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Abstract

We propose enhancing a reconfigurable and extensible embedded RISC processor core with

a protected zone for isolated execution of cryptographic algorithms. The protected zone is a

collection of processor subsystems such as functional units optimized for high-speed execution

of integer operations, a small amount of local memory for storing sensitive data during crypto-

graphic computations, and special-purpose and cryptographic registers to execute instructions

securely. We outline the principles for secure software implementations of cryptographic algo-

rithms in a processor equipped with the proposed protected zone. We demonstrate the efficiency

and effectiveness of our proposed zone by implementing the most-commonly used cryptographic

algorithms in the protected zone; namely RSA, elliptic curve cryptography, pairing-based cryp-

tography, AES block cipher, and SHA-1 and SHA-256 cryptographic hash functions. In terms

of time efficiency, our software implementations of cryptographic algorithms running on the en-

hanced core compare favorably with equivalent software implementations on similar processors

reported in the literature. The protected zone is designed in such a modular fashion that it can

easily be integrated into any RISC processor. The proposed enhancements for the protected

∗Preliminary version of this paper has been presented at Reconfig 2009 [1].
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zone are realized on an FPGA device. The implementation results on the FPGA confirm that

its area overhead is relatively moderate in the sense that it can be used in many embedded

processors. Finally, the protected zone is useful against cold-boot and micro-architectural side-

channel attacks such as cache-based and branch prediction attacks.

Keywords: Cryptography, Cryptographic Unit, Isolated Execution, Instruction Set Extension,

Secure Computing, Attacks.

1 Introduction

Secure and efficient implementations of cryptographic algorithms have become more of a focal point

for research in cryptographic engineering since various attacks [2, 3, 4, 5] (i.e., timing, power analy-

sis, fault, and branch prediction attacks, respectively) successfully compromise realizations of many

cryptosystems which are believed to be secure under computational or similar assumptions in theory.

Since general-purpose processors fulfill neither the timing nor the security constraints of crypto-

graphic applications due to different set of design considerations, special-purpose cryptographic

co-processors are built to remedy this problematic. Nevertheless, cryptographic co-processors turn

out to be not entirely free from security concerns and furthermore, introduce their own problems

such as security risks and speed considerations accrued in host processor/co-processor setting.

Aware of inadequacy of software-only solutions, computer manufacturers already introduced

hardware extensions to their processor cores to accelerate cryptographic computations such as In-

tel’s AES instruction set [6] and to provide secure execution environment. A notable development

is that new architectures introduced by three major manufacturers [7, 8, 9] allow that security-

sensitive applications execute in an environment strictly free from the intervention of other si-

multaneously running processes. This feature is known as process isolation and enforced by the

hardware. A strictly enforced process isolation is definitely beneficial in thwarting an important

class of attacks known as micro-architectural side-channel attacks [10, 5]. However, without hard-

ware support many practical attacks [5, 11, 4, 10, 2, 3, 12], in fact, cannot be easily prevented by

software-only countermeasures. This is such a general understanding that many counter-measures
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proposed in the literature [13, 14, 15, 16, 17, 18] are implemented below the software level. From

these observations, developments and results, the need for further research in new computer ar-

chitectures that support efficient and secure implementations of cryptographic algorithms becomes

obvious.

In this paper, we investigate the realization of a protected zone in a reconfigurable embedded

processor that provides cryptographic algorithms with a highly secure execution environment. The

protected zone consists of architectural subsystems of a local memory, registers, and functional

units and enables a much more strict process isolation in the sense that sensitive information never

leaks outside the zone. For acceleration of basic arithmetic operations, we use and improve the

design principles presented in [19, 20]. The goal of accelerating many cryptographic algorithms

(AES, hash functions, elliptic curve cryptography, RSA, Pairing-based cryptography) has a major

influence on the design of the functional units and the organization of the protected zone. For

instance, the functional units are designed to enable fast modular arithmetic for numbers in the

range of [160, 2048] bits (which are the precisions used in the public key algorithms; i.e., elliptic

curve cryptography, RSA, Pairing-based cryptography) without an unacceptable increase in chip

area and any decrease in clock frequency. Similarly, an optimum number of cryptographic registers

and an optimum amount of local memory are determined to accelerate these public key algorithms.

The organization of the protected zone is highly modular, and complies with the design prin-

ciples of RISC processors, therefore, it can be incorporated into any RISC processor. We also

demonstrate that well-known cryptographic algorithms, RSA, ECC, pairing-based cryptography,

AES, SHA-1, and SHA-256 can be implemented on an embedded processor equipped with the pro-

tected zone with superior time performance, efficiency, and high-level security. A similar approach

is used in [21] only for AES implementation; however the proposed technique in [21] cannot easily be

extended to more complicated public key algorithms. We provide a complete, generic approach that

is readily applicable to any cryptographic algorithm and does not necessitate Assembly language

implementation, which is essential in [21].

The rest of the paper is organized as follows: We summarize the related work and our contri-
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butions in Section 2. Section 3 outlines our methodology used in the design of the protected zone.

Section 4 introduces the general architecture and how the protected zone is incorporated into a

classic embedded RISC processor. A small amount of local memory, which is an essential part of the

protected zone is explained in Section 5. In software implementations of cryptographic algorithms,

general-purpose registers, which are not a part of the protected zone but the base processor core,

need to be used. We show how to use these general-purpose registers securely in Section 6. Sec-

tion 7 presents the new instructions, which are realized on the protected zone and useful in secure

execution of certain operations in cryptographic applications. The timing results for the software

implementations of major cryptographic algorithms are given, when they are implemented on our

processor enhanced with the protected zone, in Section 8. The implementation results of the pro-

tected zone and the base processor core on FPGA and ASIC are presented in Section 9. The paper

is concluded in Section 10 by summarizing the achievements.

2 Related Work and Our Contribution

While modifying microprocessor architectures for speed and security is a common method in the

literature, the objectives and approaches in particular solutions differ. The works in [13], [15], [17],

[22], and [18] aim to provide a secure computing environment for protecting all applications and

their data against software and hardware attacks. In [13] and [17] the internal state of the processor

is protected. In [15], the Secret-Protecting (SP) architecture ensures that all data and codes of

a software module are encrypted when they are off the chip. The secure processor architecture

in [22] protects a trusted hypervisor, which protects other trusted software modules. Finally, the

architecture in [18] adopts a secure processor model, where CPU core and cache are protected using

encryption and memory integrity verification modules. The model envisages that the computing

system is divided into two parts: i) trusted on-chip modules (e.g., CPU core, cache memory, reg-

isters, encryption/decryption engine, and memory integrity verification module) and ii) untrusted

off-chip modules (external memory and external peripherals). Any data that goes out of the chip
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is encrypted and any data coming from the off-chip modules into the trusted chip is verified for

tamper resistance. The architecture features an AES engine and a true random number generator

as cryptographic units.

Other architectures modify or extend processor cores mostly for accelerating the cryptographic

algorithms [23], [24]. There are also other architectures, which propose solutions for both secure

and fast execution of cryptographic algorithms [19], [21], [1] and [20]. A recent work in [24] explores

design possibilities for accelerating cryptographic algorithms while secure execution is not consid-

ered. We compare our architecture and that in [24] in terms of the execution speed of cryptographic

algorithms and the relative overhead of the processor extensions.

The approach in our previous work in [1], which also provides a generic support for many

cryptographic algorithms for speed and security, is the closest to the approach adopted in this

work. While the work in [1], which presents our preliminary results, introduces the essentials of our

approach, this work provides substantially new contributions, which can be summarized as follows:

• We introduce a novel secure table lookup technique that benefits the s-box computation in

all block ciphers. We implement the AES algorithm using this new technique; and the new

implementation outperforms the implementation in [1] by a large margin.

• Besides RSA and elliptic curve cryptography, we implement the Tate pairing operation for

pairing-based cryptographic protocols, which are common in many security protocols. Our

implementation outperforms a comparable implementation on an extended embedded pro-

cessor in [25] by about a factor of 2. The software implementations of many new arithmetic

operations in different algebraic fields required for Pairing-based cryptography are also ob-

tained.

• We show how to implement a cryptographic hash function securely in our new processor.

We implement SHA-1 and SHA-256 (256-bit version of SHA-2) algorithms using the secure

execution principles and list the performance results.

• We include implementation details for new instructions for secure execution of cryptographic
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algorithms and a rationale behind them, which are omitted in [1] due to space considerations.

• We demonstrate as to how to use general-purpose registers, which are already available in the

base processor in a secure manner in cryptographic computations.

• We introduce the use of a local memory for secure execution and show that only a small

amount of local memory is sufficient for the implementations of a wide range of cryptographic

algorithms. We also include some remarks about the feasibility of implementing it on-chip in

an embedded microprocessor.

• Developing secure implementation of cryptographic algorithms requires neither advanced As-

sembly programming nor expert level knowledge in micro-architectural details of the proces-

sor. The development can be done in high-level languages (C and C++ in our case) with

only a minor exception where a couple of inline Assembly statements are added to track the

use of general-purpose registers for sensitive data.

• Optimizations are performed to improve the performance and the efficiency of the proposed

architecture. One important example is in the reduction of the number of the cryptographic

registers. In our earlier design, there are 32 cryptographic registers. Now, the current design

uses only 8 cryptographic registers, which results in a considerable reduction in area. We

show that reducing the number of the cryptographic registers did not have any adverse effect

on the time performance of cryptographic algorithms for considerably large key sizes. We also

reduce the number of the predicate registers from two to one, used in the protection against

branch prediction attacks.

This work is a crucial step in an attempt to build a secure architecture for the execution of

cryptographic algorithms. Since it essentially proposes an isolated execution space for cryptographic

algorithms, it can provide protection against a wide range of attacks when combined with other

types of countermeasures in the literature. For instance, arithmetic codes in [26, 27] can be used

in the design of the functional units in our architecture to protect a wide range of public key
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cryptography algorithms against fault attacks. Similarly, countermeasures at logic gate-level as

proposed in [14], when applied in our protected zone, will provide protection against differential

power analysis attacks. After all, the protected zone can be implemented in a chip area, on which

various gate-level countermeasures can be applied effectively. Since no secret or sensitive data

leaves the zone, they can be protected against attacks such as side channel and fault attacks.

3 Principles and Requirements of Secure and Isolated Execution

Software implementations of cryptographic algorithms are vulnerable to various forms of attacks

that can be grouped into two main classes: side-channel [2, 3, 5] and fault-injection attacks [4].

The side-channel attack in [2] takes advantage of key-dependent variations in execution times of

cryptographic algorithms while the differential power analysis attack in [3] utilizes variations in

power usage during cryptographic computations. The side-channel attack in [5] is a timing attack

using the time variations due to branch mispredictions. In the second category, fault-injection

attacks [4] utilize incorrect outputs of a cryptographic algorithm due to faults deliberately in-

duced by an adversary to find out the secret key. Different countermeasures from circuit- [14]

through architectural- [16] to algorithmic-levels [28] have been proposed. It has, however, been

well-understood that ultimate protection against all kinds of attacks seems to be difficult and

different counter-measures need to be deployed against different attacks for reasonably secure im-

plementations of cryptographic algorithms.

In this paper, we deal with mainly architecture-level attacks and countermeasures. In particular,

the proposed countermeasures provide resilience against cache-based, branch prediction, and to

some extent simple power analysis attacks. Therefore, countermeasures proposed for lower levels

(e.g., circuit level) against fault analysis and differential power analysis attacks are beyond the scope

of this work. We emphasize that a good protection against known attacks (mainly side-channel and

fault induction attacks against hardware and software implementations of cryptographic algorithms)

should combine countermeasures for all levels; i.e. from circuit through architecture (as in our
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approach) to algorithm levels. Notwithstanding, our proposed architecture can still be useful in the

implementation of algorithmic countermeasures as shown in Section 8 such as a countermeasure for

simple power analysis, secure implementation of cryptographic hash functions, and secure lookup

tables. Moreover, circuit level countermeasures can be built into the functional units such as the

multiplier, which definitely broadens the variety of attacks, for which the proposed architecture

provides protection.

A preeminent example of architecture-level attacks is cache-based attacks. Many cryptographic

algorithms utilize lookup tables for fast execution, which makes them vulnerable to cache-based side-

channel attacks [10]. Another form of side-channel attacks that utilizes processor micro-architecture

is named as branch prediction attacks [5]. The main reason that these attacks are effective is the

fact that a majority of general-purpose processors (including many embedded processors) support

multi-tasking and resource sharing as in the cases of cache memories, branch prediction and target

buffers. The processes running simultaneously cannot directly access each other’s data since the

operating system enforces process isolation. However, processes inadvertently (and inevitably to

a certain degree) leave residue data in shared resources (cache memories and branch buffers).

Another process cannot directly use or learn the residue data; however, it can make inferences

through carefully timed accesses to these shared resources. The residue data in shared resources

does not have to be secret or confidential per se; but its presence may say something about the

secret that is used to access it. Naturally, during the execution of cryptographic algorithms, secret

keys are used to access lookup tables (hence cache attacks) and to make decisions in the program

execution flow (hence branch prediction attacks).

Worse yet, the bugs and flaws in operating systems (OS) render OS-implemented process iso-

lation ineffective against sophisticated attacks that allow ill-intentioned programs to gain access

to secret information through the violation of process isolation. This situation calls for a much

stronger, and inevitably hardware-based, mechanism for process isolation. Supporting this claim,

major processor manufacturers such as Intel, AMD, and ARM, introduced extensions to their pro-

cessor cores to fortify the process isolation [7, 8, 9]. The basic principle is to make certain parts of
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memory, of cache, and of TLB used by a process strictly inaccessible by other processes. However,

the isolation is still virtual rather than physical since the data from different processes still occupy

the shared resources. For instance, the confidential data such as secret keys and temporary vari-

ables will still be present in physical memory in certain points of execution. Recently demonstrated

cold-boot attacks [12] efficiently recover secret keys used in cryptographic operations.

Therefore, to provide an even stronger type of process isolation where the cryptographic algo-

rithms execute free from vulnerabilities against the aforementioned attacks, the processor archi-

tecture needs to provide support for keeping all confidential information in physically protected

zones. Confidential information not only includes secret keys, but all intermediate values obtained

during cryptographic computations. For example, an AES block in an intermediate round is also

confidential since its compromise may reveal important information on the secret key1. Similarly,

an intermediate elliptic curve point obtained during elliptic curve scalar multiplication needs to be

protected, since it is possibly a smaller multiple of the base point which gives away certain bits of

the secret integer (possibly the private key). Therefore, there is a need for a protected zone where

we can keep the confidential information before, during, and after the cryptographic computation.

The protected zone includes functional units, a small, protected local memory, a cryptographic

register file that we can use during operations, and some special registers to keep intermediate

variables. In what follows, we explain the components of the protected zone.

• Functional units execute the instructions needed in cryptographic computations, which ba-

sically implement simple arithmetic/logic operations. Some operations are needed for secure

execution of cryptographic algorithms to prevent branch prediction attacks as well as to avoid

confidential variables appearing in general-purpose registers of the processor.

• Local memory is used to implement a scratch pad for temporary variables and lookup ta-

bles as well as to keep secret keys. The local memory can be implemented either on-chip or

1The compromise of an intermediate AES block is equivalent to using AES with fewer number of rounds than

specified. It is well-known that many block ciphers are shown to be weak if they are executed with fewer number of

rounds.
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outside of the chip; but the important feature is that it is physically protected and not a part

of the memory hierarchy to avoid it from being backed up on higher levels of the hierarchy.

Its implementation is much easier than a cache memory since placement scheme is straight-

forward. The cache memory usage is always problematic in cryptographic algorithms and not

necessarily as beneficial as a possible local memory. Some commercially available processors

such as graphic processors and the Cell Broadband Engine Architecture (CBEA) [29] also

feature local memories. It is important to note that the SPE cores (Synergistic Processing

Elements) in CBEA use on-chip local memories in isolation.

• Cryptographic Registers are organized as a register file, from which the functional units

can read their operands. The confidential values (secret keys and sensitive temporary values)

are kept and operated on while they are in these registers. Important feature of these registers

is that they are not spilled onto the main memory but to the local memory.

• Special registers are used to keep some temporary values during the long-latency crypto-

graphic computations such as multi-precision modular multiplication and block cipher round

operations.

In the next section, we provide more details about the processor architecture that incorporates

such a protected execution zone for cryptographic operations.

4 General Architecture

The architecture in Figure 1 is proposed to fulfill the requirements of secure and isolated execu-

tion of cryptographic algorithms stated in Section 3. The base architecture is essentially a 32-bit

embedded processor core based on Xtensa LX3 architecture by Tensilica [30] that provides the

most basic integer functionality. The architecture is both reconfigurable and extensible. A basic

pipeline structure with five stages, a register file of 32 32-bit registers and a simple ALU are default

resources in what is referred as the base architecture whose components are shown in dark in Fig-
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Instruction Cache

Data Cache

Data RAM

    Instruction 

Memory MMU

        Data

Memory MMU

Processor Interface

Secure Zone

Base ISA features Configurable Functions User-Defined Extensions

Figure 1: General Architecture

ure 1. The resources shown in the lightest represent configurable parts, which simply means that

a developer/designer can choose to add/remove/configure units already available in the Xtensa

LX3 architecture. For instance, a 16- or 32-bit multiplier and a multiply-and-accumulate unit

(MUL16/32 and MAC 16 in Figure 1, respectively) can be added to the base architecture. The

cache memory size and configuration can also be determined by the designer/developer.

The architecture is extensible in the sense that the designer can add units of her/his own design

such as multi-cycle execution units, register files, special registers for multi-cycle instructions, even

make the basic RISC pipeline into a multi-issue VLIW processor. It is the extensibility feature that

we use to realize our protected zone to execute cryptographic operations as illustrated in Figure 1

(enclosed within the dashed area).

Figure 2 shows the details of the protected zone where we can perform cryptographic operations

safely. The organization of the zone is very similar to an ordinary RISC processor core with the

exception of the 128-bit data path and the block cipher unit. The register file consists of eight 128-
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Figure 2: Organization of Protected Zone

bit registers, which we refer as cryptographic registers henceforth, and are used to hold operands

during the computation. The execution units, namely integer unit (IU), shifter, and multiplier,

are responsible for executing arithmetic/logic operations common in cryptographic computations

in an efficient and secure manner. While 128-bit shift and arithmetic/logic operations are single-

cycle, the 128× 128 multiplication is a multi-cycle operation. For the details of these instructions,

see [19, 20].

The block cipher unit (BCU) is novel in this design and incorporates various operations common

in many block cipher algorithms. In the beginning of each round of a block cipher algorithm, the

block is in one (or more depending on the block length) of the cryptographic registers. Once the

round starts, the block is first transferred into special registers in the BCU. One of the important

operations performed in the BCU is index calculation for secure table lookup operation that is

employed in many block cipher implementations to accelerate s-box computation. The lookup

table is formed inside the local memory in order to avoid cache-based side-channel attacks.

While accessing the lookup tables, most RISC-based processors use architectural (general-

purpose) base registers to compute the address of the location of the desired data, which may

be directly related to the secret. However, the architectural registers are not safe places to keep
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confidential information since they are backed up on the main memory (register spilling); a process

that may leak secret information. Therefore, they must be used carefully. A straightforward ap-

proach is to reset the architectural register used to keep confidential data after they are no longer

needed and before they are spilled to the main memory, which is easy to do in Assembly program-

ming. However, this is not an easy task in higher level language implementations since it is up

to the compiler to decide which registers are used in address calculation, which is hard to predict

beforehand for software developers. We use basically two techniques to reset architectural regis-

ters’ secret content, using high level language constructs that allow inline assembly instructions

and defining local variables on specified registers. This way, it is easy to keep track of registers that

are used to handle sensitive information to reset them afterward.

Note that certain operations either take multi-cycle or multi-instruction to complete, therefore

temporary values are kept in special-purpose registers. This resembles the multiplication operation

common in RISC processors that puts the high and low parts of the result in two special-purpose

registers, namely HI and LO, respectively. In order to further operate on the result of a multipli-

cation, instructions such as mfhi and mflo are used to move the results to the general-purpose

registers. We adopt the same approach; however, it is required that these special-purpose registers

be not saved in the main memory before process switch operation, which is supervised by the op-

erating system. Thus, operating system support is necessary in secure and isolated execution to

time carefully the context switching in order not to lose data.

5 Local Memory

As mentioned before, we propose to use a small amount of non-cached local memory as a scratch

pad. While the local memory can be implemented as off-chip as well as on-chip memory, it is

preferable to implement it as an on-chip memory since this way it will be much easier to protect

it against threats such as cold-boot attacks [12]. Furthermore, an on-chip local memory is faster.

Using a local on-chip, non-cached memory for protection of processes is not new and is already em-
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ployed in the Cell Broadband Engine Architecture (CBEA) [29] used in PlayStation game consoles

by Sony and BladeServers by IBM.

The local memory is accessed the same way as the main memory, whereby a memory address

is processed by a memory management unit. The memory management unit simply treats any

address in the address range of local memory as a special memory access and sends it to the local

memory. Since the local memory may contain sensitive data belonging in ongoing cryptographic

computation, its content must be protected on context switch where the operating system schedules

another process to run. We identify four methods that can be used to achieve the protection of

sensitive data in local memory. The first and most straightforward approach is to erase its content on

every context switch, which may raise efficiency concerns. The second method can be a partitioning

technique to allocate different parts of the local memory to different processes, whereby usage is

enforced by checking process identifiers. This method can require an increase in the size of the

local memory to accommodate the space requirements of every active process. The third method

can be to give exclusive usage of local memory to a single process at a given time. This method

alleviates the efficiency and size concerns while it deprives the other processes of the local memory.

The last method is that only a privileged process can use the local memory and all others are not

allowed to use it. Depending on the implementation and the usage scenario, one of the proposed

methods can be adopted. We do not specify a preference here.

Compilers use registers and memory (stack or heap) to store variables used in a computer

program. When possible, variables are kept in registers for fast execution of instructions. The

register contents are spilled to main memory when the compiler runs out of registers, which are

limited in number. The mapping between registers and memory location is not fixed for a variable

and hence every time it is accessed a different register can be used for the same variable. In

our processor, we utilize the properties of Tensilica architecture and the associated tool chain to

establish a mapping between the memory locations and cryptographic registers for sensitive data

processing.

When a variable is declared to keep sensitive data, it is defined as a new data type which is
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mapped to a cryptographic register. This basically means that whenever a variable of this new data

type is to be processed it is placed in one of the cryptographic registers. If the variable is of array

type, more than one cryptographic registers are used for this purpose. Since we have only eight

cryptographic registers in our cryptographic register file, they are also subject to register spilling.

Therefore, we need to force this spilling to use a predefined memory location in our local memory

for security purpose. Otherwise, the contents of the cryptographic registers would be written to

any location in main memory, which forms a security risk under our threat model. Fortunately,

Tensilica tools allow to initialize a variable of a new type based on the cryptographic register file

by pointer assignment to a pre-initialized memory location as follows:

unsigned long modulus_data[32];

crypto_register *modulus = (crypto_register *) modulus_data;

Here, crypto register is a new data type associated with the cryptographic register file integrated

to the processor core as follows:

regfile crypto_register 128 8 cr.

Also, the keywords (regfile 128 8) indicate that we extend the core processor with a new cryp-

tographic register file that contains eight 128-bit registers. The keyword cr is an internal name

used for the individual registers; namely compiler accesses these registers as cr0, cr1, . . . cr7.

To summarize, we keep sensitive data in the cryptographic registers that are mapped to locations

in our local memory. The sensitive data kept in variables of new type is normally stored in the local

memory. They are placed in the cryptographic registers before processing and when the processing

is finished or when the system runs short of cryptographic registers they are moved (spilled) to the

same location in the local memory. Since both the local memory and the cryptographic registers

are protected under our assumptions, no leakage occurs for sensitive data.

Since the tools provided by Tensilica do not allow to realize the actual local memory, in our

implementations we employ a part of the global memory address space to simulate the local mem-

ory. Therefore, it is, at this point, imperative to discuss the feasibility of realizing on-chip local
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memory, especially for embedded processors. The non-cached local memory for each processor core

is implemented in CBEA processors [29], which has eight cores each featuring 256 KB (kilobyte) of

on-chip local memory. When run in so-called isolated mode, a process running on a core completely

isolates itself from the system (main memory, system bus, other cores, etc.) and relies only on local

memory for data and instructions. The example of the CBEA processor clearly shows that 256 KB

× 8 = 2 MB of on-chip memory is feasible to implement on high-end processors.

Nevertheless, our architecture is proposed also for embedded applications and therefore, we

need to develop a deeper insight to the cost of an on-chip local memory in embedded processors.

Apparently, large on-chip memories cannot be supported in embedded processor due the limited

budget in chip area and power dissipation. Fortunately, as we explain in subsequent sections the

cryptographic algorithms we implement require a surprisingly small amount of local memory. Even

2048-bit RSA algorithm, which is the most memory-intensive implementation in our experiments,

needs only about 5,700 B of local memory at most. Therefore, we basically estimate that about

10 KB of local memory is sufficient for many symmetric and asymmetric algorithms in use today

if expensive precomputation techniques are not used for acceleration.

Considering one bit of SRAM memory takes about 6-10 transistors to manufacture, 5,700 B of

memory requires 5700 B × 6(10) = 34,200 (57,000) transistors. Considering also that a NAND

gate, the number of which is used as a metric called gate-equivalent (GE) to estimate the area

complexity of a design on ASIC, requires four transistors, a local memory of 5,700 B expectedly

takes as much space as a circuit of 8,550 (14,250) GE on ASIC. Note that this is a rough estimate,

thus real figures can only be given after actual implementations. All the same, this simple analysis

shows that realizing a small amount of on-chip memory does not require prohibitively high amount

of chip space.
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6 Secure Use of General-Purpose Registers

In software implementations of cryptographic algorithms, general-purpose registers available to

programmers are needed for various purposes. For example, addresses in memory access instruc-

tions are usually calculated and kept in general-purpose registers. General-purpose registers are,

in general, not secure locations since they are saved in the main memory at special points of exe-

cution (i.e., spilling process) when the operating system runs out of general-purpose registers. As

previously shown in cache-based attacks, it is important to hide the access patterns to memory.

Therefore, general-purpose registers are required to be erased of the addresses (or part of it) after

they are used to access memory.

Since compilers may map a variable to a different general-purpose register, and this mapping

can change dynamically every time the variable is used in the program, the developer cannot keep

track of registers used to store sensitive data. To use the same register for a sensitive variable,

we use inline Assembly feature that exists in high-level languages such as C/C++. For example,

a pointer variable that is used to access a lookup table and contains a sensitive address can be

defined as follows in Xtensa LX3 processor:

register unsigned int *table_ptr asm("a13");

Here, the register (a13) is declared as the pointer to hold the address of a particular element of

a lookup table that is being accessed. When the pointer variable is defined in this manner, the

compiler will always use the register (a13) to hold the corresponding address. Note that forcing to

use always the same register for a variable may have performance implications.

7 The New Instruction Set Architecture

Basic integer arithmetic and logic operations are implemented in the protected zone to provide a

wide range of cryptographic algorithms with a secure and efficient execution environment. Some of

these operations are implemented as simple single-cycle instructions such as integer addition and
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various shift operations while more sophisticated operations such as 128-bit multiplication take

multiple cycles. All instructions comply with RISC conventions such as using maximum three

operands per instruction, simple addressing modes stipulating register-to-register arithmetic, etc.

These conventions help keep the data path as simple and regular as possible. For instance, the

latency for instruction fetch can be minimized for short and regularly formatted instructions.

The implementation of instructions for efficient integer and logic operations has been explained

in detail in our previous works [19, 20]. Therefore, we focus only on explaining the new instructions

that allow secure execution of cryptographic operations; but only a subset of new instructions,

which we think are the most representative of the adopted methodology, is explained for space

considerations.

7.1 Predicate Registers and Associated Instructions

Firstly, we mention a special register that plays a key role in secure computations. We use a

one-bit predicate register, namely (p)2, to allow predicated (or conditional) execution of certain

instructions. The predicated instructions are known; however as a novelty we allow arithmetic

operations to be performed on a predicate register so that more sophisticated conditions can be

evaluated before the completion of an instruction. Five instructions associated with handling the

predicate register are given in Table 1.

Instruction name Arguments Definition

set predicate p p := 1

reset predicate p p := 0

read predicate p and ar ar := p

or predicate p and carry p OR carry

mf creg2predicate cr and p p := cr[127]

Table 1: Instructions pertaining to predicate registers

2Two predicate bits in [1] are not really necessary since predicated execution can be performed using only a one-bit

predicate register.
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Here, (ar) and (cr) stand for general-purpose and cryptographic registers, respectively. Another

one-bit register carry is set when a previous addition operation produces a carry bit. This carry

bit is copied to the predicate register via or predicate instruction. This way, a carry can be used

as predicate for conditional execution of subsequent instructions.

The instruction mf creg2predicate in Table 1 moves the most significant bit of the crypto-

graphic register cr to the predicate register (p) while (cr) is shifted to the left by one bit. The

instruction is useful in modular exponentiation and elliptic curve scalar multiplication operations

where the secret exponent (or integer) is kept in the cryptographic register and moved to the predi-

cate registers when needed. In particular, in classical left-to-right binary exponentiation algorithm,

the exponent is kept in a cryptographic register. The exponent bit which is moved to the predicate

register, determines whether a modular multiplication is computed or not.

Three instructions in Table 2 are conditional instructions using the predicate register. The

conditional instructions eliminate the need for conditional branches dependent on sensitive infor-

mation. The first two instructions cond mv and cond mv c conditionally move the content of a

cryptographic register to another depending on the value of the predicate register. These instruc-

tions are useful again in the exponentiation and elliptic curve scalar multiplication operations,

where certain operations are performed (e.g., modular multiplication) depending on the current

value of the exponent bit, which is currently in the predicate register. For instance, in the Mont-

gomery ladder algorithm [28] for exponentiation, the result of the modular multiplication R0×R1

is assigned either to R0 or R1 depending on the value of the current exponent bit. The conditional

move instructions are useful in performing this assignment operation without using branch predic-

tion circuit that leaks information about the secret key [5]. By performing a secret key-dependent

move instruction using the predicate register, the branch prediction attacks are thwarted.

The instruction acc carry is used to perform logical-OR operation on the two special purpose

registers, namely carry and carry2. Having two carry registers is useful in modular arithmetic

operations. For instance, the final subtraction operation in the Montgomery multiplication algo-

rithm [31, 32] can be securely handled by utilizing two carry bits. In our implementation of the
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Instruction name Arguments Definition

cond mv p, cr d, cr s if p=1 then cr d:=cr s;

cond mv c p, cr d, cr s if p=0 then cr d:=cr s;

acc carry p,

carry p := carry OR carry2;

carry2

Table 2: Special instructions for conditional executions of operations

algorithm, the register carry2 contains the carry out of the Montgomery multiplication operation

before the final subtraction. We always perform the final subtraction operation and save the result

in a temporary cryptographic register using carry. The subtraction operation can generate another

carry which is written in carry. If either of these carry registers is set, then the final subtraction is

necessary. By setting the predicate register (p) to logical-OR of two carry registers, we can perform

a conditional move from the temporary register to the result register. This way, the execution

time does not vary because of the final subtraction and additional conditional branch, which is

necessary in a conventional implementation, is removed. Therefore, the implementation becomes

more resilient against the side-channel attacks based on branch mispredictions [5].

7.2 Block Cipher Related Instructions

Another special register, sbox in, is useful in table lookup operations used in implementing s-box

computations in block cipher algorithms. Three new instructions pertaining to sbox computation

are given in Table 3.

The special register, sbox in is 32-bit in length and holds a part of the state of a block cipher

during s-box calculations. Before every round, the block (i.e., the current state of the block cipher)

is held in cryptographic registers. The instruction shlcr 2sbox in in Table 3 moves the highest

32-bit of cr to the special register sbox in, where the round operations are applied.

The so-called substitution box (s-box) in a block cipher algorithm is a non-linear function whose

evaluation is usually achieved using lookup tables. This is due to the fact that it requires algebraic
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Instruction name Arguments Definition

shlcr 2sbox in cr, sbox in sbox in:= cr[127:96];

shift left cr by 32 bits;

lookup table op addr, addr:=base addr + sbox in[31:24];

base addr, shift left sbox in by 8 bits;

sbox in

lookup table op word addr, addr:=base addr + (sbox in[31:24]<<2);

base addr, shift left sbox in by 8 bits;

sbox in

Table 3: Special instructions for block cipher related operations

manipulations that are usually too slow to implement in software. Depending on the available

memory, different table lookup methods can be considered. The s-box of AES is an 8× 8 function

and the basic table lookup technique makes use of a 256 B (byte) memory. A more sophisticated

method suggested by the designers of AES uses about 5 KB of memory to store lookup tables to

achieve higher speedup values. However, as pointed out in many works in the literature [10, 11],

cache-based attacks reveal a fundamental weakness in table lookup methods due to the fact that

the lookup tables are kept in cache memory. Even though these tables are public, key-dependent

access patterns to them in cache memory results in variations in the execution time due to cache

misses.

We address the security concerns pertaining to the usage of lookup tables in s-box evalua-

tions utilizing the architectural support in our processor. First of all, we propose to use a limited

amount of non-cached local memory to store the lookup tables. This approach basically thwarts

all cache-based attacks. However, there is another security concern that arises due to the fact

that we use classical memory access mechanism to read the local memory. Therefore, we develop

a novel, secure method of accessing relatively small lookup tables in the local memory without

using general-purpose registers in address calculations. For this, we use two instructions in Ta-

ble 3: lookup table op and lookup table op word. The instruction lookup table op computes
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the address of the s-box output value precisely, which allows to fetch the desired item from the

lookup table securely, assuming that the table contains 8-bit entries. The calculated address and

s-box output are placed in general-purpose registers which need to be properly handled and erased

afterward. To support larger s-boxes in other block cipher algorithms or larger lookup tables for

faster evaluation of s-box functions, the instruction lookup table op word in Table 3 is used to

return 32-bit entries in the lookup tables.

7.3 Registers in Protected Zone

In a general-purpose processor, there are two kinds of registers used in data processing: i) general-

purpose registers that keep operands for normal instructions and are visible to developers and ii)

special-purpose registers, which are not directly accessible by normal instructions (e.g., program

counter, condition codes/flags, temporary registers for multi-cycle instructions, etc.). General-

purpose registers are part of the register file, which is an array of registers within the processor. The

protected zone, modeled after RISC-based general-purpose processors, also contains both general-

and special-purpose registers. A cryptographic register file (cf. User-Defined Register File in

Figure 1) contains eight 128-bit cryptographic registers that are general purpose in the sense that

they can be used with all user-defined cryptographic instructions in the protected zone.

Other registers in the protected zone are special purpose. Four 128-bit registers are used to

keep temporary data during the execution of arithmetic instructions such as 128-bit addition and

multiplication. Two 128-bit registers, namely crypto HI and crypto LO store higher and lower

128-bit halves of a 128-bit multiplication instruction, respectively (similar to HI and LO registers in

many RISC processors). The predicate register is a one-bit register that allow predicated execution

of instructions, which is needed as a protection against branch prediction attacks. Both of the two

one-bit carry registers (i.e., carry and carry2) are used in big arithmetic operations as explained

in Section 7.1. Finally, there is one register for secure s-box computation: sbox in, which is a

32-bit register used to obtain the address used to access the lookup tables. Table 4 lists all registers

used in the protected zone.
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Register Name General- or Special-Purpose Size (bits) Number

Cryptographic registers General-Purpose 128 8

Temporary registers Special-Purpose 128 4

crypto HI Special-Purpose 128 1

crypto LO Special-Purpose 128 1

predicate register Special-Purpose 1 1

carry registers Special-Purpose 1 2

sbox in Special-Purpose 32 1

Table 4: General and special-purpose registers in the protected zone

7.4 Extending the Protected Zone with New Features and Functional Units

Thanks to the extensibility feature of the reconfigurable architecture, new functional units with new

features, registers, and register files, etc., can be added to the processor data path. An extension to

the data path of the processor is possible using Tensilica instruction extension (TIE) language. TIE

is, in fact, a hardware description language, similar to VDHL and Verilog, which is used to describe

instruction set extensions to the processor core. The functional behaviors of desired functional

units are defined in TIE language, and TIE compiler will generate and place the RTL (register

transfer level) equivalent blocks into the processor data path. In Appendix A, we demonstrate how

a one-cycle 128-bit adder is encoded in TIE language as RTL. The TIE code in fact implements a

128-bit fast adder whose block diagram is given in Figure 4.

After TIE compiler generates the RTL blocks of the extensions, the processor is synthesized

with the new RTL blocks. Figure 5 illustrates how the integration of the new 128-bit adder would

look like in the five-stage pipeline of the reconfigurable processor core. This is a tight integration

since a 128-bit addition operation is now performed in five clock cycles as in the case of all other

existing instructions of the reconfigurable processor.

After synthesis stage, the configuration file of the extended processor that can be used to pro-

gram the target FPGA device. ASIC realization requires vendor’s assistance in the manufacturing

process. The vendor also provides a tool chain (compiler, debugger, linker, loader, etc.) for software
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development for the extended processor.

The reconfigurable architecture can always be extended with more powerful functional units for

more security and further acceleration. For instance, we can have two multiplication units in the

protected zone to take advantage of instruction level parallelism. Two multiplication units would

perform two multiplication operations in elliptic curve cryptography and RSA algorithms, simul-

taneously, resulting in significant speedup in overall computations. However, two multiplication

units naturally requires more chip space and more complicated control circuity in the pipeline of

the processor.

Similarly, the reconfigurable processor could feature functional units tailored to perform instruc-

tions specific to a certain cryptographic algorithm. For instance, we can always design a highly

optimized hardware module to perform multiple s-box operations of the AES algorithm at the same

time. However, this module would not be used to implement any other block cipher algorithms.

Therefore, the architecture would lose its generic nature.

The proposed architecture adopts two design approaches to increase its feasibility in embedded

applications: i) simple architecture with acceptably low hardware cost and significant acceleration

of cryptographic algorithms, and ii) generic functional units to support as many cryptographic al-

gorithms as possible. As will be demonstrated in the subsequent sections, the proposed architecture

can be implemented with relatively moderate hardware cost without a decrease in the maximum

applicable clock frequency.

8 Implementation of Cryptographic Algorithms

In this section, we explain our adopted approach to implement major symmetric and asymmetric

cryptographic algorithms and present the timing results in terms of clock cycle count for their per-

formances. We selected three well-known and widely used public key cryptosystems: RSA, elliptic

curve cryptosystems, and Pairing-based cryptographic algorithms. For symmetric cryptographic

algorithms we implemented AES as the block cipher and SHA-1 and SHA-256 as the representatives
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of cryptographic hash functions. Below, we start by presenting timing results for the basic modular

arithmetic operations common in many public-key cryptosystem.

8.1 Modular Arithmetic Operations for Big Numbers

To accelerate the basic arithmetic operations in fields with prime characteristics, we use the func-

tional units presented in [20, 21]. Table 5 lists the complexity of the basic arithmetic operations

used in the computation of the pairing operation in Pairing-based cryptography in number of clock

cycles.

Operation 160-bit 192-bit 256-bit 512-bit

Fp addition 167 174 170 239

Fp subtraction 171 178 174 243

Fp multiplication 905 1044 830 2167

Fp multiplication by -2 295 309 300 418

Fp inversion 36,565 42,925 55,478 140,049

Table 5: Timings of modular arithmetic operations in number of clock cycles

Similarly, in Table 6, we present the timing results for the prime extension field arithmetic

used in pairing-based cryptography. We provide the timing results only for two extension degrees

of 2 and 4, namely F 2
p and F 4

p since we use pairing operations defined for these two fields. The

timings of additions and subtractions for prime extension fields are not included here as they can

be accurately estimated from modular addition and subtraction operations in Table 5. F 4
p inversion

and multiplication timings are not given for 512-bit since our pairing implementation uses only the

embedding degree of 2 over 512-bit prime field. One obvious observation from Tables 5 and 6 is

that the major operation in F 2
p and F 4

p inversion calculations is the inversion in the prime field Fp.

We use irreducible polynomials of the form X2 − β and the tower field approach in the con-

struction of prime extension fields for a faster computation of the basic field arithmetic. Note also

that these implementations are developed using our secure programming technique in the protected

zone.
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Operation 256-bit 512-bit

F 2
p multiplication 3,775 7,836

F 4
p multiplication 13,541 -

F 2
p inversion 60,983 152,738

F 4
p inversion 77,819 -

Table 6: Timings of arithmetic operations in extension fields in number of clock cycles

Algorithm Base Fast Secure

Architecture on protected protected

RSA-1024 132,334,584 9,215,168 14,831,132

RSA-2048 NA 66,728,848 107,173,686

ECC-160 5,684,844 2,524,498 4,683,325

ECC-256 21,509,576 3,649,338 7,213,678

ECC-512 160,109,439 16,979,307 33,893,033

Table 7: Clock count for RSA and ECC

8.2 RSA and Elliptic Curve Implementations

The timing results of an RSA exponentiation and an ECC scalar point multiplication are given in

Table 7 in terms of number of clock cycles. Note that all implementations are done in C language

with some lines in inline Assembly and implementations in full Assembly are expected to yield

better performance.

For both RSA and ECC, we list the timing results for three implementations: base, fast,

and secure Table 7. The base implementation is implemented without using the cryptographic

acceleration and therefore it is not secure (not to mention the fact that the implementations are

prohibitively slow). Fast implementations execute completely in isolated manner, whereby all

computations are performed in the protected zone. But they are vulnerable to simple side-channel

attacks since we use the binary left-to-right exponentiation algorithm in the computations of RSA

exponentiation as well as elliptic curve scalar multiplication, which is vulnerable to the simple power

analysis (SPA). In order to harden these operations against the SPA and branch prediction attacks,
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we employed the Montgomery Ladder algorithm [28] along with conditional move instructions (cf.

Section 7.1) in our secure implementations of RSA and ECC, hence the secure implementation.

The Montgomery Ladder algorithm is a typical example of algorithm level countermeasures

against the simple power analysis attacks. It is used in RSA exponentiation and elliptic curve

scalar point multiplication operations. Independent of the exponent (the scalar integer in ECC),

which is the secret information, the algorithm always performs the same operations (one modular

multiplication and one modular squaring for every bit of the secret exponent in RSA). Therefore,

no information leaks due to secret key dependent operations. We further eliminate any remaining

dependency on the secret key by using conditional move instructions, which remove any conditional

statement such as the if statement that checks the bits of the secret exponent.

The differences in the clock cycle counts of the fast on protected and the secure protected

implementations (see the third and the fourth columns in Table 7) are due to two factors. Firstly,

the Montgomery ladder algorithm always performs a multiplication (point addition in ECC) for

each bit of the exponent while binary exponentiation algorithms perform a multiplication only if

the corresponding exponent bit is 1. Secondly, conditional move instructions based on predicate

registers require a higher number of clock cycles.

For comparison, our implementations, both fast and secure, greatly outperform another 1024-

bit RSA implementation on the same Xtensa processor in [33] where one exponentiation operation

takes about 24.32 million clock cycles. In a more recent work [24], in which the FPGA realization

of the extended processor runs at 24 MHz and execution times are given for modular multiplication

only, one 1024-bit modular multiplication takes 25, 418 clock cycles. In comparison, the same

operation takes 7, 654 clock cycles in our processor. Considering our architecture can run at a

twice faster clock frequency of 50 MHz, the speedup is about 6.92.

It turns out that the required sizes of the local memory are surprisingly low for RSA and ECC

implementations; maximum 5,700 Byte (B) is needed for the fast implementation of RSA and it

is only 1, 936 B for ECC. RSA memory requirement in fast implementation can be reduced to

as low as 1, 860 B at the expense of 17 − 18% deterioration in speed. The secure RSA imple-
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mentation requires only 2, 112 B memory space. Considering our former disccussion about the

feasibility of impelementing local memory on-chip in Section 5, the local memory requirements of

our implementations are very low.

8.3 AES Implementations

In encryption (symmetric as well as asymmetric), we can assume that the plaintext is usually

placed first in the main memory, which is not a secure place. Our implementations take a block of

plaintext (128-bit or 16 B in AES) from the main memory and place it in the local memory, which

is a secure place. During the computation of the AES rounds, anything computed remains in the

protected zone; i.e. local memory, cryptographic or special purpose registers. After the final round

of the block cipher is executed, the resulting ciphertext block is transferred to the main memory.

One can argue that an adversary who already compromised the main memory can easily obtain

the plaintext while it is in the main memory. Therefore, it can further be argued that the proposed

protection does not help to secure the encryption operation. However, the primary goal of our

architecture is to protect the secret key used in the encryption process. Even if the main memory

is compromised, our architecture can still carry on encryption (or decryption) operations without

leaking sensitive information.

We developed two C implementations of the AES algorithm and the results are given in Table 8

along with those of other implementations (some of them on similar embedded platforms). In the

table we provide operating clock frequencies for the designs, for which FPGA implementations are

provided. Our first implementation, referred as the limited memory version, utilizes a lookup table

with 256 entries where each entry is 8-bit, which is stored in the local memory. It is basically

used in the direct evaluation of 8 × 8 s-box of the AES algorithm. As seen in the table, our

implementation is outperformed by those in [24], [34] and [35]. The implementation in [35] is a

bit-sliced implementation. Our implementation does not use the bit-slicing technique, therefore, it

can work in any mode of operation. A bit-sliced implementation in our architecture would possibly

yield a better performance, which we leave as a future work. Note also that the implementation
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in [24] uses a slower clock frequency.

Implementation Hardware support Performance (cycles)

[36] on ARM7TDMI - 1675

[37] on AMD Opteron - 2699

[35] on CRISP Bit-sliced + 2203

lookup tables

[35] on CRISP Bit-sliced + 1222 (@30 MHz)

lookup table +

bit-level permutation

[33] on Xtensa - 1400

[24] on LEON 3 Hardware support 463 (@24 MHz)

Reference implementation [34] on XTensa No hardware support 859 (@50 MHz)

this work - limited memory on protected zone 1334 (@50 MHz)

this work - fast on protected zone 863 (@50 MHz)

Table 8: Comparison of AES Implementations

The implementation [34] uses five lookup tables of size 1 KB each resulting in about 5 KB

memory for table lookup approach. However, this implementation has been shown to succumb to

cache-based attacks. Our second implementation modifies the implementation [34] by using the

local memory for lookup tables and secure memory access techniques. As seen in Table 8, our

fast implementation provides the same performance as the reference implementation [34] without

sacrificing the security.

The AES algorithm requires only 464 B of scratch pad memory for the limited memory version

while the requirement is 5, 328 B for the fast version. The scratch pad memory required by the fast

implementation of RSA can also be used to enable the execution of the fast version of AES.

8.4 Implementing Pairing-Based Cryptography and Protocols Based on Pairing

Elliptic curve based pairing operation recently emerged as a very important cryptographic prim-

itive and already became an essential part of many cryptographic schemes and protocols [38, 39,
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40, 41, 42, 43, 44]. Therefore, it is important to implement pairing operation on embedded devices

efficiently. However, pairing operation is costly and generally prohibitively slow on embedded pro-

cessors [45]. Therefore, full or partial hardware support for acceleration is a frequently adopted

methodology [25]. In this section, we demonstrate that it is possible to accelerate pairing operation

significantly if implemented in our protected zone. But, we will first provide a brief introduction

to pairing operation defined over elliptic curves to enable a better understanding of our implemen-

tations.

8.5 Bilinear Pairing and Tate Pairing Operation

Bilinear pairing is a function that maps two points in elliptic curve groups to a subgroup of the

extension field Fpk ; more formally e : G1 ×G2 → G3, where G3 = Fpk , k is the embedding degree,

and p is the prime characteristic of the field Fp, over which the elliptic curve group G1 is defined.

In practice, all three groups have the same order r and the embedding degree k is a small integer.

An important property that makes the pairing operation interesting for cryptographic applications

is its bilinearity

e(aP, bQ) = e(P,Q)ab = e(bP, aQ) = e(aP,Q)b = e(P, bQ)a,

where P and Q (i.e., uppercase letters) are elliptic curve points while a and b (i.e., small case

letters) are integers. The Tate pairing, which is one of the most efficient pairings widely used

in cryptography can be computed using Miller’s algorithm, followed by a final exponentiation

operation. The BKLS algorithm [46], described in Algorithm 1, is an efficient method to compute

the Tate pairing.

The function g in Algorithm 1 takes two elliptic curve points from G1 and one point from G2 and

returns an element in Fpk . In our implementations we use two values for embedding degree, namely,

k = 2 or 4. In addition, we use the same elliptic curve for the groups G1 and G2. Specifically, while

G1 is the elliptic curve over Fp, G2 is the same curve defined over Fpk . Since we use the quadratic

twist [47], [45] of the elliptic curve for k = 4, the elements of G2 have coordinates from Fp2 in both
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Algorithm 1 BKLS Algorithm for Computing Tate Pairing e(P,Q)

Require: r, p, P,Q

Ensure: f = e(P,Q)

// Miller’s Loop

f = 1

T = P

n = r − 1

for i from ⌊log2 r⌋ − 2 downto 0 do

f = f2 · g(T, T,Q)

if ni = 1 then

f = f · g(T, P,Q)

end if

end for

f = f (pk−1)/r // Final Exponentiation

cases (i.e., k = 2 or 4). The irreducible polynomials x2 +1 and x2 +2 can be used to construct the

quadratic field Fp2 . Consequently, the elements of Fp2 can be represented as x+ iy, where i =
√
−1

or
√
−2 and x, y ∈ Fp. For more information, see [47].

The function g can be computed using Algorithm 2, where the elliptic curve points A,B ∈ G1

are given in projective coordinates (e.g., A = (Xa, Ya, Za)) while we use the affine representation

for the point Q ∈ G2 (i.e., Q = (xq, yq)). Note that the point A is modified by the function g.

Algorithm 2 Computation of g Function in Tate Pairing

Require: A = (Xa, Ya, Za), B = (Xb, Yb, Zb), Q = (xq, yq), where A,B ∈ G1 and Q ∈ G2

Ensure: m = g(A,B,Q)

C = A+B // elliptic curve point addition

λ = Z3
aYb − Ya

m = YaZc − λ(xqZ
3
a +XaZa)− i(yqZ

3
aZc)

A = C

The final exponentiation f (pk−1)/r can be computed using the Frobenius as explained in [45].

Moreover, two methods are utilized to accelerate the pairing operation. The first method is a

precomputation technique that can be used when the the first elliptic curve point P in e(P,Q)

is fixed. Note that the Miller’s loop in Algorithm 1 computes the same multiple of the P inde-

pendent of Q. Thus, we can precompute the elliptic curve additions in the computation of g and

31

Page 31 of 47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

save them in a lookup table. This eliminates costly elliptic curve operations during the Miller’s

loop. The second acceleration method (i.e., Lucas sequence method) can be applied in the final

exponentiation operation in case k = 2 (cf. [48] for the application of the Lucas sequences to the

final exponentiation).

8.6 Our Implementations

We implemented the Tate pairing operation to see if it can be computed efficiently on our archi-

tecture. For elliptic curve arithmetic and pairing operations we use two elliptic curves provided in

MIRACL library [49]. The first elliptic curve uses a 256-bit prime field Fp with embedding degree

k = 4 for pairing operations. The extension fields F 2
p and F 4

p are constructed using tower field

approach and irreducible polynomials of the form X2−β. Since the base point order of the elliptic

curve group is a 160-bit number and embedding degree is 4, this selection of pairing operation

provides 80-bit security level, which is suitable for embedded applications.

The second curve is constructed over 512-bit prime field with the embedding degree k = 2

for pairing operation and provides also 80-bit security. The second curve is used for the pairing

operation with precomputation for the case when the first point in the pairing is fixed. Results for

both implementations are given in Table 9. Note that the results for the precomputation case are

about two times faster than those in [25], which is also based on instruction set extension technique.

Operation 256-bit 512-bit

Point addition 13,509 32,915

Point doubling 9,793 21,581

Point multiplication 2,478,410 5,122,758

Miller’s Loop 10,928,255 29,77,028 (with precomputation)

Final Exponentiation 5,764,617 1,889,324 (with Lucas sequence)

Pairing (Total) 16,692,872 4,866,352

Table 9: Timings of elliptic curve and pairing operations in number of clock cycles

In Table 9, the timing results for elliptic curve point arithmetic are also included since they are

used together with pairing operations in many cryptographic schemes. Note that a scalar point

multiplication in Table 9 is much faster than those in Table 7 for the same precision since elliptic
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curves used in pairing operations have a much smaller base point order, which determines the

required number of point addition and doubling operations.

One pairing operation on our processor running at 50 MHz takes about 334 ms for 256-bit case

while it is 97.3 ms for 512-bit case where we use precomputation. Note that the reason we choose

50 MHz as the clock frequency is that it is typical for embedded systems and that we are able use

50 MHz for the synthesis of our processor on our FPGA board. In the precomputation case, two

coordinates of the point P in Algorithm 1 and integer λ in Algorithm 2 are precomputed. The order

of the curve used in the implementation is a 160-bit integer, and λ and elliptic curve coordinates

are 512-bit numbers. Consequently, the precomputation method requires about 10 KB of memory.

Many pairing-based cryptographic algorithms and protocols also make use of other operations

such as elliptic curve arithmetic besides pairing operation. For example, the privacy-preserving

authentication protocol introduced in [44] uses one pairing and seven elliptic curve multiplica-

tion operations for a wireless user to authenticate to an access point. This workload on a user

who may have an embedded system to connect to the network can be prohibitively heavy. How-

ever, when implemented on our proposed architecture the computation by a user takes about only

36, 520, 152 = 16, 692, 872 + 2, 478, 410 × 7 clock cycles. If a clock frequency of 50 MHz is used

for the processor, the computation of all cryptographic operations can be completed in less than a

second; i.e. approximately 731 ms, which is quite acceptable for such an involved computation.

One pairing operation requires that a diverse set of operations be executed such as the basic

arithmetic operations in Fp and Fp2 , elliptic curve arithmetic operations, etc. The detailed call

graph for our implementation of the pairing operation is given in Figure 6 in Appendix B. These

operations in the call graph require local variables to store temporary results, which are sensitive

and therefore kept in the local memory. For this, we calculate and allocate the required amount

of memory needed throughout the call graph in advance. Note that operations in the same level

of the call graph can share the same memory area. The total amount of the memory needed for

the Pairing operation is less than 5 KB (not including the memory space for the precomputation

method in Table 9).
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8.7 Secure Implementation of Hash Functions on Cryptographic Unit

In cryptographic hash computation for a given message, the confidentiality is not an issue since

anything computed is public. Therefore, it is important to guarantee the correct computation of a

hash value; in a sense what is important is the integrity. For instance, if the intermediate values

during the hash computation are stored in the main memory, an attacker who has access to the

address space of a cryptographic application, can modify them and tweak the computation that

will produce an incorrect hash value, which may be the value intended by the attacker. In our

architecture, it is easy to secure the hash computation by simply saving the hash block in the

protected local memory.

General-purpose registers can be used for the hash operations and hence the hash block can

temporarily be kept in these registers. However, these registers must be backed up on the secure

memory before these registers are spilled into the memory. The backing up the hash block can be

performed as many times as required. Since the processing of one message block can be finished

relatively fast, and implementing the core hash functionality for a message block is possible in a

single function (method), it is usually sufficient to back up the hash block after the processing of one

message block is completed. Figure 3 illustrates the secure computation of the hash of a message. In

the figure, IV and MBi stand for the initial vector and the i-th message block, respectively. In hash

computations, the message is partitioned into fixed length blocks, each of which is processed within

the core function of the hash known as the digest. If the message is not a multiple of the block

length, a padding scheme is applied for the last message block. After the finalization step the hash

value is written back to the local memory. The backup operation in Figure 3 represents spilling

all registers holding the current hash block to the local memory. If, for instance, the processor

context switches to another process after computing a hash block corresponding to the message

block (i − 1), for the resumption of hash computation (for the block i and onward) on the next

context switch back to the hash computation, the hash block (i−1) is read from the local memory.

During the computation of hash functions, general-purpose registers of the base processor are
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Figure 3: Secure hash computation using local memory

used. These registers must be mapped to the secure local memory in order for them to be backed

up in the local memory when needed.

In our secure implementation of the SHA-1 function, computing the hash of a 512-bit message

takes 1529 clock cycles. The same computation takes 1, 602 clock cycles in the architecture in [35]

(another implementation in the same architecture [35] using lookup tables takes 1441 clock cycles).

Note that the maximum applicable clock frequency in [35] is 30 MHz while we can apply 50 MHz to

our architecture. We also implemented SHA-256 (256-bit version of SHA-2) in the same manner to

provide the performance result for 128-bit security level and we found out that the hash of a 512-bit

message is computed in 7, 550 clock cycles. In comparison, the same operation takes 6, 255 clock

cycles in the architecture in [24] at a maximum clock frequency of 24 MHz. In both cases, our

overall execution times are better than those in [35] and [24].

For hash-based MAC computations, in order to protect secret key, hash blocks should also be

protected in the same way as the blocks of AES, which will slow down the computation.

9 Implementation Results

We implemented our protected zone and integrated it into an embedded processor core, namely

Xtensa LX3 by Tensilica [30]. Design choices for the extensions are made in such a way that the

applicable clock frequency is not affected. The Tensilica tool chain estimates that the protected

zone takes a chip area of 100, 279 equivalent gate count in an ASIC realization while the base
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processor takes about 88, 000 equivalent gate count. Therefore, the total size of the processor is

estimated as 188, 279 equivalent gate count in an ASIC realization.

The results for an ASIC realization are rough estimates and the tools do not report reliable

figures for maximum applicable clock frequency (The base processor runs at a maximum clock

frequency of 320 MHz). Therefore, we also synthesized the design into an FPGA target device,

and generated configuration files to program Avnet LX200 board that features Xilinx Virtex-4 type

FPGA. This basically means that the reported implementation figures are obtained after placement-

and-routing. The number of slices used in the design is reported to be 27, 401; and 14, 432 slices of

the total number are used to implement the protected zone. Note that there are 89, 088 slices in

the FGPA device. No degradation in clock frequency is reported by the synthesis tools; 50 MHz

maximum clock frequency is achieved for the design. Note that, the implementation figures do not

include the area which will be required for the local memory.

We compare the implementation results with the architecture in a recent work [24], which

reflects the state-of-the-art in instruction set extensions for cryptographic algorithms. The design

in [24] is based on LEON 3 microprocessor architecture and realized on Xilinx Virtex 5 FPGA.

Since the processor cores and target devices (FPGA) are different, a direct comparison is not fair.

However, relative increases in areas (i.e., number of slices) can give an idea whether the overhead is

reasonable and/or acceptable. In [24], when all extensions are considered, the relative increase in the

number of slices is approximately 207% (the base processor and extensions take 2, 338 and 4, 830

slices, respectively) as opposed to an increase of about 111% in our architecture. The relative

increase incurred in the area due to the extensions, while significant, is typical and acceptable.

Another architecture [35], claiming to be lightweight and supporting only block ciphers and SHA-1

algorithm, takes 9, 500 slices on Virtex II architecture.

The equivalent gate count of the base Xtensa LX3 microprocessor (i.e., 88, 000 equivalent gates)

reflects the fact that its architecture is optimized for ASIC realizations. This also explains relatively

high slice count on the FGPA device, for which the processor is not optimized. The gate count

of the base processor (88, 000) and the additional gate count due to the protected zone (100, 279)
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are relatively low figures, which are feasible for embedded applications. For comparison with an

equivalent embedded core, we can inspect the deeply-embedded ARM processor core, Cortex-R4 [50],

which has an equivalent gate count of 290, 000 for the maximum clock frequency of 934 MHz. The

gate count can be as low as 150, 000 for lower clock frequencies.

To compare the hardware cost of the proposed architecture with cryptographic accelerators,

we select two high performance designs specialized for elliptic curve cryptography to give an idea

of their hardware costs. The first design is a high-speed elliptic curve accelerator [51], which

takes 750, 000 gate count operating at 200 MHz. A low-power power design [52] for elliptic curve

cryptography takes about 34, 000 gates and operates at 200 MHz.

In summary, our design features an embedded processor core with a generic support for many

cryptographic algorithms and its hardware budget is similar to those of similar embedded systems.

10 Conclusion

We designed, implemented and realized a protected zone in an embedded processor that supports

efficient and secure execution of cryptographic algorithms. We estimated the area overhead of the

protected zone for the ASIC implementation. We also provided area usage on an FPGA device

after placement-and-routing for the full design including an embedded base processor and the

protected zone. Since the number and organization of the subsystems in the protected zone are

carefully designed, we observed that the area overhead is acceptable for an embedded processor

while no deterioration in maximum applicable clock frequency is reported in FPGA realization.

We outlined the principles of software implementations of cryptographic algorithms so that the

resulting executables run in a secure and isolated manner. Since the protected zone is specifically

tailored for the cryptographic application domain, we achieved superior time performance of major

cryptographic algorithms compared to both those reported in the literature and those in the base

processor. The protected zone benefits software implementations of many cryptographic algorithms

since the selected design methodology is not aimed at favoring a particular class of algorithms.
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11 Appendix A: Addition Unit in TIE language

In this section, we explain how a new functional unit in the protected zone will be implemented

and integrated to the base processor’s pipelined data path. As an example, we consider the 128-

bit adder unit used in big integer arithmetic for public key cryptography algorithms. The block

diagram of the adder is given in Figure 4. Three 64-bit adder units are employed in the design,

where two of them are used to implement the addition of the upper 64 bits of the integers. They,

in fact, perform the same operation, one with carry and the other without carry. The carry out

from the lower 64-bit addition is used to select the correct result for the upper 64-bit addition. The

sizes of the adders are selected in such a way that the maximum applicable clock frequency is not

affected.

Adder

6464

Adder

6464

Adder

6464

a0b0a1a1 b1b1

cin=0cin=0cin=1

MUX
01

cout

c0c1

64 64

64

64

1

Figure 4: Adder unit for 128-bit integer addition operation [20]

The 128-bit adder unit is described in TIE language as follows:

function [128:0] add128 ( [127:0] oper1, [127:0] oper2, carry) shared

{

wire [64:0] hi, hi_with_carry, hi_wo_carry, lo;

wire c_in_1, c_in_0;

assign c_in_1 = 1’b1;

assign c_in_0 = 1’b0;
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assign lo = TIEadd(oper1[63:0], oper2[63:0], carry);

assign hi_wo_carry = TIEadd(oper1[127:64], oper2[127:64], c_in_0);

assign hi_with_carry = TIEadd(oper1[127:64], oper2[127:64], c_in_1);

assign hi = TIEmux(lo[64], hi_wo_carry, hi_with_carry);

assign add128 = {hi, lo[63:0]};

}

As can be seen from the TIE language description, the language is similar to other hardware

description languages such as VHDL and Verilog. TIE compiler takes the description and generates

an RTL block which is ready to be integrated into the processor core. A synthesizer tool takes

both the new RTL blocks and the base processor as input and integrates the RTL blocks into the

processor core. As an example, Figure 5 illustrates the integration of the 128-bit adder into the

five-stage pipeline of the base processor. From the figure, we can easily see that it is a very tight

integration and new instructions using the new functional units in the protected zone are treated as

normal instructions of the base processor. The new instructions are scheduled in the same manner

as the other instructions and go through all pipeline stages.

ALURegister �
 File

Instruction
  Memory
 (Cache)

Data
Memory
(Cache)

Register �
   File

Cryptographic
   Register 
   File

128-bit

Adder

Cryptographic
   Register �
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Figure 5: Tight integration of functions units in the protected zone into processor pipeline
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12 Appendix B: Call Graph of Pairing Computation

In Figure 6, a detailed call graph of the pairing algorithm is given. Since temporary results during

the computation can be sensitive, all local variables needed in different levels of the call graph

are mapped to the local memory in the protected zone. The local memory is an extension to the

processor core, and therefore we first compute the amount of memory needed for all operations in

the graph. The dashed lines in the figure represents memory requests by the operations in each

level. In our implementation, operations in the same level of the graph share the same memory

locations to optimize the memory usage.

Pairing
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Loop

Point
Addition

Final
Exponent.

Point
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2

Arithmetic
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Arithmetic

Big Integer
Arithmetic

Local Memory

Free
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Figure 6: Call graph of pairing computation and local memory usage
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