and renegotiation proof

contract.
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The rest of the paper concerns the proof of this result which involves 3 steps. First, we analyze

the efficiency implications of the agents’ problem and obtain some desirable properties. In fact,

we show that the interaction among agents is similar to that in Bone (1998) and its aggregation

result holds in our setting. This enables us to associate the agents’ problem with one that involves

a “representative agent” (the team of all agents) having a CARA utility.10 11 In the second step

we consider the associated version of the principal’s problem with a team and establish optimality

of linearity as in Sung (1995). The final step shows that this result is preserved in the principal’s

problem containing the agents’ when the team’s payments are distributed efficiently.

Definition 3 Given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static efficient at ht if there exists

θt ∈ int(∆) such that

(Si(t))i∈N ∈ arg max
Ŝ(t)

∑
i∈N

θitE
[
− exp

{
−riW

Ŝ(t)
i (X; µ, σ)

}∣∣∣Ft

]

subject to (1) dXτ = µτdτ + στdBτ for τ ≥ t, and (2)
∑N

i=1 Ŝi(t)(X) ≤
∑N

i=1 Si(t)(X) for X ∈ Ω.

Lemma 1 Given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static efficient at ht if and only if there

is (θit)i∈N ∈ int(∆) such that for a.e. X ∈ Ω and for any i, j ∈ N

θitri exp
{
−riW

S(t)
i (X; µ, σ)

}
= θjtrj exp

{
−rjW

S(t)
j (X; µ, σ)

}
. (5)

Proof. Let t and ht and (µτ , στ )τ∈[0,1] be given. We denote the resulting probability density

function on X by f(·; µ, σ | Ft).
12 Due to the strict concavity of the utility functions, the necessary

conditions of the first-order analysis are also sufficient. Hence, (Si(t))i∈N is static efficient at ht if

10In that study a group of agents with CARA utilities jointly choose between uncertain prospects. A static
environment is modeled, while the following two key aspects are common with our setting: (1) the choice of any
prospect must be unanimously agreed, and (2) the uncertain outcomes from the chosen prospect are distributed
among agents according to some unanimously made prior agreements.

11An earlier study, Brennan and Kraus (1978), shows that an aggregation leading to a representative agent repre-
sentation is possible when agents have either CARA utilities or HARA (hyperbolic absolute risk aversion) preferences
with equal exponents. And, it is shown in section 4 in Bone (1998) that this conclusion does not hold with noniden-
tical exponents. Moreover, the representative agent’s utility function is not necessarily negative exponential with
HARA utilities having identical exponents. However, as the stationary decision making environment is a key feature
in the search for optimality of linearity, the CARA utilities’ property of not involving any income effects and the
use of stochastic processes with the martingale property are essential: The history in our setting determines the
accumulated returns which do not influence agents’ decisions due to lack of income effects; and, incremental future
returns is expected not to be different from today’s due to the martingale property.

12It is useful to remind the reader that for any standard Brownian motion X = {Xt : t ∈ [0,∞)}, Xt has a
probability density function ft given by ft(x) = 1/(

√
2πt) exp{−x2/(2t)}.
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and only if for every i ∈ N

θitri exp
{
−riW

S(t)
i (X; µ, σ)

}
f(X; µ, σ | Ft) = λX , for a.e. X ∈ Ω (6)

where λX denotes the Lagrangian multiplier of the feasibility for the redistribution in state X and

it has to be strictly positive as the constraint binds due to the objective function being strictly

increasing. Note that f(X; µ, σ | Ft) > 0, X ∈ Ω, and 6 is analogous to condition 4 of Bone (1998).

Since the right-hand side of 6 does not depend on the identity of the agent, the result follows.

By following the same arithmetic manipulations of Bone (1998) (conditions 9–13), we obtain:

Lemma 2 Given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static efficient at ht if and only if there

is (θit)i∈N ∈ int(∆) such that for all i ∈ N and a.e. X ∈ Ω,

W
S(t)
i (X; µ, σ) = kit +

rc

ri

W̄ S(t)(X; µ, σ) (7)

where rc =
(∑

j 1/rj

)−1

and kit = (rc/ri)
(∑

j (ln(θitri)− ln(θjtrj)) /rj

)
and W̄ S(t)(X; µ, σ) =∑

i W
S(t)
i (X; µ, σ).

Proof. The rearrangement of equation 5 in logarithmic form is as follows: for a.e X ∈ Ω and every

i, j ∈ N , there exist {θit, θjt} at time t such that,

W
S(t)
j (X; µ, σ) =

ri

rj

W
S(t)
i (X; µ, σ) +

ln(θjtrj)− ln(θitri)

rj

.

Summing across j while keeping i fixed results in

W̄ S(t)(X; µ, σ) =
∑

j

W
S(t)
j (X; µ, σ) =

∑
j

(
ri

rj

W
S(t)
i (X; µ, σ) +

ln(θjtrj)− ln(θitri)

rj

)
= riW

S(t)
i (X; µ, σ)

∑
j

1

rj

+
∑

j

ln(θjtrj)− ln(θitri)

rj

=
ri

rc

W
S(t)
i (X; µ, σ)− ri

rc

kit

where rc and kit are as defined in the statement of the lemma. Hence, the result follows.

So given the history and control laws, static efficiency at that history implies that agent i’s

payment in instant t from the total payments (the team’s state–contingent compensation) involves

a (state–independent) constant payment, and a fraction which depends on agents’ CARA coefficients
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and not the bargaining weights. Moreover, summing across agents these fractions add up to unity

while the fixed payments sum to zero. This leads to the following:

Lemma 3 Suppose that for given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static efficient at ht

and let θt ∈ int(∆), identifying (kit)i ∈ <N according to Lemma 2, be associated with (Si(t))i. Let

Q(t) : Ω → < be given and W̄Q(t)(X; µ, σ) ≡
(
Q(t)(X)−

∑
i

(∫ 1

0
ci(µs, σs)ds

))
, X ∈ Ω. Then

(S̃i(t))i∈N , a feasible redistribution of Q(t) according to θt (thus, (kit)i) defined by

W
S̃(t)
i (X; µ, σ) = kit +

rc

ri

W̄Q(t)(X; µ, σ),

for a.e. X ∈ Ω, is also static efficient at ht.

Proof. Let t and ht and (µτ , στ )τ∈[0,1] be given, and (Si(t))i∈N along with θt and (kit)i be as in the

statement of the lemma. Hence, due to Lemmas 1 and 2 the profile (Si(t))i∈N is static efficient at

ht is equivalent to for a.e. X ∈ Ω

θitri exp

{
−ri

(
kit +

rc

ri

W̄ S(t)(X; µ, σ)

)}
= θjtrj exp

{
−rj

(
kjt +

rc

rj

W̄ S(t)(X; µ, σ)

)}
,

which simplifies to, θitri exp {−rikit} = θjtrj exp {−rjkjt}. To see that (S̃i(t))i∈N is static efficient

at ht we prove that this profile satisfies 5. This follows from the last equation and for a.e. X ∈ Ω

we have W̄ S̃(t)(X; µ, σ) = W̄Q(t)(X; µ, σ) and

θitri

θjtrj

=
exp {−rjkjt}
exp {−rikit}

=
exp

{
−rj

(
kjt + rc

rj
W̄ S̃(t)(X; µ, σ)

)}
exp

{
−ri

(
kit + rc

ri
W̄ S̃(t)(X; µ, σ)

)} .

We employ this lemma to establish that the principal does need not to know what the “real”

bargaining weights θt are. As the bargaining weights do not affect agents’ shares from the total

compensation when dealing with static efficiency at a given history, it can be shown that in such

situations the interests of all the agents are perfectly aligned.

Lemma 4 Suppose that for given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N associated with θt and (kit)i

and (S′i(t))i∈N are both static efficient at ht with the additional requirement that (S′i(t))i∈N is defined

by

W
S′(t)
i (X; µ′, σ′) = kit +

rc

ri

W̄ S′(t)(X; µ′, σ′).
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Then,

E
[
− exp

{
−rjW

S(t)
j (X; µ, σ)

}∣∣∣Ft

]
> E

[
− exp

{
−rjW

S′(t)
j (X; µ′, σ′)

}∣∣∣Ft

]
, for some j ∈ N (8)

if and only if

E
[
− exp

{
−rcW̄

S(t)(X; µ, σ)
}∣∣Ft

]
> E

[
− exp

{
−rcW̄

S′(t)(X; µ′, σ′)
}∣∣∣Ft

]
. (9)

Proof. Let t and ht and (µτ , στ )τ∈[0,1] be given and (Si(t))i∈N associated with θt and (kit)i and

(S′i(t))i∈N be as in the statement of the lemma. Notice that in light of Lemma 2 (equation 7),

inequality 8 holds for any one of j ∈ N if and only if

E

[
− exp

{
−rj

(
kjt +

rc

rj

W̄ S(t)(X; µ, σ)

)}∣∣∣∣Ft

]
> E

[
− exp

{
−rj

(
kjt +

rc

rj

W̄ S′(t)(X; µ′, σ′)

)}∣∣∣∣Ft

]
which equivalent to

exp {−rjkjt}E
[
− exp

{
rcW̄

S(t)(X; µ, σ)
}∣∣Ft

]
> exp {−rjkjt}E

[
− exp

{
rcW̄

S′(t)(X; µ′, σ′)
}∣∣∣Ft

]
,

delivering the desired conclusion as the last inequality is equivalent to 9.

Now, we proceed with associating these conclusions with dynamic notions of efficiency:

Definition 4 Given (µτ , στ )τ∈[0,1], (Si)i∈N with Si : [0, 1] × Ω → < for i ∈ N is efficient if for

a.e. t and ht it must be that (Si(t))i∈N is static efficient at ht. We say that ((Si)i, µ, σ) is efficient

whenever (Si)i is efficient for given µ and σ.

Then, under the light of our findings about efficiency and the fact that agents’ interest are

perfectly aligned, we wish to define the team’s problem:

Definition 5 (The Team’s Problem) Given the principal’s offer, salaries Si : Ω → < for i ∈ N

and Ft–predictable control laws µ : [0, 1] × Ω → U and σ : [0, 1] × Ω → S, S̃c : [0, 1] × Ω → < and

µ̃ : [0, 1]×Ω → U and σ̃ : [0, 1]×Ω → S solve the team’s problem if for a.e. t and ht the following

is maximized

E
[
− exp

{
−rcW

Ŝc(t)
c (X; µ̂, σ̂)

}∣∣∣Ft

]
, (10)

10



where W
Ŝc(t)
c (X; µ̂, σ̂) ≡

(
Ŝc(t)(X)−

∑
i

(∫ 1

0
ci(µ̂s, σ̂s)ds

))
, X ∈ Ω, subject to

dXτ = µ̂τdτ + σ̂τdBτ , τ ≥ t, (11)

Ŝc(t)(X) ≤
∑

i

Si(X), X ∈ Ω. (12)

E
[
− exp

{
−rcW

Ŝc(t)
c (X; µ̂, σ̂)

}∣∣∣Ft

]
≥ E

[
− exp

{
−riW

S
i (X; µ̂, σ̂)

}∣∣Ft

]
, ∀i ∈ N. (13)

The date–t participation constraint, 13, can be interpreted as follows: the expected utility of

the representative agent (the team) cannot be strictly lower than the expected utility of any one of

the agents. Otherwise whether or not such an agent would be willing to participate into the team

arrangement is at jeopardy.

For any control laws (ST , µT , σT ) that solve the team’s problem, we prove that we can construct

a redistribution so that efficiency in every date and state is obtained and agents’ problem is solved.

Lemma 5 Let the principal’s offer, Si : Ω → <, i ∈ N , and Ft–predictable µ : [0, 1] × Ω → U

and σ : [0, 1] × Ω → S be given, and suppose that the Ft–predictable profile (ST
c , µT , σT ), with

ST
c : [0, 1] × Ω → < and µT : [0, 1] × Ω → U and σT : [0, 1] × Ω → S, solves the team’s problem.

Then ((ST
i )i, µ

T , σT ) obtained by distributing the team’s payments with θ∗ : [0, 1] × Ω → int(∆)

where θ∗it = rc

ri
for all t and ht is efficient and solves the agents’ problem at θ∗ for given ((Si)i, µ, σ).

Proof. Let the principal’s offer ((Si)i, µ, σ) be as in the statement of the lemma and suppose

(ST
c , µT , σT ) solves the team’s problem. Define ST = (ST

i )i using θ∗ as follows: for a.e. t, ht and X

W
ST (t)
i (X; µT , σT ) =

rc

ri

W̄ ST (t)(X; µT , σT ), (14)

while W̄ ST (t)(X; µT , σT ) = W
ST

c (t)
c (X; µT , σT ) for a.e. t and ht and X.

Next, we prove that ((ST
i )i, µ

T , σT ) is efficient: Let t and ht be given and θ∗i = rc

ri
. Observe

that kT
it = (rc/ri)(

∑
j(ln(θ∗i ri)− ln(θ∗j rj))/rj) = 0 for all i, t, ht. So 14, the defining condition of

(ST
i (t))i, satisfies 7; hence, (ST

i (t))i is static efficient at ht by Lemma 2.

(ST
c , µT , σT ) solving the team’s problem means that for a.e. t and ht it maximizes 10 subject

to 11 and 12 and 13. We wish to show that ((ST
i )i, µ

T , σT ) satisfies the constraints of the agents’

problem. As
∑

i
rc

ri
= 1, 11 and 12 imply 2 and 3. We display that 4 also holds: since (ST

i )i is

defined for a.e. t and ht and X by 14 it must be that riW
ST (t)
i (X; µT , σT ) = rcW̄

ST (t)(X; µT , σT )

and W̄ ST (t)(X; µT , σT ) = W
ST

c (t)
c (X; µT , σT ) for a.e. t and ht and X; this implies 13 if and only if 4.

11



In the next step we prove that for any ((SA
i )i, µ

A, σA) that solve the agents’ problem for θ∗,

the associated profile (
∑

i S
A
i , µA, σA) satisfies 11 and 12 and 13 of the team’s problem. Notice

that ((SA
i )i, µ

A, σA) is efficient: since the definition of static efficiency concerns the maximization

of 1 subject to 2 and 3 for a given t and ht and (µA
τ , σA

τ )τ∈[0,1], we conclude that for a.e. t and ht,

((SA
i (t))i, µ

A, σA) is static efficient at ht. So Lemma 2 applies and using θ∗ we obtain:

W
SA(t)
i (X; µA, σA) = kA

it +
rc

ri

W̄ SA(t)(X; µA, σA), where kA
it = 0 for all t and ht and i. (15)

2 and 3 concerning ((SA
i )i, µ

A, σA) imply 11 and 12 involving (
∑

i S
A
i , µA, σA). And 13 if and only if

4: since (SA
i )i is defined for a.e. t and ht and X by 15, riW

SA(t)
i (X; µA, σA) = rcW̄

SA(t)(X; µA, σA)

and W̄ SA(t)(X; µA, σA) = W
S̄A(t)
c (X; µA, σA) where S̄A(t)(X) =

∑
i S

A
i (t)(X), i ∈ N .

The preceding two paragraphs establish that (1) the solution to the team’s problem satisfies

the constraints of the agents’ problem when the distribution is done according to θ∗, and (2) the

solution of the agents’ problem at θ∗ satisfies the constraints of the team’s problem.

Finally, we establish that if (ST
c , µT , σT ) solves the team’s problem, then ((ST

i )i, µ
T , σT ) solves

the agents’ problem at θ∗. From the above we know that ((ST
i )i, µ

T , σT ) is efficient. So using 14

and θ∗, the objective function of the agents’ problem (condition 1) becomes

∑
i

θ∗i E
[
− exp{−riW

ST (t)
i (X; µ, σ)}

∣∣∣Ft

]
=
∑

i

rc

ri

E
[
− exp{−rcW̄

ST (t)(X; µ, σ)}
∣∣∣Ft

]
= rc

(∑
i

1

ri

)
E
[
− exp{−rcW

ST
c (t)

c (X; µ, σ)}
∣∣∣Ft

]
= E

[
− exp

{
−rcW

ST
c (t)

c (X; µ, σ)
}∣∣∣Ft

]
.

Therefore, the objective functions of the two problems coincide, delivering the desired conclusion.

Now, the principal may contract directly with the representative agent having a CARA coefficient

rc =
(∑

i
1
ri

)−1

and a reservation certainty equivalent Wc0 =
∑

i Wi0 and costs cc : U × S → < is

defined by cc(µt, σt) =
∑

i ci(µt, σt):

Definition 6 Principal chooses a salary for the team Ŝc : Ω → < and control laws µ̂ : [0, 1]×Ω → U

and σ̂ : [0, 1]× Ω → S, such that

(
Ŝc, µ̂, σ̂

)
∈ argmax(Sc,µ,σ) E [− exp {−R (X1 − Sc(X))}|F0]

subject to

12



i. dXt = µtdt + σtdBt, t ∈ [0, 1];

ii. E
[
− exp

{
−rcW

Sc
c (X; µ, σ)

}∣∣F0

]
≥ − exp{−rcWc0};

iii. Sc and (µ, σ) must be such that there exists Sc : [0, 1]× Ω → < satisfying Sc(1)(X) = Sc(X),

X ∈ Ω, so that for a.e. t and ht, (Sc, µ, σ) maximizes E
[
− exp

{
−rcW

S̃c(t)
c (X; µ̃, σ̃)

}∣∣∣Ft

]
subject to dXτ = µ̃τdτ + σ̃τdBτ , τ ≥ t, and S̃c(t)(X) ≤ Sc(X), X ∈ Ω.

The principal’s problem involving the representative agent given in Definition 6 belongs to the

class studied in Sung (1995) and his Proposition 2 applies which we restate using our notation.13

Lemma 6 (Proposition 2 of Sung (1995)) Let (m∗, s∗) be a control pair that solves the follow-

ing constrained static maximization problem. Choose (m̂, ŝ) ∈ U × S to maximize

Φp(m̂, ŝ) = m̂ + Rŝ2ccµ(m̂, ŝ)− cc(m̂, ŝ)− 1

2
(R + rc) (ccµ(m̂, ŝ))2 ŝ2 − R

2
ŝ2

subject to (m̂, ŝ) ∈ arg max(m,s)∈U×S Φa(m, s | m̂, ŝ) := ccµ(m̂, ŝ)m− cc(m, s)− rc

2
(ccµ(m̂, ŝ))2 s2.

Then (m∗, s∗) is the optimal control pair for all t ∈ [0, 1], and the principal’s optimal remaining

expected utility V over time is given by V (t,Xt) = − exp {−R (Xt −Wc0 + (1− t)Φp(m∗, s∗))}.
Furthermore, the optimal salary scheme S∗

c is linear in the final realized outcome X1, and is

given by

S∗
c (X1) = Wc0 + cc(m

∗, s∗) + ccµ(m∗, s∗) ((X1 −X0)−m∗) +
rc

2
(ccµ(m∗, s∗))2 s∗2. (16)

Proof. See the Appendix of Sung (1995).

We have to emphasize that “Φp is representative of the principal’s expected utility” while “Φa

can be viewed as a representative of the (representative) agent’s expected utility” (Sung 1995).

Therefore, Lemma 6 tells that the principal’s problem given in Definition 6 has a (stationary)

solution (S∗
c , µ

∗, σ∗) where µ∗ : [0, 1] × Ω → U and σ∗ : [0, 1] × Ω → S are defined by µ∗t (X) = m∗

and σ∗t (X) = s∗ for t ∈ [0, 1] and X ∈ Ω, and S∗
c is linear in X1 as it is given by equation 16.

The principal distributing (S∗
c , µ

∗, σ∗), efficiently using θ∗ attains S∗ = (S∗
i )i defined by

W S∗

i (X; µ∗, σ∗) = (rc/ri)W
S∗

c
c (X; µ∗, σ∗). (17)

13Sung (1995) uses the first–order approach, introduced by Schättler and Sung (1993), by allowing agents to control
the variance as well as the mean of the process. The first–order necessary conditions lead to a semi–martingale
representation of agent’s salary function which, in turn, is used to obtain a relaxed version of the principal’s problem.
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Let S∗k : [0, 1]× Ω → < for k = c, 1, . . . , N be given by S∗k(t)(X) = S∗
k(X), t ∈ [0, 1] and X ∈ Ω.

Lemma 7 S∗
i : Ω → < is linear in X1 for all i ∈ N . And (S∗c , µ

∗, σ∗) solves the team’s problem

(Definition 5) given ((S∗
i )i, µ

∗, σ∗); ((S∗i )i, µ
∗, σ∗) solves the agents’ problem (Definition 1) given

((S∗
i )i, µ

∗, σ∗) at θ∗. Finally, ((S∗
i )i, µ

∗, σ∗) solves the principal’s problem (Definition 2).

Proof. The linearity of S∗
i follows from the fact that 17 is equivalent to S∗

i (X) being equal to

S∗
i (X) = ci(m

∗, s∗) +
rc

ri

(∑
j∈N

Wj0 + A1(X1 −X0) + A2

)
,

where A1 =
∑

j∈N cjµ(m∗, s∗) and A2 = rc

2
(
∑

j∈N cjµ(m∗, s∗))2s∗2 − (
∑

j∈N cjµ(m∗, s∗))m∗. As ciµ is

strictly positive, A1 is strictly positive.

To establish that (S∗c , µ
∗, σ∗) solves the team’s problem given ((S∗

i )i, µ
∗, σ∗), it suffices to show

that 13 is satisfied. This holds because by definition E[− exp{−rcW
S∗

c(t)
c (X; µ∗, σ∗)}|Ft] equals

E[− exp{−rcW
S∗

c
c (X; µ∗, σ∗)}|Ft] = E[− exp{−riW

S∗
i (X; µ∗, σ∗)}|Ft], i ∈ N , due to 17.

Now, Lemma 5 applies, so ((S∗i )i, µ
∗, σ∗) solves the agents’ problem given ((S∗

i )i, µ
∗, σ∗) at θ∗.

To show that ((S∗
i )i, µ

∗, σ∗) solves the principal’s problem given in Definition 2 it suffices to

prove that this profile satisfies agents’ individual rationality constraints. This follows from the fact

that E[− exp{−ri(S
∗
i −
∫ 1

0
ci(µ

∗, σ∗)dt)}|F0] = E[− exp{−ri(Wi0 + rc

ri
(A1(X1−X0)+A2))}|F0], and

this equals − exp{−riWi0}E[− exp{−rc(S
∗
c −Wc0 − cc(m

∗, s∗))}|F0], and the individual rationality

constraint of the representative agent (condition ii in Definition 6) being satisfied.

This finishes the proof of Theorem 1.

4 Concluding Remarks

Now, we consider the situation when agents’ “real” bargaining weights are employed. Let θR :

[0, 1]×Ω → int(∆) be the agents’ real bargaining weights that the principal is not aware of. Below

we prove that ((S∗i )i, µ
∗, σ∗) also solves the agents’ problem given ((S∗

i )i, µ
∗, σ∗) at θR.

Suppose not, and consider ((SR
i )i, µ

∗, σ∗) where SR
i is defined by

W
SR(t)
i (X; µ∗, σ∗) = kR

it +
rc

ri

W S∗
c(t)

c (X; µ∗, σ∗), (18)
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while (kR
it )i is associated with (θR

it)i. Due to Lemma 3 we know that ((SR
i )i, µ

∗, σ∗) is efficient. If

((SR
i )i, µ

∗, σ∗) were not to solve the agents’ problem given ((S∗
i )i, µ

∗, σ∗) at θR, then the solution

((SA
i )i, µ

A, σA) must be efficient, thus satisfy 7 with (kR
it )i (i.e. is given by W

SA(t)
i (X; µA, σA) =

kR
it + rc

ri
W

S∗
c(t)

c (X; µA, σA), i ∈ N), and that there exists t and ht with

∑
i

θR
itE
[
− exp

{
−riW

SA(t)
i (X, µA, σA)

}∣∣∣Ft

]
>
∑

i

θR
itE
[
− exp

{
−riW

SR(t)
i (X, µ∗, σ∗)

}∣∣∣Ft

]
,

which implies that there is some j ∈ N such that E[− exp{−rjW
SA(t)
j (X, µA, σA)}|Ft] strictly

exceeds E[− exp{−rjW
SR(t)
j (X, µ∗, σ∗)}|Ft]. Since both ((SA

i )i, µ
A, σA) and ((SR

i )i, µ
∗, σ∗) are ef-

ficient and defined via the same (kR
it )i, Lemma 4 applies and the last inequality is equivalent

to E[− exp{−rcW
S∗

c(t)
c (X, µA, σA)}|Ft] being strict greater than E[− exp{−rcW

S∗
c(t)

c (X, µ∗, σ∗)}|Ft]

and this delivers a contradiction to µ∗ and σ∗ being optimal controls of Lemma 6.

Having established that ((SR
i )i, µ

∗, σ∗) solves the agents’s problem for given ((S∗
i )i, µ

∗, σ∗) at θR,

we obtain from 18 that riW
SR(t)
i (X; µ∗, σ∗) = rik

R
it + rcW

S∗
c(t)

c (X; µ∗, σ∗), and use the observation

that made in 14 to have rcW
S∗

c(t)
c (X; µ∗, σ∗) = riW

S∗(t)
i (X; µ∗, σ∗) delivering

kR
it = W

SR(t)
i (X; µ∗, σ∗)−W

S∗(t)
i (X; µ∗, σ∗).

Due to W
S∗(t)
i (X; µ∗, σ∗) = W S∗

i (X; µ∗, σ∗), i’s date–t participation constraint 4, becomes

0 ≤ E
[
− exp

{
−riW

SR(t)
i (X; µ∗, σ∗)

}∣∣∣Ft

]
+ E

[
exp

{
−riW

S∗

i (X; µ∗, σ∗)
}∣∣Ft

]
=

E
[
− exp

{
−riW

SR(t)
i (X; µ∗, σ∗)

}∣∣∣Ft

]
E [exp {−riW S∗

i (X; µ∗, σ∗)}|Ft]
+

E
[
exp

{
−riW

S∗
i (X; µ∗, σ∗)

}∣∣Ft

]
E [exp {−riW S∗

i (X; µ∗, σ∗)}|Ft]

= E
[
− exp

{
−ri

(
W

SR(t)
i (X; µ∗, σ∗)−W S∗

i (X; µ∗, σ∗)
)}∣∣∣Ft

]
+ 1 = − exp

{
−rik

R
it

}
+ 1,

which implies exp
{
rik

R
it

}
≥ 1, so kR

it ≥ 0, for all i ∈ N . Moreover, by efficiency
∑

i k
R
it = 0. Hence,

kR
it = 0 for all i and t and ht, thus, ((SR

i )i, µ
∗, σ∗) = ((S∗i )i, µ

∗, σ∗); a contradiction.
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