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Abstract 
 
Multi-walled hollow fibers with a novel architecture are fabricated through utilizing a direct, 
one-step tri-axial electrospinning process with a manufacturing methodology which does not 
require any post-treatments for the removal of core material for creating hollowness in the 
fiber structure. The hydrophilicity of both inner and outer layers’ solution needs to be 
dissimilar and carefully controlled for creating a two-walled/layered hollow fiber structure 
with a sharp interface. To this end, Hansen solubility parameters are used as an index of layer 
solution affinity hence allowing for control of diffusion across the layers and the surface 
porosity whereby an ideal multi-walled hollow electrospun fiber is shown to be producible by 
tri-axial electrospinning process. Multi-walled hollow electrospun fibers with different inner 
and outer diameters and different surface morphology are successfully produced by using 
dissimilar material combinations for inner and outer layers (i.e., hydrophobic polymers as 
outer layer and hydrophilic polymer as inner layer). Upon using different material 
combinations for inner and outer layers, it is shown that one may control both the outer and 
inner diameters of the fiber. The inner layer not only acts as a barrier and thus provides an 
ease in the encapsulation of functional core materials of interest with different viscosities but 
also adds stiffness to the fiber. The structure and the surface morphology of fibers are 
controlled by changing applied voltage, polymer types, polymer concentration, and the 
evaporation rate of solvents. It is demonstrated that if the vapor pressure of the solvent for a 
given outer layer polymer is low, the fiber diameter decreases down to 100 nm whereas 
solvents with higher vapor pressure result in fibers with the outer diameter of up to 1 µm. The 
influence of electric field strength on the shape of Taylor cone is also monitored during the 
production process and the manufactured fibers are structurally investigated by relevant 
surface characterization techniques.   
 
1. Introduction 
 
Hollow structured nanofibers with exceptional properties such as low density, high specific 
surface area, and tunable surface properties have found considerable applications in catalysis 
[1], drug delivery [2], membrane [3], and photonics [4]. Up to now, two different approaches 
have been developed to fabricate hollow fibers through electrospinning process. The first 
approach introduced by Bognitzki et al. [5] uses the conventional electrospun polymeric 
fibers as templates for the fabrication of hollow fibers through coating the templates with 
wall materials using various deposition techniques, and then removes the template to obtain 
hollow structures. Similar procedure was utilized in the fabrication of hollow fibers of 
titanium dioxide [6], silica [7] and alumina [8]. Complexity in coating, template removal 
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processes and type of material are the limiting factors of the method in question for the 
production of hollow fibers. The second approach employs co-axial electrospinning process 
to produce core-shell fibers from two different solutions and then hollow structured fibers is 
fabricated by selective removal of the core material. Li et al. [9, 10] used co-electrospinning 
of polyvinylpyrrolidone and titanium tetraisopropoxide solution in ethanol as the shell and 
mineral oil as the core, which is followed by the subsequent extraction of oil and calcination 
process to fabricate hollow titania fibers. In another study, hollow carbon nanotubes were 
fabricated  by co-electrospinning of poly(methyl methacrylate) (PMMA) solution as fiber’s 
core and  polyacrylonitrile (PAN) as fiber’s shell with the subsequent degradation of PMMA 
and then  carbonization of PAN [11]. Dror et al. [12] fabricated polymeric bio-microtubes by 
using co-electrospun biocompatible and biodegradable polymers as core and shell of fibers 
and transformed the core/shell structure into hollow fibers by controlling the evaporation of 
the core solution.  
 
In order to increase the strength and functionality of co-axial electrospun fibers, an additional 
wall in fiber structure is provided by multi-axial electrospinning which is a single-step 
method to fabricate third generation electrospun nanofibers with a unique architecture and 
morphology.  In the fabrication process of multi-axial electrospun nanofibers, a strong 
electric field is applied between a nozzle containing concentric tubes allowing for the 
extrusion of different fluids to tip of the nozzle and grounded metallic plate as a collector. 
When the electrostatic forces on the surface of polymeric solutions exceed the surface tension 
of droplets, the jet of polymeric solutions is ejected from the tip of the nozzle and undergoes 
bending instabilities, whipping motions and diameter reduction in order to form multi-axial 
fibers with diameter ranging from several nanometers to micrometers [13]. The advantage of 
these sandwich-structured fibers is in the insertion of an extra intermediate layer between the 
inner cavity and outer wall of fibers. This extra layer would provide an inert medium for the 
core material to be encapsulated thereby reducing the environmental effect and increasing the 
life time of both core and wall materials.  
 
In literature, one may find a few recent studies which have utilized tri-axial electrospinning 
technique that focuses on the encapsulation of functional molecules since an extra 
intermediate layer in electrospun fiber increases the life time of encapsulated materials. Kalra 
et al. [14] applied tri-axial electrospinning technique to produce fibers with  intermediate 
layer of block-copolymers with self-assembly functionality flanked between the shell layers 
of thermally stable silica and the core allowing for the post-fabrication annealing of the fibers 
to obtain equilibrium self-assembly  without destroying the fibers morphology. In another 
study, tri-axial electrospinning technique was utilized to develop nanowire-in-microtube 
structure  by introducing an extra middle fluid as a spacer between the outer and inner layer 
of fibers and selective removing of middle spacer fluid to achieve hollow cavity between the 
sheath and the core materials [15]. In another work, biodegradable triaxial nanofibers were 
produced by using gelatin as middle wall and poly(ε-caprolactone) as inner and outer walls to 
provide sufficient strength to support developing tissues [16]. Especially these types of multi-
axial electrospun fibers have been utilized as drug delivery vehicles since the structure of 
fiber provides a quick release from the outer sheath layer for short-term treatment and a 
sustained release from the fiber core for long-term treatment [17].  
 
This study differs from the previous studies in terms of creating hollow and continuous 
triaxial electrospun fibers in a single step without any post treatments in which hollowness 
can be tailored. Having a two-walled structure strengthens the electrospun fibers thereby 
preventing its deformation and in turn leading to continuous fiber structure. Herein, the 
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hollowness of tri-axial electrospun fibers with different outer and inner diameters is 
controlled by using several solvent-polymer systems and different layer polymers to increase 
encapsulation efficiency. Hansen solubility parameters are applied to get an index of layer 
solution miscibility and affinity to control the diffusion of layers through multi-axial 
electrospinning. To our best knowledge, the current study is the first one for the production of 
multi-walled hollow fibers by a single-step process without applying any post treatments and 
inserting any spacer through layers. In this process, two spinnable polymer solutions as inner 
and outer layers of fibers with different polarities and viscosities adjusted by changing 
polymer concentration are chosen to provide composite properties and wider range of 
applications. In place of multi-axial electrospinning process, single electrospinning 
methodology is also applied to optimize solution concentration to get well-ordered fiber 
structure. The diameter, surface morphology and layered structure of multi-walled hollow 
electrospun fibers are controlled by tailoring the solvent properties, degree of miscibility of 
solutions, polymer concentration, applied voltage, electrospinning distance, and flow rate.  
 
2. Experimental 
 
2.1. Materials 
 
The following materials have been used for the experiment: Methyl methacrylate (SAFC, 
98.5%), styrene (SAFC, 99%), Azobisisobutyronitrile (AIBN, Fluka, 98%), acrylamide 
(Sigma, 99%), N, N dimethyl formamide (DMF, Sigma-Aldrich, 99%), methanol (Sigma-
Aldrich, 99.7%), tetrahydrofuran (THF, Merck, 99%), ethyl acetate (EA, Sigma-Aldrich, 
99.5%). 
 
2.2. Layer material synthesis 
 
Polymethyl methacrylate (PMMA), polystyrene (PS) and  poly(methyl methacrylate-co-
styrene) as hydrophobic polymers and outer layer materials of fibers were synthesized by free 
radical polymerization of vinyl monomers (30 ml) in presence of AIBN (1 g) as the radical 
initiator in the medium of THF (50 ml) at 65°C. Polymerization reaction was carried out for 4 
h and then the reaction mixture was precipitated in cold methanol and dried for 12 h in a 
vacuum oven at 50°C. Polyacrylamide (PAAm) as hydrophilic polymer and inner layer 
material was synthesized by dispersion polymerization of acrylamide monomer (30 g) in 
methanol (100 ml) by using AIBN (1 g) as an initiator at 65°C. Separation of polymer 
particles from methanol and monomer mixture was done by vacuum filtration and twice 
washing the polymer particles with methanol and drying it for 12 h in a vacuum oven at 
40°C. Figure 1 represents the chemical structures of layer materials chosen for multi-axial 
electrospinning process. 
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Figure 1. The chemical representations of outer and inner layer materials (a) PMMA (b) 
poly(methyl methacrylate-co-styrene) (c) PS and (d) PAAm 
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2.3. Solvent selection and design 
 
Solvents and solvent systems are selected based on Hansen solubility parameters (HSP) using 
tabulated interactions of molecules in the form of polar (δp), dispersive (δd), and hydrogen 
bonding (δh) components [18]. Two-dimensional graphical representation of these parameters 
for our system is produced by combining the polar (δp) and dispersive (δd) components into a 
new parameter of δv = (δd

2 + δp
2)1/2 which is plotted against δh. Solvents for outer layer 

polymers are selected from among those located inside the solubility circle of each polymer 
considering the electrospinning properties of the polymeric solutions such as electrical 
conductivity and vapor pressure since these parameters are known to alter the borders of 
solubility area. Good and poor solvents for several polymers can be predicted by drawing a 
solubility circle defined by the Hansen coordinates and the radius of interaction [19]. On the 
other hand, PAAm as an inner layer material is mainly soluble in water, but different co-
solvents with various volume ratios can be utilized to tailor the interaction of outer and inner 
layer solutions. The Hansen solubility parameter of solvent mixtures is calculated using   

∑= i
ni

Mix
n a δδ equation where n represents the parameter type (p, d, or h) and ai is the volume 

fraction of solvent i. After the selection of ideal solvents for electrospinning, polymer 
solutions with the unit of weight percentages (w/w) are prepared by appropriate amount of 
polymer and solvent, and stirred for 24 h at ambient temperature and pressure to obtain 
homogeneous solutions.  
 
2.4. Single and multi-axial electrospinning 
 
Electrospinning process is performed at ambient room conditions using multi-axial 
electrospinning set-up purchased from Yflow Company with a custom-made tri-axial nozzle. 
Hollow fibers covered by two different polymeric layers are produced by tri-axial 
electrospinning process given in Figure 2a. Also, the hollowness of fiber is also monitored by 
the formation of Taylor cone at the end of the syringe seen in Figure 2b.  
 

a b 
 
Figure 2. (a) Schematic representation of tri-axial electrospinning set-up (b) the high-speed 
camera image of Taylor cone composed of PMMA as an outer layer and PAAm as a middle 
layer. 
 
All the fibers were electrospun with a nozzle to collector distance of 7 cm by tuning the 
applied voltage in the range of 5 kV to 30 kV. The flow rates of outer and inner layer 
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solutions are individually controllable using separate pumps, and are of the values of 20 
µl/min and 15 µl/min, respectively. Solutions prepared are loaded independently into the 
syringes which are connected to concentric nozzles, and the flow rate of each layer is 
controlled by separate pumps.  
 
2.5. Characterization  
 
The structure of synthesized polymer was investigated by 500 MHz Varian Inova 1H-Nuclear 
Magnetic Resonance (NMR). The molecular weight and polydispersity index of outer layer 
polymers were determined by Viscotek-VE2001 gel permeation chromatography (GPC) in 
DMF. The functional groups of polymers and fibers were investigated by Netzsch Fourier 
Transform Infrared Spectroscopy (FTIR). Thermal behaviors of polymers and fibers were 
examined by Netzsch Thermal Gravimetric Analyzer (TGA) and Differential Scanning 
Calorimeter (DSC) by a 10°C/min scanning rate under nitrogen atmosphere. The surface 
morphologies of fibers were analyzed by a Leo Supra 35VP Field Emission Scanning 
Electron Microscope (SEM) and JEOL 2100 Lab6 High Resolution Transmission Electron 
Microscopy (TEM). Elemental analysis of fibers was performed by Energy-Dispersive X-Ray 
(EDX) analyzing system. Taylor cone shape images were taken by high-speed camera. 
 
3. Results and Discussion 
 
3.1. Layer materials of multi-walled hollow electrospun fibers 
 
3.1.1. Outer layer materials 
 
For the production of composite hollow fibers, as can be recalled the hydrophobic polymers 
as a protective outer layer of fibers were synthesized through free radical polymerization in 
solution medium. Here, it should be noted that it is critical to choose the hydrophobic 
polymers as an outer layer material to prevent the diffusion of layers during electrospinning 
thus providing the layered structure. In multi-axial electrospinning process, PMMA, PS and 
poly(methyl methacrylate-co-styrene) are used as outer layer polymers, and molecular weight 
(Mw), polydispersity index (PDI) and glass transition temperature (Tg) of these polymers are 
given in Table 1. A more detailed description of the experimental procedures can be found in 
the electronic supplementary information.  
 
Table 1. Mw, PDI and Tg of outer layer polymers of electrospun fibers 

Polymer Tg (°C) Mw (g/mole) PDI 

PMMA 123 326000 3.2 

PS 103 313000 1.7 

Poly(methyl methacrylate-co-styrene) 98 185000 1.7 

 
3.1.2 Inner layer materials 
 
In the inner part of composite hollow fibers, the polymers with the hydrophilic nature are 
chosen to get the desired fiber structure. PAAm as a water-soluble polymer is synthesized for 
an inner layer of multi-walled hollow fibers via dispersion polymerization and free radical 
initiator. Viscosity average molecular weight (Mv) of PAAm, measured by Mark–Houwink 
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method, is about 87000 g/mole. Tg of PAAm is around 189oC. A more detailed explanation of 
PAAm synthesis can also be found in the electronic supplementary information. 
 
3.2. Selection of suitable solvent systems by Hansen solubility parameters  
 
Figure 3 exhibits 2-dimensional solubility diagram of PMMA, and the suitable solvents for 
complete solubility of PMMA are located within the circled area. As stated previously, 
PAAm as an inner layer is mainly soluble in water; however, different co-solvents with 
various volume ratios are utilized to tailor the interaction of inner and outer layer solutions.  

 

 
Figure 3. 2-dimensional solubility diagram of PMMA. 
 
3.3. Study of layer materials by single electrospinning 
 
Suitable window of processing and material parameters for stable electrospinning process of 
each polymer is initially determined by performing single-axial electrospinning. In the case 
of outer layer materials, polymer concentration in solution plays a critical role in final 
morphology of fibers. As such, the concentration of PMMA lower than 15 wt % leads to the 
formation of spherical particles while the concentration higher than 20 wt % results in 
uniform and brittle electrospun fibers as shown in Figure 4a. Such a difference in the form of 
final electrospun product is attributed to the increase in polymer chains in the solution, which 
enhances the entanglement density and raises the solution elastic behavior. It was observed 
that polymer concentration higher than 40 wt. %, is not suitable to produce uniform fibers. 
Single axial electrospinning conditions are also optimized for PAAm as a middle layer. 
PAAm nanofibers reveal the continuous, uniform and smooth morphology with an average 
diameter of 250 nm (see supp doc). Unlike fibers obtained using outer layer polymers, PAAm 
fibers do not show any brittleness and continuous fiber network is observed. Single axial 
electrospinning experiments show that optimum electrospinning parameters which render a 
stable Taylor cone and hence uniform fiber formation are those of solution concentration 
between 20 to 30 wt. %, deposition distance between 5-10 cm and the applied voltage 
between 5-20 kV.  
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(a (b

 
Figure 4. SEM images of single axial electrospun fibers (a) PMMA and (b) PAAm. (The 
concentration of each polymeric solution is 30 wt. %).  
 
3.4. Multi-walled hollow fibers by tri-axial electrospinning 
 
3.4.1 The effect of solvent on the formation of multi-walled hollow fibers 
 
The type of solvent is one of the most important and influential parameters in controlling the 
morphology and diameter of electrospun polymeric fibers [20]. Multi-axial electrospinning as 
a newly emerged technique for the fabrication of electrospun fibers with intricate and 
advanced morphology requires further considerations for the selection of proper solvent to 
obtain the desired fiber structures. Figure 5 gives SEM images for multi-walled hollow 
electrospun fibers with outer layer of PMMA and inner layer of PAAm by using different 
solvents in outer layer solution. The results show that the fiber diameter increases upon 
increasing solvent vapor pressure. DMF results in the formation of fiber with the diameter 
less than 100 nm whereas ethyl acetate (EA) increases the fiber diameter up to 500 nm, and 
the largest fiber diameter about 1 µm is obtained by THF. The high vapor pressure of THF 
provides faster drying of outer layer solution during electrospinning process, but solvents 
with lower vapor pressure like DMF bring about the longer drying time. Thus, polymeric jet 
with solvents of lower vapor pressure is exposed to instabilities for longer duration and in 
turn the diameter of fibers is reduced before reaching the surface of the collector. In addition, 
higher dielectric constant of solvent like DMF provides higher stored electrical energy, ion 
disassociation and free charge in solution jet. Hence, the polymeric jet is being subjected to 
higher electrical forces, thereby contributing to further reduction in fibers’ diameter [21]. In 
addition, the inset image in Figure 5b indicates complete breakage of outer layer and the 
rupture of inner layer that reveals distinct layers and the hollowness of the fiber.  
 
Figure 5 also indicates that the solvent type directly affects the surface morphology and 
porosity of the fibers. In the electrospinning process, rapid acceleration of jet toward the 
collector surface increases the surface area of the jet hence leading to significantly higher rate 
of solvent evaporation and rapid evaporation cooling. Thermodynamic instability caused by 
this cooling leads to phase separation of jet solution into the polymer-rich and solvent reach 
phase which after drying of the fibers the polymer rich phase remains and the solvent-rich 
phase forms pores [22]. Heat of vaporization in DMF is higher than THF, but higher rate of 
evaporation and lower heat capacity of THF made evaporation cooling phenomena stronger 
resulting in greater phase separation and more porosity within the final fibers. Furthermore, 
evaporation cooling during the electrospinning caused the condensation of water vapor in the 
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Figure 6. The graph of distance of inner layer solvent and outer layer solvent calculated by 
Hansen solubility space as an index of their affinity. 
 

 

a  (b 
 
Figure 7. SEM images of multi-walled hollow electrospun fibers of PS/PAAm synthesized 
with the outer layer solvent of DMF by changing inner layer solvent of (a) water and (b) 
mixture of water/DMF (volume ratio 3:2). 
 

 
a b 

 
Figure 8.  SEM images of multi-walled hollow electrospun fibers of PS/PAAm synthesized 
with solvents of THF and water for the outer and inner layers, respectively: (a) and (b) 
present images at different magnifications.  
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For better visualization of the hollowness in the multi-walled hollow electrospun fibers, in 
Figure 8 are given SEM images of PS/PAAm fiber synthesized with solvents of THF and 
water for the outer and inner layers, respectively. Recalling that as the vapor pressure of the 
solvent increases, so does the diameter of the fiber, and hence, the hollowness can be easily 
noticed through paying attention to the topology of the fractured fiber surfaces.  
 
3.4.2. The effect of applied voltage on the formation of multi-walled hollow fibers 
 
Electrical field generated by applied voltage between nozzle and collector is another crucial 
factor for the production of hollow electrospun fibers. The polymer droplet on the tip of the 
nozzle needs applied voltage higher than threshold voltage, at which the electric force 
overcomes the forces associated with the surface tension letting jet to travel toward the 
collector surface [24]. The balance between the surface and electrical force is also critical in 
the shape of Taylor cone. Figure 9 represents the Taylor cone formations in different applied 
voltage. Unstable Taylor cone initiates at the applied voltage of 10 kV for PMMA/PAAm 
hollow fibers jet and then stable Taylor cone is monitored by increasing the voltage up to 20 
kV. Moreover, it is observed that further increasing the applied voltage reduces the volume of 
the cone, and at the 30 kV, multiple cones are formed resulting in unstable and unpredictable 
electrospinning process. Figure 10 shows the graph of fiber diameter change as a function of 
applied voltage. As the applied voltage increases from 10 to 20 kV during the fabrication of 
hollow fibers with outer layer of PMMA solution in DMF and inner layer of PAAm solution 
in water/DMF mixture, it is observed that the fiber diameter also gradually increases. This 
can be attributed to the fact that since the applied voltage decreases the travel time of the 
fiber between the nozzle and collector thereby decreasing bending instabilities, and whipping 
motions of the fiber experience, the decrease in exposure time to these instabilities leads to 
increase in the fiber diameter with the increasing applied voltage. Moreover, increasing the 
applied voltage accelerates the electrospinning process but limits the fiber drying time before 
reaching the collector whereby wet fibers are gathered on the collector surface.  
 

a b c d 
 
Figure 9. Taylor cone formation of PMMA 20 wt.% in EA as outer layer solution and PAAm 
in water as inner layer solution in different applied voltage (a) no voltage, (b) 10 kV, (c) 20 
kV and (d) 30 kV. 
 
Another important parameter affecting the formation of stable cone shape is the flow rate. It 
is known that if the flow rate of inner and outer layer solutions through the nozzles are 
insufficient to eject the solutions continuously from the tip of the nozzle, flow instabilities 
unavoidably occurs hence resulting in bead formation, or defects in the fiber structure [25]. 
Incompatibility in flow rates for inner and outer fluids can lead to non-uniformities in fiber 
layers. In course of determining the range of workable flow rates for inner and outer layer 
solutions, namely 10-50 µl/min, it is observed the best possible cone shape for core-shell 
formation is obtained by the flow rates of 20 µl/min and 15 µl/min for outer and inner layers, 
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respectively. In the electrospinning of multi-layer fibers, the flow rate of outer layer solution 
should be always higher than those of inner layer and core (if exists) solutions to have a 
complete coverage of these materials and in turn produce structures with uniform layers. 
 

 
 
Figure 10. Changes in the fiber diameter by increasing the applied voltage for fibers with 
outer layer of PMMA in DMF and inner layer of PAAm in WD32 (water: DMF=3:2 (v/v)).  
 
3.5.3 The effect of outer layer polymer on fiber formation and hollowness 
 
In conventional core-shell electrospinning, it is a difficult process to control the hollowness 
continuously since the instabilities in the course of core formation can occur throughout the 
spinning process [26]. In this work, we have shown that the utilization of an inner layer, 
which is readily possible with tri-axial electrospinning process, can overcome these 
instabilities by acting as a barrier and increasing interconnection between layers. In order to 
be able to show that the hollowness and structural integrity of the fibers can be controlled, we 
have electrospun fibers using two different outer layer polymers, namely PMMA and PS 
while keeping the inner layer material the same, PAAm. Figure 11a and 11b show TEM 
images of tri-axial PMMA/PAAm hollow fibers. Bright sections in the central part of fibers 
with a diameter of about 100−125 nm correspond to hollow core formation. The inner layer 
of the fiber appears black in color whereas dark gray region belongs to the outer layer of 
fiber. In Figure 11c is given the rupture of inner layer observed in multi-walled hollow fiber 
structure. Figure 12 shows that the usage of PS as an outer layer instead of PMMA leads to 
an increase in the inner diameter up to 250 nm. One may reliably conclude from the 
presented TEM results that the diameter of hollowness can be adjusted by changing the type 
of polymer in the outer layer. Different polymers have dissimilar affinities with the same 
solvent, which can influence the drying behavior of solvents during the electrospinning 
process thereby affecting the wall thickness of the fibers and in turn their hollowness. The 
controllability of hollowness diameter can provide an easy encapsulation of functional 
materials with different viscosities if required, and increase the life-time of encapsulated 
materials through circumventing leakage.    
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a b c 

 
Figure 13. SEM images of multi-walled hollow fibers with PAAm as an inner layer and 
poly(methyl methacrylate-co-styrene) as an outer layer prepared by using solvent of (a) EA, 
(b) and (c) THF. 
 
3.5. Structural and thermal analyses of multi-walled hollow fibers 
 
The formation of tri-axial hollow fibers was also investigated by monitoring the functional 
groups of each layer. Figure 14 exhibits FTIR spectrum of multi-walled hollow fiber with 
PMMA as an outer layer and PAAm as an inner layer. For PMMA polymer, absorption bands 
at 2950 cm-1 and 1745 cm-1 indicate C-H and C=O stretchings, respectively [27]. For PAAm 
polymer, asymmetric and symmetric NH stretching of NH2 contribute to absorption bands at 
around 3300 cm−1 [28]. EDX results showed that tri-axial hollow fiber included 56% carbon, 
30% oxygen and 14% nitrogen. The nitrogen content in the fiber indicates the presence of 
PAAm in fiber structure.  

 
Figure 14. FTIR spectrum of multi-walled hollow electrospun fiber with PMMA as an outer 
layer and PAAm as an inner layer. 
 
The thermal stabilities of PMMA/PAAm multi-walled hollow fibers were evaluated by 
means of TGA and DTA thermograms. Figure 15 exhibits TGA and DTA curves of PMMA 
and PAAm polymers and multi-walled hollow fiber. Neat radically prepared PMMA shows 
three steps of weight loss. At first step, PMMA lost 4 % of its weight between 175-225°C due 
to chain scissioning of head-to-head unstable and sterically hindered linkages [29]. The 
second stage of degradation with weight loss of 34% was observed between 250-325°C due 
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to scissioning of unsaturated ends (resulting from termination by disproportionation). In the 
last step, 62% of polymer weight were lost between 325-450°C described by random 
scissioning within the polymer chain [30]. In the case of neat PAAm, two stages of 
degradation were observed with 18% weight loss between 225-350°C because of amide side-
groups decomposition and, 56% weight loss in the range of 350-500oC due to backbone 
decomposition [31]. The weight loss curve of multi-walled hollow fibers appeared between 
PMMA and PAAm (Figure 15a). As a result, FTIR and TGA analyses proved the successful 
formation of multi-walled hollow fibers with different layer polymers during tri-axial 
electrospinning process. 
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Figure 15. (a) TGA curves of PMMA, PAAm and multi-walled hollow fibers and (b) 
differential thermal analyses of PMMA, PAAm and multi-walled hollow fibers. 
 
4. Conclusions 
 
In the present work, multi-walled electrospun fibers with controllable hollowness and 
different polymeric layers were fabricated by a single step process. The inner and outer 
diameters of fibers and surface morphologies are controlled by changing the solvent type, 
applied voltage, polymer concentration and polymer type. The suitable window of material 
and processing parameters for electrospinning of each polymer were determined using single 
axial electrospinning. This was the first work in the literature to show the production of 
multi-walled hollow electrospun fibers covered by two different polymeric layers. The 
system and process parameters of tri-axial electrospinning were optimized to fabricate an 
ideal hollow structure. The diffusion of layers during electrospinning was controlled by using 
Hansen solvent selection methods. If the polymer concentration was lower than 15%, the 
sphere-based structure formation was observed. On the other hand, smooth fibers formation 
was monitored by increasing the polymer concentration. The porosity of fiber surface and the 
diameter of hollowness were directly affected by changing outer layer material and the 
solvent type. In conclusion, these novel fibers with different functionalities can be utilized in 
water filtration, composites, dialysis membranes, catalysis, drug delivery, membrane, 
photonics and coatings. 
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