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ABSTRACT 

There are ~71 cancer types and most of them exhibit heterogenous phenotypic 

characteristics. For this reason, studying common physiological alterations in cancer 

cells can be a successful approach for cancer treatment. Sustaining proliferative 

signaling and inducing angiogenesis are two of the many acquired characteristics during 

cancer progression. Both HER2 and VEGF are overexpressed in each of the above 

conditions, respectively. Therefore, the aim of this study is to develop synthetic ssDNA 

molecules (aptamers) that can bind to HER2 and VEGF, and inhibit their function, 

respectively. Even though there are already aptamers for these two targets, we wanted to 

select our aptamers for which there exist the possibility to bind with higher affinity. 

These aptamers were developed by using SELEX (Systematic Evolution of Ligands by 

EXponential Enrichment) technology in which HER2/VEGF immobilized magnetic 

beads were employed for the selection of specific aptamers. The enriched ssDNA pool 

was cloned, sequenced and characterized. 

The chosen anti-VEGF contained a G-quartet, while anti-HER2 contained a two 

stem-loops in their structure. We speculate that these features may play a role in specific 

binding to the target protein. Equilibrium binding assays with anti-VEGF aptamer 
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showed a dissociation constant (Kd) of 315 nM and anti-HER2 showed a Kd of 309 nM. 

Despite the similar binding, anti-HER2 was less selective toward its target protein. In 

this study we incorporated the counter selection step toward human serum to exclude 

the serum proteins binders. The anti-VEGF can potentially be used to detect cancer in 

blood by using biosensing technologies.  
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ÖZET 

   Yaklaşık 71 tane kanser tipi vardır ve bu kanser tiplerinin çoğunluğu karma bir 

yapı gösterirler. Bu nedenle, her kanser tipi için ortak olan fizyolojik değişikler üzerinde 

çalışmak kanser tedavileri için başarılı bir yaklaşım olabilecektir. Çoğalma sinyalinin 

geliştirilmesi ve damar gelişiminin fazlalaşması kanser gelişimine sebep olan birçok 

mekanizma arasında yer alıyorlar. HER2 and VEGF proteinlerinin ekspresyonları 

yukarıdaki mekanizmalarda, sırasıyla, artmaktadır. Bu nedenle bu çalışmanın amacı 

yukarıda bahsedilen proteinlere bağlanarak onların fonksiyonlarını engelleyecek olan 

sentetik tek zincirli DNA molekülleri (aptamer) üretmektir. Bu biyoişaretleyiciler için 

literatürde aptamerler bulunmakta olsa da, bu calışmada amacımız farklı potansiyeli 

olan yeni aptamerler seçmektir. Bu spesifik aptamerler, magnetik boncuklar üzerinde 

hareketsiz bulunan HER2/VEGF proteinler kullanılarak SELEX (Üstel Zenginleştirme 

aracılığıyla Ligandların Dizgeli Gelişimi) teknolojisi ile geliştirilmiştir. Bunun için 

zenginleştirilmiş tek zincirli DNA havuzu oluşturulmuş, klonlanmış ve DNA dizi 

analizi yapılmıştır.  
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Anti-VEGF aptamerinin ilginç bir özelliği tesbit edilmiştir ki bu da G-dörtlü 

yapıya sahip olması ve bu yapı sayesinde VEGF proteinine spesifik olarak bağlanma 

özelliğinin bulunmasıdır. Buna karşılık HER2 aptameri iki gövdeli bir yapıya sahiptir ki 

bu özelliğide HER2 proteinine bağlanmasında rol oynayabilir.Anti-VEGF aptamer ile 

ilgili yapılan bağlanma dengesi analizleri Kd (çözünme sabiti) değerini 315 nM 

göstermiştir. Bu değer VEGF proteinine karşı sıkı bir bağlanma eğilimini 

gösterir.Bunun yanında anti-HER2 aptameri Kd değerini yaklaşık 309 nM göstermiştir 

ki bu da zayıf bir bağlanma eğilimine işaret eder. Bu çalışmada insan serumu ile karşı 

seçim aşamaları kullanılmış, böylece aptamerlerin seçiciliğinin artırılması 

amaçlanmıştır. VEGF proteinine bağlanan aptamerler çeşitli biyotanıma teknolojileri 

kullanılarak kanserin kanda teşhisinde kullanılabilirler. 
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1.   INTRODUCTION 

1.1.  Mechanisms of Cancer 

Cancer is an abnormal condition involving upregulated and uncontrollable cell 

reproduction. There exist more than 71 different cancer types (1) and most of them are 

heterogeneous in all the phenotypic characteristics like cellular morphology, gene 

expression (including the expression of cell surface markers and growth factor and 

hormonal receptors), metabolism, motility, and angiogenic, proliferative, immunogenic, 

and metastatic potential (2). On the other hand as described by Hanahan and Weinberg 

(3) there are similar mechanisms in most of cancers which together cause tumor growth 

and development. For this reason knowing all the details about cancer might not help. 

Instead preventing the inducing mechanisms which are common in most cancers is a 

potential solution.  

The knowledge that we have from a vast number of studies suggests some new 

characteristics of the tumor cells which are in the form of physiological alterations 

acquired during tumor development and common for most if not all tumor types. For 

this reason they were called „acquired capabilities‟. These important changes include: 

self-sufficiency in growth signals, insensitivity to growth-inhibitory (antigrowth 

signals), evasion of programmed cell death, limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis. Over years it was understood that the 

acquired capabilities are made possible by two „enabling characteristics‟ like genomic 

instability and tumor-promoting inflammation. There were also found two 

characteristics which facilitate the development and progression of most cancers like 

deregulating cellular energetic and avoiding immune destruction, which are called 

„emerging characteristics‟.  



2 
 

 

Figure 1. Emerging hallmarks and enabling characteristics of cancer. (3), (4) 

1.1.1. Self-sufficiency in Growth Signals  

Normal cells need growth signals to perform the transition between quiescent and 

proliferative states. Diffusible growth factors, extracellular matrix components and cell-

to-cell adhesion/interaction molecules transmit these signals by binding to 

transmembrane receptors. Being less dependent on the exogeneous signals than the 

normal cells, tumor cells achieve autonomy in signaling by altering extracellular growth 

signals, transcellular transducers or intracellular circuits that receive signals. For 

example, the cell surface receptors that transduce the signal of growth factors and 

mainly carry tyrosine kinase activity in their cytoplasmic domain in many cases are 

deregulated during tumor pathogenesis. In this way the cancer cells become 

hypersensitive even to low levels of growth factors which normally would not trigger 

proliferation. A typical example in this case is HER2/neu tyrosine kinase receptor.  

 

1.1.2. Insensitivity to Antigrowth Signals  

In normal cells everything is balanced. In order to maintain homeostasis growth 

factors and inhibitory factors are also balanced. The former act by increasing 

proliferation while the later counterbalance by causing cell senescence. These signals 

too are received through transmembrane receptors to be transduced to intracellular 

circuits. In order for the tumor cells to develop they should be resistant to growth 

inhibitory signals. For example, retinoblastoma protein (pRb) which is a representative 

of the antiproliferative agents inhibits proliferation by altering the expression of the 

genes responsible for G1-S phase transition.  Cancer cells are made insensitive to anti 
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proliferative agents by disrupting pRb pathway and allowing the expression of S phase 

transition genes making it uncontrollable.  

1.1.3. Evasion of Programmed Cell Death  

While in normal conditions both cell proliferation and cell death are well 

programmed, in tumor cells proliferation is higher and cell death is lower than normal. 

Apoptotic machinery is composed of sensor and effector components. Sensors like IGFs 

monitor the extracellular and intracellular conditions for any abnormalities like DNA 

damage or signaling imbalance. On the other hand mitochondria and proteases 

(caspases) are the effector components which respond to signals favoring apoptosis. In 

such a case cytochrome C would be released from mitochondria and would in turn 

activate caspases which destroy the subcellular structures.  

Cancer cells acquire cell death evasion mostly by mutation in p53 tumor 

suppressor gene which indirectly causes the release of cytochrome C from 

mitochondria. A mutated p53 causes defect in cell death. Similarly defect in PI3-

Akt/PKB pathway which sends antiapoptotic signaling is a way to resist apoptosis in 

cancer cells.  

 

1.1.4. Limitless Replicative Potential  

Another acquired characteristic of tumor cells is immortality. When tumor 

suppressors like pRb and p53 are disabled the cells continue to replicate for many other 

cycles after senescence by entering a stage called crisis which is a massive cell death. 1 

in 10
7
 cells that enter crisis emerge into a new variant which multiply without limit 

becoming immortal. Telomeres found at the ends of chromosomes are composed of 

several thousands hexanucleotide repeats. Due to the inability of the DNA polymerase 

to completely replicate the 3‟ ends of the chromosomes during S phase of each 

replication around 50-100 bp of telomeric DNA is lost in each cycle. In normal cells the 

chromosome ends would end up unprotected and participate in end-to-end chromosome 

fusions after a number of cycles as a result of telomere shortening. But this is not the 

case for cancer cells. Tumor cell population overcomes this by two mechanisms: 1. 
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overexpression of the telomerase enzyme which adds hexanucleotide repeats to the end 

of the chromosomes or 2. Through interchromosomal exchange of sequence information 

(recombination).  

 

1.1.5.  Sustained Angiogenesis  

Cells would not be able to survive without the supply of nutrients and oxygen 

which are enabled by the capillary blood vessels. For this reason the cells should reside 

within 100µm of blood vessels. When cancer cells evacuate a remote place and start 

growing there (metastasis), they are in need of blood vessels which supply them with 

the source of life. In order to survive cancer cells have to keep control on the positive 

and negative angiogenesis signals in the opposite way that normal cells do. To acquire 

angiogenesis the tumor cells activate an angiogenic switch (5) by favoring the 

angiogenesis inducers and countervailing inhibitors (Figure 2) (6), (7). The imbalance 

of these factors causes abnormalities in the vessel pattern. VEGF and FGF which are 

angiogenesis initiating soluble signals, bind to tyrosine kinase receptors on the surface 

of the endothelial cells.  In many tumor tissues the expression of those two higher 

compared to normal cells.  

 

Figure 2.  The control of the anti- and pro- angiogenic factors in a) normal cells and b) 

tumor cells. (6) (7)  
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1.1.6. Tissue Invasion and Metastasis. 

The primary tumor cells migrate to new sites with more available space 

(metastasis). There are several elements which help tumor cell populations to acquire 

metastasis. Proteins like CAM (mediate cell- cell adhesion) and integrins (keep cells in 

contact with extracellular matrix substrates) are generally altered in order to facilitate 

the movement of cancer cells to a remote location. A common example is E-cadherin 

which is not functioning in most of the tumor cells.  

Proteases are another factor which mediate metastasis by making the bed for 

cancer cells. The genes coding for proteases are mostly upregulated and the protease 

inhibitory genes are downregulated when cancer cells acquire metastasis.  

 

1.1.7. Genomic Instability 

Genomic stability in tumor cells generates random mutations including 

chromosomal rearrangements. Among these are the rare genetic changes that can 

orchestrate hallmark capabilities. 

 

1.1.8.  Tumor-promoting Inflammation 

Tumor-promoting inflammation is driven by cells of the immune system, some of 

which serve to promote tumor progression through various means. 

 

1.1.9.  Deregulating Cellular Energetic 

Deregulating cellular energetic involves major reprogramming of cellular energy 

metabolism in order to support continuous cell growth and proliferation. In this way 

tumor cells replace the metabolic program that operates in most normal tissues and fuels 

the physiological operations of the associated cells. 
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1.1.10.  Avoiding Immune Destruction 

Avoiding immune destruction involves active evasion of the cancer cells from 

attack and elimination by immune cells. This capability highlights the roles of the 

immune system that both antagonizes and enhances tumor development and 

progression. Both of these capabilities may well prove to facilitate the development and 

progression of many forms of human cancer and therefore can be considered to be 

emerging hallmarks of cancer. 

 

1.2.  Therapeutics Targeting 

The description of hallmarks principle gives information on possible mechanism-based 

targeted therapeutics. The success of linking the hallmarks principle with therapeutics 

stands on the assumption that if a molecule is highly important for tumor development 

and progression, its inhibition should cause impairment of the same process. In figure 3 

are given the suggested targeting (4) of the key molecules in the key pathways for each 

hallmark. Inhibiting only one molecule might not be enough for preventing cancer, but 

combination of targeting in parallel might have a higher impact in preventing tumor 

development.  

 

Figure 3.  The ten hallmarks of cancer and the possible therapeutics targeting (4). 
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1.2.1.  Inhibiting Proliferative Signaling 

1.2.1.1.  HER2 

Human epidermal growth factor receptor (HER2) also known as neu / c-erbB2 is a 

member of HER receptor tyrosine kinase family together with the HER1, HER3 and 

HER4 (8), (9), (10) and (11). HER2 is a 185 kD transmembrane glycoprotein composed 

of 1255 aminoacids, encoded by HER2 gene mapped to chromosome 17q21 (12). All 

the members of the HER family form heterdimers and homodimers with each other to 

activate many downstream signaling pathways like PI3K/Akt and the 

Ras/Raf/MEK/MAPK (8), (9) and (11). As a result they regulate important events in the 

cell which are cell growth, survival, differentiation and migration (10), (11).  

 

Figure 4. Representative structure of a EGFR family receptor (13) 

 

The receptors of the HER family are  transmembrane tyrosine kinase receptors 

composed of a cytoplasmic tyrosine kinase region, transmembrane region and 

extracellular domain (10). Except HER2 other members bind to ligands through the 

extracellular domain and become activated. HER2 which does not bind any ligand is in 

the activated form. Upon ligand binding the homodimer HER members dimerize with 

another member, become active and phosphorilate the kinase domain. Dimers show 

higher stability than monomeric forms of the receptors (12). Phosphorylation in the C 

terminus fires the respective signaling pathways. The orphan HER2 is the preferred 

dimer for all other members and the dimers formed by HER2 show higher signaling 
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than others. The reason for that is the low ligand dissociation from the receptor 

heterodimer, causing an increase in the signal (14). However EGFR is the preferred 

partner for HER2 (10).  

 

1.2.1.2.  The role of HER2 in tumor development 

Activating many important downstream signaling cascades any alteration in the 

HER2 dimers cause defect in cell growth, proliferation, migration, adhesion and 

survival (8). HER2 is always in the active conformation and can interact with the 

activated receptors (15). HER2 also has a low dissociation constant to other receptors 

and has a low rate of endocytosis. For this reason the HER2 containing heterodimers in 

general show a high potency and prolonged signaling (Figure 5) (12). The dimer with 

the highest signal and most mitogenic is HER2-HER3 dimer (11). This heterodimer is 

the activator of PI3K survival and/or MAPK proliferation signaling pathway which 

leads to growth, proliferation, decreased apoptosis, cellular migration, and angiogenesis 

(15), (16), (17).  Inhibition of these two pathways may cause decrease in proliferation 

and increase in apoptosis. On the other hand dimers that do not contain HER2 produce 

normal signaling and do not cause tumor growth. So, a few HER2 containing dimers are 

formed in normal cells and their number increases in cancer cells where they enhance 

the signaling.  

 

Figure 5. HER2 signal transduction pathway (15). 
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HER2 overexpression which is mostly caused by gene amplification is seen in 

25% of breast cancers and in many other cancers like ovarian, lung, gastric and oral 

cancers (18), (19) (20). Breast cancers with increased HER2 expression are more 

aggressive and show higher mortality rates (8) (11) (14).  

 

1.2.1.3. HER2 inhibition 

Overexpression of HER2 causes altered cell growth, survival, differentiation and 

migration in tumor cells. Targeting the HER2 receptors and inhibiting their function can 

impair tumor development. There are several ways of HER2 targeting: extracellular 

domain, intracellular domain and downstream molecules (9). The extracellular domain 

is in active conformation and can dimerize with any other ligand bound receptor. 

Targeting the extracellular domain of the HER2 would prevent the phosphorylation of 

the kinase domain and then the activation of the signaling pathway.  For HER2 

inhibition through targeting the intracellular domain and the downstream molecules 

small molecules that penetrate the cell membrane are used.  

 
 

1.2.1.4.  The relationship between HER2 and VEGF  

Interestingly, HER2 overexpression is associated metastasis, tumor progression 

and with overexpression of VEGF which is responsible for tumor angiogenesis  (21) 

and (22).  A study in 2004 showed a significant correlation between overexpression of 

HER2 and 2 VEGF isoforms (P<0.001) in a sample pool of 611 patients with primary 

breast cancer.  There is a hypothesis that the aggressive phenotype of HER2-

overexpressing tumors may be due in part to VEGF.  
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1.2.2.  Inhibiting Angiogenesis 

 

1.2.2.1.  VEGF 

VEGF regulates vascularization in normal cells. In tumor cells altered expression of 

VEGF helps in tumor progression by increasing angiogenesis which is an important 

factor (22). VEGF ligand is the main mediator of angiogenesis even though other 

factors (Figure 6) may become activated as the tumor progresses. On the other hand 

VEGF is genetically stable and continually expressed. For this reason an efficient 

strategy for the inhibition of tumor development is direct VEGF ligand inhibition. The 

inhibition of the other ligands can be employed to enforce the inhibition effect (23), 

(24).  

 

Figure 6. Expression of VEGF and secondary molecules during tumor progression (25), 

(26). 

VEGF protein family is composed of VEGFA, VEGFB, VEGFC, VEGFD and PDGF 

structurally related proteins. VEGFA is a homodimer, each dimer 23 kDa. As a result of 

alternative splicing there are 4 VEGF isoforms: VEGF121 VEGF165 VEGF189 

VEGF206. VEGF165 is the most abundant one which is secreted in the vascular system 

by most tumors. It binds to VEGFR1, VEGFR2 and Neuropilin tyrosine kinase 

receptors. Even though VEGF shows a higher affinity for VEGFR1, VEGFR2 is used 

for  the larger part of signaling which induce vascular endothelial cell permeability, 

proliferation, migration and survival. Ras-Raf-MEK-ERK and MAPK signaling is 

responsible for DNA replication and cell replication, PI3-Kinase and Akt/PKB pathway 

is responsible for cell survival, and  PI3Kinase/Akt signaling is responsible for cell 

migration (5) (24), (26), (27). 
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Figure 7. mRNA splice variants of human VEGFA (29) 

 
 

 

Figure 8. VEGFA signaling pathway (30). 

 

1.2.2.2.  Role of VEGF in tumor development 

Tumor cells behave more independent than normal cells and stimulate most of the 

vital molecules by themselves or stimulate the environment to help them survive. In 

order to stimulate new vessel formation they secrete angiogenic molecules, and activate 

endothelial cells which produce VEGF and induce angiogenesis. (22) VEGF 

overexpression help tumor cells for enhancing survival of the existing cells, inducing 

vascular abnormalities, stimulating vessel formation and impairing immune response 

(31).  
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So VEGF is a survival factor for tumor cells. VEGF helps to establish, grow and 

survive tumor vessels. Without the supply of the nutrients cancer cells would „die‟ 

through programmed cell death. Upon vascular maturation VEGF is not crucial for 

tumor survival any more. However it continues to be important for regulation of tumor 

angiogenesis throughout life cycle of the tumor cells. (32) 

Supporting vascular abnormalities like vascular permeability is another way 

VEGF enhancing tumor development. As the activity of VEGF increases in tumor 

development, the permeability increases and causes leakage of plasma protein and 

formation of extravascular fibrin gel which forms a suitable environment of endothelial 

cell growth. So in tumors, the vasculature is excessively permeable and leaky, causing 

uneven delivery of nutrients, and oxygen. (31) 

 

1.2.2.3.  The inhibition of VEGF 

In many studies of cultured cancer cells it was observed that the VEGF inhibition 

maintains anti-angiogenic effects, forcing the tumor cells tumor cells to grow and 

spread less. On the other hand preclinical studies show that withdrawal of VEGF 

suppression makes tumor cells behave as in the untreated cells and restart the abnormal 

vascularization (Figure 9).  (33) 
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Figure 9.  Vascularization a) untreated, b) upon treatment of c) discontinuation of 

treatment of tumor cells (33).  

 

1.3.  In Vitro Selection 

1.3.1.  Aptamers 

Aptamers are high sensitivity, stability and specificity biological recognition 

elements which also can be used in medical diagnostics. In addition they are 

advantageous over antibodies because they are produces more simply by chemical 

synthesis (in a test tube), are more flexible in terms of storage conditions, are little or 

non immunogenic and can be modified to give desired properties. Aptamers are short, 

single stranded oligomers of 70-90 bases long which adopt complex, sequence 

dependent secondary and tertiary structures, which enables specific interactions with 

their targets.  
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Unstructured in solution, aptamers undergo structure change and fold upon target 

binding (34), (35). The sequential evolution of aptamers in each cycle leads to selection 

of aptamers which are trained to bind specifically to a certain target. This is reflected in 

the tertiary structure of the aptamers which fold around the ligand through specific 

recognition. By means of stacking, hydrophobic interactions, hydrogen bonds and/or 

electrostatic interactions they form unique structures around their specific targets (35). 

Different from the natural nucleic acids which serve several functions in the cell, in the 

in vitro selection the evolutionary pressure act to select only the aptamers which show 

high specificity and affinity. While it is the target that adapts to the structure of the 

natural nucleic acids, the selected aptamers during the in vitro process are the ones that 

bind to their targets by adaptive recognition. (35)   

 

1.3.1.1.  Structural features of aptamers 

It is observed that the specific aptamer-target interactions mediated by the 

unpaired nucleotide sites and other stable secondary structures support the functional 

motif formation of the aptamer. Stems, internal loops, hairpins, purine-rich bulges, 

pseudoknots, and quadraplexes are the structural motifs encountered in most aptamers‟ 

structure (36). The most common motifs seen in aptamers are hairpins. Pseudoknots are 

formed as a result of complementary interactions of the hairpin loop with the sequence 

around the loop. Four-stranded structure (quadruplexes) are composed of layers of 4 

guanine (G-quartet) nucleotides which form hydrogen bonds with each other. The least 

quadruplex contains 2 G-quartets. These structure confer higher stability than other 

structures and are more typical for DNA aptamers. The stability is increased in the 

presence of ions like potassium in between the quartet layers. In many studied cases 

there are the loops in the quadruplex that play role in target recognition. (37) 

Aptamers are selected in vitro from combinatorial oligomer pool. The possible 

targets studied up to now are proteins, peptides, nucleic acids, polysaccharides, small 

organic molecules (aa., nucleotides and other metabolites), virus particles, whole cells 

and tissues. Because of the larger surface and consequently higher potential of hydrogen 

bond formation, aptamers show higher affinities for protein targets (36). Aptamers can 

be used for studying the protein-nucleic acids interaction, to inhibit target proteins, to 
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detect different target molecules, etc. Even though mostly it is expected that aptamers 

have inhibitory effect on their targets, in some cases it was seen that aptamers enhance 

target activity. (37)  

Aptamers confer high affinity and specificity for their targets. In general aptamers 

selected for protein targets show higher affinity than aptamers selected for smaller 

molecules. This is most probably because of the larger area of interaction between 

aptamer and the protein, when compared to the smaller molecules. The same logic 

follows for higher specificity toward larger molecules. The higher the interacting 

surface between the aptamer and the ligand, the easier it is to distinguish the small 

alterations. At the same time it depends on the site of the protein where aptamer is 

binding. If the aptamer binds on the site that is unique from the other closely related 

proteins it shows high specificity. If the other way around happens, the aptamer will not 

be selective for the target. Nevertheless, many aptamers are able to distinguish their 

target from another very similar protein. For example protein kinase C is different from 

its isoform only by 4% and its aptamer can distinguish those two by showing a higher 

affinity for kinase C (37). However, both affinity and specificity can be improved by 

modification of the structure of the aptamer.  

The selection of high affinity and specificity aptamers from vast combinatorial 

oligomer pool is done by means of a technique called Serial Evolution of Ligands by 

Exponential erichment (SELEX), through selective and competitive binding. 

 

1.3.2.  SELEX 

SELEX is the selection and exponential enrichment of target-specific candidates 

through iterative cycles (5 – 15) of: (i) incubation of the large combinatorial library of 

aptamers with the target molecule, (ii) separation of bound from unbound aptamers; (iii) 

elution of bound aptamers; (iv) PCR amplification of the binding aptamers for further 

selection round; (v) cloning of the potential candidates. Apart from these, counter and 

negative selection steps are included to select the candidates that have both strong 

binding ability as well as selectivity. This is called toggle-SELEX and is achieved by 

toggling the target with other molecules.  
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Figure 10.  A representative picture of the SELEX process. (38) 

The starting pool is composed of oligomers containing a random region ranging 

from 20-200 nucleotides and two constant sequences 18-30 nucleotides long flanking at 

both ends (39). The constant sequences play role in the molecular biology processes like 

amplification of the selected candidates and the random region makes the combinatorial 

library.  

Separation of the unbound oligomers from bound-target complex is an important 

issue during aptamer selection. There exist several ways (37) for the separation step: i. 

protein-bound aptamer complex is separated through nitrocellulose filters and the 

unbound pass through the filter; ii. protein is immobilized and the unbound are washed 

away; iii. gel electrophoresis; iv. capillary electrophoresis; and v. centrifugation (in the 

case of cell/virus selex.  

After amplification of the bound aptamers, the dsDNA is separated into ssDNA 

by several methods (37) like: i. asymmetric PCR; ii. size separation using 

electrophoresis (5` labeling of one of the primers with biotin, fluorescent dyes, etc); iii. 

cleavage of the phosphorylated strand of dsDNA with the phage λ endonuclease 

(phosphate group is introduced into 5` end of one of the primers); and iv. column 

separation by using streptavidin and biotin labeled dsDNA (one of the primers is labeled 

with biotin in its 5` ends).  
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Though significant enrichment is observed after the first rounds of selection. The 

selection pool is enriched gradually and generally 5-15 cycles are applied. After the last 

cycle the enriched pool is cloned.  

 

1.3.3.  Post-SELEX Analysis of Selected Aptamers 

After the SELEX cycles individual clones are sequenced and analyzed. They are 

classified according to the sequence homology and each class is tested for target 

affinity. The best candidate is considered for further analysis.  

Secondary structure of the chosen aptamer candidates is predicted and they are 

later checked by sequence truncation. It was observed that in many cases minimizing 

the aptamer dimensions results in higher specificity and in lower cost of production of 

the aptamer (37). This is especially important in diagnostics. Later the binding 

characteristics of the aptamer to the protein (target) are investigated.   

Further analyses include structure analysis of the aptamer-target complex. Site 

directed mutagenesis can be implemented to reveal the specific nucleotides that play 

role in the interaction. 

 

1.3.4.  The Characteristics of Binding  

1.3.4.1.  Binding specificity 

Fitting of the aptamer to the protein binding site and their specific interaction 

through discriminatory intermolecular interactions depends on the nature of the nucleic 

acids and aminoacids from which aptamers and proteins (respectively) are made from 

(34). As a result of different combination of the 20 aa. there form different 

combinations which are high in number and produce a more defined substrate-binding 

site. They favor hydrogen bonds and acid base interactions with the ligand. On the other 

hand the nucleotides which are less in number (4 nucleotides) form a less diverse set of 

interactions and structures. The planar nature of the nucleotides prefers stacking 
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interactions with the ligand. Considering the characteristics of both proteins and 

aptamers the interactions favored by both of them act in a protein-aptamer complex.  

Nuclear magnetic resonance spectroscopy is used to get information about the 

structure dynamics of the aptamer molecules and their behavior in the presence and/or 

absence of the target protein in solution. It was observed that aptamers form partially 

structured and interconverting bulge and loop conformations when they are in solution. 

On the other hand the same sequences form defined secondary structures when they 

bind to a high affinity and specific ligand. Shape complementarity, hydrogen bonds, 

electrostatic interactions and stacking interactions between aromatic compounds (eg. 

small molecule targets) (36) are the interactions that maintain the target-aptamer 

complex and count mostly for specific recognition. As a result of the adaptive structure 

formation upon target binding, most aptamers create a specific binding site in their 

tertiary structure. In some cases base-pair mismatches and triples are formed. However 

the structure adaption is not limited with the aptamer. Like in the HIV-1 Rev peptide-

RRE RNA and BIV Tat peptide – TAR RNA complexes, sometimes proteins are the 

ones that undergo adaptive binding upon complex formation. (40) 

In both cases of molecular adaptation the RNA aptamers form a deep groove from 

the adaptive formation of non-Watson-Crick purine-purine pairs and U-A-U base tripes 

where HIV RRE penetrates. The specific binding is due to the hydrogen bonds 

formation between the guanines and the guanidinium groups at the groove edges with 

the arginine residues of the peptide, which are the most specific contacts of the protein-

DNA complexes (41). Other motifs that contribute to the specific binding include the 

non-Watson-Crick purine-purine base pair interaction with asparagines, and pyrimidine 

base stacking with tryptophan residues. Additionally specific protein-RNA interactions 

include non-Watson-Crick base pairs and triples which provide unique hydrogen bonds 

and distort the RNA deep groove. There are also the nonspecific intermolecular 

interactions between the arginine guanidium groups of the peptide and the phosphate 

groups of the RNAs that stabilize the complex. (34) 

The deep groove formation is a characteristic of RNA aptamers which can 

accommodate secondary structure elements of proteins such as α helices and β sheets. 

This characteristic architecture is linked to bulges, non-Watson-Crick base pair and 

triple alignments. On the other hand proteins that bind to DNA aptamers do not room 
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protein secondary structure elements, but two or more of these are required for binding. 

(34) 

Likewise, proteins like MS2 coat proteins which do not undergo structural change 

upon aptamer binding  form specific interactions that are mediated by 3 unpaired bases. 

The intermolecular hydrogen bonds which stabilize the unpaired nucleotides that take 

part in the interaction are formed by 2 unpaired adenines, and an unpaired cytosine 

which stacks on a tyrosine side chain. (34) 

In some cases it was observed that the constant region participate in the 

conformations that take part in binding. From a sequence analysis (39) of 2000 

aptamers binding to 141 different targets it was found that the constant regions 

commonly play a minor role in binding to the target. To test the involvement of the 

constant region in the secondary structure, the folding of the random region in the 

presence and absence of the constant region are compared and the results were as 

expected.  

These aptamers were also tested for thermodynamic stability whichh is another 

characteristic of the aptamers which describes their endurability to mutations and 

environment. Even though it was shown that the constant regions play a minor role in 

the structure, in some cases the random regions also contribute minimally to the 

thermostability of the structure. Constant regions participate more in the secondary 

structures of the aptamers with short random regions, which means that both random 

and constant regions are important for secondary structure formation of these aptamer.  

Anti-isoleucine aptamer case which was selected from a library of varying lengths 

oligomers showed that the ones with shorter random region (in some cases even 50 

nucleotides long) showed a higher participation of the constant region in the secondary 

structure. On the other hand constant regions do not have the same effect on the 

function of the aptamers. Random regions are more important in the functional 

structures of the aptamers. (39) 

“The tyranny of short motifs” was a hypothesis that describes the fact that short, 

less information-rich and functional motifs emerge from selection experiments. If this 

was always the case constant regions would play role on functional structures by 

favoring the shorter aptamers. Actually there is such an example where anti-arginine 
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aptamer with a random region of 25 bases where the constant regions play a role both in 

structure and function of the aptamer. The prediction of “the tyranny of short motifs” is 

challenged by the higher number of cases in which preference random regions are 

preferred for the structure and function of the aptamer. (39) 

There are several reasons for why the aptamers do not prefer the inclusion of the 

constant regions in the functional secondary structure of the high affinity and specificity 

aptamers. The first is more a speculation that the information-rich random regions are 

more functional than the information-poor constant regions. This is based on the 

observation that the functional conformations of the random region dominate over the 

ones in the constant regions. Secondly, located at the ends of the aptamers the constant 

regions have a lower probability to be included in the structural motifs. Thirdly, the role 

of the constant regions in the selection process is another factor. Constant regions are 

implemented for amplification of the nucleic acids by molecular biology methods. The 

functional structures where the random regions interact with the constant regions are 

under evolutionary pressure which might suppress any advantage due to high specific 

binding or stable secondary structure.  (39) 

 

1.3.4.3.  Binding affinity  

 The equilibrium reactions for target-aptamer binding are shown by dissociation 

(Kd) or association (Ka) constant equations. Kd (1.2) gives information on affinity of the 

aptamer-target, not on the kinetics of the reaction. A 1:1 equilibrium reaction of binding 

is represented with the equation 1.1.  

                                          A + T ⇌ AT                                                  (1.1) 

Where A is the aptamer, T is the target and AT is the complex.  

                                              Kd =  =                              (1.2) 

In order to measure the Kd value in an equilibrium reaction of complex formation, 

one of the components is kept constant while the concentration of the other is increased 

gradually. The graph in Figure 11 represents the binding plot of a ligand (A) to a target 
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(B). The concentration of the target keeps increasing and at the point where half of the 

ligand is free and half of the ligand is bound to target, Kd equals target concentration.  

 

Figure 11. The binding plot of ligand (A) – target (B) (42) 

 

 A real example is illustrated in Figure 12 where is shown the 1:1 binding 

stoichiometry of RNA with the protein. Here the fixed concentrations of the protein are 

titrated with the increasing concentrations of the protein. The Kd (10
-8

 M) value of the 

complex is equal to the concentration of the protein when half of the RNA is bound to 

the protein. (43) 

 

Figure 12. Simulated binding plots of an RNA–protein interaction. (43) 

 

There are several techniques that are used for measuring the binding reactions 

quantitatively (44) (45). 
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1) Assays that separate complexes from a solution 

a) Filter-binding (Use of nitrocellulose filtering) 

b) Cell association assays (For binding of small molecule ligands) 

c) Gel-filtration chromatography (Separation based on size and shape) 

d) Electrophoretic mobility shift assays (EMSAs, makes use of gel shift in the 

native gels) 

 

2) Assays that detect complexes in solution 

a) Fuorescence (FRET, induced fluorescence, fluorescence anisotropy, 

fluorescence quenching) 

b) Protection assays  

 

3) Assays in which a biomolecule is immobilized 

a) Affinity resins (use of Sepharose, agarose beads for immobilization; separated 

by centrifugation) 

b) Surface plasmon resonance (commercially available machine that detects the 

binding of the molecules due to mass change near the surface of the sensor) 

 

1.3.4.3.1.  Fluorescence intensity 

By measuring the fluorescence signal when the aptamer and protein are at 

equilibrium the Kd can be measured under various buffer conditions independent of the 

separation techniques, and the association and dissociation rates. There are also other 

advantages like being a faster method than separation based ones, availability of many 

fluorescent probes with different lifetimes and emission wavelengths and well 

characterized labeling methods which make the fluorescence intensity based measuring 

methods a better choice to measure Kd at the equilibrium reaction. 
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2.  OBJECTIVE 

 

 

The aim of this thesis was to select anti-HER2 and anti-VEGF aptamers for 

inhibition of Her2 and VEGF cancer biomarkers respectively, by in vitro selection. The 

motivation for this work was selection of aptamers with higher specificity and 

selectivity when compared to the existing ones.  

Several challenges were faced during the process. Work with short aptamers 

(around 55 bases), gel extraction, separation of ssDNA and lack of resources were some 

of the difficulties encountered during the process. On the other hand use of magnetic 

beads for separation of the bound to unbound ssDNA and implementation of negative 

selection were two strategies that made the work easier to select more successful 

candidates.  

At the end of this work relatively high affinity and specificity aptamers were 

selected. However this work has to be continued with structure modification to obtain 

more successful candidates. It is a common procedure in aptamer selection to challenge 

the obtained aptamer with post-SELEX modification in order to emphasize the desired 

characteristics and to decrease the cost of production.  

The aim for the future (perspective) is to use the selected aptamers for biosensing 

technologies to detect the presence of cancer. By combining the two aptamers it is 

possible to inhibit the overexpressed Her2 and VEGF which support tumor cells.  
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3.  METHODS 

3.1.  SELEX 

Her2 and VEGF were used as the target proteins for selection of aptamers using 

SELEX technique. In each cycle, the proteins were introduced to a random pool of 

ssDNA strands and the ones that bind were selected and amplified to be used in the next 

cycle. The selected oligonucleotide strands formed the pool for the next cycle. The 

target proteins were immobilized on magnetic beads in order to fascilitate separation of 

the protein from the unbound ssDNA molecules.  

3.1.1.  Immobilization of Proteins on Surface Activated Magnetic Beads  

10
6 

magnetic beads containing carboxylic acid groups were used in each cycle. 

The commercially available beads were subjected to pre-activation of the carboxylic 

acid groups and target coating before they were used (46). Beads were washed twice 

using 1X binding buffer (100 mM NaCl, 20 mM Tris-HCl pH 7.6, 2 mM MgCl2, 5 mM 

KCl, 1 mM CaCl2, 0.02% Tween 20) (47) before and after each treatment.  

3.1.1.1.  Magnetic beads activation 

The beads from stock were washed with 25 mM MES (2-(N-

morpholino)ethanesulfonic acid), pH 5. Equal volumes of 50 mg/ml EDC (1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide) and NHS (N-Hydroxysuccinimide) respectively in 

25 mM MES was added to the tube containing the magnetic beads that were used for 

coating. The solution was incubated in the room temperature in tilted rotation and then 

washed twice using MES. A magnetic stand was used for beads separation. 
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3.1.1.2.  Covalent coupling 

After the carboxylic acid groups on the surface of magnetic beads were activated, 

the coating with the target protein was performed. The required amount of target protein 

in 25 mM MES was added to the separated beads. The solution was incubated again for 

30 min at room temperature with tilted rotation. After incubation the beads were 

separated from the supernatant and washed twice using 25 mM MES. The unreacted 

carboxylic acid groups were quenched with 50 mM ethanol in PBS (Phosphate Buffer 

Saline) pH 8.0 for 60 minutes. After separation, the beads were washed with PBS and 

were ready to be used. 

A schematic representation showing the details of the protein immobilization 

process (magnetic beads coating and covalent coupling of protein) is as shown in Figure 

13.  The process occurs in two steps step using EDC/NHS crosslinker.  

 

Figure 13. Covalent coupling of proteins on magnetic beads. (46) 

 

3.1.2.  DNA Pretreatment 

A random library of ssDNAs (25 µl) was used for each SELEX process. This pool had a 

concentration of ~60 pmol/µl. Since the secondary structure of the oligonucleotide 

strands is important for binding to the target, heat treatment named as pretreatment was 

important to separate dimers or non-specific folders, and allow ssDNA to form stable 

secondary structures upon target binding. This step was performed using a PCR 

machine with a following program: 95
o
C for 10 min, 4

o
C for 15 min and 25

o
C for 7 

min. The pool used was composed of ssDNA strands with sequence 

GGGCCGTTCGAACACGAGCATG(N)40GGACAGTACTCAGGTCATCCTAGG. Letter N stands 

for the random nucleotides and for this reason the 40 nucleotide region is called random 
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sequence. The sequences of the forward and  reverse primers are as following: 

ZGGGCCGTTCGAACACGAGCATG and GGACAGTACTCAGGTCATCCTAGG, respectively. 

The letter Z in front of the forward primer stands for fluorescein, which is bound to the 

5‟ end of the forward primer. The primer binding sites which flank the random region 

are called constant regions (sequences).  

 

 

3.1.3.  Negative Selection 

Negative selection step was employed both in anti-VEGF and anti-HER2 

aptamers selection process. The importance of this process stands in the selection of 

more specific aptamers which selectively bind to the target. In other words, the ssDNA 

pool is first trained with non-target proteins. So the ssDNA which had a higher affinity 

to the non-target protein were excluded from the target incubation, while the 

supernatant was used for selection with the target protein. In this case, ethanolamine, 

BSA and 1:10 diluted whole human serum were used for negative selection. Before 

starting the first cycle, the ssDNA pool was incubated with ethanolamine coated beads 

and the supernatant was used to continue with selection with the target protein 

(VEGF/HER2 biomarker proteins). Negative selection with BSA coated beads was 

performed in the same way before the second cycle. In the sixth cycle, serum was added 

to the incubation reaction so that it was diluted 10 times in the final volume. In this step, 

the ssDNA which show higher affinity to serum proteins were separated after the 

incubation. So, only ssDNA that bound target protein stronger were enriched, amplified 

and used for the next round of selection.  

3.1.4.   Selection 

In each selection step, approximately 10
6
 VEGF and HER2 coated beads were 

used, respectively. Assuming that all the protein was bound to the beads during coating 

procedure, about 21 pmol of VEGF and 12 pmol of HER2 protein were introduced to 

the ssDNA pool in each SELEX cycle, respectively. Each time the pool was allowed to 

incubate with the target coated beads and the ssDNAs that bound to the target protein 

were separated by using magnet while the unbound ones were discarded. In order for 

the most specific candidates to bind to the target protein, several stringent conditions 
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were introduced. For example, the number of beads used was 0.25 x 10
6
 (4 times less) 

in the fourth and fifth cycle for both targets, and 10
5
 beads were used in the eighth cycle 

for HER2 SELEX. Then, in the seventh cycle, the incubation time was decreased to 10 

min from the initial incubation time of 1 h in the first cycle.  

 

3.1.5.  Elution 

The unbound ssDNA remained in the supernatant while the target ssDNAs was bound 

to the surface of the protein. The bound ones were recovered by simply drawing the 

magnetic beads bound with aptamer-protein complex using a magnet. In the elution 

process, 100 µL of elution buffer  (40 mM Tris-HCl pH 8, 10 mM EDTA, 3.5 M urea, 

0.02% Tween 20) (47) was added to the beads coated with target protein and with the 

candidate aptamers bound. They were incubated at 80 
o
C for 10 min mixed by vortexing 

every 2 min for 30 min. This step was repeated twice. The supernatants in which the 

candidate aptamers were found were purified and recovered by ethanol precipitation. 

Elution step was performed in the first 3 cycles for HER2 and in the first 2 cycles for 

VEGF. The main aim of the elution step is to use the ssDNA in the PCR for 

amplification. Since some ssDNA was lost during the elution step, in the later cycles  

the target protein coated beads bound ssDNAs were directly used for PCR 

amplification.  

3.1.6.  Ethanol Precipitation 

All ssDNA samples after elution were subjected to purification by ethanol 

precipitation. This step was also performed to concentrate the ssDNA obtained from the 

elution step. After ethanol precipitation, the initial volume of the eluted ssDNA was 

concentrated (from ~250 to ~30 µl). First 1/10
th

 volume of sodium acetate was added to 

the ssDNA tube and then 3 volumes of 100% cold ethanol, and 1 volume isopropanol 

were added. The samples were incubated at -80
o
C overnight for cold precipitation. The 

tubes were centrifuged for 20 min at 13000 rpm, the supernatant was decanted gently 

and the pellet was washed with 1 volume 70% cold ethanol followed by centrifugation 

at 13000 rpm for 10 min. This washing step which aims to dessolve the salts was 

repeated twice. The supernatant was decanted and centrifuged again for 1 min to 
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sediment the pellet at the bottom of the tube. The pellet was air dried and resuspended 

in 1X EB buffer (commercially available).  

3.1.7.  PCR Amplification of ssDNA Traces 

PCR reaction was used to amplify the selected ssDNA strands. The number of 

cycles varied initially from 35 down to 21 cycles in the last cycle. The PCR program 

contained following steps: preheating at 95 
o
C for 5 min, denaturation at 95 

o
C for 20 

sec, extension at 72 
o
C for 20 sec and finally, 10 min extension at 72 

o
C. Annealing 

temperature varied from 45 in the first cycle to 55 
o
C in the last cycle of Her2 SELEX. 

In the case of VEGF, the annealing temperature was increased from 44 
o
C in the first 

cycle to 47 
o
C in the last cycle. For a 50 µL reaction, 1 µM of forward fluorescent and 

reverse primers each, along with a commercially available Taq premix (Qiagen) were 

added. Around 30 ng of ssDNA template was added to each reaction tube for 

amplification.  

3.1.8.  Agarose 

Agarose electrophoresis was used to run the PCR product, and visualize and 

discriminate the band of interest from any other contamination. 2% agarose was used to 

run double stranded DNAs shorter than 100 bp. The expected band was predicted to be 

right below the last band of a 100 bp ladder. The unstained gel was initially inspected 

for occurrence of a green fluorescent band for documentation, which was followed by 

ethidium bromide staining to discriminate any non-specific DNA bands. The staining 

was performed after electrophoresis in order not to interfere with running of the sample. 

The bands of interest appear green in color before and orange after staining. Both the 

gel and the running buffer were composed of 1X TBE (Tris/Borate/EDTA) buffer and 

the gel was run at 100 V (50 mA).  

3.1.9.  Agarose Extraction 

The specific bands on the agarose gel were excised and transferred to an 

eppendorf tube. They were weighed and 3 times the volume of the gel pieces QX1 

buffer (Qiagen) was added (as per the manufacturer‟s instructions). The mixture was 

added with 10 µl of QXII buffer and the solution was heated at 50 
o
C until the gel was 
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dissolved. The tubes were centrifuged for 30 seconds at 14000 rpm and the supernatant 

was discarded. The above process was repeated by adding another 500 µl of QX1 buffer 

and centrifuged for 30 sec. The pellet was washed twice using PE buffer (Qiagen). After 

the last centrifugation, the pellet was dried until it becomes lime white and then 

resuspended in EB buffer (Qiagen). The concentration of the ss/dsDNA was measured 

using Nanodrop spectrophotometer at A260.  

3.1.10.  Denaturing PAGE 

The double stranded DNA cannot be used for selection because it does not attain a 

proper secondary structure for binding to the protein. For this reason, Denaturing 

Polyacrylamide Gel Electrophoresis was performed to separate the dsDNA into single 

stranded DNA. Two layer PAGE gel was used to run the dsDNA samples. The top layer 

was composed of native gel (with no denaturating agent) while the bottom layer is 

composed of denaturing gel where the forward fluorescent strand is separated from the 

other strand, as a result of 7 M urea and 20% formamide present. PAGE was performed 

using 1X TBE as the running buffer. To provide a better separation, the samples are run 

in low power (50 V) for around 2 h. After the tracking dye reached at the bottom of the 

glass plate, the gel was separated from the glass plates and visualized under 

transilluminator. The green fluorescent bands representing the ssDNA of interest was 

excised for next step.  

3.1.11.  Extraction of ssDNAs from PAGE 

The gel was frozen at -80 
o
C for 30 min and the gel was crushed and excised the 

fluorescent bands using a pestle in an eppendorf tube. Diffusion buffer (0.5 M 

ammonium acetate, 10 mM magnesium acetate, 1 mM EDTA, pH 8.0, 0.1% SDS) was 

added in twice the mass of the crushed gel and the tubes were incubated at 50 
o
C for 1 h 

in tilting rotation. The samples were centrifuged and the supernatant was transferred to 

a new tube. The above process was repeated for the remaining gel pieces until all the 

ssDNA traces were recovered from the gel. Then three times the volume of supernatant 

QX1 buffer and 10 µl of QXII buffer was added. The mixture was then incubated for 10 

min at room temperature and centrifuged 10,000 rpm for 30 sec. The pellet was 

resuspended for a second time in QX1 buffer and washed twice with 500 µl PE buffer 

(Qiagen). The pellet was lime dried and resuspended in EB buffer. After centrifugation 
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for 30 sec, the ssDNA concentration was measured using a Nanodrop 

spectrophotometer at A260. Thus, obtained ssDNA was used as a next selection pool for 

the further SELEX process.  

3.2.  Cloning of ssDNA Pool from SELEX  

TOPO TA Cloning kit was used for all the cloning experiments (36). Prior to 

cloning steps, the ssDNA pool obtained after the completion of SELEX process was 

amplified by using unlabeled primers. The dsDNA pool was then cloned and subjected 

to sequencing.  

3.2.1.  Screening of the positive clones 

The pCR4-TOPO plasmid vector was used for cloning. This vector contains single 

3‟ thymidine (T) overhangs and topoisomerase (function) is covalently bound to the 

vector. Considering this characteristic, dsDNA strands with A overhangs are enough for 

template insertion. This property can be easily incorporated into the DNA strands by 

Taq polymerase which adds one deoxyadenosine (A) at the 3‟ end of any PCR product 

by using its terminal transferase activity (Figure 14). 

 

Figure 14.  The template insertion reaction mediated by topoisomerase (48) 

 

For this step, dsDNA product from a PCR reaction was directly used. The dsDNA 

from the last cycle was reamplified with unlabelled forward and reverse primers until 

the fluorescently labeled forward primer is diluted. The reason for that is the possible 

inhibition that the fluorescene might cause for direct template insertion into the vector 

(Figure 15).  
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Figure 15. The TOPO vector map that was used for cloning of the candidate aptamers. 

(48) 

3.2.2.  TOPO Cloning Reaction for Transformation of Competent Cells 

For the transformation to be successful, it was important to have freshly prepared 

DNA. The A overhangs in the PCR products can be lost by time and this can inhibit 

transformation to the competent cells. The cloning reaction contained fresh PCR 

product (from anti-HER2 and anti-VEGF, respectively) 3 µl, salt 1 µl and TOPO vector 

2 µl which made a total reaction volume of 6 µl.  

The cloning reaction mixture was incubated at the room temperature for 15 min 

and transformed into 45 µL of E. coli DH5α competent cells (as recommended by the 

manufacturer). About 200 µl of LB was added to each reaction tube and then incubated 

for 1 h at 37 
o
C in tilted rotation.  The transformation reaction mixture was spread on 

LB-agar plates containing 50 µg/ml ampicillin and incubated for 10 h at 37 
o
C.  

3.2.3.  Screening for Positive Clones  

About 45 individual colonies were obtained in total from anti-HER2 and 63 

colonies from anti-VEGF cloning. Before plasmid isolation, each of the colonies was 

cultured in LB amp
+
 media for overnight. After culturing for 12 h about 20 ml from 

each cell culture with OD600=~0.1 was plated in a separate LB-amp
+
 plate. Again about 
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3 colonies from each plate were cultured in individual tubes containing 4 mL LB broth 

and incubated for another 12-16 hours. These cultures were used for plasmid extraction.  

3.2.3.1.  Plasmid extraction 

The plasmids were isolated using a commercially available plasmid purification 

kit (MiniPrep kit, Qiagen). The cells from the LB broth were first harvested by 

centrifugation for 15 min at 4 
o
C. The other steps were followed as recommended by the 

manufacturer. The bacterial pellet was resuspended in P1 buffer. After adding an equal 

volume of P2 buffer the sample was mixed by inverting and incubated at RT for 5 min. 

350 µL of prechilled N3 buffer was added, mixed thoroughly by inverting, and 

incubated at RT for another 5 min. The samples were centrifuged for 10 min at max 

speed and the supernatant was pipetted to spin columns. After centrifugation 0.5 mL of 

PB buffer was added to the column and centrifuged again. The column was washed with 

PE buffer, and the DNA was eluted with EB buffer and quantified by Nanodrop 

spectrophotometer at A260.  

3.2.3.2.  Restriction digestion and confirmation of positive clones carrying aptamer 

inserts 

The plasmids were analyzed for inserts by digesting with restriction enzyme 

EcoRI. As it is shown in the plasmid map (Figure 15), the EcoRI sites are present in the 

plasmid that was used for the reactions. Digestion enzyme together with the digestion 

buffer was added to the plasmid samples and incubated at 37 
o
C for 1 h. From the 

agarose gel analysis, it was observed that the inserts are ~50 base pairs in size. Since the 

number of clones that could be sequenced was limited, the bands which showed longer 

fragments were considered for sequencing.  

 

3.3.  Sequencing  

The extracted plasmids from the selected colonies were sent for sequencing to a 

commercial sequencing company in US. 
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3.4.  Sequence Analysis 

3.4.1.  Secondary Structure 

For predicting the secondary structure of the potential aptamer candidates, free 

energy minimization algorithm (Mfold server) was used. The structures that had lowest 

negative G were selected as stable secondary structures of the ssDNA sequences. 

3.4.2.  Phylogenic Relationship of the Aptamer Sequences 

Mafft server was used to align the cloned sequences and to build the phylogenic 

trees which were visualized in JALVIEW.  

 

3.5.  Binding Assay 

Binding assays were performed to determine the dissociation constant which 

describes the interaction between protein and ligand by calculating the ratio of bound to 

unbound ligands. Fluorospectrometer and protein coated beads were used to perform 

these assays. In both anti-VEGF and anti-HER2 binding assays the fluorescently labeled 

ssDNA volume (50µl) and concentration (373 nM) were kept constant while the protein 

concentration was increased. The decrease in the fluorescent signal measured by 

fluorespectrometer indicated the binding of the ssDNA to the protein (VEGF/HER2). In 

order not to disturb the equilibrium of binding, the beads were drawn to the walls of the 

reaction tube by magnetic stand and the samples were obtained from the supernatant. 

The binding assays were performed in triplicates using three independent samples for 

each concentration for error calculation. To verify the specificity of the aptamers to 

VEGF/HER2, BSA protein was used and the measurements were taken in identical 

conditions.  
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In order to obtain the equilibrium binding curve, the obtained fluorescence signal 

was normalized by formula (3.1) and the results were fitted using the One Site Binding 

fit. Origin Pro 8.1 program was used for both calculations and curve fitting.                  

                                                             (3.1) 
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4.   RESULTS 

4.1.   SELEX 

The exponential enrichment process was performed for the selection of anti-HER2 

and anti-VEGF aptamers separately. In this process, the magnetic beads were 

immobilized with target proteins. Their SEM images appeared rough in surface and 

round in shape (Figure 16). SEM images were actually taken to compare the bare beads 

with target coated and ssDNA treated beads respectively. Since there was not observed 

any difference between those samples, SEM images were used only to show the 

structure of the magnetic beads used during the selection process. 

 

Figure 16. SEM images of the magnetic beads immobilized with target biomarker 

proteins. 

 

The inherent magnetic properties of the beads made it easy for the separation of 

the protein bound ssDNAs from unbound molecules by simply drawing the beads with a 

magnet. The steps involved in each cycle of aptamer selection were as following: i. 

selection of target protein bound ssDNA; ii. Separation of the bound ssDNA  from 

unbound; iii. amplification of the bound which produced dsDNA and iv. separation of 

the dsDNA into ssDNA for the next cycle. After the enrichment process was complete, 
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the bound ssDNA pool was cloned and sequenced. The obtained sequences were 

analyzed by free energy minimization algorithm using Mfold program and one 

candidate was chosen among the pool of anti-HER2 and anti-VEGF aptamers, 

respectively. The results obtained after each step of the aptamer selection process is 

described below.  

4.2.  Elution of Enriched ssDNA Bound to Target Protein 

The aim of the bound ssDNA elution was to separate ssDNA from target protein 

and use them in the amplification step. Another aim of the elution process was to obtain 

statistical data on the enrichment of the specific aptamer pool. An increase in the ratio 

of eluted ssDNA from the initial pool indicates that the ssDNA pool obtained is 

composed of more specific candidates. However it was observed that some of the 

ssDNA can be lost during the elution. Therefore, the elution step was performed only 

during the first 2-3 cycles for anti-VEGF and anti-HER2 aptamer selection. During the 

later rounds, the beads containing protein-aptamer complex were used directly as 

ssDNA template for the PCR reaction.  

As it is shown in Figure 17, the percentage of the bound ssDNA was too low after 

the first cycle but it increased in the consequent cycles in both anti-HER2 and anti-

VEGF aptamer selection processes. This is an evidence for the enrichment of the 

ssDNA sequences that bind specifically to the target protein.  
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Figure 17. The graphical representation of the ssDNA recovery. 

 

4.2.1.  Agarose Electrophoresis  

Agarose electrophoresis was performed after amplification of the bound ssDNA 

which was then converted to dsDNA. The agarose electrophoresis allowed size based  

separation of the dsDNA of interest from side products and extraction of dsDNA for 

further experiments. In this work, the band of interest was predicted to be around 60-70 

base pairs.  

Figure 18 shows that amplified dsDNA was well below the 100 bp standard band, 

and above the primers that appeared green that are ~25 bases long. The gels shown 

below were stained with EtBr. The dsDNA bands appeared green before staining and 

turned red/orange after EtBr staining (depending on incubation time), which enabled 

discriminating the target fluorescent bands from the other fragments. The bands of 

interest were carefully excised, extracted and purified from the agarose gel.  
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Figure 18. Representative images of dsDNA separation in agarose gel. a) Anti-VEGF 

dsDNA b) anti-HER2. 

4.3.  Denaturing PAGE 

In order to continue with the next selection round, the dsDNA was separated into 

ssDNA. Denaturing PAGE was used to perform separation. The discrimination of the 

target ssDNA was guided by the fluorescein molecule attached to it. The highly 

denaturing conditions created by presence of 7M urea and 20% formamide made the 

dsDNA strands to separate from each other. The presence of the fluorescein in the 

forward strand made it easy to discriminate from the unlabeled ssDNA (Figure 19). The 

presence of the fluorescein makes the molecular weight of the forward strand 560 g/mol 

higher than the reverse strand. The green bands that were observed in the unstained gel 

picture are the forward ssDNA strands of interest which were excised and extracted for 

later use.  

 

Figure 19.   PAGE gels of dsDNA samples. The green bands are ssDNA of interest for 

A) anti-VEGF, B. anti-HER2. 

 
 

A B 
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4.4.  Cloning of the Final Selected ssDNA Pool and Screening of Positive Clones 

The cloning process was performed before sequencing in order to obtain 

numerous copies of the same sequence. The picked colonies were cultured in LB and 

plated in selection media (amp
+
 LB). The positive clones were screened by restriction 

enzyme digestion followed by agarose electrophoresis gel. Expected size of the 

fragment after digestion of the plasmid construct was confirmed. Also it was important 

to make sure that the candidates sequenced were at least ~60 base pairs in size. As a 

result of cloning reaction, 62 positive clones as anti-VEGF and 45 for anti-HER2 were 

obtained. The plasmids from these clones were digested separately and run in agarose 

gel as shown in Figure 20. The remaining plasmid DNA backbone without the insert 

was ~4000 bp as expected, and the inserts of interest were less than 100 bp. It appears 

that some of the clones did not contain the insert (for eg., numbers 2,  8, 28, 31, 50, 51, 

56,57 and 61 for anti-VEGF clones and number 3, 13, 14, 16, 17 38 and 40 anti-HER2 

clones), some bands were truncated to18, 42 and 45 bp for anti-HER2 clones), and some 

showed multiple bands (eg., numbers 26, 43, 44, 52 anti-VEGF clones and numbers 29, 

35, 42 anti-HER2 clones). This data made it easier for the selection of the clones that 

were sequenced. Anti-VEGF clones with numbers 1, 3, 7, 14, 18, 21, 25, 27, 33, 35, 41, 

54, 57, 58 and 61, and anti-HER2 clones with numbers 7, 11, 13, 18, 22, 23, 24, 26, 30, 

32, 34, 38, 43 and 44 were selected for cloning (see lanes in Figure 20).  
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Figure 20. Screening of positive clones in agarose gel for A) anti-VEGF and B) anti-

HER2. 

3.4.  Sequencing Results 

The selection pool was composed of ssDNA which contained 40 bases long random 

sequences flanked by constant sequences. The forward primer can bind to any 

complementary sequence in the random region and as a result, the sequences obtained 

have various lengths. The length of anti-VEGF aptamer sequences vary from 50~58 

bases, whereas the length of anti-HER2 clones vary from 49~55 bases long (Table 1 and 

Table 2).  

No Sequences of anti-VEGF aptamers ΔG
o 

1 GGGCCGTTCGAACACGAGCATGGGGGCCTAGGATGACCTGAGTACTGTCC -5.04 

2 GGGCCGTTCGAACACGAGCATGGCGGAGCTGCCTAGGATGACCTGAGTACTGTCC -7.03 

3 GGGCCGTTCGAACACGAGCATGGGCCGTCAGCCTAGGATGACCTGAGTACTGTCC -6.50 

4 GGGCCGTTCGAACACGAGCATGGTGTCGAGCCACCTAGGATGACCTGAGTACTGTCC -6.50 

5 GGGCCGTTCGAACACGAGCATGCGGGCCTAGGATGACCGAGTACTGTCC -6.38 

6 GGGCCGTTCGAACACGAGCATGCGGCACGACCCTAGGATGACCTGAGTACTGTCC -7.24 

7 GGGCCGTTCGAACACGAGCATGGCAGTGTGCCCTAGGATGACCTGAGTACTGTCC -7.22 

8 GGGCCGTTCGAACACGAGCATGCGGCACGACCCTAGGATGACCTGAGTACTGTCC -7.24 

9 GGGCCGTTCGAACACGAGCATGGTGGGTGGTGGCCCTAGGATGACCTGAGTACTGTCC -6.08 

10 GGGCCGTTCGAACACGAGCATGCAGCGTACCTAGGATGACCTGAGTACTGTCC -4.95 

11 GGGCCGTTCGAACACGAGCATGGGGGTTGCACCTAGGATGACCTGAGTACNTCC -5.01 

12 GGGCCGTTCGAACACGAGCATGCGGGCCTAGGATGACCGAGTACTGTCC -6.38 

13 GGGCCGTTCGAACACGAGCATGGCAACCTAGGATGACCTGAGTACTGTCC -5.15 

14 GGGCCGTTCGAACACGAGCATGCATCACCCTAGGATGACCTGAGTACTGTCC -4.26 

Table 1.  The sequences of anti-VEGF aptamer clones 

 

No. Sequences of anti-HER2 aptamers ΔG
o 
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1 GGGCCGTTCGAACACGAGCATGGGCGGGCCTAGGATGACCTGAGTCTGTCC   -7.23 

2 GGGCCGTTCGAACACGAGCATGGGGCCTAGGATGACCTGAGTACTGTCC  -5.24 

3 GGGCCGTTCGAACACGAGCATGGCGGGTCCTAGGATGACCTGAGTACTGTCC  -5.47 

4 GGGCCGTTCGAACACGAGCATGGGGCCTAGGATGACCTGAGTACTGTCC -5.24 

5 GGGCCGTTCGAACACGAGCATGGTGCCCTAGGATGACCTGAGTACTCC  -4.56 

6 GGGCCGTCGAACACGAGCATGGTGCGTGGACCTAGGATGACCTGAGTACTGTCC -5.80 

7 GGGCCGTTCGAACACGAGCATGGGGCCTAGGATGACCTGAGTACTGTCC -5.24 

8 GGGCCGTTCGAACACGAGCATGATACCTAGGATGACCTGAGTACTGTCC -4.02 

9 GGGCCGTTCGAACACGAGCATGATACCTAGGATGACCTGAGTACTGTCC -4.02 

10 GGGCCGTCGAACACGAGCATGGTGCGTGGACCTAGGATGACCTGAGTACTGTCC -5.80 

11 GGGCCGTTCGAACACGAGCATGGTGCCTAGGATGACCTGAGTACTGTCC -4.56 

12 GGGCCGTTCGAACACGAGCATGGGTGTGACACCTAGGATGACCTGAGTACTGTCC -6.14 

13 GGGCCGTTCGAACACGAGCATGGGCGGGCCTAGGATGACCTGAGTCTGTCC -7.23 

Table 2.  The sequences of anti-HER2 clones 

 

The multiple sequence alignment was performed in MAFFT server in order to 

have an idea on the sequence similarity. According to Figure 21, both anti-VEGF and 

anti-HER2 aptamer sequences are significantly diverse both in terms of window length 

(the sequence between the primers) and nucleotide composition. From this data, the 

sequence number 9 from anti-VEGF aptamers and the sequence number 10 from the 

anti-HER2 aptamer were selected for binding assays. Free energy values (-G) were 

also calculated. Since it was not economically reasonable to do binding assays for all of 

them, only one of the aptamers from each pool was chosen for further analysis.  
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Figure 21.  The multiple alignments of: A) anti-VEGF and B) anti-HER2 aptamers. 

 

Phylogenic tree representation of the sequences was performed using PID 

(percentage identity) in JALVIEW. The aim of building the phylogenic tree was to 

create an idea about the relation of the aptamer sequences between each other. In this 

case, only one aptamer candidate was chosen for binding assays from anti-VEGF and 

anti-HER2 group, respectively. This phylogenic representation would be more helpful if 

more than one candidate was chosen for binding assay. In that case, choosing the most 

diverse ones according to percentage identity would give a better idea for further 

analysis. As it can be seen from the number of branches in each tree, the sequences of 

anti-VEGF apamers (Figure 22) were more diverse than the anti-HER2 sequences 

(Figure 23).   



43 
 

 

Figure 22.  Phylogenic tree representation of anti-VEGF aptamers. 

 

Figure 23. Phylogenic tree representation of anti-HER2 aptamers. 

 

Figure 24 shows the reoccurrence of each random sequence within the set window 

of <50~60 nucleotides. In both cases, as it was verified above by multiple alignment 

and phylogeny representation, the sequences were well diverse and the number of 

reoccurred sequences was constrained. Since the highest number of reoccurrence was 2 

among 14 sequences for anti-VEGF aptamers and 3 among 13 sequences for anti-

HER2, this information was not very helpful for sequence selection, aptamers. Each 
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sequence has a similar probability for being the most specific candidate to bind to the 

target protein. 

  

 

 

Figure 24.  Graphical representation of sequence reoccurrence for A. anti-VEGF and B. 

anti-HER2. 

4.5.1.  Secondary Structure Analysis 

The secondary structures of the obtained sequences were calculated using Mfold 

server for DNA folding, which considers the ionic content of buffer and the temperature 

information. Here, the temperature was set as 25 
o
C, Na

+ 
concentration as 50 mM and 

Mg
++

 concentration as 1 mM according to the binding buffer content. The aim of 

building the secondary structure was to have an idea of how the ssDNA folds in its 
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secondary structure. The aptamer candidates selected in this studied is highlighted by 

encircling in Error! Reference source not found.. As it can be observed from Error! 

Reference source not found., all the secondary structures contained stem-loops in their 

structure.  

 

Figure 25. Secondary structures of anti-VEGF sequences. Window sequences are in 

pink. 
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Figure 26. Secondary structures of anti-HER2 sequences. Window sequences are in 

blue. 

 

4.6.  Binding Assay 

Binding assay was performed to test the candidate aptamer for affinity and 

selectivity toward the target protein. The fluorescence measurements were made using 

fluorospectrometer to probe the changes occurred before and after binding of 

fluorescein labeled aptamers to target protein. Equation 4.1 was applied to normalize 

the fluorescence data obtained from binding of aptamers to target. 

                                                             (4.1) 

where f0 is the initial fluorescence and f is the fluorescence after binding. The target 

VEGF and HER2 proteins were used to test the affinity of the anti-VEGF and anti-
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HER2 aptamers respectively, while BSA (Bovine Serum Albumin) protein was used to 

test the selective ability of these aptamers compared to target protein. Figure 27 first 

shows an increase in the relative fluorescence value with an increase in target (VEGF) 

concentration up to 500 nM and attains a saturation. This is probably because all of the 

available aptamer binding sites are occupied and thus no further binding occurs. This 

data was then used to calculate KD (dissociation constant) by fitting the data to the one 

site bind formula using equation 4.2.  

                                                                                                                                               (4.2) 

where Bmax is the maximum number of binding sites, [L] is ligand concentration and Kd 

is the dissociation constant. As a result the Kd was 315 nM Figure 28. On the other hand, 

anti-VEGF aptamer showed high selectivity by showing no binding to BSA. 
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Figure 27.  Relative fluorescence (%) versus protein concentration for VEGF (black) 

and BSA (red) binding assays. 
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Figure 28.  One Site Bind Fit of Relative fluorescence (%) vs protein concentration 

data. 

Anti-HER2 binding data did not show the same success as seen with anti-VEGF 

aptamers (Figure 29). Although there was a weak binding showing some affinity for 

HER2 target, BSA binding data showed that anti-HER2 is not selective toward its 

target. For this reason, the binding data of anti-HER2 was not fitted to one site binding.  
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Figure 29.  Relative fluorescence (%) versus protein concentration for HER2 (black) 

and BSA (red) binding assays. 
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5.   DISCUSSION 

The aim of this thesis was to select ssDNA aptamers that bind to two of the most 

important cancer biomarkers which are VEGF and HER2. The hypothesis was that these 

aptamers bind to respective target proteins with high affinity and selectivity, and inhibit 

their function. Overexpressed VEGF and HER2 help tumor progression, mainly by 

enhancing cell proliferation and vascularization. Inhibition of these two molecules may 

lead to cancer prevention (21). For this reason the selected aptamers are assumed to be 

used for cancer treatment. Even though there have been many attempts to block these 

molecules in cancerous cells by means of antibodies, still aptamers are expected to be 

more successful. Several characteristics like stability, easiness to be selected and 

produced, cost and possibility of structure and function modifications, makes aptamers 

advantageous over antibodies.  There are already some examples like Macugen, an 

approved drug, where anti-VEGF aptamer was used to target VEGF in macular 

degeneration.   

In this study VEGF(A)165 and the extracellular domain of HER2 protein were 

chosen for the in vitro selection process. VEGF-A which was used here, is a member of 

6 structurally related proteins, and it is the one which plays the most important role in 

angiogenesis. VEGF-A itself has many isoforms and VEGF165 which is one them, was 

chosen for aptamer selection. The reason for choosing VEGF165 was that it is the 

predominant isoform of the two which are secreted into the circulation system in tumor 

conditions. This feature of VEGF165 is especially important for sensing the presence of 

tumor by using only blood samples. This works by measuring the signal of VEGF165 
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binding to another specific molecule with the help of biosensors (anti-VEGF might be a 

good candidate).  

The same strategy of protein selection was followed for HER2. There are many 

strategies for blocking the HER2 function. From the interaction with the available 

drugs, it has been observed that the most efficient inhibitors are the molecules which 

block the extracellular region and prevent the phosphorylation of the tyrosine kinase 

domain precluding the activation of the pathway. With the assumption that the selected 

aptamer inhibits HER2 function upon binding, the plan was to select an aptamer that 

binds to HER2 extracellular region. This seems to be the most plausible solution 

considering that purified protein was used as a target.  

Incubation of the target with the ssDNA library and the separation of the unbound 

ssDNA is often a challenge and an important issue during selection. This was solved by 

use of magnetic beads. They are commercially available and are provided together with 

the validated protein immobilization procedures. The magnetic beads are round in 

structure and rough in surface. This was also verified by SEM analysis of magnetic 

beads samples (Figure 16). Despite the clear images of the beads‟ structure this analysis 

was not sufficient to discriminate between the protein coated and uncoated beads and, 

ssDNA treated and untreated samples.  The reason for that is the limit in magnification 

which is not high enough to visualize the tiny structures of protein and ssDNA which 

are a few nm.  

The proteins were immobilized on the surface of the beads by the active 

carboxylic groups which interact with the amine groups of the protein. So, a stable 

amide bond mediates the link between the bead and the protein. The magnetic property 

of the beads made it easy for washing the sample after ssDNA incubation without losing 

the protein but only the unbound ssDNA. The protein - ssDNA pool was performed in 

binding buffer, which has salt content and pH similar to body fluid. This was also an 

important choice which is linked to the future perspectives of this work. The secondary 

structure of the ssDNA changes according to pH, temperature and salt concentration. 

An aptamer which is selected in such binding conditions would behave in a very similar 

way when injected to the blood or when a sample of blood is dropped on it. This serves 

the future perspectives to use the selected aptamers as potential drugs or as biosensing 
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tools. On the other hand, the detergent (Tween20) was used to provide stringency to 

ssDNA binding on the surface of the target.  

Information on the recovery of ssDNA after incubation with the target gave an 

idea on binding of specific aptamers. The recovery after the first cycle was too low. At 

the beginning  of SELEX a highly diverse and large ssDNA pool was introduced to the 

target and it was observed that the ratio of specific to total ssDNA was low. This was  

expected because only a few from all the library will bind specifically to the target, 

which is actually a good sign. The specific to total ssDNA ratio was expected to 

increase in the following cycles because after each selection the bound ssDNA is 

amplified.  With the implementation of the negative selection with other proteins, and 

the stringency conditions incorporated in each cycle, more specific strands are enriched. 

The ssDNA recovery record which was according to the expectations, was an important 

data to show that the enrichment is going in the right way. The ssDNA pool recovery 

was also expected to increase fast in the first three cycles and more slowly in the later 

cycles.  

After amplification with PCR the dsDNA was separated and extracted by means 

of electrophoretic methods, which are well known and simple to handle. Simplicity in 

selection is one of the most important advantages of aptamers over antibodies. Here, the 

importance stands on producing very specific molecules in a short time rather than 

using complicated methods. Fluorescein labeled forward primer made this even easier. 

As a result amplification with fluorescent primer, the forward strand was fluorescently 

labeled, whereas the reverse strand not. The labeled dsDNA was easy to distinguish and 

excise. It also played an important role for strand separation in denaturing 

polyacrylamide electrophoresis procedures (denaturing PAGE). The labeled strand 

appeared to be larger in size and migrated more slowly than the reverse strand. The 

fluorescently labeled band facilitated band excision without mixing with the reverse 

one. On the other hand in highly denaturing conditions such as 7 M urea and 20% 

formamide it is highly improbable to have dsDNA.  

The same process of selection, amplification and separation was repeated for 7 

rounds for anti-VEGF and 8 rounds for anti-HER2 selection. Here the aim was to enrich 

the most specific strands by repeating the cycles, and employing negative selection and 

stringency conditions in each cycle. For this reason 7/8 cycles were considered 
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sufficient for selection of candidate aptamers. At the end of SELEX procedure the 

dsDNA pool was cloned in E. coli cells. With the plasmid digestion and selection of 

positive clones in agarose gel, it was possible to predict the size and separate the false 

positives. The samples showing the band at around ~60 base pairs were selected for 

further sequencing.  

The sequencing results showed that the pool of candidate aptamers was highly 

diverse in terms of both content and length of the sequences. The VEGF sequences 

varied from 50 to 58 bases whereas the HER2 sequences varied from 49 to 55 bases. 

These results were expected and scientifically possible. The ssDNA library was 

composed of 86 bases long candidates, which contained 40 bases of random region 

flanked by constant regions 46 bases long in total. During amplification the reverse 

primer binds to the constant region flanking to the right of the random region. On the 

other hand the forward primer has to bind to any complementary sequence within the 

random region. With this information in mind it was obvious that the selected aptamers 

would be at most around 60 bases long. The size reduction happens after the 

amplification step during the first cycle. The obtained sample became the selection pool 

for the second cycle. In the following cycle there is no size reduction, but the sample 

obtained in the first amplification is selected and enriched until the end of SELEX.  

At this point choosing the best candidates for further analysis is a challenging 

step. What is more important, due to financial issues only one candidate should be 

selected for binding assays. This means that the sequence information is the only source 

to build a reasonable explanation and choose the candidate that might bind with the 

highest affinity and specificity. The best way to do that was to classify the candidates 

according to their sequence identity and choose the representative candidate for the 

sequence that appears the most. This lies on the assumption that a sequence that appears 

more frequently in the pool is the one that is enriched the most and is the preferred one 

for binding. Fist the limited number of the sequenced clones was a challenge, but most 

importantly the diversity of the sequences was the main obstacle. Anyway some 

attempts were made to make use of any information that could be extracted from these 

sequences.  

First the sequences of anti-VEGF and anti-HER2 where aligned separately. The 

aim was to have a clear understanding on how these similar these sequences are to each 
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other. Anti-VEGF sequences were had sequence similarity at the beginning of the 

random region, while anti-HER2 sequences showed sequence similarities both at the 

beginning and at the end of the random region. The short random regions and the gaps 

formed due to the diversity in length were two factors which prevented from arriving to 

a conclusion. On the other hand it is obvious that sequence conservation in the constant 

regions is not meaningful in terms of specific binding because they were used for 

amplification.  

Second, the sequence alignment data was used to build the phylogenic trees of the 

sequences. Phylogenic trees give information on how the sequences relate to each other 

and group them accordingly. In this way a kind of classification or grouping of the 

sequences is done. From this representation of the data it was observed that anti-VEGF 

sequences were more diverse than anti-HER2 sequences. However both pools were 

separated into two main groups of classification. This would be an important data if two 

aptamers were chosen for binding assays. In that case one aptamer would be chosen 

from each group and the affinity binding results would be compared.  

Thirdly, an analysis of the sequence reoccurrence was performed. It was shown 

that only one anti-VEGF sequence appeared twice. On the other hand half of the anti-

HER2 sequences appeared twice and one sequence appeared three times. Since the 

members in one sequence pool appear similarly, it was hard to choose the „preferred‟ 

sequence that binds to each target. In this case it can be predicted that these different 

sequences bind to the respective target with similar affinity.  

Finally the sequences were subjected to secondary structure formation given the 

ionic concentration similar to the selection conditions. In the literature there are some 

cases in which it was shown that the secondary structure motif rich sequences confer 

higher affinity for their target. One assumption is that increase in the secondary 

structure motifs like loops, results in higher interaction sites with the target protein. 

However not all the motifs in a secondary structure serve for binding. Some of the 

motifs / sequence serve for supporting the functional motifs. Another factor is the free 

energy. Thermodynamic stability which is measured by change in free energy measures 

the resistance of aptamers to mutations and environment. From analysis of different 

aptamers it was observed that constant regions commonly do not have high impact in 

the aptamer structure. There is an exception for the aptamers with short random regions, 
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which is the case for most sequences here. In aptamers with shorter random region, the 

constant sequences have higher impact to the thermodynamic stability of the aptamers 

when compared to others. It has to be mentioned that the secondary structures are taken 

into consideration with the assumption that aptamer are the ones that undergo adaptive 

conformation upon binding. It is also true that in some cases it is the target protein that 

undergo adaptive binding, but this case is not considered here.  

Another plan was protein – aptamer candidates docking analysis, which was 

actually the first one. The docking servers require pdb files of both aptamer and the 

protein. It was not possible to form the pdb files of the former. To my concern up to 

date there was not any bioinformatic tool that could construct the pdb file of the ssDNA 

taking in consideration the secondary structure motifs which form upon target binding. 

However it would be a crucial information since all the candidates would be analyzed 

for binding to their respective target.  

Finally one aptamer candidate was chosen from anti-VEGF and anti-HER2 

sequence pools respectively. Number 9 anti-VEGF and number 10 anti-HER2 

sequences where the chosen ones. Number 9 anti-VEGF sequence was 58 nucleotides 

long and the longest sequence among the others. It had a free energy which relatively 

low when compared to other sequences and it forms secondary structure motifs. From 

the sequence information it was easy to distinguish the possible formation of a G-

quartet, which corresponds to the random region. Such kind of quadruplex structures are 

encountered in promoter regions, the structure of some aptamers (eg. Thrombin 

aptamer), etc. The presence of the G-quartet does not make this candidate automatically 

the best one, but it is an advantage over other candidates. Whenever G-quartet is found 

in a structure (to my knowledge) it appears to be functional and increase the stability. 

These structures are more stable that other structures like hairpins, loops, etc. which  are 

commonly seen in the aptamer structure. However it is not possible to see this structure 

from the bioinformatic tool used which shows only stem and loop formation. In this 

version also a loop is formed by the sequences in the random region. This sequence 

appeared only once.  

Number 10 anti-HER2 sequence was also the longest sequence in the respective 

pool and 55 nucleotides long. It appeared twice and also has a free energy which is 

relatively low when compared to others. The secondary structure is composed of two 
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stem-loops and the random regions lies to one side of one of the stem-loops. This 

structure contained a GTG motif which appeared in 40% of the candidates at the side of 

stem-loops.  

The choice of these two aptamers for further analysis was more an assumption for 

high affinity binding than rational explanation. It is usually hard to give a decision 

before performing binding assays. It should be mentioned that there were some motifs 

in the secondary structure most candidates that were common. These common motifs 

were formed in the constant regions, but this cannot be used as rationale for choosing 

the best candidate. One reason is that the same constant regions were used for aptamer 

selection of both targets and these motifs appear in both pools. Even if these secondary 

structures were the ones that confer affinity, it would be unlikely that they show affinity 

for two completely different targets. Even if this too is the case, the resulting aptamers 

would not be specific at all, which does not serve the final goal of this project. One 

explanation could be that these constant regions support the real binding structures. The 

similar free energy values can support this assumption.  This is also supported by the 

observation that constant region participate more in the structure of aptamers with 

shorter random region and affect their thermostability more when compared to other 

aptamers. On the other hand from the observations also tell that in most of the cases 

there are the random regions that participate in the functional structure, not the constant 

regions (39).  

The chosen candidates were the longest sequences with the random regions 

forming a complete secondary structure motif. It was previously mentioned that 

constant regions participate more in the secondary structures of the aptamers with the 

shortest random regions. For the reasons mentioned above it was a better idea to select 

the aptamers with the lowest participation of the constant regions. However it is not 

known how much difference makes a random region of 12 nucleotides from 3 

nucleotides. Secondly, in order to decrease the production cost and to find the sequences 

that confer affinity to the target, truncation is applied. Since the random region of these 

aptamers forms a secondary structure motif, after truncation it will be easier to 

understand whether it is the random region or the constant region that plays role in the 

functional structure of the selected aptamers. To conclude with the best candidate 

selection part, it is worth saying that all the candidates that are sequences must confer 
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affinity to the respective targets. It would be highly improbable for the bad binders to 

pass the stringency test.  

Binding assays of the selected aptamers with target protein were performed using 

change in fluorescence intensity after incubation of the two. The fluorescence property 

of the aptamers makes it easier to detect the unbound ssDNA. The same conditions as 

during the selection were used for binding assay measurements. The concentration of 

the ssDNA was kept constant while the concentration of the protein was increased up to 

860 nM. As the aptamers bind to the target protein, the fluorescence intensity in the 

supernatant decreased. In order not to disturb the equilibrium reaction between the 

aptamer and target protein, the target coated magnetic beads were gently attracted to the 

walls of the tube and the fluorescence of the supernatant was measured. For binding 

curve construction, the data given were in terms of aptamer-target binding. In other 

words, the y-axis values were increasing until the plateau was reached. So, the 

decreasing fluorescence data was reconstructed by subtracting the ratio of fluorescence 

reading of any protein concentration to the fluorescence reading of the reference by 1. 

There was seen an increase and then no change in the fluorescence signal for anti-

VEGF, but the change in fluorescence signal of anti-HER2 was not significant. 

Moreover anti-HER2 failed the selectivity test, but anti-VEGF showed no binding to 

BSA.  

The results of the anti-VEGF binding to VEGF were fitted according to one to one 

binding. The dissociation constant was calculated to be 315 nM. This is still not the best 

binding affinity of the aptamer-protein binding but the affinity can be increased by 

structure modification of the aptamer. The G-quartet structure of the anti-VEGF is 

promising in this aspect. Regarding the anti-HER2 aptamer it is not completely clear 

why it does not specificity for the target protein.  

5.1.  Future Perspectives 

The objective of this study was to select high affinity and specificity aptamers that 

bind to VEGF and HER2 target proteins. Introducing a new pool and other stringent 

conditions there exists the possibility to obtain such aptamers. However several 

challenges were faced during the aptamer selection process. Work with short aptamers 

(around 55 bases), gel extraction, separation of ssDNA and lack of resources were some 
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of the difficulties encountered during the process. On the other hand use of magnetic 

beads for separation of the bound to unbound ssDNA and implementation of negative 

selection were two strategies that made the work easier to select more successful 

candidates. As a result a number of successful candidates were obtained. They were 

successful because the selected aptamers were enriched for at least 7 cycles and passed 

through stringency conditions for binding. The chosen anti-VEGF aptamer showed a 

relatively good binding and was selective with respect to BSA. On the other hand the 

chosen anti-HER2 was not a good candidate with respect to affinity and selectivity, but 

still these measurements should be compared with results from other methods of 

binding affinity measurements (e.g. SPR). The same thing can be said for anti-VEGF.  

Next it would be a good idea to perform the binding analysis for at least one 

additional aptamer and compare. Either the candidates with the shortest random region 

or the candidates that have secondary structure from constant regions only could be 

chosen. Regarding further analysis with the chosen aptamers, after verification with at 

least one other method truncation and/ site mutagenesis can be applied to determine the 

functional sites in the aptamer structure. Modifications can be applied to first increase 

the affinity and add other properties to the aptamer. Meanwhile binding tests with other 

non-target proteins can be performed. Then NMR analysis of the best aptamer – target 

protein complex would provide valuable information.  
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