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Abstract 

 
In this thesis, we address the problem of evaluating deterministic EMS location 

models via simulation. For deterministic set covering location models, the performance 

of the model is typically determined by an objective function representing a certain type 

of coverage. After determining the location of EMS stations by deterministic models, 

we propose to conduct a simulation analysis to evaluate the performance by estimating 

the “real” coverage of the population. We compare 4 different deterministic models, 

Maximum Coverage Location Model (MCLM), Single Period Backup Double Covering 

Model (SPBDCM) which is a variant of MCLM, Maximum Service Restricted Set 

Covering Location Model (MSRSCLM) and finally Centralized Final Ratio Model 

(CFRM). By using optimization tools, we find the location of ambulances for each 

model by sıolving the mathematical models and then we simulate each setting for 2 

different policies under the same parameters. The models’ overall performance is firstly 

tested on Istanbul data and then followed up with extensive experimental study with 

different problem size, different layout and different arrival rates with two distinct 

policies. The tested policies include first come first serve with zero line capacity and 

lost call approach, and dispatching the closest idle station whether the call origin is 

served at the moment of the call or not. The study is then extended by a myopic 

heuristic, which basically tries to improve the performance of the system by relocating 

ambulances.  
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Tez Danışmanı: Doç. Dr. Tonguç Ünlüyurt 

 

Anahtar Kelimeler: küme kaplama yerleştirme modelleri, gerekirci modeller, 
benzetim, Acil Yardım Sistemleri, Hiperküp modeli, meşgul olasılığı, performans 

metriği   

 

 

Özet 

 
Bu tezde gerekirci Hızır Acil Sistemleri yerleştirme modellerinin benzetimle 

değerlendirilmesini konu alıyoruz. Gerekirci küme kaplama modelleri için, modelin 

performansı genellikle belirli bir kaplama türünü gösteren amaç işlevi tarafından 

belirlenir. Acil Yardım Sistemi istasyonlarının yerleri gerekirci modeller tarafından 

belirlendikten sonra, nüfusun “gerçek” kaplamasını hesaplamak için bir benzetim 

analizinin yapılmasını öne sürüyoruz. 4 farklı gerekirci modeli, EnBüyük Kapsama 

Modeli, Tek Dönemli Yedek Çift Kapsama Modeli, EnFazla Servis Kısıtlı Küme 

Kapsama Yerleştirme Modeli, ve Özekli Son Oran Modelini karşılaştıryoruz. Eniyileme 

araçlarını kullanarak, her bir model için matematiksel modellerden ambulansların 

yerlerini  buluyoruz ve aynı parametreleri kullanarak 2 farklı kuralla her düzeni 

benzetimliyoruz. Modellerin toplam performansı öncelikle Istanbul verisi üzerinde test 

edildi ve farklı problem büyüklüğü, farklı yerleştirme, ve farklı varış hızlarıyla iki farklı 

kuralı içeren kapsamlı deneysel çalışmayla devam edildi. sıfır kuyruk kapasiteli ilk 

giren ilk çıkar ve kayıp çağrı yaklaşımı ile çağrı kökeni çağrı anında servis alsa da 

almasa da en yakın boşta olan istasyonun dağıtımı test edilen kurallardır, Çalışma daha 

sonrasında ambulansların yeniden konumlandırmasıyla sistemin performansını 

arttırmaya çalışan bir miyop bulgusalla genişletildi.   
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CHAPTER 1 
 

INTRODUCTION 

 
The location planning for Emergency Service Systems (ESS) or Emergency 

Medical Systems (EMS) is very crucial and their importance is increasing every day. 

Since highly populated cities have high traffic volume and irregular urbanization, 

locating the ambulances effectively for EMS can decrease the number of disabilities, 

and fatalities drastically. However, even though the importance of locating 

ambulances is not negligible, we cannot solely determine the effectiveness of an 

EMS based on covered population. In order to realistically calculate the performance 

of an EMS, the overall busy probabilities and the population that cannot be served 

on average should also be considered.  

The purpose of this thesis is to propose a simulation process to measure the 

performance of an EMS. Even though there have been lots of studies on location 

determination for EMS, the studies that focus on the performance of the system is 

fewer than expected. Brotcorne et al. (2003) and Goldberg (2004) give good review 

of the studies on location planning of EMS. The general approach for location 

planning of EMS is developing a mathematical model that reflects the fundamental 

assumptions that can vary substantially. One of the main models for EMS is 

Maximal Covering Location Model (MCLM) is proposed by Church and ReVelle 

(1974) where the single coverage of a demand point is assumed to be enough. 

Further on, double coverage for a demand point is claimed to be more realistic and 

effective; by providing a back up ambulance when the first ambulance is dispatched 

for another call the coverage of demand points can be maintained. Gendreau et al. 

(1997) stated Double Coverage Model (DCM) and this study is revised from the 

study of Hogan and ReVelle (1986) which stresses Backup Coverage Model (BCM). 

However, none of these studies provide an effective performance measure for their 

approach besides the objective function values of the deterministic mathematical 

models. In this regard, Larson (1974) provides an approximation for the busy 

probabilities of the demand points by introducing Hypercube Model. Furthermore, 

the model is quite effective, but calculating the steady state equations for large scale 

problems is a major drawback. Galvão and Morabito (2008) state that in order to be 

able to evaluate the performance of the system there should be some performance 
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measures like overall busy probabilities that are usually obtained by queuing models 

or simulation. Moreover, some of the assumptions that are stated by Larson (1974) 

are contradictive to real life problems. In order to cope with these conditions, we 

embrace a simpler approach, simulation. After the locations of the ambulances are 

determined from mathematical models, we simulate the obtained settings under 

different parameters in order to estimate the busy probabilities for each demand 

point.  

The proposed simulation process, assumes exponentially distributed 

interarrival times in other words Poison arrival process and for service time the 

process in our initial approach is assumed to be exponentially distributed as well. 

However, during late phases of our study, the service time is assumed to be 

compilation of sub processes which are mainly exponentially distributed with an 

additional distance dependent sub process. There are two policies that are tested 

throughout this study. First policy assumes that if a call is originated from a covered 

node, then the closest idle ambulance will be dispatched. For the first policy if a call 

is originated from an uncovered node then the call is assumed to be lost. However 

for the second policy, the closest idle ambulance is dispatched whether the node is 

covered or not. Even though there is no idle ambulance present at the coverage 

vicinity of the call origin, the policy still sends the closest idle ambulance to 

dispatch. 

There are 4 different set covering location models that are evaluated in our 

study. The mathematical models are solved optimally in order to find the location of the 

ambulances. Maximal Coverage Location Model, Single Period Backup Double 

Covering Model, Maximum Service Restricted Set Covering Location Model, and 

finally we propose another mathematical model Centralized Final Ratio Model for 

comparison. Each model is firstly tested for Istanbul data which is a large scale problem 

and then the experimental study is conducted for each setting. For each model, if a 

demand point is covered then the whole population of the node is assumed be covered 

also. Each model is simulated under the same parameters for both policies in order to 

compare the efficiency of models to each other. After the tests on Istanbul data are 

conducted, we generate random instances for testing the robustness of the results. Even 

though, the performance of the models for Istanbul data give a general opinion on 

performance measures, the experimental study with different layout, different problem 

size, different arrival rates for the dispatching policies illustrated the importance of a 
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realization tool. Without an analytical tool for realization, objective function values, the 

assumptions are inconclusive. Experimental study shows that the performance of a 

location planning model can vary according to problem data set based on problem size, 

the distribution of demand points, the design of the layout even with different 

dispatching policies.   

Contribution of the thesis can be summarized as 

• Testing the necessity of an analytical tool for evaluating the performance 

of deterministic location planning models 

• Testing for relation between layout design and performance of the model 

• Proposing two new deterministic set covering location models in order to 

improve simulation performance   

The organization of this thesis is as follows. The literature on location planning 

of EMS stations, performance measures for the set covering location models and other 

analytical tools to determine the performance of an EMS in Chapter 2. Chapter 3 is 

dedicated to proposed simulation methodology, benefits and drawbacks of the 

mathematical models. The results of the simulations and sensitivity analysis of the 

models for Istanbul data is in Chapter 4. The experimental study and results are 

conducted in Chapter 5. Chapter 6 is dedicated to myopic improvement heuristic and 

application of this heuristic for Istanbul data. Finally, Chapter 7 concludes the study 

with discussion of results and possible future research.  
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CHAPTER 2 
 

LITERATURE REVIEW 

 
Since the average life expectancy is significantly increased in the last century, 

providing an effective ESS or EMS became more important. The topic attracted many 

researchers in the optimization field to present efficient mathematical models and new 

approaches. There are numerous attempts to solve the problem and its variants by 

heuristics, meta-heuristics however, by improved computational power now we can 

solve set covering problems optimally in reasonable times.  

The different approaches  can be classified into two main categories when the 

natures of the models are considered, deterministic and stochastic models. 

Fundamentally deterministic Set Covering Model (SCM) is stated by Toregas et al. 

(1971) and the objective is acquiring minimum number of servers that are needed in 

order to provide full coverage.. Since SCM grasps the general nature of the problem, the 

various methods are revised from this model. However for deterministic case SCM does 

not consider every aspect like when an ambulance is departed for a call, other nodes 

covered only by this ambulance are no longer covered in SCM as stated by Brotcorne et 

al. (2003). One of the revised and well known version of SCM is Maximal Coverage 

Location Model (MCLM) which is proposed by Church and ReVelle (1974). MCLM 

aims to maximize the population or the number of demand nodes with a limited number 

of stations. MCLM considers that a demand node is covered if any station can serve to 

this demand node. Tandem Equipment Allocation Model (TEAM) on the other hand is a 

revised version of MCLM. TEAM is suggested by Schilling et al. (1979) which 

considers two type of service levels and for each service type the total number of 

stations is limited. SCM, MCLM, and TEAM focuses on single coverage of any 

demand point. Since single coverage of a demand node is sufficient, the major 

drawback of these models is when any of the ambulances dispatched for a call, the 

region that is covered by the dispatched ambulance will be no longer be covered during 

service time. This drawback drew attention to further research and multiple coverage 

models are proposed in the literature. Daskin and Stern (1981) stressed the Modified 

Maximal Covering Location Model (MMCLM) and besides the primary objective, 

maximizing the covered population; a secondary objective is introduced which 

maximizes the multiple coverage of the demand points. The variants of MMCLM like 
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Double Covering Model (DCM), on the other hand, approached the location planning 

problem from a different perspective and rather than using two different objectives, 

maximizing the weighted coverage of demand points is embraced. Also another variant 

of DCM is proposed by Hogan and ReVelle (1986) where the population that is covered 

twice is maximized with limited number of stations. For EMS problems Setzler (2009), 

Simpson (2009) provide good reviews and stress the importance of emergency 

response. 

Even though there have been remarkable studies on this subject, all of the 

previous models assumed that the number of stations that can be allocated to any supply 

point is restricted with a binary decision variable. However, Gendeau et al. (1997) 

proposed Double Standard Model (DSM) which maximizes the double covered 

population with two different service time restriction where the number of stations that 

can be allocated on any supply point has an integer upper bound.      

When stochastic approach is considered, as Basar (2008) suggested the 

variations are originated from the objective function and constraints. One of the oldest 

probabilistic location planning models is Maximal Expected Covering Location 

Problem (MEXCLP) proposed by Daskin (1983). Daskin assigns an equal busy 

probability to all vehicles where this probability is based on the frequency of the calls 

and service time needed for each call. The restrictions are fundamentally the service 

provided on a day and the total number of vehicles where the objective function is to 

maximize the expected coverage of demand points. An extension of MEXCLP, 

TIMEXCLP is developed by Repede and Bernardo (1994) where the variation in travel 

speed throughout the day is explicitly considered. TIMEXCLP is then applied for 

Louisville, Kentucky data and authors proposed a simulation process to provide an 

assessment of the proposed solution. Extending the research with a simulation module 

showed that even though the objective function and constraints are important for an 

effective planning, the performance of the system is not solely based on these criteria. 

Batta et al. (1989) extended MEXCLP and each term in the objective function is 

multiplied with a correction factor which includes that ambulances do not operate 

independently and formed the adjusted MEXCLP, AMEXCLP. ReVelle and Hogan 

(1989) suggested two new models for stochastic location planning problems and 

formulated Maximum Availability Location Problem (MALP). For MALP I, authors 

suggested the busy fraction proposed by Daskin (1983) should be same for all potential 

candidate sites but for MALP II this condition is relaxed.  
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Whether the approach is deterministic or stochastic, given the plan of ambulance 

locations and demand levels, there are analytical tools to estimate the busy probabilities. 

As Brotcorne et al. (2003) suggested busy probabilities can be estimated with methods 

like Hypercube model, iterative optimization algorithm or simulation. One of the most 

effective methods for evaluating busy probabilities for server to customer systems is 

Hypercube model. Hypercube model is initially proposed by Larson (1974) and then 

extended by Jarvis (1975) who relaxed the service time distribution to be a general 

distribution rather than exponential. Swersey (1994) also applied Hypercube model and 

approximation of the methodology for different instances. However, even though 

Hypercube model is accurate for calculating busy probabilities, the equilibrium of each 

demand point is determined with respect to steady state equations. Galvão and 

Morabito (2008) suggest that in order to solve the hypercube model, an EMS with N 

servers, will require solution of 2N linear equation. For large scale problems this 

number of linear equations cannot be solved simultaneously in reasonabletimes. 

Furthermore, the model is based on spatial queuing theory and Markovian property 

of the system and if the dispatching rule conflicts with these properties then the 

model becomes obsolete. For example if the dispatching rule requires the control of 

the previous state of the problem then the Markovian property would be lost. 

Examples of applications of the hypercube model in urban EMS in the United States 

can be found in studies by Larson and Odoni (1981), Brandeau and Larson (1986), 

Burwell et al. (1993) and Sacks and Grief (1994). Ingolfsson et al. (2008) studied 

the location planning with delays, Erkut et al.  (2008) on the other hand emphasized 

the importance of location planning by considering survival ratios.    

However, in order to deal with large scale problems and any dispatching rule, 

a generalized simulation approach can be embraced. Savas (1969) studied the 

performance of the New York EMS and applied a simulation methodology in order 

to deal with large scale problem size issue. Iannoni et al. (2009) compared the 

effectiveness of hypercube model with respect to data obtained from discrete 

simulation and concluded that the results between the methods are almost negligible 

but run times of methods are significantly different from each other. Morabito et al. 

(2007) suggests that iterative methods like Gauss-Siedel can solve the linear system 

with good performance where the problem size requires hundreds of thousands 

equations. Furthermore, if the exact solution is not a strict restriction, approximation 

of hypercube model can achieve good results in significant times. The hypercube 
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approximation suggested by Jarvis (1985) can solve the problem in polynomial 

times and only requires N linear equations for problem size N. Still the requirement 

of Markovian property should not be omitted for hypercube model. The application 

of discrete time simulation on the other hand is relatively easy and can be obtained 

in reasonable computational times. Wu (2009) studied simulation on static 

deployment of ambulances. 
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CHAPTER 3 
 

MATHEMATICAL MODELS AND SIMULATION MODULE  

 

 In this section of our study, we give basic notions and background information 

for each evaluated model. We also describe the proposed methodology and dispatching 

policies for discrete time simulation in the second part of this chapter. 

 

3.1 Mathematical Models 

3.1.1. Maximal Coverage Location Model 

In the proposed single period model, the objective is to maximize the total weighted 

coverage of the population where the coverage criteria is determined as reaching from 

node i to node j with respect to predetermined average velocity within t1 time units. The 

model is known as Maximal Coverage Location Model (MCLM) and the complexity of 

the MCLM is stated as NP-hard by Berman and Krass (2002). The model assumes that 

if a node is covered with a single facility then the whole population of the demand point 

is also covered. The total number of ambulances that can be assigned is limited; the 

model is as follows: 

Notation: 

M    set of all demand points 

N     set of all possible candidate supply points  

K     maximum number of facilities that will be opened 

t1    time value that an ambulance need to reach in order to cover successfully (in               

minutes) 

pi      population of node i where ���  

aji = �1, �� 	
 	���	
�� 	� 
��� � �	
 ����� 
��� �   0, ���������                                                                      � 
Decision Variables: 

xj =�1, �� 	 ��	���
 �� ���	��� 	� 
��� �  ���  0, ���������                                                     � 

yi =�1, �� ���	
� ���
� � �� �������  ���  0, ���������                                                � 
MCLM 

Maximize     � �  ∑ !" # �""$%     (3.1) 

Subject to                                      ∑ &' � '$( )     (3.2) 
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      ∑ 	'" # &' * !"          +��� '$(   (3.3) 

            &' , -0,1.     (3.4) 

                                                            !" , -0,1.     (3.5) 

The objective of the model is to maximize the total coverage of population. 

Constraint (3.2) enforces that the total number of ambulances that can be allocated is 

limited. Constraint (3.3) makes sure that if an ambulance is allocated at a candidate 

supply node then any demand node that can be reached within t1 time units from this 

node should be assumed as covered. Constraints (3.4) and (3.5) show that all allocation 

and coverage decision variables are binary. Moreover, it should be noted that K ≥ 1 in 

order to have a positive coverage. 

 

3.1.2 Single Period Backup Double Covering Model 

 Secondly, the proposed model Single Period Backup Double Covering Model 

which is fundamentally a variant of MCLM is evaluated. In this model, the objective 

function is similar to MCLM but due to the nature of coverage decision variable the 

nodes should be covered two times within the determined t1 and t2 time units 

respectively. The main aim in this model is to propose a back up station in order to 

provide another alternative where the closest ambulance to the nodes is busy. Basically 

any demand point should be covered two times within t1 and t2 time units (t1 ≤t2) in order 

to be assumed as double covered. The model was originally proposed by Çatay et. al 

(2007) as follows: 

Notation: 

M   set of all demand points 

N    set of all possible candidate supply points  

K    maximum number of facilities that will be opened 

V    average velocity that an ambulance will cover in an hour 

t1   time value that an ambulance need to reach in order to cover successfully (in 

minutes) 

t2   time value that an ambulance need to reach in order to cover second time 

successfully (in minutes) 

pi       population of node i where ���  

aji = �1, �� 	
 	���	
�� 	� 
��� � �	
 ����� 
��� � �
 t0 ���� 
��� ���� 1 0, ���������                                                                                                                 � 
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bji = �1, �� 	
 	���	
�� 	� 
��� � �	
 ����� 
��� � �
 t2 ���� 
��� ���� 10, ���������                                                                                                   � 
 

Decision Variables: 

xj =�1, �� 	 ��	���
 �� ���	��� 	� 
��� �  ���   0, ���������                                                      � 

yi =�1, �� ���	
� ���
� � �� ����� �������  ���  0, ���������                                                                � 
SPBDCM 

Maximize      � �  ∑ !" # �""$%     (3.6) 

Subject to                                      ∑ &' � '$( )     (3.7) 

      ∑ 	'" # &' * !"          +��� '$(   (3.8) 

                                                      ∑ �'" # &' * 2!"       +��� '$(   (3.9) 

              &' , -0,1.    (3.10) 

                                                               !" , -0,1.    (3.11) 

 The objective of the model is to maximize the total double covered population 

where the whole population is assumed to be covered like MCLM if demand node is 

covered.  Constraint (3.7) ensures that the total number of ambulances that can be 

allocated should be equal to K where in order to get a positive coverage K ≥ 2. 

Constraint (3.8) enforces that any demand point should be covered within t1 time units 

in order to provide multiple coverage. Since t1 ≤t2 it is straightforward that each node 

will be covered second time by the same station within t2 time units. Constraint (3.9) on 

the other hand imposes that each demand point should be covered by at least two 

different ambulances within t2 time units. Constraints (3.10) and (3.11) require that the 

decision variables are binary.  

 This model is also stated as NP-hard and the main difference of SPBDCM and 

MCLM basically originates from the definition of decision variable yi’s by Basar 

(2008). Also intuitively when both models are simulated under the same parameters 

SPBDCM should have better performance measures since when the closest ambulance 

to a demand point is busy; another back-up station is allocated to provide the required 

service.  

 

 

3.1.3. Maximum Service Restricted Set Covering Location Model 
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 Thirdly, we introduce Maximum Service Restricted Set Covering Location 

Model (MSRSCLM) which is a revised version of MCLM as well. In this model, we 

allow both allocation and coverage decision variables to assume integer values rather 

than binary values. After the discussion with 112 Command Center about their 

allocation policy of ambulances, they informed us that according to the emergency 

system regulations an ambulance should serve at most 50000 people. However if the 

total population is too high, it is almost impossible to reach the levels obtained by 

MCLM and SPBDCM. So we propose a different constraint in order to cope with this 

condition. By adapting the idea of maximum population restriction to MCLM, we 

develop a new model MSRSCLM. In this order though, since we cannot control 

which ambulance serves to which calls, we cannot introduce an assignment variable 

to the model. To cope with this conflict, simply by adding the coverage constraint 

for each demand point, we relocate the ambulances. The new constraint imposes that 

each nodes’ weighted coverage should be smaller than a constant value which is 

derived as the average population that an ambulance should serve. The constant is 

calculated as (∑ �""$% )4⁄  and the new constraint is formed as ∑ 	'6 # &' # �6 7'$8
 ∑ �""$% )4⁄  +9�� which is essentially the weighted coverage for each demand node 

should be smaller than the average value. The approach is counter intuitive because 

covering the highly populated demand nodes should be rewarded rather than being 

penalized. However, with this setting since the introduced coverage decision 

variables’ range is non-negative integers, the objective function will force to cover 

the coverable demand points as much as possible.  

 

Notation: 

C         average population value that an ambulance should cover (∑ �""$% )4⁄ ) 

 

Decision Variables: 

xj =-number of ambulances allocated at node �, � G�  � 
yi =-number of coverages for node �, �G�   � 
 

Model 1 

Maximize     � �  ∑ !" # �""$%      (3.12) 

Subject to                                      ∑ &' � '$( )     (3.13) 
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      ∑ 	'" # &' * !"             +��� '$(   (3.14) 

                                                      ∑ 	'" # &' # �" 7  J      +��� '$(   (3.15) 

      &' , �K    (3.16) 

                                                                 !" , �K    (3.17) 

 We calculate that an ambulance should serve at most “C” unit of population 

where “C” is derived as average “fair” population that an ambulance should serve. The 

total population of the problem is divided by the total number of ambulances and 

constraint (3.15) is included in this model. Since the number of times that a node is 

covered for highly populated nodes should be rewarded, we relax the coverage decision 

variable to be an integer rather than binary. The main drawback of this model is that if a 

node has higher population than C value the model will force not to cover this node 

since left hand side of (3.15) will be higher than “C” value.   

The objective function (3.12) of the proposed model is different than MCLM 

where the aim is to maximize weighted number of covered locations. Constraint (3.13) 

enforces that total number of ambulances that can be allocated should be equal to K. 

Constraint (3.14) controls the coverage decision of each node and constraints (3.16) and 

(3.17) determine the range of the decision variables. The problem is a revised version of 

MCLM, so this problem is also NP-hard.. 

The proof of complexity is straight-forward, consider a special case of 

MSRSCLM where “C” value is sufficiently large that for each demand point k the 

constraint is satisfied. Then the model reduces to MCLM which is as Berman and Krass 

(2002) stated, NP-hard.   

 

3.1.4. Centralized Final Ratio Model 

 Finally we introduce the Centralized Final Ratio Model which considers that the 

number of times a node is covered should be proportional to the population of each 

demand point. The rational for this approach is the fact that the probability that any 

demand point will be the origin of a call should be proportional to its population. The 

ratio of a demand point’s population to the total population of the problem is the 

likelihood of the demand point will be the origin of the next call. With this condition, 

we can assume that the expected number of calls for each demand point can be 

calculated. However the average number of calls for any demand point cannot be 

implemented in a mathematical model. The number of coverage required for a demand 
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node should be smaller than or greater than some ratio in order to form a constraint. In 

this regard, we propose a maximum coverage number for each demand point since the 

objective function of the model is a maximization function; we do not want to 

accumulate all of the ambulances to the highest populated demand point. With this 

setting the problem turns into a revised version of a Knapsack problem and MCLM. The 

determination of coverage number for each node is not as simple as it seems. If the 

constraint turns out to be very tight then the setting will lead to a sub optimal result. On 

the other hand if the constraint is too loose then objective function will force the 

allocation of ambulances to cover highly populated demand nodes as much as possible. 

The trade-off between these decisions raises the question of how to determine the 

maximum coverage number for each demand node in order to obtain the optimal result.  

 We propose three ratios that should be included for the determination process. In 

order to simplify the approach of the forming process of the constraint, we propose 

some of the abbreviations and notations beforehand as follows: 

�6   population of node k, k , M 

PQ        total population of the system; ∑ pU  UVW  

X'          virtual weight of node j [centralized weight4 ;  π^_∑ `ab#cb +^,W bde  

f'         centralized region for node � [the nodes can be covered by node �4  
gQ  total centralized population of the system; Wi  � ∑ πU  UVW  

gQjjjj         average of centralized system 

'            ratio of π^ to  Wi ;   π^ / Wi  

�'             ratio of π^ to  Qi ;   π^ / Qi  
	'6  = �1, if an ambulance at node � can cover node 9 [d^U 7 3333.3 meters4 0, otherwise                                                                                                           � 
 

Since the number of calls on average is proportional to the weight of the node, the 

expected number of calls for each node is determined. The ratio of �6to PQ gives the 

average percentage of the total calls originated from node k. By multiplying these ratios 

with the total expected number of calls, we can determine the average number of calls 

for each node. However, if a node is expected to originate 5 calls we cannot simply 

determine the number of coverage needed for this node as 1 or 2. In order to lower the 

busy probabilities, we need to consider the dispatching policies. If a call is originated 

from a covered node than the closest non-busy ambulance will be dispatched for policy 
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1; where for policy 2 whether the node is covered or not an ambulance is dispatched 

within 60 km range. So the expected number of calls for each node does not give a 

conclusive result for coverage constraint. To cope with this conflict, we propose a 

centralized weight calculation for each node X' , for this purpose. As Goldberg (2004) 

stated aggregating the weights of demand points should represent the average workload 

of the region more precisely. The X' value for each node is determined as 

X'_∑ opq#rq +',% qst  where 	'6 value shows the coverage vicinity of the fixed node. 

Basically if an ambulance is allocated to a fixed node, we determine which nodes will 

be serviced from this ambulance when there is no other ambulance is allocated in this 

setting. After X'  for each node is determined, we recalculate the average number of 

calls that will be originated from f' by �' # u[ ���	� 
���� �� �	���4. Then we find 

the average required ambulance for each f' by dividing each 

�' # u[ ���	� 
���� �� �	���4  to average service rate. By taking the average of the 

new calculated ratios, we find the average workload of the new system as ratio1. Since 

most of the time the nodes will be counted multiple times, we simply cannot estimate 

the exact number of ambulances required to fulfill the demand for each f'. However, 

we propose an alternative approach to estimate the number of coverage needed for each 

node. On average the service rate of an ambulance is calculated and if expected service 

time for each ambulance is around 45 minutes, we derived that an ambulance can 

expectedly serve to 32 calls a day. The expected number of calls for f' is divided by the  

average centralized service rate to find ratio2. In order to calculate average centralized 

service rate, we calculate the '  of each f'  by dividing the X'  to gQ. The ratio gives the 

virtual effect of each f' to overall centralized system. Then the gQjjjj value is calculated in 

order to assign that the virtual service rate of an ambulance for average  f' as 32 calls a 

day. With this respect each ratio of ' to gQjjjj gives the inverse of service rate multiplying 

coefficient of an ambulance for f'. For example if f'’s ratio to gQjjjj  is 2 then the virtual 

service rate for f' is determined as 16; or if the ratio is 0.1 then the average service rate 

is assumed to be 320. After the finalized service rates are calculated, expected number 

of calls for each f' is divided to virtual service rates which finalize ratio2. Finally in 

order to tighten the bound for right hand side of the constraint we added K-1/K where K 

represents the total number of ambulances for example if K value is determined as 100 

then 0.99 is added to each ratio, this ratio is named as ratio3. The reason for adding 0.99 
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to each ratio is the following; if the ratio is smaller than 0.01 which basically is lower 

than the average workload of an ambulance; we should not cover these nodes more than 

they need. In order to eliminate the difference between 2.001 and 2.2 ratios where 

basically both of them will be covered at most twice, we add this ratio to cover f' with 

ratio 2.2 at most 3 times. The pseudo-code of the preprocessing of the centralized final 

ratio model is given in figure 1. 
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Step 1: Find the coverage matrix by deriving 	'6 values from distance matrix 

Step 2: Calculate the X' values for each node with the help of coverage matrix 

Step 2.a: Calculate the percentage of expected number of calls for each f' by dividing 

X' of each node to PQ  of problem as �'. 
Step 2.b: Multiply �' with expected number of calls and find the average number of calls 

expected from f' and divide with these numbers to average service rate. 

Step 2.c: Find the average required number of ambulances from 2.b in order to find the 

average workload of the new system. Then take the average of the values obtained in step 

2.b for all f' and set this average as ratio1. 

Step 3:  Find the ' value of each f' with respect gQ 
Step 3.a: Find the inverse multiplying coefficient for each f' by dividing the '  value of 

each f' to gQjjjj.  
Step 3.b: Set the average virtual service rate of new problem as default (number of calls 

that an ambulance can serve) where ' � 1. 

Step 4: Divide each ' to gQjjjj  in order to calculate virtual service rate inverse 

multiplying coefficient for each centralized region. 

Step 5: Find ratio2 as expected number of calls from each f'  divided by virtual service 

rate. 

Step 6: Find the ratio3 by (K-1)/K where K corresponds to total number of 

ambulances that can be allocated. 

Step 7: Set the left hand side of the coverage constraint as ∑ 	'6 # &''$%  for number of 

coverage for each node. 

Step 8: Set the right hand side of the coverage constraint as summation of ratio 1,2 

and 3. The sign of the constraint is smaller than equal to and this restriction should be 

applied for each demand node k. 

Figure 1 - Pseudo code of forming the coverage constraint 
 

 Notation: 

       π^        virtual weight of node j [centralized weight4 ;  π^_∑ `ab#cb +^,W bde  

       ω^       ratio1 w ratio2 w ratio3 

ajk = �1, if an ambulance can cover demand node 9 from point �0, otherwise                                                                                     � 
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Decision Variables: 

xj = -number of stations  located at node �, �GN� 
yi = -number of coverages for node �, �GM   � 
 

Maximize       � �  ∑ !" # X""$%     (3.18) 

Subject to           ∑ 	'" # &' * !"           +��� '$(   (3.19) 

       ∑ &' � '$( )      (3.20) 

                   ∑ 	'" # &' 7 y"          +��� '$(   (3.21) 

                                                            &' , �K     (3.22) 

                                                            !" , �K                                                   (3.23) 

 

The objective function of this model is to maximize the multiple coverage of 

aggregated weight. Constraint (3.19) enforces that the number of times that any demand 

point “k” is covered is related with the number of ambulances that can serve to this 

node. Total number of ambulances that can be allocated for the problem is restricted to 

K with constraint (3.20). For each demand point, the maximum number of times that a 

node can be covered should be smaller than the obtained ratio for that node is satisfied 

with constraint (3.21). Constraints (3.22) and (3.23) ensure that coverage and location 

variables can take non negative integer values.    

 

3.2 Simulation Module 

The suggested deterministic models in the literature have the following major 

drawback. Typically, these models have a decision variable that indicates whether or 

not a region is covered. They do not take into consideration what happens when all 

vehicles at a certain station are busy when an emergency call arrives. Usually the 

deterministic models aim to maximize a certain type of total coverage of the population 

by restricting the total number of ambulances which are fundamentally revised versions 

of SCLP. However, the underlying objective of these models should be maximizing the 

service level of the system rather than maximum coverage. The service level of the 

system could be evaluated by different methods like queuing models such as Hypercube 

Model presented by Larson (1974) or with simulation models. Since the problem size is 

too large for Istanbul or any other highly populated city, the Markov property should be 

taken into account and calculating the transition probabilities and states of the problem 
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will become computationally hard. For example, in our study Istanbul has 867 districts 

with distinct weights and Hypercube model will require 2867 steady state equations in 

order to calculate the busy probabilities where in real life the dispatching rules may 

conflict with the Markov property. 

 Since Hypercube Model is computationally hard, we focus on other alternatives 

like simulation. By manipulating the VBA feature of MS Excel, we implement a 

simulation model for the selected models, in order to estimate busy probabilities and 

evaluate if the maximization of covered population is enough. The MCLM and 

SPBDCM are the main focus of the study and by solving their mathematical models 

optimally; we determine the locations of ambulances. The distance matrix for Istanbul is 

taken from the study of Basar (2008) and the population of each district is requested 

from Istanbul Metropolitan Municipality which was last obtained in year 2008. After 

the results of the models are obtained, the general setting of the simulation model is 

developed with 2 different policies.  

 In the simulation models, the first policy is a first come first serve based policy 

by allowing lost calls. Basically if a call is originated from a district, the closest 

covering non-busy ambulance is dispatched, however if the node is not covered at the 

moment of the call then this call is assumed to be lost. The nodes have basically 

uniform discrete probability distribution for originating a call where the population of 

each node corresponds to their weight. The interarrival times between calls and their 

distribution assumed to be exponential. The call is created by generating a random 

variable and by controlling the inverse of cumulative function value of each node, the 

origin of the call is determined. The service time of a dispatched ambulance also 

assumed to be exponential in our initial setting.  

 On the other hand, the second policy forces the system to dispatch the closest 

ambulance whether the node is covered or not, even though intuitively the second 

policy should lower the non serviced time, there are two main drawbacks like 

dispatching critical ambulances which cover highly populated districts and serving more 

calls compared to policy 1. By dispatching these important ambulances, it can lead to 

higher non serviced time in the long run.  

 The pseudo-code of the policy 1 and policy 2 for the initial setting is shown in 

figure 2. Even though some of the steps are reevaluated and changed, the general 

approach stays the same. 
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Step 1: Find the locations of the ambulances by solving the mathematical model 

Step 2: Generate an exponentially distributed random variable for the next 

interarrival time 

Step 2.a:  Generate another random variable and by using inverse function to find the 

origin of the call by checking cumulative function of weights. 

Step 2.b (policy 1):  Check whether the node is covered or not if the node is covered, 

apply a greedy algorithm to find the closest non-busy ambulance location, otherwise 

go to step 2 

Step 2.b (policy 2): Apply a greedy algorithm to find the closest non-busy ambulance 

location maximum distance that an ambulance can be assigned should be smaller 

than 60km 

Step 3:  After determining the location of the ambulance to be assigned, update the 

coverage matrix and mark the ambulance as busy 

Step 3.a:  Create another exponentially distributed random variable for service time 

Step 3.b:  Store the return time and location of ambulance 

Step 4:  Check the master clock and decide the next events type as either arrival or 

return 

Step 5:  If the event type is return update the coverage matrix and busy conditions of 

the ambulances 

Step 5.b: If the event type is arrival apply from step2 through step4 

Step 6: Run the previous steps from step 2 to step 5b until the master clock completes 

a full day simulation. 

Step 7:  Calculate the overall non served time of each node and ambulance for 24 

hours. 

Step 8: Apply from step1 through step7 for a total of 10 runs and calculate the 

average and standard deviation values of the non serviced ratio for each node.  

                 Figure 2 - The algorithm of policy 1 (if the call is not covered, the call is lost) and policy 2 
(dispatch the closest idle ambulance even if the node is not covered) 

 
 The general approach and underlying methodology of policy 2 is similar to 

policy 1 but when the call origin is not covered then another non-busy closest 

ambulance is assigned to the call. However the maximum distance that an ambulance 

can cover should be set in this policy because of the outlier nodes of Istanbul. For 

example, if a call comes from a district in Şile and the closest non-busy ambulance is in 

Sarıyer then it should not be assigned. The maximum distance that greedy algorithm 
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will make the search is within the determined distance of 60 km since most of the time 

when an uncovered node originates a call the search within reasonable distance like 15 

km turns as empty.  

Exponentially distributed random variables like interarrival times and service 

times are derived by inverse transformation technique. Basically a random number 

between 0 and 1 generated in order to represent a uniform distribution. By taking -ln 

function of this random variate and dividing to mean of the exponential distribution we 

can generate new exponentially distributed random variables.  

 Some of the studies in the literature also consider that the service process can be 

expressed as the sum of other sub processes. As Savas (1969) suggested, the sequence 

of events during a call is composed of sub processes. Decomposition of the service 

process into sub processes like initialization & dispatching, first response, service to 

closest hospital and finally the travel time to original location gave a more realistic 

model of the overall process. A close observation of the whole dispatching, service and 

arrival processes in 112 Command Center made it clear that the decomposition of the 

service process is crucial. Improvement in any of these operations will reduce the 

overall service time, hence it will lead to more successful service levels. All of the sub 

processes except the first initialization process is exponentially distributed in our study. 

Whenever a call reaches to Emergency Command Center, headquarter determines a 

non-busy ambulance closest to incident and orders a dispatch; the initialization & 

dispatching process is based on a distance related function. The average travel speed of 

an ambulance is taken as constant throughout the day and assumed as 40km/hour.  First 

aid and emergency response operation (first response operation) consists of a general 

check-up of the injured and questioning the accident’s basic details which will require 5 

minutes on average. After the injured is loaded to ambulance, the ambulance departs for 

closest hospital and this process also takes about 15 minutes on average. Finally after 

the injured is transferred successfully to a hospital, our model assumes that the 

ambulance is still busy until it returns to its original location. Therefore a traveling back 

process is included and the distribution of the process is exponential with mean 15 

minutes. 
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CHAPTER 4 
 

SIMULATION OF MODELS FOR ISTANBUL DATA 

 

After the policies for the simulation process are determined, we determined 

the simulation parameters and mathematical model parameters for Istanbul data. 

Firstly, we conduct sensitivity analysis for MCLM and SPBDCM in order to 

determine the total number of ambulances and time restrictions. We acquired the 

current number of ambulances from Istanbul Emergency Response Unit (112 Command 

Center) as 117. On the other hand, for time variables we took 5 minutes for single 

coverage and for double back up coverage the time values are determined 5 and 8 

minutes from Başar (2008) as default. 

 

4.1 Sensitivity Analysis 

4.1.1 MCLM Sensitivity Analysis 

In our study, we analyzed several scenarios where the amount of resources is 

limited. When the available resources are high enough to yield fully covered 

scenarios, the location planning of ambulances would be simple. Furthermore, in 

order to represent the effect of uncovered nodes on simulation performance, we 

applied sensitivity analysis where the overall coverage is in reasonable percentages. 

When we use 5 minutes and 117 ambulances, the overall coverage for MCLM is 

found as 99.20% of the whole population. By incremental changes on each 

parameter one by one 100% coverage is reached. Even though the changes are 

relatively small 100% coverage could not be reached until total number of 

ambulances is 160 and time parameter is 8 minutes. The main reason for this 

condition is basically originated from the distribution of Istanbul population. To 

cover the rural areas and remote districts with low populations required extra 

ambulances. 

The sensitivity analysis led to some decisions like dividing Istanbul’s 

population into urban and rural districts then simulate with these conditions. Some 

of the studies in US take this condition and apply different parameters for each 

region separately. Grossman et al. (1997) stated that there is a significant difference 

in the response times between rural and urban areas. Furthermore, some of the 

studies originated from this conclusion consider only the rural areas and try to 
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increase the overall efficiency of the system especially in circumstances which 

require fast response times like trauma and heart related incidents.  

Rather than dividing the population, we neglected the remaining uncovered 

population since it is relatively small which is only 0.797% of the whole population 

for 117 ambulance and 5 minutes reaching time setting. Also, when the total number 

of expected calls in a day is considered, only 6 calls are missed with these 

parameters. Since the average increase of coverage with sensitivity analysis is 

2.11E-05%, we concluded that our setting could represent reality with lower total 

number of ambulances. Figure 3 shows the incremental change in objective function 

value with the sensitivity analysis. 

 

Figure 3 - The change in coverage percentage of MCLM with respect to ambulance and time 
variables 

 

After setting the reaching time variable as 5 minutes and total number of 

ambulances as 100, the testing parameters of simulation is finalized. The detailed 

sensitivity analysis for single coverage is given in Appendix A for further 

illustration. Table 1 shows the default, maximum and final values for the analysis.  

  t1 # of ambulances total coverage Overall Percentage 

Default 5 117 11,707,095 99.20% 
Finalized 5 100 11,665,058 98.84% 
Setting 1 8 160 11,801,244 100% 
Setting 2 11 117 11,801,244 100% 

Table 1 - Sensitivity Analysis of MCLM for Istanbul Data 
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In setting 1, we calculate the minimum reaching time parameter when the 

upper bound for the ambulances is set to 170. For smaller values of time variable 

like 5, 6 or 7 minutes the total coverage of the problem is not satisfied even with 170 

ambulances. Also for setting 2, when we keep the ambulance number as constant, 

the minimum required reach time for full coverage is 11 minutes.  

 

4.1.2 SPBDCM Sensitivity Analysis 

The location and coverage decision variables for SPBDCM are binary 

however by relaxing this restriction and allowing location decision variable to take 

integer values, we can find upper bounds for the model. By relaxing the location 

decision variable as integer we find a better setting for the model. However, the 

nature of the model forces that the maximum number of ambulances that can be 

allocated to a node is 2. Since t1 and t2 time units (t1 ≤t2) restriction if any node is 

covered within t1 time units, another allocated ambulance will also cover these 

nodes within t2 time units. This will force the relaxed version of the model to assign 

at most 2 distinct ambulances to each possible supply node. Even though the 

objective function value of the relaxed model is better than SPBDCM, it is 

mandatory to test both under the same simulation parameters in order to conclude 

that relaxed version of this model has better performance measures.  

Furthermore, the applied sensitivity analysis for MCLM should also be 

applied to SPBDCM in order to find the appropriate parameters for time and number 

of ambulances. As default the setting from Başar (2008) is applied for time variables 

and the total number of ambulances is also assumed 117 like MCLM. In this 

sensitivity analysis, the minimum difference between time units is fixed as 3 

minutes and the maximum value of t2 is set to 16 minutes where maximum value of 

t1 is 11 minutes. The range of the number of ambulances is similar to MCLM 

sensitivity analysis and varies between 117 and 170.  

Even though full coverage is reached in MCLM, SPBDCM cannot reach this 

level with these parameters. The incremental changes with respect to each variable 

and weighted coverage values are given in APPENDIX A. The average increase of 

the coverage percentage when t1 and total number of ambulances are fixed is 

0.101%. When t1 and t2 parameters are fixed the average increase in the total 

coverage percentage is 4.67E-05%. Finally, when t2 and the total number of 

ambulances parameters are fixed the average increase is 0.1%. When we compare 
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the average magnitudes, we can conclude that the effects of t1 and t2 parameters to 

coverage percentage are similar and more effective than the changes in the total 

number of ambulances.  

Setting number of ambulances to 100, 117 and 170 the sensitivity analysis is 

derived when time parameters’ minimum and maximum values are considered 

separately. In table 2, we show the changes in OFV with respect to total number of 

ambulances when t1 and t2 values are set their minimum. 

 

t1 t2 # of ambulances OFV coverage percentage 
5 8 100 11,052,331 93.65% 

5 8 117 11,564,816 97.99% 

5 8 170 11,601,292 98.30% 

Table 2 - OFV and percentage for minimum t1 and t2 values 

 

Even though the changes in OFV between 117 ambulances and 170 

ambulances for fixed minimum t1 and t2 values is relatively small, we can observe 

that if the total number of ambulances is set to 100, there is a significant decrease in 

OFV. We conducted the same analysis for minimum t1 and maximum t2 values in 

table 3. In table 4, for maximum t1 and minimum t2 values the effect of total number 

of ambulances on OFV is shown. Finally, in table 5 for maximum t1 and t2 values 

the analysis is conducted.  

 

t1 t2 
# of ambulances OFV coverage percentage 

5 16 100 11,060,375 93.72% 

5 16 117 11,697,163 99.11% 

5 16 170 11,769,195 99.72% 

Table 3 - OFV and percentage for minimum t1 and maximum t2 values 

 

t1 t2 
# of ambulances OFV coverage percentage 

11 16 100 11,524,985 97.65% 

11 16 117 11,792,683 99.96% 

11 16 170 11,796,881 99.99% 

Table 4 - OFV and percentage for maximum t1 and minimum t2 values 
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t1 t2 
# of ambulances OFV coverage percentage 

11 14 100 11,487,948 97.34% 

11 14 117 11,789,367 99.89% 

11 14 170 11,790,223 99.90% 

Table 5 - OFV and percentage for maximum t1 and t2 values 

 

4.2. Simulation Results for Istanbul Data 

 In order to clarify the terms and their meanings that will be used throughout 

the study, we give an example on a simple instance. In this instance, there are 2 

ambulances that will be located and 5 demand points. Demand point 1 can cover 

demand node 2, demand point 4 can only be covered by demand point 3 besides 

itself. Demand point 5 on the other hand can only be covered by itself. The 

population of each demand node is 300, 250, 280, 400, 100 for demand points 1 

through 5 respectively. After the mathematical model of MCLM is solved there are 4 

optimal results. Basically one of the ambulances is located either in demand node 1 

or 2 for covering these points and the other ambulance is located either in demand 

node 3 or 4 in order to cover these demand points. Demand point 5 is not covered in 

initial setting. The obtained result for location decision variables that the illustration 

will be evaluated is {1,0,1,0,0} and thus the coverage decision variables are 

{1,1,1,1,0} for demand points 1 through 5 respectively. The day is assumed to be 24 

time units, which yields 10 events to represent the general behavior of the system 

during a whole day simulation which can be shown in table 6.  

   

Coverage of 

the Nodes 

Time  Event Type  Next Interrarrival Time Call Origin Service + Return Time  1 2 3 4 5 

0 N/A 2 N/A N/A 1 1 1 1 0 

2 Arrival 4 Node 2 8 0 1 1 1 0 

6 Arrival 5 Node 1 N/A 0 1 1 1 0 

10 Return N/A N/A N/A 1 1 1 1 0 

11 Arrival 3 Node 4 7 1 1 0 1 0 

14 Arrival 3 Node 1 8 1 0 0 1 0 

17 Arrival 4 Node 5 No available ambulance 1 0 0 1 0 

18 Return N/A N/A N/A 1 0 1 1 0 

21 Arrival 5 Node 3 5 1 0 1 0 0 

22 Return 1 N/A N/A 1 1 1 0 0 

24 Completion N/A N/A N/A 1 1 1 0 0 
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Table 6 - Illustration of simulation process for policy 1 on dummy instance 
   

 The time variable keeps the master clock of the system and the simulation 

starts at time 0. Next interarrival time is generated at time 0 as 2 thus the next event 

will be at time 2 as an arrival process. When an arrival process occurs, immediately 

the origin of the call is determined; in this case node 2 is the origin. Since node 2 is 

covered at that time, the closest covering ambulance is dispatched to answer the call. 

The closest ambulance is located at node 1 and the generated service time is 8 for 

this instance. When the ambulance located at node 1 is dispatched to serve the call 

originated from node 2, the coverage condition of the nodes is updated. Node 1 is no 

longer covered during the service time of the assigned ambulance. Furthermore if 

there would be more nodes that are covered solely by ambulance at node 1 then all 

of the nodes will be uncovered during service time. The next process is again an 

arrival process since the return times of the busy ambulances is later than the next 

arrival time. At time 6 the call is originated from node 1 however node 1 is 

uncovered at that time so the call is lost and coverage conditions stayed the same. At 

time 10 the ambulance originally located at node 1 completes its service and returns 

to its location and coverage conditions are updated. At time 11 the call is originated 

from node 4 and this node is covered by the ambulance located at node 3. The 

ambulance is dispatched for the call and its service time is generated as 7, which 

yields node 3 to be uncovered during 7 time units. At time 14 the call is originated 

from node 1 and since the closest covering ambulance is located at node 1, node 2 is 

uncovered for 8 time units. At time 17 there are no available ambulances to be 

dispatched so the call is lost whether the call origin is covered or not. At time 18 the 

ambulance located at node 3 completes its service; hence the coverage conditions 

are updated. At time 21 the call is originated from node 3 which is covered by the 

ambulance located at the same location, the coverage of node 4 is updated for this 

event. At time 22 the simulation is terminated because there is not another event 

until time is 26. The return of ambulance located at node 1 is the final event and the 

coverage conditions are updated respectively.  

 Node 1 is not able to be served for 8 time units like node 2. Node 3 is not 

served for 7 time units where node 4 is only not served for 3 time units. However 

node 5 is not covered in initial setting so it is straightforward that for policy 1, it will 

be never covered during simulation. Non serviced ratio of the nodes are calculated 
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as (total non served duration) / (simulation duration) which yields 33.33%, 33.33%, 

29.17%, 12.50%, 100% for nodes 1 through 5 respectively. The total population of 

the setting is 1330 people, however due to the initial setting and dispatches; the 

system cannot serve to whole population. The population that is never covered is 

determined as non covered population and derived as population of node 5. 

Furthermore the population of node 5, 100 is also the lower bound for this system. 

Since the simulation includes time variable, non served population hour term is 

introduced. Basically non served population hour includes the non served ratio the 

node and the population of the node variables. For example for node 1, the non 

served ratio is 0.33 and the population is 300 which yields 100 people hour non 

served per day. For overall system 414.175 people hour can be derived by including 

each node. However the system has 1330 people as total population and if all the 

nodes are covered during the simulation at any time, it is expected to serve 1330 

people hour. Furthermore, due to policy 1 dispatch rule, 100 people is never served 

thus determined as lower bound for non serviced population hour, named as non 

covered population hour. When the behavior of the system is analyzed, non serviced 

percentage (NSP) term is introduced and total non served population hour is divided 

to whole population hour hence for this system calculated as 31.14%. Throughout 

the study NSP is interchangeably used with performance of the system.    

For policy 1, non serviced percentage and non served population hour values 

of  the evaluated models for Istanbul data are given in table 7. On the other hand 

table 8 shows the performance metric of the models for policy 2 for Istanbul data. 

 

SPBDCM MCLM MSRSCLM CFRM 

Total Population 11,801,244 11,801,244 11,801,244 11,801,244 

Non Covered Population Hour 264,570 136,186 1,514,965 1,583,065 

Total Non Served Population Hour  3,501,017 3,782,759 2,580,020 1,747,931 
Non Served Population Hour due to 
Simulation 3,236,447 3,646,572 1,065,055 164,866 

Non Served Percentage (NSP) 29.67% 32.05% 21.86% 14.81% 

Lower bound for NSP 2.24% 1.15% 12.84% 13.41% 
Table 7 - Performance of Models for Istanbul Data for policy 1 
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SPBDCM MCLM MSRSCLM CFRM 

Total Population 11,801,244 11,801,244 11,801,244 11,801,244 

Non Covered Population Hour 264,570 136,186 1,514,965 1,583,065 

Total Non Served Population Hour  5,085,586 5,620,874 3,248,974 1,904,210 
Non Served Population Hour due to 
Simulation 4,821,016 5,484,688 1,734,009 321,145 

Non Served Percentage (NSP) 43.09% 47.63% 27.53% 16.14% 

NSP % difference wrt policy 1 13.43% 15.58% 14.69% 2.72% 
Table 8 - Performance of Models for Istanbul Data for policy 2 

 
4.2.1 Maximum Coverage Location Model 

4.2.1.1 Policy 1 

 For single coverage model or MCLM the parameters are set as 100 for total 

number of ambulances, 5 minutes for reaching time. After the mathematical model is 

solved optimally, the location of the ambulances and the initial coverage of each 

node are determined. Since during the simulation, the ambulances return to their 

originally assigned location; some of the nodes in Istanbul are never covered. 

However, for this setting the coverage percentage is 98.84% which in terms of 

weighted coverage is quite satisfying. Even though the weighted coverage level is 

satisfactory, there are 178 nodes that are never covered. The remaining 689 nodes 

will originate almost 791 calls on average; only 9 calls on average will be lost by 

default setting. Furthermore, the probability that one of the 178 nodes that are never 

covered will be the origin of a call is at most 0.024%.  

 After 10 runs of a whole day simulation with divided service time and time 

dependent arrival rates, policy 1 for MCLM gives on average 3,782,758.8 people 

that are not served in a day. When the lower bound for the service level is 

considered, MCLM policy 1 can lead to at most 136,186 non served population 

hour. The main reason that MCLM policy 1 gives high NSP score is due to the 

setting of the model, whenever a call is originated from an initially covered node, 

the closest ambulance serves to this node is dispatched and leaves the remaining 

nodes uncovered.   

 
4.2.1.2 Policy 2  

 For MCLM, policy 2 is expected to have higher NSP score, since the total 

number of calls that will be accepted for policy 2 is higher than policy 1. Also when 

policy 1 and policy 2 are compared, we have not considered any penalty for lost 

calls for policy 1. Fundamentally, policy 2 is a lower bound for each model where 
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the penalty of a missed call varies with respect to dispatched ambulance and the 

population that is covered by the dispatched ambulance during its service time. In 

this regard, the simulation for MCLM policy 2 is conducted for 10 day simulation 

like policy 1. 

 

4.2.2 SPBDCM 

4.2.2.1 Policy 1 

 For SPBDCM, on the other hand, the locations of the ambulances are 

determined in such a way that if a call is originated from any node that is covered 

then there is another back up ambulance to cover this node during the dispatched 

ambulance service time. However, with 100 ambulances and 5 and 8 minutes 

reaching time, the total double coverage of the Istanbul data is 11,536,674 people. 

With these numbers we can calculate the lower bound for SPBDCM policy 1 by 

simply subtracting the serviced population from the whole population. Furthermore 

the lower bound for SPBDCM policy is 264,570 non served population hour, is still 

worse than the lower bound for MCLM policy 1 which is 136,186.4 non served 

population hour. However we cannot simply determine the lower bounds for each 

model as a performance metric because the objective functions of the models are not 

the same. For MCLM the objective function is to maximize the single covered 

population whereas for SPBDCM anode is assumed to be covered if the node is 

covered by two different ambulances. The obtained lower bounds for models are 

recalculated as if a node can be serviced by any number of ambulances then it is 

assumed to be covered, in other words each lower bound and the coverage of nodes 

during simulation is based on single coverage.  

 
4.2.2.2 Policy 2 

Even though, for MCLM policy 1 the NSP scores are higher than SPBDCM 

policy 1 we cannot derive that this condition will also hold for policy 2. Since there 

is a back up covering ambulance for any covered node in SPBDCM, the results can 

vary with respect to each dispatched ambulance. For example if a call is originated 

from a highly populated region of Istanbul and one of the covering ambulance for 

this region is still in service, the dispatch of back up ambulance for an out of reach 

dispatch will yield high NSP score. However, since this situation can also occur for 

MCLM, we had to simulate both of the models under the same parameters. After the 
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simulation of SPBDCM, the results obtained from table 8 are still better than MCLM 

policy 2 and also gap between policy 1 and policy 2 for SPBDCM is lower than 

MCLM. In this regard, we can conclude that locating ambulances with respect to 

SPBDCM will give better results than MCLM.   

 After MCLM and SPBDCM have been simulated for Istanbul data, the NSP 

scores seemed higher than expected. In order to lower NSP scores, we propose new 

models where the location of the ambulances should consider the dispatching 

policies. The intuition behind the proposed models are based on two different 

approaches, maximum serviceable population for an ambulance without 

implementing any assignment constraint and centralized regions by considering the 

overall possible number of calls that an ambulance could be sent for dispatch. The 

mathematical models of the proposed approaches are stated in chapter 3 in detail. 

 

4.2.3 Maximum Service Restricted Set Covering Location Model (MSRSCLM) 

4.2.3.1 Policy 1 

  Even though the lower bound for MSRSCLM is worse than both MCLM and 

SPBDCM with 1,514,965 non served population hour, the overall performance of 

this setting is better than both of the models. Since highly populated districts are 

never covered for policy 1, during the simulation remaining nodes’ non served ratio 

affected the overall performance for this model. The overall non served population 

hour for MSRSCLM is 2,580,020.3 on average after 10 days of simulation. The 

reason for the improved result for this model is rather than focusing on maximum 

coverage of highly populated districts, the ambulances are allocated to the remaining 

nodes more adequately in order to reduce their non  served ratio. However, this 

model will be crippled if the outlier population values are observed more frequently. 

The distribution of population for Istanbul data can be fit to skewed normal 

distribution but for the distributions with skewness value that is not close to 0, the 

model will allocate the ambulances to districts with average population more 

frequently. Furthermore, since the number of coverage for each district is limited in 

order to satisfy the restriction, the model will allocate the remaining ambulances 

unnecessarily which will yield higher NSP score for this setting.  

When MSRSCLM is compared to SPBDCM with respect to lower bounds 

when the population value is considered, MSRSCLM is worse by 1,250,395 people 

per day which corresponds to 472.61% worse than SPBDCM. However, when the 
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the overall NSP score of the system is in comparison with MSRSCLM is better by 

920,996.26 people per day which corresponds to new model is better by 26.3% than 

SPBDCM. The % difference between MSRSCLM and MCLM with respect to never 

served population is larger than MSRSCLM vs SPBDCM, 1,378,778.6 people per 

day. Even though lower bound for MSRSCLM is worse than MCLM by 1012.42%, 

the overall performance of the new model is better by 31.8%. The comparisons 

conclude that MSRSCLM works better than both SPBDCM and MCLM when policy 

1 for each model is considered. After each models’ simulations are completed the 

ranking is SPBDCM is better than MCLM by 7.45% and MSRSCLM is better than 

SPBDCM by 26.3%. 

 

4.2.3.2 Policy 2 

 The overall performance of MSRSCLM policy 2 is better than both MCLM 

and SPBDCM policy 1 with 27.53% overall NSP. The immediate question arose 

from this result is how come MSRSCLM can have better performance when the total 

number of calls that an ambulance is dispatched is higher than the average calls for 

policy 1. The answer again lies in the population distribution of Istanbul, most of the 

time the demand points with outlier population values are not accumulated in one 

region. There is always a relatively less busy ambulance allocated outside these 

regions which can be dispatched for the calls originated from highly populated 

districts.  

 
4.2.4 Centralized Final Ratio Model (CFRM) 

When we observed that MSRSCLM works better than the proposed models 

by literature, we realized in order to reduce overall NSP score of the system, the 

number of coverage for each node should be proportional to their weights. Since the 

expected number of calls from any demand point is proportional to the population of 

the node, covering more than twice seemed more realistic and intuitively would 

work better than previous models. However, since we cannot control the dispatching 

ambulance for each call, we cannot assign any of the ambulances to specific nodes. 

Furthermore, the total number of expected calls that an ambulance could possibly 

cover should be included into this approach. In this regard, we calculated the 

covering nodes for each node which will lead to possible workload of an ambulance. 

After each nodes’ neighbors are found, the centralized weight for each node is 
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calculated which basically corresponds to the overall population of the node and its 

neighbors. In order to be counted as a neighbor of the node the distance between 

nodes should be smaller than the coverage distance that is 3333.3 meters; derived 

from 5 minutes of reach in time and 40km/hour for average velocity. The 

construction of the new regions and included ratios was given in detail with the 

mathematical model in chapter 3. 

 

4.2.4.1 Policy 1 

The locations of ambulances obtained from CFRM initially cover 86.59% of 

the whole population when single coverage is concerned. The lower bound for 

CFRM is obtained from this ratio as 1,583,065 people non served per day that will 

be never served during policy 1. However when we apply the policy 1 simulation for 

CFRM, overall NSP score on average is estimated as 14.81% which means 

1,747,930.7 people not served per day. The average overall NSP score of the new 

setting is better than MSRSCLM by 32.25% and is actually better than SPBDCM by 

%50 and better than MCLM by 53.8%. The comparison of CFRM with the rest of 

the models’ policy 1 is as follows. 

 We can observe that from table 7, for CFRM the lower bound of the model is 

the worst among alternatives but overall performance for policy 1 is the best among 

them. The centralized population approach could not serve only 164,865.7 people 

hour due to simulation. Furthermore, we can derive that if the total number of 

ambulances for each policy is higher than 100 then CFRM performance will increase 

since the lower bound for policy 1 will be lowered drastically.  

 

4.2.4.2 Policy 2 

 For the overall performance of MSRSCLM policy 2, we expressed that it is 

better than both MCLM and SPBDCM policy 1 overall performance. For CFRM 

policy 2 on the other hand is even better than MSRSCLM policy 1 in regard of NSP 

scores. With 1,904,209.9 not served population hour value, CFRM sets a new level 

for performance metric. 16.13% NSP of CFRM is far better than the alternatives. 

Also the % difference between policy 1 and policy 2 for CFRM is lower than all 

alternatives with only 2.72% which we can conclude that the setting for CFRM is 

more robust when it is compared to the other models.  
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4. 3. Sensitivity Analysis of SPBDCM and Relaxed SPBDCM  

After the simulation for proposed models for both of the policies have been 

conducted, the relaxed version of SPBDCM for location decision variables is solved 

by mathematical model. The nature of SPBDCM enforces that maximum number of 

ambulances that can be allocated to any supply node to at most 2. However with the 

new setting the performance for policy 1 and policy 2 should be reevaluated. Even 

though the relaxed version of SPBDCM performs better, during the experimental 

study the relaxed version is not included. For Istanbul data, policy 1 and policy 2 

comparisons with respect to original version of SPBDCM is as provided in table 9. 

 

SPBDCM 
Relaxed 
SPBDCM 

Total Population 11,801,244 11,801,244 

Non Covered Population Hour 264,570 215,594 

Total Non Served Population Hour  3,501,017 3,472,208 
Non Served Population Hour due to 
Simulation 3,236,447 3,256,614 

Non Served Percentage (NSP) 29.67% 29.42% 

Lower bound for NSP 2.24% 1.83% 
Table 9 - Comparison of SPBDCM and relaxed version for policy 1 

 
For policy 1 overall NSP score of the relaxed version is slightly better after 

10 day simulation however this difference is not conclusive for any argument. 

Furthermore, the lower bound for relaxed version is better than the original model 

which means that objective function value of relaxed version is improved when 

single coverage is concerned. 

For policy 2, the performance of the relaxed version is still better but like 

policy 1 it is not conclusive to state relaxed version of SPBDCM works better with 

the same parameters. We can also observe from table 10 that gap between policy 1 

and policy 2 for each setting is close to each other. 
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SPBDCM 
Relaxed 
SPBDCM 

Total Population 11,801,244 11,801,244 

Non Covered Population Hour 264,570 215,594 

Total Non Served Population Hour  5,085,586 4,949,309 
Non Served Population Hour due to 
Simulation 4,821,016 4,733,715 

Non Served Percentage (NSP) 43.09% 41.94% 

NSP % difference with respect to policy 1 13.43% 12.52% 
Table 10 - Comparison of SPBDCM and Relaxed  Version for Policy 2 
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CHAPTER 5 

EXPERIMENTAL STUDY 

 
 Even though the models for Istanbul data give a general opinion about 

performance of various models, in order to test whether the performance of the models 

follow a similar pattern, we test the models on randomly generated data. It turns out, the 

results quite depend on the characteristics of the data. We randomly generate 240 

instances with different problem size with respect to number of demand points, different 

layouts and different location and coverage values from each model. The arrival rate for 

Istanbul data is proportioned and a different type of arrival rate is also studied where the 

arrival rate is time dependent. The simulations are conducted for two different policies 

and for each parameter combination we have 10 independent 24 hours simulation runs.   

 

5.1 Random Data Generation 

 For the experimental study, 4 different layouts have been implemented where 

each layout have their unique distribution of demand points. For each layout we propose 

a 50x50 km square region which is divided into various number of sub-regions 

according to layout design. For layout 1, we propose 4 different sub-regions which are 

basically dividing the whole region into 4 equal square regions. Each sub-region is 

populated with respect to determined problem size as 200, 300, 400 nodes. The 

coordinates of demand points have a uniform distribution and each demand point is 

populated with an exponentially distributed random variable with mean 10000. For each 

problem size, 5 instance have been generated thus a total of 15 instance have been 

created for each layout. For layout 1 each sub-region contains 25% of the demand 

points. 
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Figure 4 - The design of layout 1  
 
 For the second layout, we propose a similar layout to Istanbul data where the 

region is again divided into 4 sub-region however there is a 2*50 km area in the middle 

which is a representation of the Bosphorus. In this layout also the distribution of the 

nodes are different, sub-region 1 and 3 which are located on lower regions each contains 

the %35 of the whole demand points where sub-region 2 and 4 each contains %15. 

Figure 5 shows the design of layout 2. 

 

 

Figure 5 - Design of layout 2 
  

 

 For layout 3 we use one of the layouts proposed by Basar (2008) for our 

experimental study. The distribution of demand points in this setting is %25 in one 

corner of 50x50 region, another %25 in the opposite corner and remaining demand 

points are scattered throughout remaining area. The areas of corner sub-regions differ 

from Basar (2008). Figure 6 shows the design of layout 3. 

 

 
Figure 6 - Design of layout 3 

 

 For layout 4 we again use one of the layouts proposed by Basar (2008). The 

layout is divided into 4 squares where length of each squares’ edge is proportional to 
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inner squares’ edge length. The middle square has 12.5 km edge length, the second 

layer square has 25 km edge length, the third layer square has 37.5 km edge length and 

final square is set to 50x50 km region. The sub-regions are determined as the remaining 

areas between each square and each region contains %25 of the demand points. The 

design of the layout 4 is given in figure 7. 

 

 
Figure 7 - The design of layout4 and corresponding sub-regions (1 represents region 1) 

 

 

5.2 Results 

 For each model the NSP scores, the lower bounds and % difference these values 

have been calculated. We conduct our analysis for arrival rates proportional to expected 

population of the problem. For Istanbul data the overall expected number of calls is 800 

and since the expected population of a demand point for experimental study is 10000 

we established the overall expected number of calls for problem size 200 will be almost 

20% of Istanbul data. Problem size 300 will have 240 expected calls and problem size 

400 will be simulated with twice the arrival rate of problem size 200. Furthermore, the 

default arrival rate for each problem size is multiplied with 2 in order to create a higher 

arrival rate process. Moreover, the number of ambulances that can be allocated for each 

problem size is also proportional with each other, not proportional to Istanbul data 

though. The total number of ambulances is determined as 30, 45, and 60 for problem 

size 200, 300, and 400 respectively.  For each model the comparisons consist of four 

different setting, policy 1 with low arrival rate, policy 1 with high arrival rate, policy 2 

with low arrival rate and finally policy 2 with high arrival rate.  For each setting, we 

compare the effectiveness of the model with respect to layout and size. Moreover, in 

order to find any relation between model and layout with respect to policy, we compare 

the layout averages’ to each other for different problem size.  
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5.2.1 MCLM  

 Since the distribution of demand points’ coordinates is uniform, the performance 

of MCLM improves compared to Istanbul data. The general performance of MCLM for 

policy 1 with respect to different population sizes is shown in table 11.  

MCLM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 28.84% 35.44% 26.59% 33.53% 23.67% 32.96% 24.65% 33.58% 

  instance2 30.31% 36.12% 24.10% 30.44% 23.84% 34.24% 27.13% 34.38% 

Size 200 instance3 30.41% 36.32% 23.74% 33.42% 23.14% 31.24% 24.13% 31.70% 

  instance4 28.04% 34.98% 27.96% 34.99% 24.61% 34.53% 24.27% 33.03% 

  instance5 27.43% 34.85% 27.66% 32.92% 21.58% 30.37% 24.32% 32.87% 

  On average  29.01% 35.54% 26.01% 33.06% 23.37% 32.67% 24.90% 33.11% 

  instance1 16.59% 19.36% 37.24% 44.17% 20.40% 26.69% 19.33% 25.01% 

  instance2 43.23% 50.31% 12.76% 15.92% 14.10% 18.01% 39.72% 51.60% 

Size 300 instance3 19.45% 24.17% 9.79% 12.54% 8.99% 11.27% 17.92% 22.23% 

  instance4 40.84% 48.26% 21.12% 26.96% 37.25% 45.45% 22.21% 29.73% 

  instance5 21.71% 25.40% 12.11% 14.48% 15.32% 19.13% 19.55% 24.50% 

  On average  28.36% 33.50% 18.61% 22.81% 19.21% 24.11% 23.75% 30.61% 

  instance1 13.29% 17.47% 21.27% 29.33% 14.25% 18.81% 17.04% 25.59% 

  instance2 16.70% 21.29% 5.48% 7.96% 8.17% 12.51% 10.16% 14.89% 

Size 400 instance3 5.04% 7.28% 20.01% 28.55% 13.01% 19.04% 26.04% 34.47% 

  instance4 8.10% 10.87% 10.00% 16.20% 12.66% 15.90% 4.84% 7.01% 

  instance5 25.28% 31.92% 10.08% 14.67% 22.24% 34.08% 13.73% 21.80% 

  On average  13.68% 17.76% 13.37% 19.34% 14.07% 20.07% 14.36% 20.75% 
Table 11 - Performance of MCLM for policy 1 

 
When the layouts and their averages for each population size are examined, we can 

conclude that the increase in problem size is negatively related with the average NSP 

score of the layout. For example even though the average NSP score for layout 1 for 

problem size 300 instance 4 is higher than the overall average for layout 1 problem size 

200, the average of layout 1 for size 300 is smaller than the average of layout 1 for size 

200.  However, the comparison among layouts is not conclusive. The best performing 

layout for different problem sizes vary. For problem size 200, layout 3 has the lowest 

average but for problem size 300 and 400, the average of layout 2 is better than layout 

3.  

When we compare the performance of MCLM with respect to layouts with low 

arrival rate, it does not provide a definite conclusion; since except size 400, where 
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layout 1 average is the worst among all. Furthermore, we can observe that for high 

arrival rate policy 1 when the size of the problem increases, the average of the 

layout decreases which can be interpreted as negative relation between problem size 

and average of the layout. Moreover, some instances can affect the overall NSP 

score of the system significantly. Even though the instances are created with the 

same parameters, some of them do not reflect the general behavior exactly. For 

example for layout 4 when the problem size is 300, except the instance 2 the average 

is around 25% but with 51% NSP score the average of the layout 4 for size 300 

increased to 30%. For size 300, instance 2 and instance 4 the overall NSP score of 

the system have outlier values for layout 1. Table 12 shows the performance of 

MCLM for policy 2. 

 

MCLM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 33.73% 45.78% 29.66% 42.82% 26.57% 40.47% 27.62% 45.55% 

  instance2 33.62% 46.60% 28.31% 41.81% 27.18% 43.34% 30.99% 44.56% 

Size 200 instance3 33.88% 46.74% 28.34% 42.38% 27.82% 44.62% 26.08% 41.32% 

  instance4 30.97% 42.82% 32.18% 42.42% 28.54% 43.64% 26.37% 40.79% 

  instance5 31.22% 42.60% 29.91% 42.21% 24.45% 40.77% 28.02% 43.08% 

  On average  32.68% 44.91% 29.68% 42.33% 26.91% 42.57% 27.82% 43.06% 

  instance1 19.32% 34.97% 16.23% 30.35% 15.25% 28.93% 17.39% 32.21% 

  instance2 21.45% 39.20% 16.91% 30.75% 17.44% 31.97% 17.87% 30.58% 

Size 300 instance3 18.38% 34.89% 16.36% 30.48% 16.62% 28.09% 16.32% 30.15% 

  instance4 18.28% 31.67% 16.88% 30.43% 16.45% 30.62% 18.06% 35.61% 

  instance5 19.24% 36.23% 15.32% 30.61% 18.29% 31.24% 14.52% 30.85% 

  On average  19.33% 35.39% 16.34% 30.52% 16.81% 30.17% 16.83% 31.88% 

  instance1 10.40% 17.89% 9.31% 18.04% 11.19% 20.48% 11.65% 18.18% 

  instance2 12.95% 20.09% 9.32% 18.04% 11.27% 22.05% 11.87% 22.28% 

Size 400 instance3 9.68% 17.59% 10.73% 19.09% 11.32% 21.08% 10.49% 19.43% 

  instance4 9.72% 18.39% 9.09% 17.83% 11.74% 21.62% 10.97% 20.04% 

  instance5 11.86% 19.57% 9.93% 19.93% 11.54% 20.95% 11.48% 19.97% 

  On average  10.92% 18.71% 9.68% 18.58% 11.41% 21.24% 11.29% 19.98% 
Table 12 - Performance of MCLM for policy 2 

 
When we consider policy 2 for MCLM, intuitively from Istanbul data it is 

expected to have higher NSP scores for the same instances. However this is not the 

case, even though the system responds to more calls than policy 1, policy 2 with low 

arrival rate has lower NSP scores for most of the instances except when the problem 
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size is 200. For Istanbul data when the performance of each model is observed, 

policy 2 has higher NSP scores than policy 1 although this condition does not hold 

for every instance. The reason behind this contradiction lies again in the distribution 

of demand points coordinates. For most of the instances the out of reach dispatch of 

an ambulance is not used as frequent as Istanbul data during the simulations. 

Basically policy 2 acts like policy 1 in most of the simulation duration.  

For low arrival rate policy 2, we can conclude that the negative relation between 

layout averages and problem size is still valid. However for the outlier scenarios, 

policy 2 has less variant NSP scores when we compare with policy 1. Although for 

problem size 300 and layout 1, the instances 2 and 4 have outlier values for policy 1, 

policy 2 does not respond to these instances as much as policy 1. 

For high arrival rate policy 2, as expected the NSP scores increased- compared 

to low arrival rate policy 2. Furthermore, when we compare the results obtained 

from high arrival rate policy 2, the distinct difference between policy 1 and policy 2 

for low arrival rate diminishes. Even though the negative relation between layout 

average and problem size is maintained, for some of the instances policy 2 works 

better but for most of the instances policy 1 keeps its advantage. The robustness of 

policy 2 is sustained for high arrival rate. We can observe that for problem size 300 

the instances 2 and 4 for layout 1 have outlier values for policy 1 but we cannot 

claim that these instances are also outlier for policy 2.  

 

5.2.2 SPBDCM 

 SPBDCM like MCLM is firstly evaluated for each policy in order to observe 

if there are any relations. Between problem sizes and the average of the layouts there 

is negative relation for MCLM. However, even most of the layouts’ averages 

decrease when the problem size increases; there is an exception for layout 1 as it can 

be seen from table 13.   
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SPBCDM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 41.60% 46.46% 34.12% 40.30% 30.79% 36.26% 31.10% 37.01% 

  instance2 39.02% 42.60% 34.09% 39.11% 30.32% 36.47% 32.85% 38.81% 

Size 200 instance3 43.13% 46.69% 31.56% 37.73% 28.77% 34.99% 30.55% 38.32% 

  instance4 39.41% 44.39% 34.62% 39.40% 33.73% 39.37% 30.82% 36.13% 

  instance5 38.14% 43.10% 35.41% 40.48% 30.85% 35.19% 30.29% 35.58% 

  On average  40.26% 44.65% 33.96% 39.41% 30.89% 36.46% 31.12% 37.17% 

  instance1 21.82% 23.99% 45.96% 51.50% 29.97% 34.35% 25.28% 29.84% 

  instance2 68.78% 73.64% 16.50% 19.53% 18.88% 21.94% 51.04% 61.34% 

Size 300 instance3 30.33% 31.84% 12.87% 14.87% 11.32% 13.78% 24.24% 28.29% 

  instance4 55.34% 61.94% 26.45% 31.68% 46.30% 52.04% 30.03% 33.65% 

  instance5 32.40% 35.75% 15.94% 18.45% 19.83% 23.41% 24.27% 29.13% 

  On average  41.74% 45.43% 23.54% 27.21% 25.26% 29.11% 30.97% 36.45% 

  instance1 19.76% 24.20% 24.54% 30.73% 17.48% 20.72% 23.65% 29.02% 

  instance2 27.75% 31.72% 7.37% 9.85% 10.85% 13.85% 12.33% 17.41% 

Size 400 instance3 9.89% 11.82% 30.05% 36.66% 19.51% 25.38% 29.96% 39.73% 

  instance4 13.63% 16.13% 17.24% 21.81% 15.41% 18.49% 6.78% 8.77% 

  instance5 37.06% 42.53% 12.98% 16.46% 34.94% 44.23% 23.24% 29.62% 

  On average  10.92% 25.28% 18.44% 23.10% 19.64% 24.53% 19.19% 24.91% 
Table 13 - Performance of SPBDCM for policy 1  

 

For problem size 300, instances 2 and 4 are known to be outliers but SPBDCM 

is very sensitive to these outlier instances. The NSP score of the system increases 

drastically compared to other instances of the same layout and problem size. Overall 

NSP score of these instances with 68% and 55% values are almost 2.5 times of the 

other instances’ average. Although the other instances’ scores decrease the layout 

average, layout 1’s average for problem size 300 is still higher than problem size 

200.  

 For high arrival rate policy 1, the conclusions for MCLM are still valid for 

SPBDCM. Furthermore, the outlier instances crippled the score of the model for 

high arrival rate. Even though layout 2 has the best layout average for problem size 

300 and 400, layout 3’s average is better than layout 2 for problem size 200. Like 

low arrival rate the layouts’ averages decrease with respect to increase in problem 

size except layout 1 for problem size 300. The main reason for this contradiction is 

again originated from the outlier instances for problem size 300.  

 The policy 2 with low arrival rate however, still maintains its robustness for 

SPBCDM. The outlier instances of layout 1 for problem size 300 are coped with out 
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of reach dispatches. Except problem size 200, policy 2 with low arrival rate has 

better performance than policy 1 with low arrival rate for the model. When most of 

the instances are considered the performance of policy 2 is better than policy 1. 

Table 14 shows the NSP scores for SPBDCM with respect to layout and problem 

size for policy 2. 

 

SPBCDM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 45.39% 54.80% 37.38% 48.20% 34.87% 45.30% 34.62% 45.59% 

  instance2 41.55% 53.64% 38.68% 47.52% 33.55% 46.35% 34.33% 49.40% 

Size 200 instance3 47.00% 56.30% 34.43% 45.18% 32.31% 46.72% 34.46% 45.60% 

  instance4 44.27% 54.69% 38.24% 49.55% 36.79% 49.63% 34.79% 47.28% 

  instance5 42.07% 51.19% 40.26% 50.74% 34.89% 44.31% 33.18% 46.38% 

  On average  44.06% 54.12% 37.80% 48.24% 34.48% 46.46% 34.28% 46.85% 

  instance1 26.86% 34.97% 22.15% 30.35% 21.03% 28.93% 23.24% 32.21% 

  instance2 31.67% 39.20% 20.63% 30.75% 21.76% 31.97% 20.82% 30.58% 

Size 300 instance3 27.22% 34.89% 21.75% 30.48% 18.85% 28.09% 21.37% 30.15% 

  instance4 24.73% 31.67% 21.70% 30.43% 21.05% 30.62% 24.12% 35.61% 

  instance5 28.69% 36.23% 20.42% 30.61% 21.20% 31.24% 21.47% 30.85% 

  On average  27.84% 35.39% 21.33% 30.52% 20.78% 30.17% 22.21% 31.88% 

  instance1 13.83% 20.23% 11.84% 18.82% 14.65% 21.05% 13.90% 21.60% 

  instance2 17.30% 23.94% 12.21% 19.57% 12.60% 21.44% 13.17% 21.11% 

Size 400 instance3 14.25% 19.90% 12.06% 20.00% 12.48% 20.66% 13.35% 21.17% 

  instance4 13.62% 20.04% 11.97% 19.84% 13.50% 21.41% 13.25% 21.36% 

  instance5 16.21% 21.99% 11.52% 19.60% 15.53% 24.58% 13.68% 21.55% 

  On average  10.92% 21.22% 11.92% 19.57% 13.75% 21.83% 13.47% 21.36% 
Table 14 - Performance of SPBDCM for policy 2  

  

 For policy 2 with low arrival rate, the negative relation between layout 

average and problem size can be observed easily. The performance of SPBDCM 

with respect to layout averages is again not definitive where for problem size 200 

and 300 layout 3 has the best scores but for problem size 400 layout 2 has a better 

score than layout 3.  

 Except the increased NSP scores for each instance, policy 2 with high arrival 

rate represents all the characteristics of policy 2 with low arrival rate. The negative 

relation between problem size and layout average, the performance with respect to 

layout averages and most of the instances policy 2 with high arrival rate works better 

than policy 1 with high arrival rate are the main conclusions.  
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5.2.3 MSRSCLM 

 Among other alternatives, MSRSCLM is the most sensitive model with 

respect to demand points’ coordinates distribution. Any outlier design can affect the 

performance of the model hugely. Due to this sensitivity, the negative relation 

between population size and layout average diminishes. Furthermore, there is still no 

indication of relation between model and any layout design. In table 15, the results 

for policy 1 is given. 

MSRSCLM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 48.19% 50.70% 47.06% 49.14% 42.54% 44.43% 45.63% 49.03% 

  instance2 50.27% 52.86% 47.19% 49.31% 41.16% 46.86% 41.00% 44.91% 

Size 200 instance3 49.47% 51.45% 43.19% 46.15% 41.50% 45.68% 39.80% 45.47% 

  instance4 51.62% 54.27% 45.77% 47.67% 41.38% 43.86% 34.99% 38.98% 

  instance5 46.88% 48.59% 49.41% 52.72% 44.83% 46.56% 41.48% 45.28% 

  On average  49.29% 51.57% 46.52% 49.00% 42.28% 45.48% 40.58% 44.73% 

  instance1 29.82% 30.60% 70.25% 73.54% 42.66% 44.44% 37.69% 38.79% 

  instance2 86.86% 89.04% 24.47% 25.66% 26.55% 27.68% 71.25% 75.22% 

Size 300 instance3 37.31% 38.89% 17.04% 18.26% 16.27% 17.48% 30.69% 32.29% 

  instance4 77.35% 80.51% 41.13% 43.04% 66.54% 70.93% 41.91% 44.69% 

  instance5 44.71% 45.83% 22.84% 24.07% 26.81% 27.62% 34.86% 36.09% 

  On average  55.21% 56.97% 35.15% 36.91% 35.76% 37.63% 43.28% 45.41% 

  instance1 39.42% 41.31% 51.50% 53.56% 33.27% 33.77% 46.81% 48.79% 

  instance2 51.43% 53.59% 15.78% 16.33% 21.16% 22.06% 29.82% 31.09% 

Size 400 instance3 19.00% 19.51% 51.69% 53.52% 40.81% 41.87% 72.18% 75.61% 

  instance4 21.60% 22.71% 31.51% 32.83% 26.99% 28.30% 14.63% 15.17% 

  instance5 55.56% 57.59% 26.68% 28.05% 60.20% 63.28% 44.33% 45.77% 

  On average  10.92% 38.94% 35.44% 36.86% 36.49% 37.85% 41.55% 43.29% 
Table 14 - Performance of MSRSCLM for policy 1 with low arrival rate 

 
 Likely for high arrival rate for policy 1, performance of MSRSCLM is 

decreased with the outlier instances and led the relation between problem size and 

layout average to vanish. For some of the instances, the overall NSP score raises the 

question how can this model work better than MCLM or SPBDCM for Istanbul data. 

The answer lies in the sensitivity of the model, for some instances like the highly 

populated demand nodes are dense in some regions, mathematical model of 

MSRSCLM assigns the ambulances out of coverage vicinity of these regions. Hence 

the overall NSP score is so high for policy 1. 
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 In Table 16, for instance 2 of layout 1 with problem size 300 the performance 

of MSRSCLM is very disappointing with 89%. Even though there are some 

instances which have high NSP scores, there are also counter examples of these 

results like problem size 400 layout 1 instance 3 which is almost 50% of the layout 

average. However, even though this instance’s score is better than others, it is still 

worse than score of this instance for both MCLM and SPBDCM.  

 

   MSRSCLM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 50.53% 59.41% 50.40% 56.96% 46.02% 52.78% 49.25% 57.35% 

  instance2 51.76% 58.81% 49.74% 57.25% 46.70% 59.04% 44.00% 52.81% 

Size 200 instance3 52.94% 61.19% 44.53% 53.54% 45.11% 52.32% 44.23% 52.48% 

  instance4 55.33% 62.81% 47.65% 56.97% 44.92% 51.54% 37.36% 45.21% 

  instance5 48.48% 54.81% 53.15% 62.32% 46.45% 51.71% 45.19% 53.00% 

  On average  51.81% 59.41% 49.09% 57.41% 45.84% 53.48% 44.01% 52.17% 

  instance1 41.04% 46.26% 36.35% 42.31% 39.77% 44.37% 40.72% 44.88% 

  instance2 45.46% 49.20% 33.69% 38.34% 37.45% 42.66% 34.30% 38.65% 

Size 300 instance3 35.85% 40.87% 35.47% 41.50% 30.32% 36.39% 34.89% 40.90% 

  instance4 34.29% 39.72% 39.96% 46.69% 34.64% 39.85% 36.57% 40.99% 

  instance5 44.48% 49.54% 31.81% 38.36% 36.08% 40.64% 36.02% 41.05% 

  On average  40.22% 45.12% 35.46% 41.44% 35.65% 40.78% 36.50% 41.30% 

  instance1 32.22% 35.34% 29.81% 32.99% 35.59% 38.73% 30.70% 33.28% 

  instance2 37.69% 41.97% 28.53% 32.13% 27.96% 31.73% 31.24% 35.78% 

Size 400 instance3 34.03% 37.40% 25.94% 29.77% 31.04% 34.57% 34.02% 38.14% 

  instance4 25.92% 30.18% 27.55% 30.70% 29.71% 32.93% 28.33% 31.61% 

  instance5 32.94% 37.14% 25.74% 29.90% 27.07% 32.00% 26.39% 29.84% 

  On average  10.92% 36.41% 27.51% 31.10% 30.28% 33.99% 30.14% 33.73% 
Table 16 - Performance of MSRSCLM for policy 2 with low arrival rate 

 
In Table 16, the results of MSRSCLM for policy 2 with respect to layout and 

problem size are compared. Despite the low performance of MSRSCLM for policy 

1, with out of reach dispatches the outlier instances have been neutralized by policy 

2. With the help of this neutralization, the negative relation between problem size 

and layout average is validated again. However, we cannot derive the conclusion 

about the performance of policy 2 is better than policy 1. Nevertheless for most of 

the instances policy 2 works better than policy 1. Equivalently the characteristics of 

policy 2 are held for high arrival rate.  
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5.2.4 CFRM 

 Even though, CFRM works best among other settings for Istanbul data, the 

uniformity of demand points decreases the performance of this model. Despite the 

uniformity, the robustness of the model should still yield better results than 

alternatives most of the time. The distinct effect of policy 2 should be reduced in 

this model since the construction of model includes the expected calls per region 

which reduces the ratio of out of reach dispatches. Furthermore, the negative relation 

between layout average and problem size is conserved despite of the arrival rate and 

applied policy. Still there is no indication of relation among layouts and model’s 

performance which concludes that the performance of model is not based on the 

distribution of demand points. In Table 17, the NSP score for each instance for 

policy 1 is given.  

  

CFRM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 31.55% 37.18% 30.79% 37.40% 27.81% 34.37% 26.87% 33.74% 

  instance2 32.05% 37.29% 27.14% 34.29% 26.08% 33.14% 28.74% 35.20% 

Size 200 instance3 34.14% 38.48% 26.44% 33.13% 28.36% 34.93% 27.93% 34.80% 

  instance4 31.15% 37.62% 31.88% 37.68% 25.80% 32.18% 30.03% 35.86% 

  instance5 30.81% 37.25% 30.01% 36.72% 23.04% 31.61% 27.67% 36.16% 

  On average  31.94% 37.56% 29.25% 35.84% 26.22% 33.25% 28.25% 35.15% 

  instance1 15.50% 18.13% 38.58% 47.22% 22.05% 27.70% 18.59% 22.74% 

  instance2 41.66% 49.07% 13.11% 15.90% 13.31% 16.94% 35.94% 45.19% 

Size 300 instance3 17.96% 21.97% 10.83% 13.47% 9.11% 12.00% 15.84% 20.47% 

  instance4 41.54% 49.51% 21.09% 26.59% 36.49% 44.17% 20.56% 26.66% 

  instance5 18.71% 23.09% 11.72% 14.68% 15.49% 20.32% 21.58% 25.74% 

  On average  27.07% 32.36% 19.07% 23.57% 19.29% 24.22% 22.50% 28.16% 

  instance1 13.31% 18.49% 27.48% 35.11% 13.92% 18.93% 20.58% 27.74% 

  instance2 17.55% 21.64% 5.87% 8.32% 12.44% 14.72% 11.06% 16.01% 

Size 400 instance3 5.90% 7.94% 25.03% 32.82% 15.06% 22.06% 28.47% 37.24% 

  instance4 8.49% 10.64% 13.11% 20.07% 12.67% 16.71% 5.08% 7.49% 

  instance5 21.98% 27.62% 12.60% 16.59% 28.42% 36.56% 19.45% 24.78% 

  On average  10.92% 17.27% 16.82% 22.58% 16.50% 21.80% 16.93% 22.65% 
Table 17 - Performance of CFRM for policy 1 with low arrival rate 

 
In Table 18, the results of simulation under policy 2 can be seen. Even 

though layout 2 average for problem size 200 and 300 is better than the other 

layouts, for problem size 400 the performance of CFRM with respect to layout 
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averages is changed. There is still no relation between layout design and model’s 

performance for either policy. The negative relation between layout average and 

problem size can be observed as expected due to the robustness of CFRM. The other 

characteristics of the experimental study are also valid for this setting.  

 

CFRM 

layout 1 layout 2 layout 3 layout 4 

Low High Low High Low High Low High 

  instance1 35.12% 49.04% 33.00% 47.10% 31.78% 43.63% 28.59% 45.20% 

  instance2 35.09% 50.23% 29.57% 42.80% 28.96% 42.37% 30.07% 44.69% 

Size 200 instance3 37.80% 47.69% 29.85% 41.82% 30.85% 47.58% 31.58% 44.11% 

  instance4 33.77% 47.24% 34.88% 47.70% 29.87% 42.12% 32.79% 45.75% 

  instance5 34.11% 45.86% 33.41% 45.89% 24.56% 42.62% 31.79% 47.99% 

  On average  35.18% 48.01% 32.14% 45.06% 29.20% 43.66% 30.96% 45.55% 

  instance1 24.91% 34.34% 21.13% 29.19% 17.46% 28.32% 21.63% 31.10% 

  instance2 24.41% 33.86% 17.92% 26.75% 21.56% 30.99% 22.17% 30.35% 

Size 300 instance3 20.86% 31.10% 21.06% 29.53% 20.18% 27.16% 19.07% 28.75% 

  instance4 19.74% 28.65% 21.91% 30.44% 18.06% 30.49% 21.11% 30.12% 

  instance5 23.40% 31.87% 20.36% 28.17% 19.83% 30.47% 22.24% 30.78% 

  On average  22.67% 31.96% 20.48% 28.82% 19.42% 29.48% 21.24% 30.22% 

  instance1 14.83% 21.33% 14.91% 23.22% 14.58% 23.57% 16.15% 24.42% 

  instance2 17.92% 24.99% 12.79% 21.68% 16.69% 25.84% 14.62% 23.72% 

Size 400 instance3 12.58% 18.64% 15.94% 24.30% 15.74% 25.99% 14.08% 23.68% 

  instance4 12.09% 20.18% 13.00% 21.27% 17.96% 26.02% 11.83% 20.04% 

  instance5 15.14% 21.99% 14.90% 21.84% 15.88% 23.05% 15.95% 23.58% 

  On average  10.92% 21.42% 14.31% 22.46% 16.17% 24.89% 14.53% 23.09% 
Table 15 - Performance of CFRM for policy 2 with low arrival rate 

 
 

 

5.2.5 COMPARISONS OF MODELS 

 In this section of our study, we compare the overall score of each model with 

respect to population size, different policies and different arrival rates. Even though 

each simulation consists of 10 day simulation, we cannot derive that each score 

represents the exact behavior of the system definitely. However, we can interpret the 

general performance of the models according to these scores. For problem size 200 

the scores of models for policy 1 is given in table 19.  
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MCLM SPBDCM MSRSCLM CFRM 

Low High Low High Low High Low High 

instance1_layout1 33.73% 35.44% 45.39% 46.46% 50.53% 50.70% 35.12% 37.18% 

instance1_layout2 29.66% 33.53% 37.38% 40.30% 50.40% 49.14% 33.00% 37.40% 

instance1_layout3 26.57% 32.96% 34.87% 36.26% 46.02% 44.43% 31.78% 34.37% 

instance1_layout4 27.62% 33.58% 34.62% 37.01% 49.25% 49.03% 28.59% 33.74% 

instance2_layout1 33.62% 36.12% 41.55% 42.60% 51.76% 52.85% 35.09% 37.29% 

instance2_layout2 28.30% 30.44% 38.68% 39.11% 49.74% 49.31% 29.57% 34.29% 

instance2_layout3 27.18% 34.24% 33.55% 36.47% 46.70% 46.86% 28.96% 33.14% 

instance2_layout4 30.99% 34.38% 34.33% 38.81% 44.00% 44.91% 30.07% 35.20% 

instance3_layout1 33.88% 36.32% 47.00% 46.69% 52.94% 51.45% 37.80% 38.48% 

instance3_layout2 28.34% 33.42% 34.43% 37.73% 44.53% 46.15% 29.85% 33.13% 

instance3_layout3 27.82% 31.24% 32.31% 34.99% 45.11% 45.68% 30.85% 34.93% 

instance3_layout4 26.08% 31.70% 34.46% 38.32% 44.23% 45.47% 31.58% 34.80% 

instance4_layout1 30.97% 34.98% 44.27% 44.39% 55.33% 54.27% 33.77% 37.62% 

instance4_layout2 32.18% 34.99% 38.23% 39.40% 47.65% 47.67% 34.88% 37.68% 

instance4_layout3 28.54% 34.53% 36.79% 39.37% 44.92% 43.86% 29.87% 32.18% 

instance4_layout4 26.37% 33.03% 34.79% 36.13% 37.36% 38.98% 32.79% 35.86% 

instance5_layout1 31.22% 34.85% 42.07% 43.10% 48.48% 48.59% 34.11% 37.25% 

instance5_layout2 29.91% 32.92% 40.26% 40.48% 53.15% 52.72% 33.41% 36.72% 

instance5_layout3 24.45% 30.37% 34.89% 35.19% 46.45% 46.56% 24.56% 31.61% 

instance5_layout4 28.02% 32.87% 33.18% 35.58% 45.19% 45.28% 31.79% 36.16% 
Table 19 - Comparison of models for policy 1 for problem size 200  

 
 When we compare the NSP scores of the models, it can be seen from table 19 

that for most of the instances MCLM works best. The general ranking is MCLM is 

best, CFRM’s performance is close to MCLM, SPBDCM is 3rd and MSRSCLM is 

4th. The ranking does not change except layout 4 instance 2 for low arrival rate; 

CFRM’s score is better than the score of MCLM for this instance. The change in 

ranking with respect to Istanbul data is originated from the same reason throughout 

the experimental study, the distribution of demand points’ coordinates. The average 

scores of the models are 29.27%, 37.65%, 47.68%, and 31.87% for MCLM, 

SPBDCM, MSRSCLM and CFRM relatively.  

 For high arrival rate policy 1 when the problem size is 200, the ranking of the 

models does not change at all. MCLM works best, followed by CFRM, SPBDCM, 

and MSRSCLM. Even though for high arrival rate, the arrival rate is twice of low 

arrival rate, the average of the NSP scores for each model increased around 5%. The 

most increase can be observed for CFRM with 6.5%.     
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For low arrival rate policy 2 when the problem size is 200, the ranking of the 

models change more frequently. Also when each models’ performances are 

considered with respect to policies, policy 1 works better than policy 2 for every 

instance except problem size 200 with low arrival rate.  

MCLM SPBDCM MSRSCLM CFRM 

Low High Low High Low High Low High 

instance1_layout1 35.44% 45.78% 46.46% 54.80% 50.70% 59.41% 37.18% 49.04% 

instance1_layout2 33.53% 42.82% 40.30% 48.20% 49.14% 56.96% 37.40% 47.10% 

instance1_layout3 32.96% 40.47% 36.26% 45.30% 44.43% 52.78% 34.37% 43.63% 

instance1_layout4 33.58% 45.55% 37.01% 45.59% 49.03% 57.35% 33.74% 45.20% 

instance2_layout1 36.12% 46.60% 42.60% 53.64% 52.85% 58.81% 37.29% 50.23% 

instance2_layout2 30.44% 41.81% 39.11% 47.52% 49.31% 57.25% 34.29% 42.80% 

instance2_layout3 34.24% 43.34% 36.47% 46.35% 46.86% 59.04% 33.14% 42.37% 

instance2_layout4 34.38% 44.56% 38.81% 49.40% 44.91% 52.81% 35.20% 44.69% 

instance3_layout1 36.32% 46.74% 46.69% 56.30% 51.45% 61.19% 38.48% 47.69% 

instance3_layout2 33.42% 42.38% 37.73% 45.18% 46.15% 53.54% 33.13% 41.82% 

instance3_layout3 31.24% 44.62% 34.99% 46.72% 45.68% 52.32% 34.93% 47.58% 

instance3_layout4 31.70% 41.32% 38.32% 45.60% 45.47% 52.48% 34.80% 44.11% 

instance4_layout1 34.98% 42.82% 44.39% 54.69% 54.27% 62.81% 37.62% 47.24% 

instance4_layout2 34.99% 42.42% 39.40% 49.55% 47.67% 56.97% 37.68% 47.70% 

instance4_layout3 34.53% 43.64% 39.37% 49.63% 43.86% 51.54% 32.18% 42.12% 

instance4_layout4 33.03% 40.79% 36.13% 47.28% 38.98% 45.21% 35.86% 45.75% 

instance5_layout1 34.85% 42.60% 43.10% 51.19% 48.59% 54.81% 37.25% 45.86% 

instance5_layout2 32.92% 42.21% 40.48% 50.74% 52.72% 62.32% 36.72% 45.89% 

instance5_layout3 30.37% 40.77% 35.19% 44.31% 46.56% 51.71% 31.61% 42.62% 

instance5_layout4 32.87% 43.08% 35.58% 46.38% 45.28% 53.00% 36.16% 47.99% 
Table 20 - Comparison of models for policy 2 for problem size 200  

    

 The ranking in general is similar to policy 1, MCLM is best and followed by 

CFRM, SPBDCM and MSRSCLM. Although the general ranking is similar, the 

performances for instance 5 of layout 4 is quite interesting because SPBDCM works 

better than CFRM but still is behind MCLM. CFRM on the other hand works best in 

instance 3 of layout 2 and instance 4 of layout 3.   

 For high arrival rate, policy 2 works worse than policy 1 for each instance. 

Although the NSP scores are increased for high arrival rate, the frequency of change 

in the ranking also increased with respect to low arrival rate.  For problem size 200 

with high arrival rate, the performance of the models for policy 2 on the other hand 

the general ranking is similar to previous results. However CFRM beats MCLM in 3 

instances; instance 1 of layout 4, instance 2 of layout 3, and finally instance 4 of 
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layout 3. Moreover SPBDCM is better than CFRM for instance 5 of layout 4 but still 

behind the score of MCLM.  

 When problem size 300 is analyzed, with low arrival rate policy 1 

performance of the models is very interesting. The ranking of the models in general 

is changed with this setting; CFRM works better than MCLM in 60% of the 

instances and for the averages of models CFRM is also better than MCLM. However 

the remaining ranking stays same SPBDCM is 3rd and MSRSCLM is in 4th order.  

 

MCLM SPBDCM MSRSCLM CFRM 

Low High Low High Low High Low High 

instance1_layout1 16.59% 19.36% 21.82% 23.99% 29.82% 30.60% 15.50% 18.13% 

instance1_layout2 37.24% 44.17% 45.96% 51.50% 70.25% 73.54% 38.58% 47.22% 

instance1_layout3 20.40% 26.69% 29.97% 34.35% 42.66% 44.44% 22.05% 27.70% 

instance1_layout4 19.33% 25.01% 25.28% 29.84% 37.69% 38.79% 18.59% 22.73% 

instance2_layout1 43.23% 50.31% 68.78% 73.64% 86.86% 89.04% 41.66% 49.07% 

instance2_layout2 12.76% 15.92% 16.50% 19.53% 24.47% 25.66% 13.11% 15.90% 

instance2_layout3 14.10% 18.01% 18.88% 21.94% 26.55% 27.68% 13.31% 16.94% 

instance2_layout4 39.72% 51.60% 51.04% 61.34% 71.25% 75.22% 35.94% 45.19% 

instance3_layout1 19.45% 24.17% 30.33% 31.84% 37.31% 38.89% 17.96% 21.97% 

instance3_layout2 9.79% 12.54% 12.87% 14.87% 17.04% 18.26% 10.83% 13.47% 

instance3_layout3 8.99% 11.27% 11.32% 13.78% 16.27% 17.48% 9.11% 12.00% 

instance3_layout4 17.92% 22.23% 24.24% 28.29% 30.69% 32.29% 15.84% 20.47% 

instance4_layout1 40.84% 48.26% 55.34% 61.94% 77.35% 80.51% 41.54% 49.51% 

instance4_layout2 21.12% 26.96% 26.45% 31.68% 41.13% 43.04% 21.09% 26.59% 

instance4_layout3 37.25% 45.45% 46.30% 52.04% 66.54% 70.93% 36.49% 44.17% 

instance4_layout4 22.21% 29.73% 30.03% 33.65% 41.91% 44.69% 20.56% 26.66% 

instance5_layout1 21.71% 25.40% 32.40% 35.75% 44.71% 45.83% 18.71% 23.09% 

instance5_layout2 12.11% 14.48% 15.94% 18.45% 22.84% 24.07% 11.72% 14.68% 

instance5_layout3 15.32% 19.13% 19.83% 23.41% 26.81% 27.62% 15.49% 20.32% 

instance5_layout4 19.55% 24.50% 24.27% 29.13% 34.86% 36.09% 21.58% 25.74% 
Table 21 - Comparison of models for policy 1 for problem size 300  

  

As shown in Table 21 CFRM is worse than MCLM in only 8 instances, which 

shows that the uniformity of the demand points’ coordinates is also not conclusive 

for determining the performance of a model without simulation. For high arrival rate 

for policy 1 when problem size is 300, CFRM still works better than MCLM in 60% 

of the instances. Also the instances that CFRM is better are not same with the 

instances that CFRM’s score is better than the score of MCLM for low arrival rate. 

However, 10 of the instances that CFRM is better than MCLM are same for both 
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low and high arrival rates. The ranking is similar to low arrival rate though for the 

remaining models. The average of CFRM is slightly better than MCLM but the 

difference is too small to state that CFRM works better, only 0.68% difference 

compared to overall NSP scores. The results obtained from policy 1 problem size 

300 prove that even though MCLM works better for most of the cases, in order to 

determine a model’s performance we have to use some analytical tool to evaluate.  

For problem size 300, when policy 2 is evaluated however the dominance of 

CFRM to MCLM is lost in this setting. Furthermore SPBDCM’s score is better than 

the score of CFRM in 4 instances. The general ranking is MCLM is the best; CFRM 

is 2nd and followed by SPBDCM and MSRSCLM.  

MCLM SPBDCM MSRSCLM CFRM 

Low High Low High Low High Low High 

instance1_layout1 19.32% 28.14% 26.86% 34.97% 41.04% 46.26% 24.91% 34.34% 

instance1_layout2 16.23% 24.63% 22.15% 30.35% 36.35% 42.31% 21.13% 29.19% 

instance1_layout3 15.25% 24.38% 21.03% 28.93% 39.77% 44.37% 17.46% 28.32% 

instance1_layout4 17.39% 29.18% 23.24% 32.21% 40.72% 44.88% 21.63% 31.10% 

instance2_layout1 21.45% 30.19% 31.67% 39.20% 45.46% 49.20% 24.41% 33.86% 

instance2_layout2 16.91% 27.13% 20.63% 30.75% 33.69% 38.34% 17.92% 26.75% 

instance2_layout3 17.44% 27.61% 21.76% 31.97% 37.45% 42.66% 21.56% 30.99% 

instance2_layout4 17.87% 28.18% 20.82% 30.58% 34.30% 38.65% 22.17% 30.35% 

instance3_layout1 18.38% 28.14% 27.22% 34.89% 35.85% 40.87% 20.86% 31.10% 

instance3_layout2 16.36% 27.34% 21.75% 30.48% 35.47% 41.50% 21.06% 29.53% 

instance3_layout3 16.62% 26.19% 18.85% 28.09% 30.32% 36.39% 20.18% 27.16% 

instance3_layout4 16.32% 27.64% 21.37% 30.15% 34.89% 40.90% 19.07% 28.75% 

instance4_layout1 18.28% 27.30% 24.73% 31.67% 34.29% 39.72% 19.74% 28.65% 

instance4_layout2 16.88% 26.73% 21.70% 30.43% 39.96% 46.69% 21.91% 30.44% 

instance4_layout3 16.45% 28.49% 21.05% 30.62% 34.64% 39.85% 18.06% 30.49% 

instance4_layout4 18.06% 29.23% 24.12% 35.61% 36.57% 40.99% 21.11% 30.12% 

instance5_layout1 19.24% 28.61% 28.69% 36.23% 44.48% 49.54% 23.40% 31.87% 

instance5_layout2 15.32% 26.53% 20.42% 30.61% 31.81% 38.36% 20.36% 28.17% 

instance5_layout3 18.29% 28.80% 21.20% 31.24% 36.08% 40.64% 19.83% 30.47% 

instance5_layout4 14.52% 24.47% 21.47% 30.85% 36.02% 41.05% 22.24% 30.78% 
Table 16 - Comparison of models for policy 2 for problem size 300  

 
 The average NSP scores of each model with low arrival rate for policy 2 for 

problem size 300 are 17.32% for MCLM, 23.03% for SPBDCM, 36.95% for 

MSRSCLM and 20.95% for CFRM which can also be calculated from table 22. For 

high arrival rate on the other hand, policy 2 results of the models are quite close to 

each other especially for CFRM and SPBDCM for most of the instances. CFRM 



51 
 

works best in only one instance, instance 2 of layout 2. Although the results are 

close and CFRM beats MCLM in one instance, the ranking is still the same.  

Finally for problem size 400, the models are compared with respect to low and 

high arrival rate for both policy 1 and policy 2. Even though there are some 

instances that the order of MCLM, CFRM, SPBDCM and MSRSCLM is not 

maintained, generally the performances of the models are similar to previous 

settings. In Table 23, the NSP scores of each model for policy 1 is given in detail. 

MCLM SPBDCM MSRSCLM CFRM 

Low High Low High Low High Low High 

instance1_layout1 13.29% 17.47% 19.76% 24.20% 39.42% 41.31% 13.31% 18.49% 

instance1_layout2 21.27% 29.33% 24.54% 30.73% 51.50% 53.56% 27.48% 35.11% 

instance1_layout3 14.25% 18.81% 17.48% 20.72% 33.27% 33.77% 13.92% 18.93% 

instance1_layout4 17.03% 25.59% 23.65% 29.02% 46.81% 48.79% 20.58% 27.74% 

instance2_layout1 16.70% 21.29% 27.74% 31.72% 51.43% 53.59% 17.55% 21.64% 

instance2_layout2 5.48% 7.96% 7.37% 9.85% 15.78% 16.33% 5.87% 8.32% 

instance2_layout3 8.17% 12.51% 10.85% 13.85% 21.16% 22.06% 12.44% 14.72% 

instance2_layout4 10.16% 14.89% 12.33% 17.41% 29.82% 31.09% 11.06% 16.01% 

instance3_layout1 5.04% 7.28% 9.89% 11.82% 19.00% 19.51% 5.90% 7.94% 

instance3_layout2 20.01% 28.55% 30.05% 36.65% 51.69% 53.52% 25.03% 32.82% 

instance3_layout3 13.01% 19.04% 19.51% 25.38% 40.81% 41.87% 15.06% 22.06% 

instance3_layout4 26.04% 34.47% 29.96% 39.73% 72.18% 75.61% 28.47% 37.24% 

instance4_layout1 8.10% 10.87% 13.63% 16.13% 21.60% 22.71% 8.49% 10.64% 

instance4_layout2 10.00% 16.20% 17.24% 21.81% 31.51% 32.83% 13.11% 20.07% 

instance4_layout3 12.66% 15.90% 15.41% 18.49% 26.99% 28.30% 12.67% 16.71% 

instance4_layout4 4.84% 7.01% 6.78% 8.77% 14.63% 15.17% 5.08% 7.49% 

instance5_layout1 25.28% 31.92% 37.06% 42.53% 55.56% 57.59% 21.98% 27.62% 

instance5_layout2 10.08% 14.67% 12.98% 16.46% 26.68% 28.05% 12.60% 16.59% 

instance5_layout3 22.24% 34.08% 34.94% 44.23% 60.20% 63.28% 28.42% 36.56% 

instance5_layout4 13.73% 21.80% 23.24% 29.62% 44.33% 45.77% 19.45% 24.78% 
Table 23 - Comparison of models for policy 1 for problem size 400  

 
CFRM works better than MCLM as best performing model for instance 5 of 

layout 1 and instance 1 of layout 3. Moreover, rather than CFRM, SPBDCM works 

as second best performing model for instance 1 of layout 2 and instance 2 of layout 

3. Also for some instances MSRSCLM performs almost 4 times worse compared to 

other models. Even though there are exceptional instances, the averages of the 

models are compatible with the ranking. For high arrival rate there are also some 

instances where SPBCDM performs better than CFRM and for only one instance 
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CFRM works as best setting. All of the other conclusions are still valid for high 

arrival rate for policy 1.  

 For policy 2 with low arrival rate on the other hand is quite intriguing because 

not only the ranking of the models changed, the robustness of policy 2 exceeds the 

other evaluated problem size. For most of the instances, under low arrival rate, 

policy 2 works better than policy 1 for problem size 400.  

   

MCLM SPBDCM MSRSCLM CFRM 

Low High Low High Low High Low High 

instance1_layout1 10.40% 17.89% 13.83% 20.23% 32.22% 35.34% 14.83% 21.33% 

instance1_layout2 9.31% 18.04% 11.84% 18.82% 29.81% 32.99% 14.91% 23.22% 

instance1_layout3 11.19% 20.48% 14.65% 21.05% 35.59% 38.73% 14.58% 23.57% 

instance1_layout4 11.65% 18.18% 13.90% 21.60% 30.70% 33.28% 16.15% 24.42% 

instance2_layout1 12.95% 20.09% 17.30% 23.94% 37.69% 41.97% 17.92% 24.99% 

instance2_layout2 9.32% 18.04% 12.21% 19.57% 28.53% 32.13% 12.79% 21.68% 

instance2_layout3 11.27% 22.05% 12.60% 21.44% 27.96% 31.73% 16.69% 25.84% 

instance2_layout4 11.87% 22.28% 13.17% 21.11% 31.24% 35.78% 14.62% 23.72% 

instance3_layout1 9.68% 17.59% 14.25% 19.90% 34.03% 37.40% 12.58% 18.64% 

instance3_layout2 10.73% 19.09% 12.06% 20.00% 25.94% 29.77% 15.94% 24.30% 

instance3_layout3 11.32% 21.08% 12.48% 20.66% 31.04% 34.57% 15.74% 25.99% 

instance3_layout4 10.49% 19.43% 13.35% 21.17% 34.02% 38.14% 14.08% 23.68% 

instance4_layout1 9.72% 18.39% 13.62% 20.04% 25.92% 30.18% 12.09% 20.18% 

instance4_layout2 9.09% 17.83% 11.97% 19.84% 27.55% 30.70% 13.00% 21.27% 

instance4_layout3 11.74% 21.62% 13.50% 21.41% 29.71% 32.93% 17.96% 26.02% 

instance4_layout4 10.97% 20.04% 13.25% 21.36% 28.33% 31.61% 11.83% 20.04% 

instance5_layout1 11.86% 19.57% 16.21% 21.99% 32.94% 37.14% 15.14% 21.99% 

instance5_layout2 9.93% 19.93% 11.52% 19.60% 25.74% 29.90% 14.90% 21.84% 

instance5_layout3 11.54% 20.95% 15.53% 24.58% 27.07% 32.00% 15.88% 23.05% 

instance5_layout4 11.48% 19.97% 13.68% 21.55% 26.39% 29.84% 15.95% 23.58% 
Table 17 - Comparison of models for policy 2 for problem size 400  

 
In table 24, SPBDCM works better than CFRM 80% of the time. Also the 

average values for each model suggest that the best performing models are in order 

of MCLM, SPBCDM, CFRM and finally MSRSCLM. Furthermore policy 2 works 

better than policy 1 on 61.25% of the instances. The least sensitive model to 

robustness of policy 2 is CFRM which is originated from the construction of model.  

The results of high arrival rate for policy 2 when the problem size is 400 the 

deviation increases. On 20% of the instances SPBDCM works as best performing 

model however for 4 instances SPBDCM is beaten by CFRM, but on average 
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SPBDCM is in second place in regard of efficiency. Moreover, the results conflict 

with the general assumption on overall performances of the models where usually 

MCLM works best and for some cases CFRM transcends the performance of 

MCLM. Even though the average of SPBDCM is worse than MCLM, 80% of the 

instances proved otherwise. 

 When we compare all of the results throughout the experimental study, we 

can conclude that even though the uniformity of the demand points’ coordinates 

affects the performance of the models, without simulation we cannot state a 

definitive argument on models’ performance. The negative relation between problem 

size and layout average is strong when the model can be stated as robust. If the 

model is affected from the outlier instances, this can lead to diminish of the relation. 

Neither the layout design, nor the distribution of demand points’ coordinates are 

related with the performance of the model. For some instances model’s performance 

can perform better than the alternatives. Even though the general ranking throughout 

the experimental study is sustained, the counter examples that are observed 

disproved a generalization. However, we can conclude that the uniformity of 

demand points’ coordinates clearly affects the performance of the model. On the 

other hand, even policy 2 responds to more calls than policy 1 this condition is not 

conclusive to assume policy 2’s NSP scores should be higher than policy 1’s for 

every instance. The performance of policy 2 is weakly related with the construction 

of the model. If during the construction of model, the performance of the system is 

based on out of reach dispatches like MSRSCLM, policy 2 can transcend the 

performance of policy 1. The simulation results, lower bound and gap between these 

values of each model for different policy, different arrival rate with respect to 

problem size are given in APPENDIX B for further research.  

 

5.3 Statistical Testing 

 When we analyzed the performance of the models with respect to different 

layouts, problem sizes, arrival rates and policies we extended our study by providing 

confidence intervals. The confidence intervals are derived for the difference between 

each models performance and the hypothesis testing is applied in order to 

statistically argue that a model is working better than another or not. The 

comparison of the models can be observed from table 25 and 26 where 1 represents 
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first model is working better, 0 represents inconclusive for comparison and -1 

represents the second model is working better. 

MCLM vs SPBDCM 

MCLM vs 

MSRSCLM MCLM vs CFRM 

Low High Low High Low High 

Size 200 Policy 

1 

Lower 

Bound 2.99% 0.62% 11.93% 7.46% 2.76% -1.55% 

Upper 

Bound 13.77% 11.03% 24.90% 20.74% 9.60% 5.26% 

Testing 1 1 1 1 1 0 

Size 200 Policy 

2 

Lower 

Bound 0.62% 0.02% 7.46% 4.80% 7.62% -1.84% 

Upper 

Bound 11.03% 11.38% 20.74% 20.00% 16.33% 6.55% 

Testing 1 1 1 1 1 0 

Size 300 Policy 

1 

Lower 

Bound -2.43% -2.66% -0.08% -1.45% -3.46% -4.75% 

Upper 

Bound 18.23% 16.23% 39.82% 34.40% 2.47% 3.39% 

Testing 0 0 0 0 0 0 

Size 300 Policy 

2 

Lower 

Bound 1.53% 0.53% 13.31% 7.80% 0.33% -0.72% 

Upper 

Bound 9.88% 8.56% 25.95% 21.62% 6.91% 6.07% 

Testing 1 1 1 1 1 0 

Size 400 Policy 

1 

Lower 

Bound -1.03% -1.25% 3.98% 2.52% -2.89% -2.51% 

Upper 

Bound 12.74% 11.19% 43.72% 36.99% 7.00% 5.70% 

Testing 0 0 1 1 0 0 

Size 400 Policy 

2 

Lower 

Bound 0.51% -1.45% 13.01% 7.02% 1.58% 0.18% 

Upper 

Bound 4.93% 4.18% 25.58% 21.34% 6.53% 6.50% 

Testing 1 0 1 1 1 1 
Table 25- Confidence levels for the models 

 

 The confidence levels, upper and lower bounds are calculated by assuming 

the data is normally distributed and by applying t testing we derived the lower 

bounds for the comparisons as z { | # } where } is calculated from normal table for 

95% two sided testing which yields 1.96 value. However, for upper bound  z w | # } 

equation is applied and if the interval includes 0 then it is inconclusive however if the 

interval includes only positive values than the first model is working better, finally if the 

interval includes only negative values than the second model’s performance is better. 
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SPBDCM vs 

MSRSCLM SPBDCM vs CFRM 
MSRSCLM vs 

CFRM 

Low High Low High Low High 

Size 200 Policy 

1 

Lower 

Bound 4.02% 2.80% -8.77% -9.14% -19.29% -18.43% 

Upper 

Bound 16.05% 13.75% 4.37% 1.21% -5.19% -6.06% 

Testing 1 1 0 0 -1 -1 

Size 200 Policy 

2 

Lower 

Bound 2.80% -0.22% -0.07% -8.83% -8.72% -18.24% 

Upper 

Bound 13.75% 13.61% 12.38% 2.14% 4.47% -1.85% 

Testing 1 0 0 0 0 -1 

Size 300 Policy 

1 

Lower 

Bound 0.05% -1.13% -20.01% -18.34% -41.10% -35.84% 

Upper 

Bound 23.89% 20.50% 3.22% 3.40% 0.37% 1.53% 

Testing 1 0 0 0 0 0 

Size 300 Policy 

2 

Lower 

Bound 8.88% 4.59% -6.94% -5.41% -22.15% -17.12% 

Upper 

Bound 18.96% 15.74% 2.77% 1.67% -9.86% -6.96% 

Testing 1 1 0 0 -1 -1 

Size 400 Policy 

1 

Lower 

Bound 1.61% 0.77% -11.53% -11.48% -40.40% -35.03% 

Upper 

Bound 34.38% 28.79% 3.93% 4.71% -3.19% -1.30% 

Testing 1 1 0 0 -1 -1 

Size 400 Policy 

2 

Lower 

Bound 11.10% 6.46% -2.47% -2.05% -22.30% -18.32% 

Upper 

Bound 22.05% 19.16% 5.14% 6.00% -8.18% -3.36% 

Testing 1 1 0 0 -1 -1 
Table 26- Confidence levels for the models 
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CHAPTER 6 

MYOPIC HEURISTIC 

 

 After the experimental study for generated instances is concluded, we 

proposed a heuristic to improve the performance of models by reassigning 

ambulances. The purpose for this heuristic is to evaluate the possible improvement 

that can be made on models’ initial settings. The proposed heuristic is applied on 

Istanbul data under policy 1. In each iteration of the heuristic the difference between 

previous iteration’s overall NSP score and current iteration’s NSP score are 

compared. Since the improvement in each iteration can be derived, we compare 

these results for each model to observe the possible improvement that can be made. 

The initial setting for each model is obtained from their mathematical models, 

however by relocating the ambulances the system converges to a better setting. Even 

though the mathematical models are solved optimally, the simulations demonstrated 

that locating ambulances optimally for the problem cannot be concluded as effective 

location planning. With this heuristic we emphasize that initial setting of the models 

can be improved. The % difference between improved result and initial setting 

indicates that the bigger the improvement how much worse the initial setting is.  

 In each step of the algorithm, the score of each ambulance is calculated. The 

score of an ambulance is composed of two values, aggregated weights and average 

busy probability of the ambulance. The busy probability of the ambulance is 

conducted from simulation and after 10 runs, the average is calculated. Despite 

reassigning the ambulance with highest average busy probability value, we consider 

the population affected from this probability. For example if the ambulance is busy 

for 85% of the day and serving 120000 people, then reassigning of this ambulance to 

another location will be resulted 18000 more non served people per day on average. 

However if the ambulance’s busy probability is 70% and serving only 20000 people 

then reassignment of this ambulance will affect the overall performance by an 

additional 6000 not served  people.  Even though the calculation of busy probability 

is easy, we cannot derive the population that is served form the ambulance exactly.  

Like Centralized Final Ratio Model (CFRM), we suggest aggregated population to 

deal with this issue.  Since the dispatching policy checks for the closest non-busy 

ambulance with in coverage distance, we can suggest that the possible workload of 

an ambulance should be considered. For deriving the aggregated population for each 



57 
 

node, we transform the distance matrix into binary values. The transformation 

process controls if the demand node can be covered from another node.  Basically if 

the distance between node “k” and node “m” is smaller than 3333.3 meters, node “k” 

can cover node “m” and vice versa. The calculated distance is based on 5 minutes 

reaching time and 40 km/hour for average travel speed. After the transformation, the 

aggregated population for each node is calculated. Then the ambulance that will be 

reassigned is designated, and by using the average non serviced ratio of each node, 

the new location of the ambulance is determined. After the reassignment, the setting 

is simulated and the new performance of the system is calculated. In each iteration 

of heuristic a single ambulance is determined for relocation and system is simulated 

with the new values, for a total of 10 iterations. If the heuristic cannot improve the 

previous iteration’s performance the algorithm stops.  

 In Table 25, the performance of MCLM, lower bound for each iteration and 

improvement between each iteration is shown.  

 

MCLM 

 
Non Served Population Hour NSP Lower bound Improvement 

Iteration 0 3,782,759 32.05% 1.15% N/A 

Iteration 1 3,664,672 31.05% 2.17% 1.00% 

Iteration 2 3,574,672 30.29% 3.36% 0.76% 

Iteration 3 3,483,463 29.52% 4.42% 0.77% 

Iteration 4 3,398,671 28.80% 4.11% 0.72% 

Iteration 5 3,308,932 28.04% 3.40% 0.76% 

Iteration 6 3,266,879 27.68% 4.03% 0.36% 

Iteration 7 3,189,571 27.03% 5.15% 0.66% 

Iteration 8 3,132,591 26.54% 7.16% 0.48% 

Iteration 9 3,082,885 26.12% 8.91% 0.42% 

Iteration 10 3,037,956 25.74% 12.51% 0.38% 
Table 25 - Performance metric for MCLM for 10 iterations 

 
 For iteration 0, the initial result obtained for MCLM for Istanbul data is used. 

For iteration 1, the algorithm finds the least busy ambulance and assigns to a new 

location then simulates the new setting. Since MCLM forces the maximum number 

of ambulances on any given node as 1, reassignment of an ambulance leads to higher 

lower bound level. However, the reassignment of the ambulance as expected lowers 

the non served percentage and non served population hour variables. The 
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improvement for each iteration is calculated with respect to overall population hour. 

In iteration 4, algorithm finds the least busy ambulance at a node where there are 2 

ambulances located in iteration 3. Removing one of the ambulances and assigning to 

another location thus yields a lower lower bound value. Furthermore, after 7 

iterations the performance of the system does not improve as much as the first few 

iterations and converges to approximately 3,000,000 non served people hour. In 

figure 8, the convergence of non served population hour parameter for MCLM is 

shown in detail. 

 

 

Figure 8 – Non served population hour for MCLM during iterations 
 

Even though, the initial setting of SPBDCM for Istanbul data is better than 

MCLM, the overall improvement of MCLM transcends SPBDCM. Like MCLM, 

SPBDCM enforces the maximum number of ambulances that can be allocated to a 

supply node as 1, however there is a back up ambulance for each covered node in 

initial setting of SPBDCM. The property of maintaining a back up ambulance is 

neglected throughout the iterations. The relocation of an ambulance and 

determination of the least busy ambulance conditions are same for all models. In 

table 26 the performance metric of SPBDCM for each iteration of heuristic is given.  
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SPBDCM 

Non Served Population Hour NSP Lower bound Improvement 

Iteration 0 3,501,017 29.67% 2.24% N/A 

Iteration 1 3,434,087 29.10% 6.76% 0.57% 

Iteration 2 3,378,967 28.63% 9.30% 0.47% 

Iteration 3 3,314,679 28.09% 11.09% 0.54% 

Iteration 4 3,265,789 27.67% 10.68% 0.41% 

Iteration 5 3,199,743 27.11% 11.14% 0.56% 

Iteration 6 3,122,841 26.46% 12.62% 0.65% 

Iteration 7 3,089,076 26.18% 13.36% 0.29% 

Iteration 8 3,064,367 25.97% 14.46% 0.21% 

Iteration 9 3,032,061 25.69% 14.98% 0.27% 

Iteration 10 3,005,432 25.47% 11.09% 0.23% 
Table 18 - Changes in SPBDCM performance during iterations 

 
 Like MCLM, the system converges to 3,000,000 non served population hour but 

the final location of ambulances for each model differs. However, the coverage 

conditions of demand points for iteration 3 and 10 are same. Even though the same 

demand nodes are covered, the performance of the system is distinctly different. The 

reason behind this is due to the locations of the ambulances. NSP is derived from 

simulation and not related with the lower bound of the system. For both iteration 3 and 

iteration 10, the number of times that a node is covered for some demand nodes differs 

from each other. Some ambulances are assigned to same regions in order to lower NSP 

score of the model. The change in non served population hour for SPBDCM is given in 

figure 9.  

 

Figure 9 - Non served Population Hour for SPBDCM during 10 iterations 
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The initial setting of MSRSCLM allows multiple ambulances that can be 

allocated to same supply node. For the first iteration, there are 2 ambulances that have 

the same busy probability which makes both of these ambulances eligible for relocation. 

Both of these ambulances are located at the same node hence reassignment of one of 

these ambulances lowers the lower bound value of the system. The average 

improvement in each iteration is relatively small when it is compared to both MCLM 

and SPBDCM. However, the initial setting and the final setting of MSRSCLM after 10 

iterations still perform better than both of the models. In Table 27, the performance of 

MSRSCLM is shown. 

 

MSRSCLM 

Non Served Population Hour NSP Lower bound Improvement 

Iteration 0 2,580,020 21.86% 12.83% N/A 

Iteration 1 2,506,752 21.24% 11.67% 0.62% 

Iteration 2 2,471,087 20.94% 11.35% 0.30% 

Iteration 3 2,434,789 20.63% 10.65% 0.31% 

Iteration 4 2,399,752 20.33% 11.32% 0.30% 

Iteration 5 2,328,932 19.73% 11.15% 0.60% 

Iteration 6 2,286,879 19.38% 10.33% 0.36% 

Iteration 7 2,268,693 19.22% 12.14% 0.15% 

Iteration 8 2,255,689 19.11% 11.04% 0.11% 

Iteration 9 2,240,086 18.98% 12.30% 0.13% 

Iteration 10 2,224,583 18.85% 10.55% 0.13% 
Table 19 - Performance of MSRSCLM during iterations 

   

 For CFRM on the other hand, the improvements are shown only for 4 

iterations. Since if the next iteration cannot improve the performance of the model is 

one of the stopping criteria, the algorithm is terminated. Since the heuristic works as 

a myopic algorithm, the obtained result is only a local optimum. Furthermore, the 

lower bound obtained in first iteration is interesting because the least busy 

ambulance covers some of the demand nodes solely by itself. The relocation of this 

ambulance lowers the NSP score but the reassigned location’s aggregated population 

is lower than expected. Thus the immediate question arises from this condition is 

whether the model’s constraint is loose or the total number of ambulances for the 

setting is not sufficient. Since the relocation of ambulance is determined based on 99 
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ambulances and an additional ambulance for assignment, the decision could vary for 

different number of ambulances. On the other hand, the maximum number of 

ambulances that can be assigned to supply nodes constraint of the model is probably 

not as efficient as it seems. In Table 28, the  performance of CFRM for heuristic is 

given.  

  

CFRM 

Non Served Population Hour NSP Lower bound Improvement 

Iteration 0 1,747,931 14.81% 13.41% N/A 

Iteration 1 1,720,487 14.58% 13.76% 0.23% 

Iteration 2 1,704,918 14.45% 13.26% 0.13% 

Iteration 3 1,689,083 14.31% 12.16% 0.13% 

Iteration 4 1,678,438 14.22% 11.24% 0.09% 

Iteration 5 No improvement N/A N/A N/A 
Table 28 - Performance of CFRM for heuristic 

  

 Although the improvements for each model is possible, with a meta heuristic the 

optimal NSP score of the problem data set can be reached. Without allowing 

assignments that can increase the NSP score, the heuristics might be trapped in local 

optimum. However, since the heuristic only allows one ambulance to be relocated at 

each iteration the initial setting of the model limits the maximum possible improvement. 

Hence the NSP scores converges for both MCLM, and SPBDCM to approximately 

25.5%.  
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

 

In this study, we presented two new models for deterministic location 

problems, CFRM and MSRSCLM. After the NSP scores of MCLM and SPBDCM 

for Istanbul data are evaluated, we developed CFRM in order to get better 

simulation scores. Even though there are numerous deterministic set covering 

location models in the literature, we stress the necessity of proposing new models 

for simulation purposes. Although, for experimental study CFRM performance was 

worse than MCLM for most of the cases, the robustness of CFRM is relatively 

better. By using simulation, we estimate the performance of deterministic models on 

different problem data sets. MCLM, SPBDCM, CFRM and MSRSCLM are 

evaluated with two dispatching policies. We emphasized the importance of an 

analytical tool for evaluating the performance of  a deterministic location model. 

Even though the assumptions, the construction of constraints and objective function 

values are important, without a realization tool, the general behavior of the model 

cannot be estimated. The study shows that the model’s performance can vary 

according to problem data set. Even for the same layout, same problem size, same 

distribution of demand points, the models can perform differently. 

Further research on this topic may include developing new models for 

simulation purpose, testing the models for different demand points’ coordinates 

distribution, and testing the performance of the models for different dispatching 

rules. Furthermore, the proposed myopic heuristic can be exchanged with a 

metaheuristic to evaluate the possible improvement that can be made for the models’ 

initial settings. Assigning penalty costs for missed calls may be another extension 

for studied policy 1.  

Consequently, the importance of a realization tool like queuing models or 

simulation is significant for EMS location planning. By omitting this aspect of the 

research, the “real” service provided by the EMS stations cannot be evaluated 

properly.   

  

 

 



63 
 

BIBLIOGRAPHY 

 

Başar, A., 2008. Planning Emergency Medical Service Stations and Ambulances. MSc. 

Master Thesis, Sabancı University, Istanbul, Turkey. 

Batta,  R.,  Dolan,  J.M.,  Krishnamurty,  N.N.,  1989.  The Maximal  Expected  

Covering  Location  Problem:  Revisited. Transportation Science 23, 277–287. 

Berman, O., Krass, D., 2002. The Generalized Maximal Covering Location Problem. 

Computers & Operations Research 29(6): 563-581.  

Brandeau, M., Larson, R.C., 1986. Extending and Applying the Hypercube Queuing 

Model to Deploy Ambulances in Boston. TIMS Studies in the Management Sciences 2, 

121–153. 

Brotcorne L., Laporte G., Semet F., 2003. Ambulance Location and Relocation Models. 

European Journal of Operational Research 147, 451-63. 

Burwell, T.H., Jarvis, J.P., McKnew, M.A., 1993. Modeling Co-Located Servers and 

Dispatch Ties in the Hypercube Model. Computers and Operations Research 20, 2, 113–

119. 

Church, R.L., ReVelle, C.S., 1974. The Maximal Covering Location Problem. Papers of 

the Regional Science Association 32, 101-118. 

Çatay, B., Başar, A., Ünlüyurt, T., 2007. Istanbul‘da Acil Yardım Istasyonları ve 

Araçlarının Planlanması. IBB Projem Istanbul Projesi Sonuç Raporu, Istanbul. 

Daskin, M.S., Stern, E.H., 1981. A Hierarchical Objective Set Covering Model for 

Emergency Medical Service Vehicle Deployment. Transportation Science 15, 137-152. 

Daskin, M.S., 1983. A Maximum Expected Location Model: Formulation, Properties 

and Heuristic Solution. Transportation Science 7, 48-70. 

Erkut E., Ingolfsson A., Erdogan G., 2008. Ambulance Location for Maximum 

Survival. NAVAL RESEARCH LOGISTICS  Volume: 55   Issue: 1, 42-58. 

Galvão,  R.D. , Morabito, R.,  2008. Emergency Service Systems: The Use of the 

Hypercube  Queueing  Model  in  the  Solution  of  Probabilistic  Location  Problems. 

International Transactions in Operational Research 15, 525-549.   

Gendreau, M., Laporte, G., Semet, F., 1997. Solving an Ambulance Location Model by 

Tabu Search. Location Science 5, 75-88. 

Goldberg, J.B., 2004. Operations Research Models for the Deployment of Emergency 

Services Vehicles. EMS Management Journal 1, 20-39.  



64 
 

Grossman, D.C.,Kim, A., Macdonald, S.C., Klein, P., Copass, M.K., Maier, R.V.,1997. 

Urban-rural Differences in Prehospital Care of Major Trauma. Journal of Trauma-Injury 

Infection & Critical Care: April 1997 - Volume 42 - Issue 4, 723-29. 

Hogan, K., ReVelle, C.S., 1986. Concepts and Applications of Backup Coverage. 

Management Science 32, 1434-44. 

Iannoni, A.P., Morabito, R., Saydam, C., 2009. An Optimization Approach for 

Ambulance Location and Districting of the Response Segments on Highways. European 

Journal of Operational Research 195, 528-42. 

Ingolfsson A., Budge S., Erkut E., 2008. Optimal Ambulance Location with Random 

Delays and Travel Times. HEALTH CARE MANAGEMENT SCIENCE  Volume: 11   

Issue: 3, 262-274.    

Jarvis, J.P., 1975. Approximating the Equilibrium Behavior of Multi-Server Loss 

Systems. Management Science 31, 235-39. 

Larson, R.C., 1974. A Hypercube Queuing Model for Facility Location and 

Redistricting in Urban Emergency Services. Computers & Operational Research 1, 67-

95. 

Larson, R.C., Odoni, A.R., 1981. Urban Operations Research. Prentice Hall, New 

Jersey. 

Morabito, R., Chiyoshi, F., Galvão, R.D., 2007. Non-Homogeneous Servers in 

Emergency Medical Systems: Practical Applications Using the Hypercube Queueing 

Model. Socio-Economic Planning Sciences 42, 255–70. 

Repede, J.F., Bernardo, J.J., 1994. Developing and Validating a Decision  Support  

System  for  Locating  Emergency  Medical Vehicles  in  Louisville,  Kentucky.  

European  Journal  of Operational Research 75, 567–581. 

ReVelle, C.S., Hogan, K., 1989. The Maximum Availability Location Problem. 

Transportation Science 23, 192-200. 

Sacks, S.R., Grief, S., 1994. Orlando Police Department Uses OR/MS Methodology, 

New Software to Design Patrol districts. OR/MS Today, Baltimore, 30–32. 

Savas,    E.S.    1969. Simulation    and    Cost-effectiveness  Analysis    of    New    

York’s Emergency    Ambulance Service.  Management Science, 15(12) 

Setzler H., Saydam C, Park S., 2009. EMS Call Volume Predictions: A Comparative 

Study. COMPUTERS & OPERATIONS RESEARCH Volume: 36 Issue: 6, 1843-1851.  



65 
 

Schilling, D.A., Elzinga, D.J., Cohon, J., Church, R.L., ReVelle, C.S., 1979. The 

TEAM/FLEET Models for Simultaneous Facility and Equipment Sitting. Transportation 

Science 13, 163-175. 

Simpson N. C., Hancock P. G., 2009. Fifty Years of Operational Research and 

Emergency Response. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY  

Volume: 60, S126-S139.    

Swersey, A.J., 1994. The Deployment of Police, Fire and Emergency Medical Units. 

OR & MS 6, 151-200. 

Toregas, C.R., Swain, R., ReVelle, C.S., Bergman, L., 1971. The Location of 

Emergency Service Facilities. Operations Research 19, 1363-1373. 

Wu, C.H., Hwang K.P., 2009. Using a Discrete-event Simulation to Balance Ambulance 

Availability and Demand in Static Deployment Systems. ACADEMIC EMERGENCY 

MEDICINE  Volume: 16 Issue: 12, 1359-1366    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

APPENDIX A 

 
SENSITIVITY ANALYSIS RESULTS 

 
Since the analysis includes too many data, the file that contains analysis is 

uploaded to internet. The analysis can be found at  

http://people.sabanciuniv.edu/~tonguc/yasir/appendixA 
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APPENDIX B 

 
EXPERIMENTAL STUDY DATA 

 
Since the analysis conducted on 240 instances, the data is too large for appendix 

hence is uploaded to internet. The data can be found at  

http://people.sabanciuniv.edu/~tonguc/yasir/appendixB 
 
 

 


