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Faculty of Engineering and Natural Sciences, Sabancı University, 34956 Istanbul, Turkey.

Pınar Yolum
Department of Computer Engineering, Bogazici University, Bebek, 34342 Istanbul, Turkey

Abstract: This paper proposes the use of multiagent cooperation for solving global optimization problems

through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its

flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This

structure allows the execution of a wide range of global optimization algorithms described as a set of interacting

operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the

traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in

the environment cooperate as they see fit during run time. We explain the development and communication

tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also

show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with

randomly selected initial points.
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1. Introduction. Global optimization is a broad term defining the problem of finding the minimum

of a given function on a given domain of feasible solutions. Global optimization problems are known to

be NP-hard, thereby deterministic solution methods may not be suitable unless the problem is relatively

small. While it is difficult in general to guarantee providing exact solutions or to evaluate whether a

given solution is close to being globally optimal, it is still necessary to attack these problems effectively

since they arise in many diverse application areas such as molecular distance geometry, neural network

training, and space trajectory optimization. Important reviews of global optimization, its popular solution

methodologies and applications can be found elsewhere [24, 30, 29].

In this study, we consider global optimization problems given by

minimize f(x),

subject to x ∈ F ,
(1)

where the objective function f : Rn → R is a continuous non-convex function without a special structure,

and the feasible set F ⊆ R
n is defined by simple bounds on the components of decision variable x. These

problems are important to examine because for unconstrained real-life problems it is generally possible

to derive bounds on the values of decision variables. Also, for problems with functional constraints, the

problems of the form (1) may arise as sub-problems of upper level solution methodologies. Solving a

general global optimization problem clearly requires an extensive search on the set of feasible solutions.

Thus, it is very suitable for the application of various decomposition schemes, which can be described by

a group of tasks and task interrelationships.

We start by considering the case of population-based heuristics. In its simplest form each individual of

the population has simple identical tasks —such as a single function evaluation. However, the interaction

mechanism can be quite sophisticated, e.g.,[5, 11, 7]. The next idea would be to define identical but

possibly more functional tasks, as in the case of a multi-start strategy that executes several local searches
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concurrently starting from different points and finally selects the solution with the minimum objective

function value. This approach corresponds to a scheme where several instances of an algorithm run

independently and share information in a prescribed way. It has been argued that the resulting (parallel)

algorithms may perform better in terms of solution quality thanks to the cooperation among individual

search instances [12, 6].

Search algorithms may perform differently on a given problem instance; they can be very successful on

some problems and may fail to make progress on some others. Thus, an idea following the above scheme

would be to run different search algorithms in parallel and let them cooperate. This is an approach that

is referred as parallel hybrid algorithms. In this case, the tasks are no more identical, but the interaction

is again predefined. This scheme allows several possibilities to combine deterministic methods with

stochastic and heuristic approaches, and some examples are reported to perform quite well [36, 21, 16].

While parallel hybrid algorithms cover various combinations of algorithms, the interactions between

the algorithms have several drawbacks:

⋄ Lack of heterogeneity: The algorithms generally exchange the same message with predefined

entities. The message could be the best solution found or an area to be searched. However,

differentiations based on the identities of the participants are not, and cannot be made.

⋄ Lack of autonomy: The algorithms are expected to handle the messages that are received in the

same way. An algorithm cannot autonomously decide that it is going to ignore a certain message

from a particular algorithm.

⋄ Lack of flexibility: The interaction is limited to the predefined patterns enforced by the system

designer. An algorithm cannot decide to send a different type of message at run time. We

believe that a more adaptive and efficient scheme would be possible by allowing the interaction

to emerge during the solution process. For example, an algorithm that does not usually send

out the solutions it has found, may decide at run time to do so, because it has found a really

promising point.

In order to overcome these limitations, we propose to embody each algorithm inside a software agent.

Agents are autonomous computations that can perceive their environment, reason, and act on it as well

as communicate with others accordingly [15]. Agents are most useful when they exist in a multiagent

system so that they can inter-operate with other agents. Inter-operation requires agents to share a

common communication protocol to coordinate their activities and to cooperate if they find it to their

advantage. The autonomy of the agents implies that the agents can choose how and with whom they

want to interact. This autonomy also enables freedom during execution. Agents need not have to be

developed by the same people. Agents from different vendors can inter-operate in a suitable environment.

An agent can be reactive or proactive, depending on the situation. Reactive agents respond to the events

happening around it, whereas proactive agents decide what needs to be done and perform an action

without being probed.

Since agents interact on demand, multiagent communication is usually asynchronous. That is, an

agent sends a message to another when it feels necessary. Similarly, an agent receives a message during

its execution rather than waiting for messages at predetermined points. Many times, a multiagent system

can be viewed as an organization where each agent has a specific role. These roles can be assigned prior

to execution or the agent can adapt a role during execution. The roles ease the execution of the system
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by prescribing specific tasks or behaviors to agents [9]. These properties of a multiagent system make it

an ideal candidate to realize teams of algorithms.

This paper has three contributions. First, we show how a global optimization algorithm can be

embodied inside an agent to act autonomously and cooperatively with other agents. Second, we develop

a multiagent environment (MANGO) for executing such agents. The MANGO environment provides

the necessary utilities to develop agents that can participate in a multiagent system to solve global

optimization problems as well as an extensible protocol for agents to communicate with each other. Third,

we depict how multiagent cooperation can be used to tackle global optimization problems. Multiagent

cooperation is shown in examples where agent teams are formed and exploited to solve global optimization

problems in MANGO. The teams employ a cooperation scenario that specifies an interaction pattern

among agents. MANGO is a distributed environment; therefore it suits well for implementing global

optimization methods on a distributed system, as well as solving global optimization problems with

distributed data. Also, MANGO is designed as a modular system so that different global optimization

strategies can be employed by running the sameMANGO agents with different roles or different interactive

behaviors.

1.1 Examples. As pointed above, it is possible to describe most of the existing general global

optimization methods by a group of concurrently executable tasks and task interrelationships. MANGO

can be used for the execution of all such existing methods, as well as providing all the flexibility for the

design of new global optimization strategies. The below three examples provide further clarification.

(i) As the first example, let us consider the well-known multi-start scheme. An existing approach

is to maintain a history of local search results, and employ that information in choosing the

starting points for the following local search runs. This scheme can be realized on MANGO by

introducing a non-hierarchical system of agents, each of which runs a local search algorithm. The

agent communication consists of sharing the local solutions obtained. Upon completion of a local

search, the agent sends the final solution point to all the other agents as an information message.

When an agent receives such a message, it adds the enclosed local solution point to its list of

known solutions. Each agent uses that list of known solutions to decide on a point that will be

used to start the next local search run.

(ii) Another well-known strategy that can be realized on MANGO is (parallel) branch-and-bound.

This requires the design of agents with two different roles: a leader agent and a group of sub-

ordinate search agents. The leader partitions the search domain and sends request messages to

the subordinate agents asking them to apply their search mechanism on the specific partitions

it has assigned to them. The leader agent manages the search tree by using the replies of the

subordinates—fathoms existing branches or starts new ones according to the results obtained in

sub-domains. The overall search can start with a small number of active search agents, and the

leader may ask more search agents to become active if there are more branches to be searched.

This asynchronous communication among the leader and the search agents well suits to efficiently

implement this as a multiagent system.

(iii) Finally, let us give an example on how MANGO can be used to design new strategies. We will

consider again the local search agents of the multi-start example, but this time they are allowed to

use the information they receive in different ways. Note that each agent can receive information
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messages from others in the middle of the execution of their algorithms. Therefore, their lists

of known solutions can change dynamically from one iteration of the local search algorithm to

the next. The local search agents could use the additional information sent by the others to

adapt dynamically to a model or update parameters they use, or to terminate a local search

early and jump to another starting point. The main goal here is to explore better solutions of

the global optimization problem at hand. Hence, it is reasonable to consider modifications of the

local search methods in ways to improve their global performance. For example, a local search

agent could use its list of known solutions to revise its step computation so that the steps are

rotated towards other useful directions as the iterates approach to the points in the list. In this

way, the agent could increase its chance of ending up at a different local solution. We will return

to this example in Section 4 to discuss in detail how MANGO agents are suitable to design such

extensions that aim to improve the performance of the global search.

1.2 Related Work. While multiagent systems have been used in many areas, their use in solving

global optimization problems, as we discuss here, is new. There are a number of different studies on

multiagent optimization systems. However, to the best of our knowledge, the most related idea to our

work is that of asynchronous teams (A-teams). An A-team is defined as a set of autonomous agents and

a set of memories that are connected through a cyclic network. There is no coordination or planning

mechanism. Each agent applies an algorithm or a modification operation on the solutions selected from

its input-memory. To provide cooperation, input and output memories of agents are connected through

communication channels so that an agent may select the output of another agent as its input. The system

terminates when a persistent solution is obtained [37]. The approach has been successfully adapted

for and applied to particular problems, among these are some specific nonlinear optimization problems

[32, 33]. To support the implementation of this approach, moreover, a general-purpose JADE-based A-

team environment (JABAT) has been developed [2, 1]. However, our intuition in this work is significantly

different than that of A-teams. In the A-teams environment, all agents employ the same interaction

behavior, whereas, in this work, our aim is to enable agents to play different roles and have various

interaction patterns. Moreover, in A-teams, the interaction among the agents does not affect the included

algorithms at the control level, i.e., the cooperation applies through the input data of the algorithms but

the original mechanisms of these procedures are not modified. However, in this work, agents can behave

differently based on the messages that they receive.

Similar to A-teams, the main idea of the distributed constraint optimization problem (DCOP) approach

is that individual agents have limited capabilities so they can only partially contribute to the solution

of the global problem. In the DCOP approach, each agent owns a constraint or a variable and the

values of the variables are assigned in coordination [40]. Various algorithms have been developed to solve

DCOP. An important one is ADOPT, which is a polynomial space algorithm, where agents’ execution,

either in parallel or asynchronously, guarantees finding the optimal solution [22]. The approach has

been successfully applied to a variety of combinatorial optimization problems and several variants and

extensions have been developed [19]. The problem attacked in this paper is different than DCOP. Here, our

focus is on solving global optimization problems, which cannot be represented as a constraint optimization

problem. Further, our approach supports heterogeneity and autonomy of the agents to a larger extent.

That is, we enable agents to exchange a richer set of messages and more importantly allow agents to
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respond to messages in ways that are most profitable for them. Hence, contrary to agents applied in

DCOP approaches, agents in our platform are free to decide whether to answer to queries or follow the

directives in the messages as they see fit.

The rest of this paper is organized as follows. Section 2 explains MANGO in depth, detailing important

features such as its protocol, library structure and so on. Section 3 describes the anatomy of a MANGO

agent and gives guidelines for developing one. Section 4 provides different scenarios that have been

developed using MANGO, outlining various interesting results that emerge due to flexible interactions.

Finally, Section 5 discusses our work in relation to existing literature and provides directions for future

research.

2. MANGO Framework. MANGO is a Java-based multiagent global optimization framework that

provides an environment to deploy software agents that cooperatively solve global optimization problems

and an API to develop these agents. The essential principle of MANGO is to use cooperation [17] among

agents to facilitate the search for a global optimum of a given problem. In order to cooperate effectively

agents should communicate with each other using a communication language, which establishes the com-

mon understanding over the exchanged messages [8]. In this respect MANGO provides a communication

mechanism in which agents can exchange messages to share their information with others to solve global

optimization problems. The exchanged messages are specifically designed to share information related to

global optimization problems (e.g., a point in the search space and its objective value), which provides

a basic language to the agents to support cooperation. An advantage of this language is its extensible

nature. MANGO provides fundamental language elements, which can be combined or extended to come

up with a richer languages when necessary. Such a language may apply an ontology in order to establish

a common understanding to agents on the language elements (i.e., new message types or message con-

tents) [35]. Besides communication, coordination is also required to establish cooperation between agents.

There are various coordination mechanisms in the multiagent systems literature such as task sharing and

result sharing [10, 31, 41]. In task sharing, a problem is decomposed into smaller sub-problems mostly

during design time and each sub-problem is assigned to an agent by a central agent or the designer.

Depending on the problem, both the task division and the assignment of tasks to agents with different

capabilities can be difficult. MANGO does not offer a static task division capability. For agents are

assumed to be autonomous, MANGO does not provide a dedicated method for task assignment, either.

However, MANGO provides a yellow page service, which allows agents to advertise their services. Agents

can realize task sharing by discovering the other agents that provide suitable services to perform the

necessary tasks and requesting these services on demand. As a result of task sharing, a problem is con-

currently solved by several agents. Then, the agents share their results with others and refine their own

solutions with respect to the other agents’ findings. Result sharing is considered beneficial over task

sharing since it allows agents to cross-check their results. MANGO supports result sharing by providing

special message types, which can be used by the agents to share their results with others. However, to

preserve autonomy, MANGO does not enforce agents to share their results or to use the shared results

by other agents. In general MANGO does not enforce a specific coordination mechanism for agent co-

operation and the agent developers are free to adopt any coordination mechanism that fits best to their

specific requirements. On the other hand, MANGO provides basic facilities, such as a directory service,

yellow pages service and specific message types to help the developers to implement their coordination



6 Aydemir, Günay, Öztoprak, Birbil, Yolum: MANGO

Bogazici and Sabancı University, c©October 19, 2012

mechanism.

The MANGO environment can be described as follows: autonomous agents interact with each other to

find an optimal solution to a given global optimization problem. Agents are built on MANGO API, so the

designer is not bothered with technicalities such as entering and leaving system, discovering other agents,

sending and receiving low level messages. Agents implement different algorithms, some of which can be

found in MANGO libraries, to solve a given problem. Agents exchange messages regarding the global

optimization problem. Different message types carrying different information regarding to the solution

are implemented specifically for global optimization domain. Also, new message types can be introduced

whenever needed. Since the agents are autonomous, they are free to choose the recipient and the content

of the message they send. They may also disregard messages depending on their designs. Agents use

the received information to find better solutions and send information to help other agents. Once the

agents are developed, they are deployed in the MANGO environment. The MANGO environment is a

distributed environment that provides registry and yellow pages services to the agents. The environment

is distributed so that agents running on different machines interact with each other.

2.1 MANGO Environment. A MANGO environment is a distributed system of agents as we

show in Figure 1. An agent is implemented as a Java program that is developed using MANGO API.

Agents may run on the same computer or may reside on different computers, which are distributed

over the network. Every task, such as running an optimization algorithm, visualization of optimization

results and administrative issues, is performed by agents. In general, each agent performs a specific task.

However, there is no limitation on the number of tasks that an agent can perform in parallel.

MANGO Environment

Directory Agent Code

MANGO API

Directory Agent

Agent Code

MANGO API

Agent 1

... Agent Code

Agent N

MANGO API

JMS Provider

Figure 1: MANGO Environment

The major emphasis of the MANGO framework is cooperation among agents to solve problems. In a

MANGO environment, cooperation is realized over the service concept of the service oriented architecture

(SOA) [34]. Accordingly, agents provide services to other agents to combine their specific capabilities to

solve a common problem. Consider the (parallel) branch-and-bound strategy as we discussed previously.

In such a strategy, each search mechanism provided by a search agent is a service. The leader agent, who

requests these services as it needs, is called the service consumer and the search agents, who provide the

services (search mechanisms), are called the service providers.

Realization of services requires communication. In a MANGO environment, communication is imple-



Aydemir, Günay, Öztoprak, Birbil, Yolum: MANGO

Bogazici and Sabancı University, c©October 19, 2012
7

mented in two levels. The low-level communication, which deals with network structures and protocols,

is done over Java Messaging Service (JMS) [14]. We achieve this by integrating a JMS provider imple-

mentation into MANGO environment. The JMS provider implementation is mainly responsible from

management of network resources that are required for communication. Note that MANGO framework

is independent from any specific JMS implementation. Any JMS implementation that is compatible with

the JMS specification can be used in a MANGO environment. The high-level communication, which

deals with the exchange of agent messages, is build on top of JMS and supports two different messaging

paradigms. The first paradigm is based on interrupts. In interrupt based paradigm, when a message is

sent to an agent, this agent is interrupted immediately to process the sent message. The second paradigm

is based on the use of mailboxes. In this paradigm, the messages that are sent to an agent are stored in

a mailbox and the agent is free to check its mailbox whenever it finds it appropriate. Interrupt based

messaging favors handling of messages over the execution of agent’s tasks. On the other hand, mailbox

messaging favors execution of agent’s own tasks over the handling of messages. In a MANGO environment

agents are free to chose the suitable messaging approach according to their own priorities.

Each MANGO environment includes a special type of agent, which is called the directory agent (DA).

DA is mainly responsible from management of communication resources. DA provides two types of ser-

vices to other agents. The first type of services are related to the management of the JMS communication

resources. For instance, when a new agent joins to a MANGO environment, the DA requests the neces-

sary communication resources from the JMS provider on behalf of the new agent. In this way, other types

of agents, such as problem solvers, focus on their primary tasks. The second type of service provided by

the DA is the directory service that allows agents to discover other agents and their provided services

in a MANGO environment. When an agent needs a service, it queries the DA about who can provide

the required service and if such a service is provided by an agent, the DA replies the necessary contact

information of the provider.

2.2 MANGO API. The MANGO API is a fully extensible API that provides fundamental facilities

to the developers to implement their own agents to run in a MANGO environment. The MANGO API is

a composition of the five libraries. These are agent templates, communication, optimization, service and

log libraries.

Agent templates library provides a set of agent classes that can be used as a base by developers to

develop their own agents. The agent classes in the agent templates library provide fundamental data

structures and constructs to developers, by hiding low level details of the JMS based communication and

agent administration in the MANGO environment.

The classes of the communication library provides a set of predefined protocols to facilitate messaging

between the agents. There are two different family of protocols in the MANGO API. The first family

of protocols is the system protocols. These protocols are used for system and administration purposes

usually between agents and DA. For instance there is a protocol for service discovery, which specifies

how an agent can query the DA to find an agent that provides a certain service. The second family of

protocols is the optimization protocols. These protocols are used between agents to cooperatively solve

an optimization problem. For instance there is a protocol that can be used by an agent to request the best

solution found for a global optimization problem from another agent. However, the agent developers are

not restricted only to use the protocols provided by the MANGO API. Hence they can extend provided
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protocols or create their own protocols from scratch according to their needs.

The optimization and service libraries provide facilities to represent common concepts of optimization

and SOA domains. The optimization library provides classes to define global optimization problems and

problem solution formats, which can be used by the agents to achieve a common understanding about

the global optimization problems. Similarly, the service library provides facilities to define the services

in a common way for all agents. The log library provide basic logging facilities for developers both for

debugging agent execution and also for reporting results of optimization processes. The logs are generated

in XML format; hence, they are extensible and also processable on various platforms like MANGO itself.

Other than the five libraries of the MANGO API mentioned above, we provide two auxiliary libraries

in MANGO Framework. The first of these libraries is the optimization problem library, in which im-

plementations of a set of global optimization problems exist. These global optimization problems are

implemented in accordance with the definition of the problem classes given in the MANGO API, hence

they are ready to use in a MANGO environment. The second auxiliary library provides a set of optimiza-

tion algorithms such as trust-region method, quasi-Newton methods, random search, and so on, which

can be used by agents in a MANGO environment. 1

Directory Agent Non-registered Agent

Registered Agent 1

...

Registered Agent N

MANGO Environment
(1) Agent Registration Request

(2) Agent Registration Reply

Figure 2: Registration of a new agent to MANGO

2.3 Agent Lifecycle. The lifecycle of an agent starts by registering itself to the MANGO environ-

ment via the directory agent as we show in Figure 2. The new agent first sends a request for registration

to the directory agent. To register the new agent, the directory agent creates necessary communication

facilities and sends a reply to inform the new agent. After the registration process, the new agent is ready

to act in the MANGO environment. In general an agent can act in three different ways after this point as

we show in Figure 3. First, it can use services provided by other agents in the environment to perform its

own tasks. Second, it can provide services to other agents. Third, it can do both in parallel. The services

that are of interest here are related to the particular algorithm an agent is employing. When the agent

decides to use services of other agents, it queries the directory agent for the available services. According

to the results of this query, the agent communicates with those agents that provide the required service.

On the other hand, if the agent decides to provide its own service to others, it must register the service

to the directory agent in order to inform other agents about its service. An agent can use any number

1All of these MANGO libraries as well as documentation for implementation is available at the MANGO Project Web

site: https://algopt.sabanciuniv.edu/projects/mango
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of services provided by other agents at any point of its lifecycle. Similarly, an agent can provide any

number of services and do this at any point of its lifecycle. The lifecycle of an agent ends when the agent

deregisters all of its services and also itself from the directory agent.

Service Provider Agent Service Consumer Agent

Directory Agent

MANGO Environment

(1) Service Registration
(2) Service Query

(3) Service Query Reply

(4) Service Request

(5) Service Reply

Figure 3: Use of agent services in MANGO

2.4 Protocols and Messages. MANGO environment provides a set of extensible protocols to

coordinate communication between agents. Each protocol specifies a set of message types as classes to

specify the content to be exchanged by the agents during the execution of the protocol. We divide the

protocols into two categories as system and optimization protocols. System protocols are mainly used

between individual agents and the MANGO environment. Some examples of system protocols are agent-

register-protocol executed when a new agent joins to the environment, service-register-protocol executed

when an agent starts to provide a new service, and service-discovery-protocol executed when an agent

searches for a new service. On the other hand optimization related protocols provide simple message

exchange blocks that can be combined in order to realize complex high-level cooperative optimization

strategies explained in Section 4. Some examples of these optimization protocols are solution-request

protocol executed when an agent requests the solution of a specific problem from another agent and

refrain-request protocol executed when an agent informs another agent not to search a specific region

in a given search space, and explore-request protocol executed when an agent requests another agent to

explore a certain area.

2.5 Contrast to Existing Multiagent Middleware. There are some other middleware to develop

multiagent systems. One of the leading middlewares for multiagent systems is JADE [3]. JADE is an

open-source project that enables the building of agents in JAVA. JADE provides a good underlying

communication infrastructure, visualization tools, and so forth. The main strength of JADE is its general

purpose nature. Independent of the application in hand, one can use JADE to build a multiagent system.

However, this strength is also a caveat for specific applications. That is, for solving global optimization

problems, we need well-defined data structures to refer to basic constructs, such as regions, solutions,

and so forth. Indeed we have also experienced these deficiencies when we tried to improve upon our

prior work [18]. MANGO, on the other hand, is specifically targeted for global optimization purposes. It

defines necessary message types and data structures that can be used in communication for solving global

optimization problems. Other multiagent development middleware such as JACK [39] and Jason [4] are

more specialized multiagent modeling and reasoning methodologies, which make them unsuitable to use
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to solve global optimization problems.

There are also multiagent simulation frameworks such as MASON [20] and Repast [26]. These frame-

works are developed for simulation of various systems using multiagent modeling methodologies and they

are widely used for the simulation of social phenomena. Since these tools do not provide general purpose

programming facilities, they are also not suitable to solve global optimization problems.

3. Developing a MANGO Agent. Using the above MANGO framework, MANGO agents can

be developed. Each MANGO agent in the environment aims to solve a global optimization problem and

thus can be considered as a search agent. The development requires first to design the agents based on

design principles and then to realize them on the framework.

3.1 Agent Design Principles. When a MANGO agent is being designed, there are three decision

points that need to be considered.

Optimization Algorithm: The first point is the agent’s main algorithm for attacking the global opti-

mization problem. This algorithm may be any known or newly-developed algorithm for solving a global

optimization problem. The agent designer decides on this algorithm and implements it in the agent. The

MANGO environment comes with a set of algorithms that can be used when developing new agents.

Outgoing Messages: The second point is related to when and with whom the agent is going to commu-

nicate during its execution. The communication is necessary for various reasons, but most importantly

for coordination. That is, it is beneficial for an agent to position itself correctly in the environment.

For example, two agents may not want to be searching the same area since probably if they search two

different areas they may find a solution faster. Conversely, they may want to focus on a certain area

rather than diverging.

⋄ Need-Oriented: The questions of when and with whom to communicate are strictly related to

the optimization algorithm that the agent is using. If the agent’s own algorithm cannot handle

certain tasks, the agent would need others’ services to handle these. For example, if the agent’s

optimization algorithm cannot perform local search well, the agent may find it useful to find

other agents that can offer local search service. As explained before, whether an agent does offer

this service can be found out by querying the directory agent that keeps track of the services

associated with each agent. After finding out the agents that offer the service, the agent may

contact one of them to receive the service. Alternatively, an agent that can do local search well

may be interested in finding out new areas to search when it finishes its local search. Hence, it

may be interested in finding others that can suggest new areas to search.

⋄ Role-Oriented: An agent may decide to take a leader role in the multiagent system and influence

the others by suggesting areas to explore or refrain. The choice of taking this role is up to

the agent but also affected by the particular algorithm the agent is executing. That is, some

algorithms can identify potential good areas quickly; and thus it is reasonable for the agent to

take this role and to inform others about the potential of these areas. Conversely, an agent may

be designed to play a leader or a follower role during design time as in the second example of

Section 1.1. In the setting of this example, the leader agent is intended to manage the overall

search whereas the rest of the agents have only local tasks. The algorithm of the leader is able to

partition the solution space in a specific way and process the information collected from different

parts, i.e., the leader assigns lower bounds to the objective function value attainable in each
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partition, eliminates some partitions based on these bounds, and does a new partitioning for the

remaining area. The local search agents apply their algorithms only as requested by the leader:

within the region it tells, using the parameters it decides, and stop according to the termination

criteria it asks.

Incoming Messages: The third decision point is related to if and how the agent is going to handle

incoming messages. Note that since the communication is asynchronous, the agent will receive incoming

messages during the execution of its algorithm. Incoming messages can be handled by the agent in two

different ways. The first way is, interrupting the agent immediately when a message is received. In this

case, the agent stops execution of its algorithm to handle the incoming message. The second way is,

storing incoming messages without interrupting the agent. In this case, the agent checks for incoming

messages whenever appropriate.

One naive approach is to always answer or follow the incoming messages. For example, if an agent

receives an explore message, it can always jump to the areas that is being suggested for exploration. Or,

whenever prompted for the best solution the agent has found, it can return its current best solution.

However, the following play an important role in how the incoming messages can be handled intelligently.

⋄ Exploration State: The exploration state corresponds to how well the agent has explored the

environment. This is important in answering questions, since an agent may prefer not to answer

a question if it has not explored the environment well or conversely prefer not to follow orders

(such as refrain messages) if it has explored the environment carefully. For example, in the

beginning of the execution, when the agent did not have enough time to search properly, it

may decide not to answer incoming messages related to the best solutions it has found, since its

solution may not be accurate.

⋄ Agent Sending the Message: Over the course of execution, an agent may model other agents

based on the types of messages they are sending. Based on this model, an agent may decide how

and if it is going to handle a message. For example, after certain iterations an agent may decide

to ignore messages from a particular agent, if these messages have become too restrictive for the

receiving agent to explore the region.

3.2 Example MANGO Messages. MANGO framework comes with a set of existing messages

in its protocol and further enables more messages to be added if necessary. We introduce two example

messages that are also used in the following examples.

⋄ INFORM SOLUTION: This message takes a solution to the current problem as a parameter.

Generally, an agent might want to share its current best solution through this message type. An

agent that receives this message might interpret the message in various ways. For example, an

agent may consider the received solution as a local minima and avoid it for future explorations.

⋄ REFRAIN REGION: This message takes as a parameter a region represented as a ball. When

the agent converges to a point xf , starting from a point x0, it can send the ball with center

xf and radius ‖xf − x0‖ inside a REFRAIN REGION message. The intended meaning of this

message is that the ball has been already explored by the agent, so others are better off searching

elsewhere to increase the chance of finding the global minima. Note that the receiving agents are

free to honor or ignore the message. This freedom is what makes multiagent cooperation flexible

and different than typical non-autonomous approaches (e.g., meta-heuristics). If an agent decides
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to honor the message (i.e., follow it), this is what it does. Instead of spending its effort within

such discouraged regions, it would prefer to start a new local search in a possibly unvisited part

of the solution space. Hence, it would take the ball and add it to its set of refrained regions (R)

set or merge with existing elements of this set. Whenever its current iterate xk falls inside one

of the balls in R, i.e,

‖xk − xc‖ ≤ r, for some B(xc, r) ∈ R,

it would stop its ongoing run and start a new run from a different initial point.

3.3 Examples of Agent Realizations. To understand how the above principles can be applied,

we develop three different agents: Agent B, Agent T and Agent R. For each agent below, we describe the

three important points: its algorithm, treatment of outgoing messages and incoming messages

Agent B: This agent applies a BFGS quasi-Newton algorithm with line-search. This local optimization

method uses first order derivative information. It progresses by taking steps that provide an acceptable

decrease in the objective function value. At each iteration, a step is obtained by first computing a

direction vector along which the existence of an acceptable step is guaranteed, and then deciding for a

step size along that direction. Under certain assumptions, the algorithm is guaranteed to converge to a

local solution of (1) starting from an arbitrary initial point. For a detailed explanation of the method

see, for example, [25]. To obtain a more practical algorithm, we have also imposed a bound on the

maximum number of iterations. Therefore, the algorithm terminates either by recovering a local optimum

or exceeding the maximum number of iterations. In fact, Agent B applies a further modification to the

BFGS quasi-Newton algorithm as a result of its interaction with other agents, which shall be explained

below. Also, since (1) has bound constraints in our case, it projects the steps computed by the original

algorithm to the feasible region whenever the next iterate falls outside. We should also note that the

agent repeatedly executes its local algorithm, i.e., when it converges to a local solution or exceeds the

maximum number of iterations, it starts a new algorithm instance from a different initial point.

Within a system consisting of the above mentioned three types of agents, Agent B has two types of

outgoing messages. The first one is a REFRAIN REGION message sent to all others, i.e., agents of type

Agent T and Agent R. The second type of message that this agent can send is an INFORM SOLUTION

message. By design, it only sends this message to Agent T to notify its current best solution. This

example depicts that an agent’s outgoing message behavior may differ. In different settings, Agent B can

send one of these two types, or both.

The only type of incoming message that Agent B is interested in is INFORM SOLUTION message.

When the agent receives this message, it assumes that the received point xr is a local minimizer. So,

not to converge one more time to one of the already discovered local solutions, it adds xr to a list of

known local minimizers, and tries to stay away from those points using a penalty function as its objective.

The penalty function φ is obtained by adding a penalty term to the original objective function f so that

approaching to the known local minimizers increases the value of φ, i.e.,

φ(x, P ) = f(x) + c
∑

y∈P

1

‖x− y‖2 + ǫ
, (2)

where P is the set of known local minimizers, ǫ is a small positive number, and c is a constant multiplier.

In this way, the minimization algorithm applied by Agent B is expected to direct it towards different
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local solutions, providing a more extensive search in the overall solution space. If Agent B receives any

other type of message, it simply ignores it.

Agent T: Agent T applies a trust-region algorithm, another local search method that also guarantees

convergence to a local solution of (1) under some assumptions. Like Agent B, we also impose an upper

bound on the maximum number of iterations that could be spent by the algorithm. At each iteration,

the trust-region algorithm computes a step via solving a simpler optimization problem that is defined

by a model function m and a trust-region parameter ∆. The model function is an approximation to

the original objective function f , which is accepted to be a good approximation within a ∆-radius ball,

B(xk,∆), called the trust-region. The computed step approximately minimizes m in B(xk,∆) and is an

acceptable step if the step also achieves a proportional decrease in f , i.e., m is approved to be a good

approximation to f within B(xk,∆). The model function and the trust region radius are updated at each

iteration. For a detailed explanation of the trust-region methods we again refer to [25]. Agent T does not

modify the step computation procedure of the original algorithm but may stop a run before converging

to a solution by using the information it receives from other agents. If there is no interaction, the agent

restarts its algorithm from a random initial point after the termination of each single run, as in the case

of Agent B. It also handles the bound constraints of (1) the same way as Agent B does.

In its interaction with Agents B and R, the only type of message Agent T sends is IN-

FORM SOLUTION message. It sends messages only to Agent B to share its current best solution

when it converges to a local minimizer xf or exceeds a predetermined maximum number of iterations.

Agent T processes two types of incoming messages: REFRAIN REGION and INFORM SOLUTION.

It assumes that the REFRAIN REGION messages are valid and follows these messages as explained in

Section 3.2. If this agent receives an INFORM SOLUTION message (i.e., another agent’s current best

solution), then Agent T acknowledges the message content solution point xr, and starts its next run from

this point if the agent confirms that xr is not a local minimizer of (1). This case is likely when the sender

of the INFORM SOLUTION message is Agent R.

Agent R: Agent R uses a simple random search as its algorithm. In a single run, the agent evaluates the

value of the objective function at a set of points that are uniformly sampled from the feasible region. The

agent repeatedly executes this procedure. Its current solution is the point with the minimum objective

value within all the evaluated sample points up to that moment; consequently, the current solution is

updated if a better solution is obtained in the most recent run.

When its current solution is updated, Agent R sends this point to Agent T via an IN-

FORM SOLUTION message. On the incoming side, Agent R receives and follows REFRAIN REGION

messages. This agent is very quick in exploration and provides diversification; nonetheless, it may be

very inefficient in finding a final solution.

Note the flexibility of the interactions among agents. First, the communications need not be symmetric.

For example, Agent R sends messages to Agent T, but only receives messages from Agent B. Second,

an agent can send certain types of messages to a particular agent but not others. For example, Agent

B sends INFORM SOLUTION to Agent T but REFRAIN REGION to Agent R. Such variations on

communication can be easily adapted in our environment with minimal modifications on the agent and

no modifications on the agent’s algorithm.

Another important point to note is that while agents are built to cooperate, they can still operate
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without cooperation. That is, none of these agents have to receive messages to start working or need to

send messages to continue. The cooperation is only an added value to the agents. If the other agents

in the system fail for some reason, the remaining agents can still operate. In a similar vein, addition of

agents to the system would not need any modifications on the agents’ realizations. For example, we could

have several Agent Rs in the system and they would all receive messages that are directed to them. This

enables agents to enter or leave the system as it suits them.

4. Computational Study. We next present several cooperation scenarios in the proposed environ-

ment to illustrate an actual implementation of the sample agents introduced in Section 3.3. Our main

purpose in this section is to show the possible effects of communication on individual agents as well as on

the overall success of the cooperation for solving a problem. For ease of exposition, we shall start with

a base scenario involving a simple cooperation among the agents. Then, we shall alter this scenario by

adding other communication channels among the agents and point out some important observations.

We test our scenarios on several global optimization problems from the literature. Among those

problems, we have selected three problems with different attributes, such as; dimension, structure and

application domain. Table 1 gives the details of our test problems. The first two problems are given by

More et al. [23]. These problems are reformulations of systems of nonlinear equations as optimization

problems. Therefore, the known global optimal objective function values for both problems are zero (see

third column of Table 1). These two problems have multiple minima and involve rather flat regions

causing performance deterioration for gradient-based methods. The last problem is related to finding the

lowest energy configuration of a molecular system. This particular problem is taken from Lennard-Jones

clusters with 15 atoms [38]. Here, we note that 3 times the number of atoms gives the problem dimension

as shown in the second column of Table 1. To bound the feasible region for sampling, we have assumed

the problems are box constrained with the variable bounds given in the last column. Naturally, we make

sure that the global optimum for each problem resides within the imposed bounds.

Table 1: The problem details and parameters.

Problem Name Dimension Global Optimum Imposed Variable Bounds
Rosenbrock 2 0.0000 [-100, 100]

Broyden Tridiagonal 10 0.0000 [-100, 100]
LJCluster-15 45 -52.3226 [-5, 5]

In the subsequent part we solve these test problems for different cooperation scenarios. Since we use

random sampling, we report for each problem the average statistics over 10 runs. All runs are terminated

after a duration (wall clock time) proportional to the problem dimension has elapsed. That is, for each

problem, the time to complete a run is taken as the minimum of 5 seconds times the dimension and 5

minutes. Clearly, this setting is to the advantage of the runs taken for individual agents because the

entire computing resource is then dedicated to a single agent. We also note that all results are obtained

on a dual core personal computer with an Intel Core i5 processor and 4 GB of RAM.

We first start with the results obtained with the individual agents, when they do not cooperate with

other agents in the system. These results demonstrate the performances of the agents when they are

started from randomly selected points. Since it is very common to use local search methods in such a

multi-start setting for solving global optimization problems, these results illustrate what would most of

the decision makers do in practice. We shall later use these results for comparing against the results
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obtained with the communication scenarios. Table 2 gives the average objective function values obtained

by two agents separately. Since Agent R applies a simple random search, these results clearly show that

its performance is quite poor.

In Table 2 the figures that we shall later use for comparison are marked with boldface letters. As the

figures show, both Agent B and Agent T are able to solve the first problem. However, Agent T finds

the global optimum solution within a fewer number of function evaluations on average than Agent B

does. Therefore, Agent T is used for comparison. When we check the last two problems, we observe that

only one agent can find a solution individually. For problem 2, Agent B fails to find the global optimum

solution but Agent T does converge to the global optimum. However, the performances of the agents are

reversed for the last problem, and Agent B converges to the global optimum whereas Agent T fails. For

all problems, Agent R does not converge to the solution, therefore, it has the worst performance.

Table 2: The average objective function values obtained by the individual agents for the test problems
over 10 runs.

Problem Name Agent B Agent T Agent R
Rosenbrock 0.0000 0.0000 0.1779
Broyden Tridiagonal 0.0745 0.0000 2.15E6
LJCluster-15 -52.2270 -47.2386 -6.6852

Next we discuss the cooperation scenarios as illustrated in Figure 4. In Table 3, we compare the results

obtained with the scenarios against the individual results that are summarized in Table 2. The third

column of Table 3 gives the average objective function value obtained by the most successful agent, which

is the one reported in the last column. Likewise, the fourth column shows the percentages related to the

average number of calls to the objective function and the fifth column presents the percentages related to

the time spent until the best objective function value is recovered. These figures are given relative to the

number of objective function calls required by the individuals. Thus, the values for the individual runs

are omitted and the corresponding cells are marked with (-) signs. For instance, consider the problem

LJCluster-15. In Scenario 1, Agent B is the most successful agent (see last column) in terms of average

objective function value. As shown in the third column, Agent B required on average 82% of the number

of function calls used by the individual runs for the same problem. However in the latter two scenarios

the successful agents (Agent T for Scenario 2, Agent B for Scenario 3) have required on average slightly

more function calls than do the individual runs (4% and 5%, respectively). The fifth column gives a

similar percentage comparison relative the individual runs in terms of wall-clock time.

In the base scenario as shown in Figure 4(a), Agent B sends refrain messages to both Agent R and

Agent T. The two receiving agents then try to avoid those regions exploited by Agent B. Aside from the

refrain messages from Agent B, Agent T also receives some promising solution points to start with from

Agent R. In this scenario, we expect Agent T to recover the global optimum quicker than it does when

it works individually. As the average numbers of objective function calls in the fourth column of Table

3 show, for the first two problems, Agent T indeed finds the global optimum with less than half of the

function calls it uses individually. As we observed with the individual runs, in the last problem Agent B

is still the one that converges close to the global optimum. This result is expected because Agent T is

refrained from the regions that are exploited by Agent B; hence, the success of Agent B in the vicinity

of the global optimum keeps Agent T away from those regions. Although Agent B seems to find this
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Figure 4: Communication scenarios

Table 3: The average statistics over 10 runs for all communication scenarios.

Average OF∗

Obtained By
Value Calls (% ) Time (% )

Rosenbrock 0.0000 - - Agent T
Individuals Broyden Tridiagonal 0.0000 - - Agent T

LJCluster-15 -52.2270 - - Agent B

Rosenbrock 0.0000 43% 67% Agent T
Scenario 1 Broyden Tridiagonal 0.0000 32% 57% Agent T

LJCluster-15 -52.1326 82% 79% Agent B
Rosenbrock 0.0000 25% 42% Agent T

Scenario 2 Broyden Tridiagonal 0.0000 41% 54% Agent T
LJCluster-15 -52.3226 104% 84% Agent T
Rosenbrock 0.0000 23% 38% Agent T

Scenario 3 Broyden Tridiagonal 0.0000 73% 93% Agent T
LJCluster-15 -52.2321 105% 109% Agent B

∗Objective function

solution faster than it does individually both in terms of wall-clock time and the number of objective

function calls (columns 4 and 5), the quality of solution deteriorates slightly. However, notice that Agent

B does not receive information from the other agents in this scenario. Thus, this decrease in the solution

quality can be attributed to the decrease in the computing power that is allocated to Agent B since it still

cooperates with the other agents. Using the same reasoning, we can also infer that Agent B converges

very quickly to a value quite close to the optimal objective function value of this particular problem.

Then, Agent B makes many function calls to refine this objective function value if the time-limit permits.

Having observed the success of Agent B for the last problem, we next construct Scenario 2, where we

try to lead Agent T to the global optimum in all problems. As illustrated in Figure 4(b), we accomplish

this outcome simply by replacing the refrain message sent from Agent B to Agent T with a solution point

message. This change then encourages Agent T to start with those points, which have been recognized

as promising but not properly exploited by Agent B particularly when, it terminates its procedure after
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exceeding the maximum number of iterations. The last column corresponding Scenario 2 in Table 3

shows that Agent T succeeds to find the global optimum in all problems. Moreover, Agent T finds the

exact global optimum in all 10 runs at the expense of a slight increase in the average number of objective

function calls but an ample decrease in the wall-clock time. When it comes to the first two problems, as

in Scenario 1, we observe a significant decrease in the average numbers of objective function calls as well

as in the wall-clock times.

Figure 4(c) shows the last and the most versatile scenario in terms of communication. Unlike the

previous two scenarios, Agent B now receives a feedback from Agent T. This feedback pays back for

the last problem and Agent B finds a solution closer to the global optimum than the solutions it finds

individually and in Scenario 1. However, this improvement comes with a small increase in the average

number of objective function calls and the wall-clock time. On the other hand, we obtain the fastest

convergence to the global optimum for the first problem with this scenario. Although not as good as

the previous two scenarios, the global optimum for the second problem is found within fewer number of

function calls than is the individual runs. More remarkably, the wall-clock time to obtain this solution

has significantly improved.

One important concern with distributed systems is related to their scalability. This concern can be

posed as how much the system performance degrades when the size of the system increases in terms

of number of threads and processed jobs. When discussing the scalability of MANGO in such a sense,

we need to consider the increase in size with respect two different entities: agents and messages. Since

each agent is a stand-alone Java program, the number of agents that can be run on a single machine

depends on the individual specification of the machine. Nonetheless, as the MANGO architecture permits

running each agent on a different computer, the increase in the number of agents is not expected to cause

a significant problem. Therefore, our focus in terms of scalability of physical resources is with the number

of exchanged messages. Each message in the system passes through a central messaging system to reach

its destination. If agents generate significantly more messages than that can be consumed by other agents,

we expect to have delays and performance loss, even when the number of agents is low. This observation

is an obvious one, since in our implementation the agents shall then seize their major function of problem

solving and devote all their resources to processing messages. This drawback can easily be avoided by

limiting the number of messages sent and received by the agents, or processing the incoming messages

only when the agent sees fit.

Another important question about scalability is related to the performance improvement in solving

a global optimization problem. That is, if we increase the number of agents when solving a particular

problem, does this effort necessarily improve the success of the agents for finding the global optimum

of a particular problem? Table 4 shows the average statistics over 10 runs for the ninety-dimensional

cluster problem LJCluster-30. As before, we have assumed that each variable comes from the bounds

[−5, 5]. The objective function value of the global optimum for this particular problem is −128.2515.

The number of function calls are given relative to the numbers obtained with 2 agents (row 3). The

results in the table demonstrate that as we increase the number agents up to a certain value we do obtain

performance increase. When we reach 10 agents in total, we finally recover the global optimum in the

best run. However, as we continue increasing the number of agents, the performance deteriorates. This

decrease in the performance can be attributed to two reasons: (i) the agents could be overwhelmed by

processing excessive message passing, (ii) too much information creates pollution. The latter reason may
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be complemented with further explanation: As each agent tries to direct the others to different parts of

the feasible region, it is quite possible that, particularly in earlier iterations, agents receive conflicting

messages and hence, fail to explore the feasible region properly. Consequently, we note that one should

not indiscriminately assume that the performance shall increase as the number of agents increase. The

optimal parameter for the number of agents is clearly problem-dependent and unfortunately, requires

some parameter fine-tuning.

Table 4: The average statistics over 10 runs for problem LJCluster-30.

Number of Agents
OF∗ Value OF Calls (%) Time (%)

Obtained by
Best Average Best Average Best Average

1 B, 1 T -127.4218 -126.6161 - - - - Agent T
2 B, 2 T -128.0966 -126.2599 60% 95% 59% 147% Agent B
5 B, 5 T -128.2515 -126.9845 79% 65% 157% 128% Agent B

10 B, 10 T -127.4218 -126.5504 11% 25% 66% 146% Agent T
∗Objective Function

5. Conclusion. The MANGO project is a part of an overall effort targeted at developing optimiza-

tion algorithms that benefit from the concurrent production of information. Given the challenges in

global optimization, we believe that the design of several different successful algorithms of this type can

be achieved. Our initial experiments show that cooperation is most useful when agents complement each

other in terms of their algorithms. For example, an agent that performs a local search works well with an

agent that does not. Hence, whenever there is a need for a local search, the first agent can be consulted.

Similarly, the characteristics of the algorithms is influential for a good cooperation scheme. For example,

some algorithms execute for a long time in each iteration. Agents that execute such algorithms might

have little room for cooperation compared to others that finish iterations more quickly. Overall, it would

be interesting to identify cooperation strategies that would be well-suited for various problem types. Our

initial results on performance of MANGO are encouraging. However, we plan to study the performance

of MANGO on real large-scale global optimization problems and cover some application domains in our

future research. Since most real problems have special features, one has to design problem-specific agent

cooperation.

Another important issue relevant to the implementation of agent cooperation with MANGO for large-

scale problems is scalability. Our discussion in this paper on the scalability of agent cooperation in

MANGO can be further extended by extensive numerical testing and benchmarking. There are already

successful studies on scalability of parallel optimization frameworks, such as the Genetic Hybrid Algorithm

(GHA) approach that is shown to be scalable when applied to a wide spectrum of problems [27, 28].

As an environment for the development of optimization agents, the current MANGO content can

be enriched in several ways. We plan to provide more useful services, e.g. procedures for automatic

differentiation, and access to open source algorithms written in languages other than Java such as the

ones included in the COIN-OR project. Enabling such a feature makes MANGO widely usable. Currently,

MANGO does not require an extensive computational environment. Further, since each agent can run

on a different machine, the load is automatically distributed. However, with large teams that exchange

too many messages, the computation time can still increase. For such settings, the environment can be

extended support recent technologies, such as cloud computing.
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Providing more features is not the only way to advance MANGO. The cooperation scenarios described

in this paper are illustrative in that they exhibit a variety of messages that can be employed in a coopera-

tion scenario. These scenarios can certainly be specialized, for example, by defining new message types to

realize a specific cooperation scenario or advanced further by endowing agents with learning capabilities.

The users are encouraged to contribute to the existing MANGO libraries by donating their own libraries.

The current version of MANGO is designed only for continuous problems. However, its structure

suggests that an extension for combinatorial optimization problems would not be very hard. As in the

case of MANGO, the agents of the combinatorial counterpart may not necessarily implement heuristic

procedures only, and the cooperation may result in nice hybrids of stochastic and deterministic methods.

Successful implementations of this extension would also need to be careful about any special properties

of the problems they attack.
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[1] D. Barbucha, I. Czarnowski, P. Jȩdrzejowicz, E. Ratajczak-Ropel, and I. Wierzbowska. JABAT

middleware as a tool for solving optimization problems. In N. Nguyen and R. Kowalczyk, editors,

Transactions on Computational Collective Intelligence II, volume 6450 of Lecture Notes in Computer

Science, pages 181–195. Springer Berlin / Heidelberg, 2010.

[2] D. Barbucha, I. Czarnowski, P. Jedrzejowicz, E. Ratajczak, and I. Wierzbowska. JADE-based

A-Team as a tool for implementing population based algorithms. In Proceedings of the Sixth Inter-

national Conference on Intelligent Systems Design and Applications (ISDA), pages 144–146, 2006.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. Jade: a fipa2000 compliant agent development environ-

ment. In AGENTS ’01: Proceedings of the fifth international conference on Autonomous agents,

pages 216–217, New York, NY, USA, 2001. ACM.
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