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Abstract

This paper is devoted to internal capacity characteristics of a do-
main D � Cn, relative to a point a 2 D, which have their origin
in the notion of the conformal radius of a simply connected plane
domain relative to a point. Our main goal is studying internal Cheby-
shev constants and trans�nite diameters for a domain D � Cn and its
boundary @D relative to a point a 2 D in the spirit of the author�s
article (Math. USSR Sbornik 25 (1975), 350-364), where similar char-
acteristics have been investigated for compact sets in Cn. The central
notion of directional Chebyshev constants is based on the asymptotic
behavior of extremal monic "polynomials" and "copolynomials" in di-
rections determined by the arithmetics of the indices set Zn. Some
results are closely related to results on s-th Rei¤en pseudometrics and
internal directional analytic capacities of higher order (Jarnicki-P�ug,
Nivoche) studying the asymptotic behavior of extremal "copolynomi-
als" in varied directions as approaching to the point a.

1 Introduction

A well-known classical result of the geometric function theory (Fekete [8],
Szegö [25]) is the coincidence of three characteristics of a compact set K in
C, which are de�ned in quite di¤erent ways:

d (K) = � (K) = c (K) ;

where d (K) is the trans�nite diameter (a geometric characterization), � (K)
is the Chebyshev constant (an approximation theory approach), and c (K)
is the capacity (a potential theory point of view). Multidimensional analogs
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of these characteristics were studied intensively in last decades, beginning
with Leja�s de�nition of the multivariate trans�nite diameter [13] and the
author�s article [26], where a multidimensional analog of Fekete�s equality
d (K) = � (K) has been obtained. In [30], Section 3, one can �nd a survey
of results concerned with relations among various capacity characteristics of
compact sets in Cn.
Our main goal is the study of internal Chebyshev constants and trans�nite

diameters for a domain D and its boundary @D in Cn relative to a point
a 2 D in the spirit of [26], applying the general approach, developed in
Section 4 of [30]. Namely, our considerations are based on two systems: the
system of monomials

ei;a (z) := (z � a)k(i) ; i 2 N; (1)

where i ! k (i) = (k1 (i) ; : : : ; kn (i)) is a standard enumeration of the set
Zn+ (see Section 2 below) and its biorthogonal system of analytic functionals�
e0i;a
	
i2N de�ned via

e0i;a (f) =
f (k(i)) (a)

k (i)!
; i 2 N; f 2 A (fag) ; (2)

here A (fag) is the space of analytic germs at the point a. We investigate
the asymptotic behavior of the least deviation (in proper norms related to
the domain D) from zero �i of either (i) "monic polynomials" with respect to
the system (2) e0i;a +

P
j<i cj e

0
j;a (� (a; @D) (in order to "measure the size of

@D viewed from a") or (ii) "monic copolynomials", that is, functions whose
Taylor expansion at the point a is of the form: ei;a +

P
j>i cj ej;a (� (a;D)

(for "measuring the size of D relative to a").
By analogy with [30], for an arbitrary domain D � Cn, we introduce

in Section 4 the directional Chebyshev constant � (a;D; �), which describes
the asymptotic behavior of extremal monic copolynomials by the system
(1) in the direction �, study properties of the characteristics � (a;D; �) as
a function of �, and de�ne the principal Chebyshev constant � (a;D) as the
geometric mean of directional ones. In Section 5 we consider, dual in a sense,
directional Chebyshev constants � (a; @D; �) and the principal Chebyshev
constant � (a; @D) that describe the asymptotic behavior of extremal monic
polynomials by (2) and "measure the size of @D viewed from a point a 2
D". It is shown that, in the case of a strictly pluriregular domain D, these
characteristics are reciprocal and remain the same, when normed spaces, used
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in their de�nition, vary in a wide range. Applying the theorem on Hilbert
scales of analytic functions (see, e.g., [28, 29]), we show in Section 6 that
the asymptotics of leading coe¢ cients of orthonormal bases, obtained by
the Gram-Schmidt procedure from the systems (1) and (2) in proper Hilbert
spaces, are expressed through Chebyshev constants. The trans�nite diameter
d (a; @D) of the boundary @D viewed from a point a 2 D is introduced
in Section 7 by means of extremal Vandermondians for the sequence (2).
The equality d (a; @D) = � (a; @D) = � (a;D)�1 is proved, which can be
considered as an internal multivariate analog of the Fekete equality.
In Section 3 we consider the one-dimensional case, that displays a direct

connection of the above internal characteristics with the logarithmic capac-
ity of an appropriate compact set and, if D is simply connected, with its
conformal radius related to a point.
Section 8 deals with internal analytic capacities of a domain relative to a

point and is closely related to Jarnicki-P�ug�s and Nivoche�s results ([9, 10,
11, 16, 19]. Applying the latter, we give an expression of the Robin function
in terms of internal orthonormal bases (which can be considered as an internal
analog of Zeriahi�s result [31], Theorem 2) and consider analogs of Szegö�s
equality by introducing some natural Chebyshev constants, though they are
di¤erent from the considered above. The problem on analogs of Szegö�s
equality, concerned with the Chebyshev constants studied in Sections 4-6
(similar to Rumely�s result for compact sets in Cn [22]), remains open, see
Section 9, where some other conclusions and generalizations are discussed.

2 Preliminaries and notation

Given an open set D � Cn we denote by A (D) the space of all analytic func-
tions in D with usual locally convex topology of locally uniform convergence
in D. If K � Cn is a compact set then the space A (K) is the locally convex
space of all germs of analytic functions on K, endowed with the standard
inductive topology.

De�nition 1 A Stein manifold 
 is called pluriregular (strongly pseudocon-
vex, Cn-pluriregular, P -pluriregular, hyperconvex) if there exists a negative
function u 2 Psh (
) such that u (zj) ! 0 for every sequence fzjg with-
out limit points in 
 (brie�y, if z ! @
). We say that a domain D in
a Stein manifold 
 is strictly pluriregular if there is a pseudoconvex do-
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main � : D b � � 
 and a continuous function u 2 Psh (�) such that
D = fz 2 � : u (z) < 0g. If dim
 = 1, we say that D is strictly regular.

Notice that "strict pluriregularity" is somewhat weaker than "strict hy-
perconvexity" considered in [17, 18].

De�nition 2 The (generalized) pluripotential Green function of a Stein man-
ifold D with a logarithmic singularity at a point a 2 D is de�ned via:

gD (a; z) := lim sup
�!z

sup fu (�) : u 2 G (a;D)g ; (3)

where G (a;D) consists of all negative functions u 2 Psh (D) such that u (z)�
ln j' (z)j is bounded from above near a, where the mapping ' 2 A (D)n repre-
sents local coordinates at a so that ' (a) = 0 (this de�nition does not depend
on the choice of local coordinates; if D � Cn we take ' (z) = z � a).

The following assertion will be needed (see, e.g., [30], Lemma 2.1)

Lemma 3 Suppose X; Y is a pair of locally convex spaces and J : X ! Y
is an injective continuous linear operator with the dense image. Then the
adjoint operator J� : Y � ! X� is also injective and, if X is re�exive, the
image J� (Y �) is dense in X�.

Remark 4 In what follows, we always treat the operator J as an identi-
cal embedding, identifying x with Jx and using the notation X ,! Y for a
linear continuous embedding. In particular, we write also Y � ,! X� in the
conditions of Lemma 3.

We use the notation jf jE := sup fjf (z)j : z 2 Eg for a function f : E !
C. Denote by Zn+ the set of all integer-valued vectors k = (k1; : : : ; k� ; : : : ; kn)
with non-negative coordinates. Let jkj := k1+ : : :+k�+ : : :+kn be the degree
of the multiindex k. Introduce an enumeration fk (i)gi2N of the set Zn+ via
conditions: the sequence s (i) := jk (i)j is non-decreasing and on each set
Ks := fjk (i)j = sg the enumeration coincides with the lexicographic order
relative to k1; : : : ; kn. Denote by i (k) the number assigned to k under this
ordering. Notice that the number of multiindices of degree not larger than s is
ms :=

�
s+n
s

�
and the number of ones of degree s isNs := ms�ms�1 =

�
s+n�1
s

�
,

s � 1; N0 = 1. Set

ls :=

sX
q=0

qNq (4)
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for s = 0; 1; : : :.
We consider the standard (n� 1)-simplex

� :=

(
� = (��) 2 Rn : �� � 0; � = 1; : : : ; n;

nX
�=1

�� = 1

)
(5)

and its interior �� (in the relative topology on the hyperplane containing �).
For � 2 � we denote by L� the set of all in�nite sequences L � N such that
k(i)
s(i)

L! �. We set k! := k1! � � � k� ! � � � kn! for k = (k�) 2 Zn+ . We use also the
notation jzj :=

�Pn
�=1 jz� j

2�1=2.
Given a pair of Hilbert spacesH1 ,! H0 with dense embedding, we denote

by
H� = (H0)

1�� (H1)
� ; � 2 R

the Hilbert scale generated by the pair H0; H1 (see, e.g., [12]).
By H1 (D) we denote the space of all bounded functions f 2 A (D)

with the uniform norm kfkH1(D) := jf jD. If D is bounded we consider its
subspace AC

�
D
�
that consists of functions extendible continuously onto D

and the Bergman space AL2 (D) of all analytic functions square integrable
by the Lebesgue measure on D. By Ur (a) we denote the equilateral polydisk
of radius r > 0 centered at a 2 Cn.

3 One-dimensional case: internal capacity char-
acteristics

The conformal radius of a simply connected domain D � C with respect to the
point a is the number r (a;D) := 1

j!0(a)j ;where ! : D ! U is a biholomorphic
mapping such that ! (a) = 0; it is supposed here that !0 (1) := d!(1=�)

d�
j�=0

if a = 1; the number r (1; D)�1 is called also a conformal radius of the
compact set K := CrD (see, e.g., [21]).
The capacity of D relative to a point a 2 D is de�ned via c (a;D) :=

exp (�� (a;D)) ;where � (a;D) := limz!a (gD (a; z)� ln jz � aj) is the Robin
constant of D relative to a 2 D and gD (a; z) is the generalized (subhar-
monic!) Green function of D with the normalized (negative) logarithmic
singularity at a. If D is a simply connected domain in C and a 2 D, then
the conformal radius r (a;D) coincides with the capacity c (a;D).
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The characteristic c (a;D) was considered by many authors also under
the name "interior (or inner) radius of D relative to a". A related capacity
characteristic, named "radius of @D viewed from a point a 2 D", was also
under consideration: c (a; @D) := exp � (a;D) = 1

c(a;D)
:

Using biholomorphic mapping, these capacities can be reduced to the log-
arithmic capacity of a related compact set. Namely, setKa :=

�
1
z�a : z 2 CrD

	
if a 6=1 and K1 = CrD, then

c (a;D) =
1

c (Ka)
; c (a; @D) = c (Ka) : (6)

where c (K) is the logarithmic capacity of a compact set K in C, that coin-
cides, by Fekete-Szegö result, with its trans�nite diameter d (K) and Cheby-
shev constant � (K).
For a �xed a 2 C we consider a system of functions: es;a (z) := 1

(z�a)s ; s 2
N if a 6=1; and es;1 (z) = zs, s 2 N, otherwise. Given a domain D 6= C and
a 2 D we introduce the Chebyshev constant of @D viewed from the point a
via

� (a; @D) := lim
s!1

inf

8><>:
0@�����es;a + X

0�j<s
c
j
ej;a

�����
@D

1A1=s

: cj 2 C

9>=>; : (7)

and the trans�nite diameter of @D viewed from the point a via

d (a; @D) := lim
s!1

�
sup

n���det (e�;a (��))s�;�=0��� : (��) 2 (CrD)so�2=s(s�1) :
(8)

Changing variables z = a+ 1
w
we obtain that

� (a; @D) = d (a; @D) = � (Ka) = c (Ka) = c (a; @D) : (9)

The representations (7) and (8) give a motivation for the notions of multi-
variate internal Chebyshev constants and trans�nite diameter of @D viewed
from a point a 2 D, which we consider in the next sections. Only, for n � 2;
one has to deal (see Section 7) with appropriate analytic functionals instead
of the functions 1

(z�a)k ; k 2 Z
n, which are not de�ned on D r fag as ana-

lytic functions. Since the evaluation at a point makes no sense for analytic
functionals, we need to apply, in the de�nition of the trans�nite diameter,
the general approach suggested in Section 4 of [30]. As an application, we
obtain there an expression of the capacity c (a;D) via extremal Wronskians
at the point a (Section 7, Corollary 21).
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4 Internal Chebyshev constants

Given a domain D in Cn and a point a 2 D we de�ne a sequence

�i = �i (a;D) := inf fjf jD : f 2 Nig ; (10)

where

Ni = Ni (a;D) :
�
f 2 H1 (D) : e0j;a (f) = 0; j < i; e

0
i;a (f) = 1

	
;

where the functionals e0i;a are de�ned in (2). Hereafter it is assumed that
inf ? = +1 (it may happen, for instance, if H1 (D) consists only of con-
stants).

De�nition 5 The directional Chebyshev constant of D relative to a point
a 2 D in a direction � 2 � is a constant

� (a;D; �) := lim sup
k(i)
jk(i)j!�

(�i)
1=s(i) := sup

L2L�
lim sup
i2L

(�i)
1=s(i) (11)

with �i de�ned in (10).

Lemma 6 The set � (a;D) := f� 2 � : � (a;D; �) <1g is convex and the
function ln � (a;D; �) is convex on � (a;D).

Proof. Given �; �0 2 � (a;D) and 0 < � < 1, take natural-valued sequences
iq, jq, rq < Rq so that s (iq) = s (jq) and

k (iq)

s (iq)
! �;

k (jq)

s (jq)
! �0;

rq
Rq
! � as q !1:

For arbitrary " > 0 �nd functions f";q 2 Niq and g";q 2 Njq such that

jf";qjD < �iq (1 + ") ; jg";qjD < �jq (1 + ") .

Then the function F (z) = (f";q)
rq (g";q)

Rq�rq belongs to Nlq , where lq =
i
�
k(q)
�
is the number corresponding to the multiindex k(q) = rqk (iq) +

(Rq � rq) k (jq) in the enumeration (see Preliminaries). Therefore

�lq � jF jD �
�
�iq (1 + ")

�rq �
�jq (1 + ")

�Rq�rq
:
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Then we take the logarithm and divide by s (lq) = Rq s (iq). By the con-
struction, k(q)

s(lq)
! �� + (1� �) �0; therefore, after passage to the upper limit

as q !1, taking into account that " > 0 is arbitrary, we obtain that

ln � (a;D;�� + (1� �) �0) � � ln � (a;D; �) + (1� �) ln � (a;D; �0) <1:

Therefore �� + (1� �) � 2 � (a;D) for every � 2 (0; 1), hence � (a;D) is
convex and the function � (a;D; �) is convex on this set.

Corollary 7 The function ln � (a;D; �) is continuous on the interior of the
set � (a;D).

Lemma 8 Let r be the radius of an inscribed equilateral polydisc for D,
centered at a, then � (a;D; �) � r for all � 2 �. If the domain D is bounded
and R is the radius of a circumscribed equilateral polydisc for D, centered at
a, then � (a;D; �) is bounded uniformly by R from above.

By Lemmas 6 and 8 the function � (a;D; �) is measurable and bounded
from below. Therefore the following de�nition makes sense.

De�nition 9 The principal Chebyshev constant of D relative to a 2 D is
the number:

� (a;D) := exp

0@Z
�

ln � (a;D; �) d� (�)

1A ; (12)

where � is the normalized Lebesgue measure on �.

In general, � (a;D) may be equal to +1, but if the domain D is bounded
then � (a;D) � R, where R is de�ned in Lemma 8.

Lemma 10 Let D be a bounded domain in Cn. Then there exists a usual
limit in (11) for every � 2 ��.

Proof. Suppose that there exist two subsequences fiqg and fjqg such that

lim
q!1

k (iq)

s (iq)
= lim

q!1

k (jq)

s (jq)
= � 2 ��; (13)

but
lim
�
�iq
�1=s(iq)

=: � < � := lim
�
�jq
�1=s(jq)

:
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Going, if necessary, to subsequences, we assume that

k� (jq) � k� (iq) > 0; � = 1; : : : ; n;
s (jq)

s (iq)
%1:

Setting

r (q) := inf

��
k� (jq)

k� (iq)

�
: � = 1; : : : ; n

�
; l (q) := k (jq)� r (q) k (iq) ; (14)

we have from (13), (14) that lq 2 Zn+ and

r (q) � s (jq)
s (iq)

; jl (q)j = o (s (jq)) as q !1: (15)

Given " > 0 choose f";q 2 Niq so that

jf";qjD < �iq + ":

Then the function F (z) := (z � a)l(q) � (f";q (z))r(q) satis�es the inequality

jF jD � C jl(q)j
�
�iq + "

�r(q)
; (16)

where C = max
�
jz � aj : z 2 D

	
. On the other hand, by the feature of the

enumeration k (i), we have that F 2 Njq , hence

jF jD � �jq : (17)

Since " > 0 is arbitrary, combining the relations (16), (17), (15), we obtain
that � � �, which contradicts to the assumption that � < �.

5 Strictly pluriregular domains

In this and the next sections we suppose that D is a strictly pluriregular
domain. We show that, in De�nition 5, one can change H1 (D) to a Banach
space from a wide range, so that the de�ned characteristic remains intact.
This allows us to introduce notions of Chebyshev constants of @D viewed
from a point a 2 D. On the other hand, this permits applying Hilbert space
methods.
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Let Y be a Banach space complying with the dense embedding Y ,!
A (fag), a 2 Cn. Then, by Lemma 3, A (fag)� ,! Y �. Each germ f 2 Y is
represented by its Taylor expansion at the point a: f (z) =

P1
i=1 e

0
i;a(f) ei;a (z)

that converges absolutely and uniformly on some neighborhood of a; the func-
tionals e0i;a 2 A (fag)

� ,! Y � are de�ned in (2). We introduce two directional
Chebyshev constants characterizing approximative properties of this system
of functionals with respect to the spaces Y or X := Y �. The �rst one de-
scribes the asymptotic behavior of the least deviation of "monic polynomials
by the system of analytic functionals (2)" in the space X :

� �Y (a; �) := lim sup
k(i)
jk(i)j!�

(�i;X)
1=s(i) := sup

L2L�
lim sup
i2L

(�i;X)
1=s(i) ; � 2 �; (18)

where

�i;X = �i;a;X := inf

8<:
e0i;a +X

j<i

cj e
0
j;a


X

: (cj) 2 Ci�1
9=; ; i 2 N; (19)

and L� is de�ned in Preliminaries. One can see here an analogy with the one-
dimensional case (see (7)) regarding that the linear continuous functionals
(2) can be expressed via

e0i;a (f) =

�
1

2�i

�n Z
Tr(a)

f (�) d �

(� � a)k(i)+I
; f 2 A (fag) ; i 2 N; (20)

where I = (1; : : : ; 1), and Tr (a) := fz = (z�) 2 Cn : jz� � a� j = rg with some
su¢ ciently small r = r (f) > 0.
The characteristic (18) is dual, in a sense, to the second one, de�ned via:

�Y (a; �) := lim inf
k(i)
jk(i)j!�

(�i;Y )
1=s(i) := inf

L2L�
lim inf
i2L

(�i;Y )
1=s(i) ; � 2 �; (21)

where

�i;Y = �i;a;Y := inf fkfkY : f 2 Nig ; (22)

Ni = Ni;a;Y :=
�
f 2 Y : e0j;a (f) = 0; j < i; e0i;a (f) = 1

	
If the space Y is closely related with a given strictly pluriregular domain

D, then the �rst characteristic describes the size of the boundary @D viewed
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from the point a, while the second coincides on ��, as it will be shown below,
with the characteristic � (a;D; �) introduced in the previous section. In the
next de�nition we deal with the special space Y = AC

�
D
�
, but it will be

shown below that the space Y can vary in a quite wide range leaving the
de�ned characteristics unchanged.

De�nition 11 Let D be a strictly pluriregular domain in Cn, a 2 D, and
Y = AC

�
D
�
. Then the number � (a; @D; �) := � �Y (a; �) is called a directional

Chebyshev constant of @D viewed from the point a in the direction � 2 �.
The principal Chebyshev constant of @D viewed from the point a is de�ned
by the formula

� (a; @D) := exp

0@Z
�

ln � (a; @D; �) d� (�)

1A : (23)

That the integral (23) exists follows from the relation � (a; @D; �) =
� (a;D; �)�1, � 2 ��; which will be proved below (see, Theorem 12).
Given a domain D � Cn and a 2 D, consider the sublevel sets of the

pluripotential Green function (� < 0):

D� := fz 2 D : gD (a; z) < �g ; K� := fz 2 D : gD (a; z) � �g : (24)

Theorem 12 Let D � Cn be a strictly pluriregular domain, a 2 D; Y any
Banach space such that the dense embeddings hold:

A
�
D
�
,! Y ,! A (D) (25)

and X = Y �. Then for each � 2 �� the usual limit exists in the relations
(18), (21) and

�Y (a; �) = � (a;D; �) = � �Y (a; �)
�1 = � (a; @D; �)�1 if � 2 ��:

Moreover

lim
s!1

������
msY

i=ms�1+1

�i;Y

������
1=sNs

= lim
s!1

������
msY

i=ms�1+1

1

�i;X

������
1=sNs

= � (a;D) : (26)

Therewithal

� (a;D�; �) = � (a;D; �) exp�; � (a; @D�; �) = � (a; @D; �) exp (��) : (27)

This theorem will be proved in the next section after some preliminary
considerations.
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6 Asymptotics of leading coe¢ cients of inter-
nal orthonormal bases

Lemma 13 Let a 2 Cn and H be any Hilbert space with dense embedding
H ,! A (fag), a 2 Cn. Let '0i =

Pi
j=1 aji e

0
j be the orthonormal system

in the dual space H�  - A (fag)�, obtained by the Gram-Schmidt procedure
applied to the system fe0ig, de�ned by (2); f'ig � H be the biorthogonal
system to the system f'0ig. Then

�i;H =
1

�i;H�
= jaiij

and for each � 2 �, we have

� �H (a; �) = lim sup
k(i)
jk(i)j!�

1

jaiij1=s(i)
; �H (a; �) = lim inf

k(i)
jk(i)j!�

jaiij1=s(i) :

Let H� be the Hilbert space of all x =
P1

i=1 �i 'i 2 A (fag) with

kxkH� :=
 1X
i=1

j�ij
2 exp (2�s (i))

!1=2
<1; � � 0: (28)

Then

�H� (a; �) = �H (a; �) � exp�; � �H� (a; �) = �
�
H (a; �) � exp (��) ; � < 0: (29)

Proof. Consider also the dual Hilbert scale

G� :=

8<:x0 =
1X
i=1

�0i '
0
i 2 G : kx0kG� :=

 1X
i=1

j�0ij
2
exp (�2�s (i))

!1=2
<1

9=; ;
with � � 0, G0 = G = H�. The system f'ig is an orthogonal basis in each
space H� and has an expansion

'i (z) =
X
j�i
bj;i ej (z) ; (30)

converging in some neighborhood of the point a, while the system f'0ig is an
orthogonal basis in any G�. Therewith

bi;i =
1

ai;i
; k'ikH� = exp�s (i) ; k'

0
ikG� = exp (��s (i)) ; i 2 N, � � 0:
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By the extremal property of orthogonal systems, we have

�i:H� = jaiij exp�s (i) ; �i:H� = jaiij
�1 exp (��s (i)) : (31)

Logarithmizing and passing to the lower (upper) limit along subsequences
L 2 L�; � 2 �; we comlete the proof.

Proof of Theorem 12. Since A
�
D
�
is a nuclear locally convex space,

then, by Pietsch [20], Section 4.4, there exists a Hilbert space complying with
the dense embeddings

A
�
D
�
,! H ,! Y; A

�
D
�
,! H ,! AC

�
D
�
,! A (D) : (32)

It is known (see, e.g., [27, 31, 28, 29]) that, under these restrictions on H;
the system f'ig is a common basis in the spaces A (D), A (fag), A (D�) ;
A (K�), � < 0, and the following embeddings take place:

A (K�) ,! H� ,! A (D�) ; � < 0; (33)

where H� is the scale (28) and the sublevel sets K�, D� are de�ned in (24).
Therefore H ,! Y ,! A (D) ,! H� for every � < 0. Due to (31) and (32),
there are positive constants C, c = c (�) such that

c �i;H� = c �i;H exp�s (i) � �i;Y � C �i;H ; i 2 N. (34)

On the other hand, since H ,! H1 (D) ,! A (D) ,! H�, � < 0, we obtain,
taking into account Lemma 10, that

lim sup
i2L

(c �i;H)
1=s(i) exp� � � (a;D; �) � lim inf

i2L
(C �i;H)

1=s(i) (35)

for any L 2 L�; � 2 �� and � < 0. Hence, if � 2 ��; the usual limit exists
in (21) with Y = H and � (a;D; �) = �H (a; �). Applying now (34) with an
arbitrary Y satisfying the conditions of the theorem, we conclude the same
with �Y (a; �) instead of �H (a; �). Then, applying the embeddings, dual to
(33), we obtain

G� ,! A (D)� ,! Y � ,! G; � < 0:

In the same token, by Lemma 13, we conclude that

� �Y (a; �) = � (a; @D; �) =
1

� (a;D; �)
; � 2 ��; (36)

13



and the usual limit exists in (18) for � 2 ��.
An examination of the proofs of Lemmas 5 and 6 in [26] shows that, since

the function � (a;D; �) is continuous on �� (see Corollary 7 above) and the
usual limits exist in (18), (21), we can establish in the same way as in [26] ,
the following relations:

lim
s!1

1

Ns

msX
i=ms�1+1

ln � i;Y =

Z
�

ln � (a;D; �) d� (�) = ln � (a;D) ;

lim
s!1

1

Ns

msX
i=ms�1+1

ln � �i;Y =

Z
�

ln � (a; @D; �) d� (�) = ln � (a; @D) (37)

where � is the normalized Lebesgue measure on �. Thus (26) is proved.
Applying (33) once more, we obtain

H�+" ,! H1 �D�

�
,! H��"; � < 0; 0 < " < ��:

Therefore there exist constants C = C (�; ") and c = c (�; ") such that

c�i;H��" = c�i;H exp (�� ") � �i (a;D�)

� C �i;H�+" = C �i;H exp (�+ ") ; i 2 N,

here �i (a;D�) is de�ned in (10) with D� instead D. Passing to the limit
along any sequence L 2 L�, � 2 �� and taking into account (29), we obtain
that

� (a;D; �) exp (�� ") � � (a;D�; �) � � (a;D; �) exp (�+ ") , � 2 ��

The �rst relation in (27) follows by tending "! 0. The remained statements
of the theorem can be derived easily from the proved ones by applying Lemma
13. �
Summarizing the above considerations we obtain the main result of this

section.

Theorem 14 Let Y = H be a Hilbert space satisfying the conditions of
Theorem 12 and

'0i =

iX
j=1

aj;i e
0
j; 'i =

X
j�i
bj;i ej

14



be the orthonormal systems constructed for the spaces H� and H as in Lemma
13. Then

lim
i2L
jbi;ij1=s(i) =

1

� (a;D; �)
; L 2 L�; � 2 ��:

The geometric mean of leading coe¢ cients ai;i = 1
bi;i
of degree s satis�es the

asymptotic relation, determined by the principal Chebyshev constants:

lim
s!1

0B@
0@ Y
jk(i)j=s

jai;ij

1A1=Ns
1CA
1=s

= � (a; @D) =
1

� (a;D)
: (38)

Indeed, by Lemma 13, �i;H = jai;ij = 1
jbi;ij , so it su¢ ces to apply (26).

Proposition 15 Let D be a bounded complete logarithmically convex n-
circular domain in Cn and

h (�) = hD (�) := sup

(
nX
�=1

�� ln jz� j : z = (z�) 2 D
)
; � = (��) 2 �

its characteristic function. Then � (0; D; �) = �
�
D; �

�
= exph (�) ; � 2 �;

and

� (0; D) = �
�
D
�
= exp

Z
�

h (�) d� (�) ; (39)

where � is the normalized Lebesgue measure on � (here �
�
D; �

�
and �

�
D
�

are, respectively, the directional and principal Chebyshev constants of a com-
pact set K = D, see [26, 30]).

Proof. Take any Hilbert space H complying with the embeddings

A
�
D
�
,! H ,! A (D) (40)

and such that the monomials ei = zk(i) are pairwise orthogonal; for instance,
one can take the Bergman space AL2 (D) of all functions analytic and square

integrable in D. Then the system
ei
keikH

is an orthonormal polynomial basis

pi with ai;i =
1

keikH
in the frame of Theorem 6.1 from [30]; on the other hand,

15



it is an orthonormal basis 'i with bi;i =
1

keikH
in the context of Theorem 14.

Therefore, by Theorem 14 above and Theorem 6.1 from [30],

�
�
D; �

�
= lim

k(i)
s(i)

!�
(keikH)

1=s(i) = � (0; D; �) ; � 2 ��; (41)

where �
�
D; �

�
is the directional Chebyshev constant of the compact set K =

D in the direction � (see [30]).
By (40), given " > 0 there exist positive constants c = c (") and C = C (")

such that

c exp ((1� ")hD (� (i)) s (i)) = c jeij(1�")D � keikH � C jeij(1+")D
= C exp ((1 + ")hD (� (i)) s (i)) ;

where � (i) = k(i)
s(i)
, i 2 N. Hence, since the function hD is continuous and

" > 0 is arbitrary, we obtain that

lim
k(i)
s(i)

!�
(keikH)

1=s(i) = exphD (�) ; � 2 �:

Combining this with (41), we obtain

�
�
D; �

�
= � (0; D; �) = exphD (�) ; � 2 ��

and then, by integration, (39).

Corollary 16 Let Y be any Banach space complying with the dense embed-
dings

A
�
Ur (a)

�
,! Y ,! A (Ur (a))

and X = Y �. Then limi!1 (�i;X)
1=s(i) = 1

r
, where �i;X is de�ned in (19).

Problem 17 Characterize all domains D b Cn with 0 2 D such that
�
�
D
�
= � (0; D).
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7 Internal trans�nite diameters

Let D be a domain in Cn, a 2 D, and e0i = e0i;a 2 A (D)
� ; i 2 N, be the

system of analytic functionals determined by (2). Since, contrary to the
one-dimensional case, an evaluation at a point makes no sense for analytic
functionals, there is no direct analog of Leja�s Vandermondians. The general
considerations of Section 4 in [30] turned to be useful for an alternative
equivalent de�nition of the trans�nite diameter for compact sets (see, [30],
Theorem 5.1). This approach provides a way out in the present situation as
well.

De�nition 18 The trans�nite diameter of the boundary @D viewed from the
point a is the number

d (a; @D) := lim sup
i!1

�
~Vi
�1=ls(i)

(42)

where s (i) = jk (i)j (see Preliminaries), ls is de�ned in (4), and

~Vi = sup
n���det �e0i;� (f�)�i�;�=1��� : f� 2 BH1(D); � = 1; : : : ; i

o
: (43)

is the sequence of extremal Vandermondians. The internal trans�nite diam-
eter of D with respect to the point a is de�ned via

d (a;D) :=
1

d (a; @D)
:

Let D be a strictly pluriregular domain in Cn, Y be a Banach space
complying with the dense embeddings (25), and X := Y �. Then, by Lemma
3

e0i;a 2 A (fag)
� ,! A (D)� ,! X; i 2 N:

Set

~VYi : = sup
n���det �e0� (f�)�i�;�=1��� : f� 2 BY ; � = 1; : : : ; io ;

dY : = lim sup
i!1

�
~VYi
�1=ls(i)

: (44)
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Theorem 19 Under the above assumptions the usual limit exists in (44),
which does not depend on the choice of the space Y , dY = d (a; @D), and the
equality holds

d (a;D) =
1

d (a; @D)
= � (a;D) = exp

0@Z
�

ln � (a;D; �) d� (�)

1A ; (45)

where � is the normalized Lebesgue measure on �.

Proof. By Lemma 4.2 in [30], we have the estimates

�i;X �
~VYi
~VYi�1

� i�i;X ; i 2 N,

where �i;X is de�ned in (19). Therefore

msY
i=ms�1+1

�i;X �
~VYms

~VYms�1

� (ms)
Ns

msY
i=ms�1+1

�i;X :

Since lnms

s
! 0, then, due to (26), the asymptotic formula is true

ln ~VYms
� ln ~VYms�1 � sNs ln � (a; @D) ; s!1: (46)

By summation from 1 to s (see, e.g., [5]), we derive the asymptotic formula

ln ~VYms
� ln ~VYms

� ln ~VYm0
�

sX
q=1

qNq � ln � (a; @D) = ls ln � (a; @D) ; s!1:

Let ms�1 < i � ms, that is s (i) = s. Take positive numbers r, R so that
Ur (a) b D b UR (a), 2R > 1 > r=2. Then, due to Corollary 16, there is i0
such that �

1

2R

�s(i)
� �i;X �

�
2

r

�s(i)
; i � i0:

Therefore

~VYi
�
1

2R

�sNs
� ~VYi

msY
j=i+1

�j;X � ~VYms
� ~VYi (ms)

Ns

msY
j=i+1

�j;X

� ~VYi (ms)
Ns

�
2

r

�sNs
18



for i � i0 and s = s (i). Since sNs
ls
! 0 as s!1, we have, by (46), that

ln ~VYi � ls(i) ln � (a; @D) ; as i!1;

which implies that the usual limit exists in the de�nition (44), that does
not depend on Y : dY = � (a; @D). Since Y1 := AC

�
D
�
,! H1 (D) ,!

AL2 (D) =: Y2 and both spaces Y1; Y2 satisfy the conditions of Theorem, we
obtain that dY = d (a; @D). Then, by Theorem 12 and (12), we have

d (a; @D) = � (a; @D) = exp

0@Z
�

ln � (a; @D; �) d� (�)

1A ,
so (45) is proved.
Notice that

ls � �s :=
sn+1

(n� 1)! (n+ 1) ; as s!1: (47)

The following statement can be proved similarly to Theorem 5.2 in [30].

Theorem 20 Let D be a strictly pluriregular domain in Cn. Then the
Chebyshev constant � (a; @D) is expressed by the formula:

� (a; @D) = d (a; @D) =

 
exp

n+1X
�=1

1

�

!
� lim
i!1

(Wi;a)
1=�s(i)

s (i)
; (48)

where �s(i) is de�ned in (47),

Wi;a = sup
n���Wa

�
(f�)

i
�=1

���� : jf� jD � 1; � = 1; : : : ; io ;
and

Wa

�
(f�)

i
�=1

�
= det

�
f (k(�))� (a)

�i
�;�=1

is the multivariate Wronskian of the system ff�gi�=1 ; evaluated at the point
a.

In particular, we get the following
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Corollary 21 Let D be a strictly regular domain in C, a 2 D. Then

c (a;D) =
1

c (a; @D)
= exp

�
�3
2

�
lim
s!1

s

(Ws;a)
2=s2

;

where

Ws;a = max
n���det �f (�)� (a)

�s�1
a;�=0

��� : jf�jD � 1; � = 0; : : : ; s� 1o :
In particular, if D is simply connected and ! : D ! B is an analytic bijection
such that ! (a) = 0, then

j!0 (a)j = exp 3
2
lim
s!1

(Ws;a)
2=s2

s
.

8 Internal Robin function and capacities in
Cn

For n � 2, the function gD (a; z)� ln jz � aj, in general, has in�nitely many
partial limits as z ! a. So, in contrast to the case n = 1, there are many ways
to de�ne capacities ofD related to the point a. By analogy with ([26, 27, 30]),
one can de�ne a natural capacity:

C (a;D) := exp

�
� lim sup

z!a
(gD (a; z)� ln jz � aj)

�
: (49)

Similarly to the compact set case (for a survey of related results see [30]),
in order to get an analog of Szegö equality, one can modify the de�nition of
Chebyshev constants, by normalizing the leading homogeneous polynomial
parts (relative to the variable � = z � a), instead of normalizing the leading
coe¢ cients. Namely, let

Ms :=
�
f 2 A (D) : e0i;a (f) = 0; s (i) < s

	
(50)

Given f 2Ms, let

f̂s (z) =
X
s(i)=s

e0i;a (f) (z � a)
k(i) = lim

jwj!1
wsf

�
a+

z � a
w

�
: (51)
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be its homogeneous part of degree s (it may be equal to identical zero).
Consider a Chebyshev-type characteristic (cf., [26, 27, 24]): T (a;D) :=
lim inf
s!1

Ts (a;D), where

Ts (a;D) :=
�
inf
n
jf jD : f 2Ms;

���f̂s���
Bn
� 1
o�1=s

:

Theorem 22 LetD be a strictly pluriregular domain in Cn. Then T (a;D) =
C (a;D) :

This theorem will be proved below after some preliminary considerations.
Without restrictions on D it may not be true, that is seen from

Example 23 Let D = BR r K � C, where K is the standard Cantor set
on the real line, R > 1; and a 2 D. Then, since the set K is regular, but
negligible for bounded analytic functions, we have T (a;D) = T (a;BR) =
C (a;BR) 6= C (a;D) :

The following notion was introduced in [2] (cf., [14, 1]).

De�nition 24 The Robin function of a Stein manifold D related to a point
a 2 D is de�ned via

�D (a; �) := lim sup
j�j!0

(gD (a; a+ ��)� ln j�j) ; � 2 Cn:

Let D be a bounded domain in Cn. Then the Robin function � (�) =
�D (a; �) is continuous, plurisubharmonic in Cn, and logarithmically homo-
geneous, that is

� (t�) = � (�) + ln jtj ; � 2 Cn; t 2 C:

Therefore the open set

�D = �Da := f� 2 Cn : �D (a; �) < 0g :

is a complete circular domain, that is �z 2 �D if z 2 �D and j�j � 1. It is
clear that

g �Da (0; �) = �D (a; �) ; � �Da (0; �) � �D (a; �) :
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Adapting Siciak�s considerations ([24], 2.7) to our situation, we introduce a
domain in C�Cn via

� :=

�
(w; �) 2 C�Cn : w 2 Cr f0g ; a+ �

w
2 D

�
:

Denote by H (�) the set of all functions v 2 Psh (�), which are logarithmi-
cally homogeneous, that is v (tw; t�) = v (w; �) + ln jtj ; t 2 C r f0g (we set
t � 1 =1) and such that v (1; �) � C + ln j�j near the point � = 0. Given a
function u 2 G (a;D) (see, De�nition 2) we de�ne a function

U (w; �) :=

(
u
�
a+ �

w

�
+ ln jwj if w 2 Cr f0g ; � 2 wD � a;

lim sup
jwj!1

u
�
a+ �

w

�
+ ln jwj if w =1; � 2 Cn:

(52)
Then the mapping S : G (a;D) ! H (�) de�ned by u (z) ! U (w; �) is a
bijection, its inverse is de�ned by u (z) = U (1; z � a) (cf., [24], 2.7). De�ne
the logarithmically homogeneous Green function:

h� (w; �) := lim sup
(!;�)!(w;�)

sup
�
v (!; �) : v 2 H (�) ; vj1�(D�a) � 0

	
.

This function is logarithmically homogeneous, plurisubharmonic in �. It is
clear that

h� = S (gD) ; gD (a; z) = h� (1; z � a) ; z 2 D: (53)

On the other hand, by the de�nition of �D, we have

�D (a; �) = lim sup
jwj!1

�
gD

�
a; a+

�

w

�
+ ln jwj

�
(54)

So, taking into account (53) and (52), we obtain the following

Proposition 25 The Robin function is expressed via

�D (a; �) = lim sup
jwj!1

h� (w; �) = h� (1; �) ; � 2 Cn:

De�nition 26 (cf., Jarnicki-P�ug [9, 10, 11], Nivoche [16, 17, 18])The �-
directional analytic capacity of order s for a domain D � Cn relative to a
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point a is the number:

s (a;D; �) : =

�
sup

�
1

s!

���d(s)� f (a)��� : f 2Ms; jf jD � 1
���1=s

(55)

=
�
sup

n���f̂s (a+ �)��� : f 2Ms; jf jD � 1
o��1=s

; � 2 Cn;

d
(s)
� stays here for the derivative of order s in the direction of the tangent

vector � 2 Cn at the point a and f̂ is de�ned in (51). One can consider the
reciprocal number:

s (a; @D; �) := (s (a;D; �))
�1

as an analytic capacity of order s of @D viewed from the point a in the
direction �.

For every � 2 Cn the limit exists (see, e.g., [18]):

1 (a;D; �) := lim
s!1

s (a;D; �) = inf fs (a;D; �) : s 2 Ng . (56)

This characteristic can be considered as an analytic capacity of in�nite order
(trans�nite analytic capacity) of D relative to the point a in a direction �.

Proposition 27 (Nivoche [18])Let D be a strictly pluriregular domain in
Cn. Then

� ln 1 (a;D; �) � �D (a; �) ; � 2 S. (57)

The equality in (57) takes place quasi-everywhere on S (i.e., except a set
A � S with [A] =

�
[z] 2 CPn�1 : z 2 A

	
polar in CPn�1).

We introduce related directional Chebyshev constants:

Ts (a;D; �) : = inf
n
jf jD : f 2Ms;

��� f̂s (a+ �)��� � 1o1=s ; s 2 N;
T (a;D; �) : = lim inf

s!1
Ts (a;D; �) (58)

with � 2 S. It is easily seen that they coincide with their capacity counter-
parts (55) and (56): Ts (a;D; �) = s (a;D; �) ; T (a;D; �) = 1 (a;D; �) ; � 2
S:
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Proof of Theorem 22. It is obvious that

Ts (a;D)
�1 =

�
sup

n���f̂s���
Bn
: f 2Ms; jf jD � 1

o�1=s
So, taking into account (55), we have

Ts (a;D)
�1 = sup

�2S

�
1

s (D; a; �)
: � 2 S

�
It follows from the de�nition (49) that C (a;D) = exp (�� (a;D)) with

� (a;D) := max f�D (a; �) : � 2 Sg : (59)

Then, by (57), we obtain that

� lnT (a;D) = lim sup
s!1

(� lnTs (a;D)) � � (a;D) :

In order to prove the converse estimate, suppose the contrary � lnT (a;D) <
r < � (a;D). Then, by (56), � ln 1 (D; �) � r, � 2 S, hence, since the
equality in (57) holds quasi-everywhere on S, we would obtain that �D (a; �) =
lim sup
�!�

(� ln 1 (D; �)) � r < � (a;D) for every � 2 S. This contradicts the

equality (59) and hence yields C (a;D) = T (a;D). �

Let D be a strictly pluriregular domain in Cn and � and u be as in
De�nition 1. Then there is "0 > 0 such that for every " : 0 < " < "0
the connected component �" of the set fz 2 � : u (z) < "g containing D is
relatively compact in �. The following stability properties can be found,
e.g., in [2, 7, 18].

Lemma 28 Let D be a strictly pluriregular domain in Cn. Then

gD (a; z) = lim
�%0

gD� (a; z) ; gD (a; z) = lim
"&0

g�" (a; z) ; z 2 D r fag ;

�D (a; �) = lim
�%0

�D� (a; �) ; �D (a; �) = lim"&0
��" (a; �) ; � 2 C

n r f0g ;

where D� are the sublevel domains de�ned in (24) and �" are de�ned above.
Therewith the convergence is locally uniform in the all relations.

The following statement shows how the Robin function can be expressed
in terms of orthonormal bases (cf., [31], Theorem 2).
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Theorem 29 Let D be a strictly pluriregular domain in Cn, H any Hilbert
space complying with the dense embeddings A

�
D
�
,! H ,! A (D), f'ig the

orthonormal basis from Lemma 13, and gi (a+ �) :=
P

s(j)=s(i) e
0
j;a ('i) �

k(j)

be the homogeneous part of 'i of degree s (i), i 2 N. Then

�D (a; �) = lim sup
�!�

lim sup
i!1

ln jgi (a+ �)j
s (i)

; � 2 Cn. (60)

Proof. Take � < 0. Then there exists a positive constant c = c (�) such
that

c jf jD� � kfkH ; f 2 H; (61)

where D� is de�ned in (24). Set

V (�) := lim sup
i!1

ln jgi (a+ �)j
s (i)

= lim sup
s!1

Vs (�) ;

where Vs (�) = sup
�
ln jgi (a+ �)j

s
: s (i) = s

�
. Since, by (61),

fc'i : s (i) = sg � Ms \ BH1(D�);

then

Vs (�) +
ln c

s
� � ln s (a;D�; �) ; � 2 Cn

and hence, by Proposition 27,

�D� (a; �) = lim sup
�!�

(� ln  (a;D�; �)) � lim sup
�!�

V (�) ; � 2 Cn: (62)

Let �; u be as in De�nition 1. Then there exists "0 such that for every
" : 0 < " < "0 the connected component �" of the set fz 2 � : u (z) < "g
containing D is relatively compact in �. Consider f 2Ms\BH1(�"). Then

there exists C = C (") such that kfkH � C jf j�". Since

f̂s (a+ �) =
X
s(i)=s

ci gi (a+ �) ;

where ci = (f; 'i)H we have jcij � kfkH � C. Therefore���f̂s (a+ �)��� � X
s(i)=s

jci j jgi (a+ �)j � CNs sup
s(i)=s

j gi (a+ �)j :
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Hence,

� ln s (a;�"; �) � Vs (�) +
lnCNs
s

; � 2 Cn

and, after passing to the limit, by Proposition 27, we obtain

� ln  (a;�"; �) � V (�) ; � 2 Cn

Thus

��" (a; �) = lim sup
�!�

(� ln  (a;�"; �)) � lim sup
�!�

V (�) ; � 2 Cn: (63)

Combining (62) and (63) and applying Lemma 28, we complete the proof.
Introduce an average capacity:

C (a;D) := exp

�
�
Z
S
ln �D (a; �) d! (�)

�
:

Corollary 30 In the conditions of Theorem 29 we have

lim
s!1

 
exp

 
1

s
sup
s(i)=s

�Z
S
ln
���f̂i (a+ �)��� d! (�)�!! = 1

C (a;D)
:

9 Conclusion

10.1 Theorem 29 and Proposition 25 could be useful in order to con�rm the
following conjecture (cf., [4], Theorem 2).

Conjecture 31 It is likely that, for strictly pluriregular domains, �
�
0; �Da; �

�
=

� (a;D; �) ; � 2 �; so that the directional Chebyshev constants and, hence,
the trans�nite diameter d (a;D) would be determined uniquely by the Robin
function � (a;D; �).

The estimate �
�
0; �Da; �

�
� � (a;D; �) ; � 2 �, can be easily proved simi-

larly to [4]. In order to get the converse estimate � (a;D; �) � �
�
0; �Da; �

�
; � 2

�, one needs to prove an internal analogue of Bloom�s Theorem ([3], Theo-
rem 3.2).
10.2 Rumely [22] (see also [6]) discovered a formula expressing trans�nite

diameter of a compact set K via its Robin function.
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Problem 32 Let D be a strictly pluriregular domain in Cn, a 2 D. Write
an analogue of Rumely formula for the expression of the internal trans�nite
diameter d (a; @D) via the Robin function �D (a; z).

10.3 Analytic characteristics (5), (9) and (43), (42) can be extended to
Stein manifolds (they will depend on a choice of local coordinates at a!). Let
D be a Stein manifold, a 2 D and the analytic mapping ' = ('�) : D ! Cn
forms local coordinates at a with ' (a) = 0. For example, the directional
Chebyshev constant �' (a;D; �) can be de�ned as in De�nition 5 only with
the functionals (2) expressed in terms of the chosen local coordinates at a:

e0i (f) = e
0
i;a ('; f) :=

1

k (i)!

@jk(i)jf ('�1 (�))

@�k(i)
j�=0 : (64)

For concrete Stein manifolds one can use some preferable local coordinates
at the point a. If, for example, D is an unbranched Riemann domain over Cn,
� : D ! Cn a projection, and a 2 D; then it is natural to de�ne Chebyshev
constants applying the local coordinates ' (z) = � (z)� � (a) :
10.4 There is a di¤erent way to de�ne the trans�nite diameter and Cheby-

shev constants for an arbitrary Stein manifold D and given local coordinates
' at a 2 D. Consider a continuous plurisubharmonic function u in D such
that fu (z) < sg is relatively compact in D for every s 2 N and u (a) < 1:
Let Gs be a connected component of fu (z) < sg which contains a.

De�nition 33 The directional Chebyshev constants of the domain D relative
to the point a and local coordinates ' are de�ned via

~�' (a;D; �) := lim
s!+1

�' (a;Gs; �) = sup
s2N

�' (a;Gs; �) ; (65)

and the corresponding principal Chebyshev constant and trans�nite diameter
are de�ned via

~�' (a;D) := lim
s!+1

�' (a;Gs) ; ~d' (a;D) := lim
s!+1

d' (a;Gs) : (66)

If D � Cn and ' (z) = z � a; we use the notation ~� (a;D; �), ~� (a;D),
~d (a;D), respectively.

For strictly pluriregular domains on Stein manifolds, these new charac-
teristics coincide with �' (a;D; �) ; �' (a;D), d' (a;D), respectively, but, in
general, they do not so (see, e.g., Example 23). It is easily seen that the
equality (45) holds with ~�', ~d' instead of � , d.
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