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a b s t r a c t

In this study, a new surface tension formulation for modeling incompressible, immiscible
three-phase fluid flows in the context of incompressible smoothed particle hydrodynamics
(ISPH) in two dimensions has been proposed. A continuum surface forcemodel is employed
to transform local surface tension force to a volumetric force while physical surface
tension coefficients are expressed as the sum of phase specific surface tension coefficients,
facilitating the implementation of the proposed method at triple junctions where all three
phases are present. Smoothed color functions at fluid interfaces alongwith artificial particle
displacement throughout the computational domain are combined to increase accuracy
and robustness of themodel. In order to illustrate the effectiveness of the proposedmethod,
several numerical simulations have been carried out and results are compared to analytical
data available in literature. Results obtained by simulations are compatible with analytical
data, demonstrating that the ISPH schemeproposedhere is capable of handling three-phase
flows accurately.

1. Introduction

Multiphase flows where two or more fluids have interfacial contact surfaces are one of the most common features
observed inmany engineering and natural processes and have been a subject of interest formodeling inmany computational
fluid dynamics (CFD) studies. It is indeed a challenging problem as the evolution of the interface is a crucial step inmodeling
of multiphase flows which needs to be handled delicately to result in reliable simulations.

In their simplest form, multiphase flows are composed of two immiscible fluid streams. Many studies have been
performed on two-phase flows using mesh dependent, meshless and hybrid approaches. Mesh dependent methods include
Volume of Fluid (VOF) [1–3], Level Set (LS) [4–6] and Phase Field methods [7,8] where the interface is captured implicitly
through use of a scalar function. These methods are also referred to as Eulerian approaches. Hybrid Eulerian–Lagrangian
approaches, such as the Front Tracking method [9,10], provide a sharper interface representation by employing markers to
track the interface explicitly, which adds to their accuracy at the cost of extra complexity and computational expense. In
this regard, the Lagrangian nature of meshless methods is an inherent advantage of this kind of approach as it facilitates
the tracking of interfaces with large deformations. Among all different variants of meshless methods, Smoothed Particle
Hydrodynamics (SPH) has received a great deal of attention in modeling multiphase flows [11–18].

Despite the large pool of research available in two-phase flows, there have been relatively fewer studies carried out on
flows containing three different fluids, partly due to complexities inherent in phase interactions andpossible triple-junctions
present in these flows. A few examples include level set studies of triple junctions [19,20] and droplet spreading [21],
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droplet impact simulation using front tracking [22], phase field simulations of several three-phase flows [23,24] andweakly
compressible smoothed particle hydrodynamics simulations of two- and three-phase flows [25].

In this study, an incompressible SPH (ISPH) scheme based on the projection method initially proposed by Cummins and
Rudman [26] is developed to simulate two-dimensional immiscible three-phase flows. Surface tension forces are taken
into consideration using the Continuum Surface Force (CSF) model proposed by Brackbill et al. [27]. In order to capture the
interaction between different phases, the surface tension coefficient decompositionmethod proposed in Smith et al. [20] has
been employed. A number of test cases have been simulated to test the capabilities of the proposed scheme in a methodical
manner. First, elongation of a circular droplet encompassed between two immiscible fluid layers have been studied and
compared to analytic values. Extending this test case towards a more dynamic one, levitation of a circular droplet initially
at rest between two layers of immiscible fluids have been simulated. Finally to demonstrate flexibility of the method in
handlingmoving contact lines involving density and viscosity differences, simulations of droplet spreading on a solid surface
are conveyed and compared against analytical results available in literature.

The outline of this paper is as follows. Mathematical formulation along with numerical approximations employed are
presented in Sections 2 and 3. Results of the simulations and validations against literature data are presented and discussed
in Section 4 and concluding remarks are drawn in Section 5.

2. Mathematical formulation

Mass and momentum conservation equations for an incompressible flow may be written as

∇ · u = 0, (1)

ρ
Du
Dt

= −∇p + ∇ · τ + f(b) + f(s), (2)

where u is the velocity vector, p is pressure, ρ is density, t is time and D/Dt = ∂/∂t + uk∂/∂xk represents the material time
derivative. Here, τ and f(b) are viscous stress tensor and body forces exerted on the flow, respectively. While the body force
is taken to be ρgwhere g is gravitational acceleration, the viscous stress tensor is defined as

τ = µ

∇u + (∇u)T


, (3)

where superscript T represents the transpose operation. For the sake of computational simplicity and efficiency, it is
preferable to express the local surface force as an equivalent volumetric force, f(s), according to the Continuum Surface
Force (CSF) method originally proposed by Brackbill et al. [27]. Replacing the sharp interface between two fluids with a
transitional region of finite thickness through multiplication of local surface tension force with a one-dimensional Dirac
delta function [28], δ, surface tension force may be formulated as

f(s) = σκn̂δ. (4)

Here, surface tension coefficient, σ , is taken to be constant while κ represents interface curvature, −∇ · n̂, where n̂ is unit
surface normal vector.

The above definition for volumetric surface tension force has to be developed further if it is to be used for a three-phase
flow as a fluid particle may be affected by more than two interfaces simultaneously, which is the case near triple junctions
where all three phases meet. In order to circumvent this difficulty, Smith et al. [20] have proposed decomposing the surface
tension coefficient into phase specific surface tension coefficients such that σ αβ = σ α+σ β . Here, σ αβ is the physical surface
tension coefficient between phases α and β while σ α and σ β are phase specific surface tension coefficients for αth and βth
phases, respectively. Considering a three-phase flow, the aforementioned decomposition will lead to the following relations
for phase specific surface tension coefficients,

σ 1
= 0.5


σ 12

+ σ 13
− σ 23 ,

σ 2
= 0.5


σ 12

− σ 13
+ σ 23 ,

σ 3
= 0.5


−σ 12

+ σ 13
+ σ 23 . (5)

Combining phase specific surface tension coefficients defined above with (4), the resultant volumetric surface tension force
may be rewritten as a sum of three force components as

f(s) =

3
α=1


σκn̂δ

α
. (6)

To be able to distinguish different fluids of the three-phase flow of interest, three concurrent color functions are
introduced where each one is associated to a certain phase. Thus the color function for phase α, ĉα , has a value of one where
phase α is present while other color functions are set to zero. Interface curvature, unit normals and surface tension forces
related to each phase are computed using its corresponding color function and will be discussed further in the following
section.



3. Numerical scheme

Interactions between SPH particles are facilitated through the use of an interpolation kernel,W (rij, h), concisely referred
to as Wij for a constant h. Here, rij is the magnitude of distance vector rij = ri − rj between a particle of interest i and its
neighboring particles j while h is referred to as the smoothing length which controls the interaction length among particles.
Based on this smoothing kernel, the value of an arbitrary variable f in a two-dimensional domain Ω over a set of discrete
points may be written as f (r) ≃


Ω
f

rj

Wijdr2j . Replacing the integral operation with a summation operation over all

the particles within a certain cut-off distance and approximating the infinitesimal volume element by the reciprocal of the
number density ψj, defined for the particle j, one can write the SPH approximation as

f (r) ≃


j

1
ψj

fjWij, (7)

where fj denotes f

rj

and the number density for particle i is defined as ψi =


j Wij.

In order to be able to interpolate fluid properties across the interface properly and further enhance the robustness of the
method, the color function for particle i of phase α, ĉαi , is smoothed as

cαi =


j
ĉαj Wij

ψi
. (8)

The smoothed color function thus acquired may be used to smoothen the sharp gradients in properties that may potentially
destabilize the numerical method using a weighted averaging scheme over all phases, fi =

3
α=1 f

α
i cαi . Here f may

represent density or viscosity of the flow at particle i where appropriate. The smoothed color function is also used to define
δα ≃ |∇cα|, κα = −∇ · n̂α and n̂α = ∇cα/|∇cα| in (6) for each phase, combining which will result in the following relation
for volumetric surface tension force,

f(s) = −

3
α=1

σ α∇ ·


∇cα

|∇cα|


∇cα. (9)

A constraint has to be enforced to keep possible erroneous normals that may occur at the outer edges of interface from
contaminating the computed surface tension force, as pointed out byMorris [29]. In this study, only gradient values excessing
a certain threshold, |∇ci| ≃ ε/h, are used in surface tension force calculations. An ε value of 0.08 has been found to provide
accurate results without removing too much detail.

A predictor–correcter scheme is employed to advance the governing equations of flow in time using a first-order Euler
approach with variable timestep according to the Courant–Friedrichs–Lewy condition,∆t = CCFLh/umax, where umax is the
largest particle velocity magnitude and CCFL is taken to be equal to 0.25. In the predictor step all the variables are advanced
to their intermediate form using following relations,

r∗i = r(n)i + u(n)i ∆t + δr(n)i , (10)

u∗

i = u(n)i +

∇ · τ i + f(b)i + f(s)i

(n)
∆t, (11)

ψ∗

i = ψ
(n)
i −∆tψ (n)

i


∇ · u∗

i


, (12)

where starred variables represent intermediate values and the superscript (n) denotes values at the nth timestep. Following
the SPH approximation in (7), the first order derivatives may be discretized as

∂ f mi
∂xki

akli =


j

1
ψj


f mj − f mi

 ∂Wij

∂xli
, (13)

while the Laplace operator is approximated in the following manner,

∂2f mi
∂xki ∂x

k
i
aml
i = 8


j

1
ψj


f mi − f mj

 rmij
r2ij

∂Wij

∂xli
. (14)

Here, akli =


j
rkij
ψj

∂Wij

∂xli
is a corrective second rank tensor that eliminates particle inconsistencies [30]. A cubic spline

kernel [31] is employed for equations relevant to the surface tension force while a quintic spline kernel [32] is used for
other cases. The same value of h, equal to 1.4 times the initial particle spacing, is used for both kernels and kept constant in
the temporal and spatial directions during simulations. This practice facilitates a thinner interface and produces larger δα



values which result in more accurate surface tension force calculations [28]. Defining average particle spacing for a given
particle i having J neighbors as rav,i =


j


rij/J


, the artificial particle displacement vector in (10), δri, is calculated as

δr(n)i = γ

J
j=1


rij
r3ij

r2av,iumax

(n)
∆t. (15)

A range of different values have been tested for the cases studied here and a value of γ = 0.06 is found to have a satisfactory
particle distribution and stabilizing effect [28], which is employed throughout this study.

Using intermediate values, pressure at the next timestep is found by solving the following Poisson equation,

∇ ·


1
ρ∗

∇p(n+1)


=
∇ · u∗

∆t
, (16)

where the left hand side is approximated by

∂2f mi
∂xki ∂x

k
i


2 + akki


= 8


j

1
ψj


f mi − f mj

 rkij
r2ij

∂Wij

∂xki
, (17)

which is then used to correct the velocity of the particles, hence advancing them to next timestep using the following
relation,

u(n+1)
= u∗

−
1
ρ

∇p(n+1)∆t. (18)

However, in order to be able to handle larger density ratios between different phases of the flow, an alternative form of (18)
is considered here. By substituting ∇p/ρ with its equivalent form, ∇(p/ρ)− p∇(1/ρ), the pressure correction term on the
right hand side of (18) is discretized as

1
ρ

∂pi
∂xki

akli =


j

1
ψj


pj
ρj

−
pi
ρi


−


pi
ρj

−
pi
ρi


∂Wij

∂xli



=


j

1
ρjψj


pj − pi

 ∂Wij

∂xli


. (19)

This form, also referred to as the non-conservative form [33], ensures a zero pressure gradient when a particle of interest
and its neighbors are of identical pressure. Having found velocity vector values at the next timestep, particles are moved to
their corrected positions using the following relation,

r(n+1)
i = r(n)i +

1
2


u(n)i + u(n+1)

i


∆t + δr(n)i , (20)

and number density values are restored to that of the previous timesteps.
Boundary conditions are test case dependent and are enforced through the MBT method described in [34].

4. Results

4.1. Liquid lens

In this section, simulation results for the liquid lens test case are presented and compared against analytical equilibrium
lens diameter. Having an analytical solution, this test case is verywell suited for testing the accuracy of the proposed scheme
for modeling three-phase flows. The computational domain for every simulation is taken to be a square with a side length
of l. Three different particle resolutions of R1, R2 and R3 have been used in simulations which have 50 × 50, 100 × 100 and
200×200particles, respectively. The initial particle arrangement schemealongwith its relation to lwill be elaborated further
in the following paragraphs. All fluid properties are set to unity for every phase involved in simulations while binary surface
tension coefficients assume different values depending on the test cases considered. Table 1 summarizes the important
simulation parameters and results obtained for surface tension coefficient ratios of V1 through V5 at each of the resolutions
R1, R2 and R3. Different phases are ordered as shown in Fig. 1-b and d. No slip and zero pressure gradient boundary conditions
are applied to all boundaries.

4.1.1. Effect of initial particle arrangement
It is observed that the initial particle arrangement has a profound effect on results obtained from SPH simulations [35].

Two different approaches were used to arrange initial particle positions in the following simulations. The first approach,



 Table 1

Simulation parameters and results for liquid lens elongation test case.

# σ 13/σ 12 da do/da
df /da

(σ 13
= σ 23) R1 R2 R3 R1 R2 R3

V1 0.8 0.4771 0.4830 0.4601 0.6527 0.9687 0.9827 0.9939
V2 0.9 0.4501 0.4556 0.4340 0.6919 0.9702 0.9827 0.9881
V3 1.0 0.4313 0.4366 0.4159 0.7220 0.9684 0.9785 0.9856
V4 1.1 0.4173 0.4224 0.4024 0.7463 0.9647 0.9783 0.9819
V5 1.2 0.4064 0.4114 0.3919 0.7663 0.9602 0.9786 0.9865

a

c

b

d

e

Fig. 1. Initial condition for liquid lens simulation shown in the vicinity of the droplet; (a, b) particle arrangement and 0.5 level contour of color function
for the first approach. ①, ② and ③ denote phases 1, 2 and 3, respectively; (c, d) particle arrangement and 0.5 level contour of color function for the second
approach; (e) early stage development of non-dimensional lens diameter for the first and second approach of initial particle arrangements.

a b c

Fig. 2. Particle arrangement and 0.5 level contour of the color function for two-phase diamond relaxation; (a) initial diamond arrangement; (b) interme-
diate stage; (c) relaxed circle obtained and used as the initial particle arrangement for other test cases..

being the most straightforward one, consists of arranging the particles on an equally spaced formation in both dimensions.
Particles within an ‘‘intended’’ radius of 0.5d′

o from the center of computational domain are marked as phase 3 and are
considered to belong to the droplet of interest, while the remaining particles are divided into top and bottom portions,
phases 1 and 2 respectively (Fig. 1-a). This method results in a rough surface pattern with an approximate initial ‘‘acquired’’
diameter of do for the encompassed droplet.

The second method involves allowing a diamond (45° tilted square) droplet of known area to deform into a circular
droplet of an intended diameter of d′

o under the effect of surface tension forces in a two phase system, hence the two-
phase diamond droplet relaxation shown in Fig. 2. To achieve this end within the scope of the proposed three-phase model,
a particle arrangement with uniform spacing in both dimensions is used and particles within a diamond of the intended
diagonal d′

i are considered as the droplet of interest, phase 3 (Fig. 2-a), while the remaining top and bottom portions are
marked as phases 1 and 2, respectively. It is notable that due to finite spacing between particles, the acquired diagonal of
the diamond is di, which is slightly smaller than d′

i . The computational domain length is chosen such that l = 2.6d′

i and the



diamond is relaxed in the two-phase mode by setting σ 12
= 0. The resulting circular droplet has an acquired diameter of do

and is used as an initial condition for particle arrangement (Figs. 1-c and 2-c).
In both cases, initial velocities are set to zero. These initial configurations are tested against analytical equilibrium lens

diameter. Assuming that equilibrium contact angle is defined by

sin θ1

σ 23
=

sin θ2

σ 13
=

sin θ3

σ 12
(21)

and θ1 = θ2, the equilibrium lens diameter is found using the following relation [24,36],

da =


2(π − θ1)− sin(2(π − θ1))

4A2
o sin

2(π − θ1)

−1/2

. (22)

This defines the distance between two triple junctions and is based on Young’s law where Ao represents initial droplet area
and θα is the contact angle of phase α with two other phases. Fig. 1-e shows non-dimensional lens diameter versus time at
early stages of simulation for both initial conditions at resolution R2 where all binary surface tension coefficients are equal
to 1. It is observable that the results obtained using the first initial condition type start to fall behind those of the second
type at early stages of simulation. This trend continues at later simulation times yielding an equilibrium diameter, df /da, of
0.9519 for the first method against 0.9785 for the second method of initial condition generation. This is mainly due to the
inaccurate measurement of the initial condition acquired diameter, do, in the first method of initial condition generation as
well as the intermittent surface tension force observed when using a circular arrangement carved out of a Cartesian initial
position. Therefore, all the simulation results presented hereafter are initialized using the second method.

4.1.2. Effect of resolution and surface tension coefficient ratio
In this section, effects of resolution and surface tension coefficients on the evolution of the liquid lens are studied. It is

worthwhile to note that different resolutions have different initial acquired diameter, do, because of the relaxation process
involved in initial condition generation. It is not possible to create diamonds with the same acquired diagonal, di, using
equally spaced particles at different resolutions for the same computational domain size as only multiples of the finite
particle spacing are accessible. This results in different final acquired diameters, do, for initial diamond droplets of different
resolution. However, once divided by the analytic equilibriumdiameter, the resulting non-dimensional initial diameterswill
have the same value for each surface tension ratio group, V1 through V5, which is shown in Table 1 as do/da. This ensures
that when presented in non-dimensional form, the results will not be affected by the relaxation process.

Fig. 3-a shows near tip droplet profile for the three resolutions considered in this study while Fig. 3-b–d are non-
dimensional lens diameter versus time plots for cases V1, V3 and V5. It is observed that as the droplet lengthens under
the effect of surface tension forces exerted, an equilibrium diameter is obtained. At this stage, the droplet starts to exhibit
oscillations in diameter which is an expected behavior, providing that these oscillations will die out eventually. However,
as the approximated differentiation and numerical implementation have small inherent round off errors affecting surface
tension force which drives the lengthening phenomenon, the oscillations are not quite regular and are not damped out
during the simulation times considered here. To circumvent this shortcoming, the lens diameter is time averaged after
a certain threshold. Here, the averaging process starts as soon as the non-dimensional lens diameter reaches 95% of
the analytic diameter. The time averaged equilibrium lens diameter is shown as a straight line for each resolution on
Fig. 3-b–d and also in Table 1 under df /da. The result of this simple averaging criteria is not quite informative for cases
with lower resolution as it disregards the transitional behavior and focuses on equilibrium diameter. This may result in
over predicting the performance, as it is the case for R1V1 where the time averaged equilibrium diameter is satisfactory
despite an abnormally long transitional period. However, combining itwith timed plots of non-dimensional diameter, which
reveal irregular behavior such as slow lengthening observed in case R1V1, renders it a sufficient criteria for assessing the
performance of the proposed method.

Comparing the time averaged values shown in Table 1, it is seen that better steady state results are obtained at higher
resolutions. The effect of higher resolution is to make the triple junction slimmer, observable in Fig. 3-a as a sharper lens
tip and a less abrupt cut, so that the remaining portion of the droplet has a smoother shape thus allowing it to extend
furthermore towards the equilibrium diameter. Conducting a similar analysis on transient characteristics of the simulations
(Fig. 3-b–d), it is possible to observe that the test case with lowest resolution, R1, has the lowest rate of lengthening among
all resolutions while higher resolutions considered here, R2 and R3, exhibit the same characteristic initial lengthening rate.
Slow lengthening is augmented for R1 cases as the final lens diameter becomes larger (more slender lens shape), which
occurs as the ratio of surface tension coefficients, σ 13/σ 12, has a lower value. The reason for this effect may also be seen in
Fig. 3-a. As the resolution is reduced, it is possible to identify an abrupt cut near the tip of the lens which affects the accuracy
of the computed surface curvature and subsequently the surface tension force. At higher surface tension coefficient values,
more slender equilibrium shapes occur which in turn should have sharper (smaller θ3) three-phase junctions. This demands
a higher resolution to be fully captured which results in a worse performance for the lower resolution test case and signifies
the importance of higher resolution requirements for higher surface tension coefficient ratios.



Fig. 3. (a) Effect of resolution on the equilibrium shape of test case V3 (V3R1, V3R2 and V3R3); (b, c and d) effect of resolution on the equilibrium diameter
of lens for cases V1, V3 and V5 where I, J and N denote R1, R2 and R3 resolutions, respectively. Straight lines and corresponding markers on vertical axis
are time-averaged values, df /da , shown in Table 1.

Fig. 4 shows time snapshots of the 0.5 level contour of the color function of the droplet, phase 3, along with particle
positions for test cases V1R3, V3R3 and V5R3. As both dimensions are non-dimensionalized using analytic equilibrium lens
diameter, the final length of the droplet will be equal to 0.5 while its height would be different. It is possible to observe
that in all test cases shown, particles are spread fairly evenly across the computational domain, a desired property in SPH
simulations which is a result of the artificial particle displacement method employed here.

Fig. 5 shows time snapshots of the 0.5 level of the color function contour at different time steps for all three phases of
case V3R3. Each phase is actually treated as a separate entity when calculating surface tension forces using phase specific
surface tension coefficients.

4.2. Droplet levitation

In this section, results of the levitation of a circular droplet, initially at rest between two layers of immiscible fluids, are
presented (Fig. 1-c and d). Droplet levitation presents a more challenging and dynamic problem to test the capabilities of
the proposed three phase formulation as the droplet breaks free of the bottom surface and rises in top fluid solely because
of surface tension forces as no other body forces are present. Here initial particle arrangement is obtained by relaxing a
diamond shaped two-phase droplet consisting of 200 × 200 particles into a circle of diameter do. Particle velocities in both
directions are set to zero. All fluid properties except for surface tension coefficients are set to unity. As indicated in Table 2,
surface tension coefficients between phases 1 and 2 (σ 12, top fluid and bottom fluid) and between phases 1 and 3 (σ 13,
top fluid and droplet) are set to unity while the surface tension coefficient between the droplet and bottom fluid varies for
different test cases. No slip and zero pressure gradient boundary conditions are applied to all the walls encompassing the
computational domain, a square of 3.3do side length.

Fig. 6 provides time snapshots of droplet levitation for all three test cases considered here. As the droplet starts to break
off from the bottom surface, it experiences a deformation as a result of surface tension force exerted. The ratio of σ 23/σ 13

has an important implication here as it directly influences the initial amount of the force exerted. This is better observable
if average velocity, uav =

J
j=1


uj/J


, of all particles belonging to phase 3, J, is investigated. Fig. 7 shows average vertical

velocity, uav,y, of the droplet for all the test cases. Times when snapshots in Fig. 6 have been taken are marked on Fig. 7
by identical letters. It is evident that larger surface tension ratios give rise to larger initial vertical velocity values. Table 2



Fig. 4. Time snapshots of particle position and droplet boundary (0.5 level contour of color function for droplet, phase 3). Both x and y axes are non-
dimensionalized with each test case’s respective analytic equilibrium diameter. Only the top right quarter has been shown for brevity. Left column: case
V1R3; middle column: case V3R3; right column: case V5R3 .

a b c

Fig. 5. Time snapshots of all phase boundaries (0.5 level contour of color function of each phase) for case R3V3 . Both x and y axes are non-dimensionalized
with respective analytic equilibrium diameter. (a) Droplet, phase 3; (b) bottom fluid, phase 2; (c) top fluid, phase 1.

summarizes maximum average vertical velocity for all cases studied here. Another impact of larger σ 23/σ 13 is smaller θ1
(angle between the droplet and bottom fluid) at the timewhen the droplet barely touches the bottom fluid. After separation
is completed and the droplet is free of the bottom fluid, the droplet and top fluid pair are expected to act as a two-phase
flow. This would result in a circular shape for the droplet after it comes to rest. All test cases studied here comply with this
expectation although minor penetrations happen at the trailing edge of the droplet as it separates from the bottom fluid.
The position where the droplet comes to rest is also affected by the value of σ 23/σ 13. Larger values result in a higher final
position for the droplet.



Table 2
Simulation parameters and results for the
droplet levitation test case.

Test case σ 23/σ 13 Maximum
(σ12 = σ13) uav,y

L1 2.5 0.1730
L2 5 0.4186
L3 10 0.8541

a b c d e f g h i j k

Fig. 6. Time snapshots of 0.5 level contour for all phases. Top row: case L1; middle row: case L2; bottom row: case L3; column letters a through k are at
times 0, 0.03, 0.075, 0.15, 0.3, 0.6, 1.05, 1.5, 2.25, 3.0 and 4.5 s. Both x and y axes are non-dimensional with respect to do and tick marks are spaced 0.82
units apart.

Fig. 7. Average vertical velocity of particles in droplet phase versus time for test cases L1, L2 and L3 . Letters and × marks on horizontal axes represent the
times when snapshots a through h in Fig. 6 are taken.



4.3. Droplet spreading

In order to demonstrate the capability of the proposed interface treatment scheme in handling moving contact line
problems, droplet spreading simulations involving different Eotvos numbers are conveyed and results are compared to
analytical solutions. The problem of interest is treated as a three-phase systemwhere each of the fluid and solid phases have
a distinct smoothed color function, cα , associated with them. Here, phases 1, 2 and 3 indicate surrounding fluid, droplet and
solid bottom surface, respectively. A half circle droplet having a radius of R0 is positioned on the bottom surface centered
at the origin. The computational domain has a non-dimensional size of 3 × 10 and is discretized by 60 × 200 of equally
spaced particles in a Cartesian initial positioning. In addition to the particles within the computational domain, four rows
of immovable particles are also appended to phase 3. These particles are lined up below the solid surface boundary with
the same spacing as of the particles above the boundary. The motivation behind using this method is to have an accurate
value for the smoothed color function, cα , unit normal, n̂α , and curvature, κα . These particles are neither included in the
calculation of other field variables nor in maintaining boundary conditions on the bottom surface.

Initially, all particles are assumed to be motionless. No slip and zero pressure gradient boundary conditions are enforced
on all bounding walls, however, in order to circumvent shear stress singularity arising near contact line, no slip condition
is relaxed to a local free slip at the vicinity of triple junction. Hence horizontal velocity is found using ux = λ (∂ux/∂y)wall,
where slip length, λ, is assumed to be infinite for particles having non zero cα for all phases. Accounting for the interface
thickness, at most four boundary particles in the vicinity of the contact line are subject to this condition.

Under the combined effects of surface tension and gravitational forces, the droplet deforms until reaching its equilibrium
shape. The steady state shape obtained by the droplet is dependent on the equilibrium contact angle, θe, and Eotvos number,
Eo =


ρ2

− ρ1

gR2

0/σ
12, where ρ1 and ρ2 are densities of droplet and surrounding fluid, respectively, and g is the

gravitational acceleration acting downward. In all cases, ρ2/ρ1 is assumed to be equal to 20. Contact angle between droplet
and solid surface is determined by the equilibrium of surface tension forces on the triple junction as indicated by (classical
argument by Young,) σ 23

+ σ 12 cos θe − σ 13
= 0, which upon incorporating the definition of phase specific surface tension

coefficients (5) may be rewritten as

θe = cos−1

σ 1

− σ 2

σ 1 + σ 2


. (23)

In all test cases considered here, σ 1 is set equal to σ 2, resulting in an equilibrium angle of 90° .
A high Eo (i.e. Eo ≫ 1) implies that the droplet shape is governed by gravitational forces whereas a low Eo (i.e. Eo ≪ 1)

indicates a surface tension dominated shape at the steady state. Flows with intermediate values of Eo feature a non-trivial
competition between these two effects. For Eo ≫ 1, the analytical solution for the maximum height of the droplet is given
by H = R0 (1 − cos θe)

√
π (2θe − 2 cos θe sin θe). As for Eo ≪ 1, the analytical solution indicates that the maximum height

of the deformed droplet is proportional to Eo as H = 2R0Eo−1/2 sin (θe/2). A set of simulations for 0.1 ≤ Eo ≤ 13.3 are
performed and the results are compared with the aforementioned asymptotic analytical solutions.

Fig. 8 provides plots of the 0.5 level contour of the color function aswell as particle placements at equilibrium for different
Eo while Fig. 9 provides normalized steady state droplet height for 0.1 ≤ Eo ≤ 13.3. As the difference between the initial
and final shapes of the droplet for case Eo = 0.1 is negligible, its contour plot is not shown here. It is observable that the
computed normalized droplet height agrees well with the asymptotic solutions given for Eo ≫ 1 and Eo ≪ 1. As for the
intermediate values of Eo, a transition between spherical cap and puddle shape occurs. At higher Eo, the difference between
the asymptotic solution and numerical results decreases.

5. Conclusion

In this study, a two-dimensional ISPH method for modeling incompressible, immiscible three-phase fluid flows has
been developed. Surface tension coefficients are decomposed into phase specific coefficients and surface tension force
is exerted by implementing the CSF model. To complement this, a unique color function is associated with each phase
and then smoothed out to improve the robustness of the method while a threshold has been implemented for choosing
reliable normals to increase the accuracy of computed surface tension force. Furthermore, artificial particle displacement
has been employed to ensure uniform spread of particles throughout the computational domain. Several test cases have
been simulated to ensure the capability of the method in handling various three-phase flow combinations.

Having an analytical solution, formation of a lens shape from a circular droplet under surface tension forces has been
studied to facilitate testing the accuracy of the proposedmethod. Results show that this test case is highly sensitive to initial
particle positioning, favoring an arrangement obtained from two-phase diamond droplet relaxation over a droplet simply
carved out of an equally spaced particle arrangement. Simulations have been carried out in three different resolutions,
revealing that an abrupt cut at the tip of the lens is responsible for the inaccuracies incurred at low resolutions. The results
obtained from high resolution simulations at different surface tension ratios using improved initial conditions are found
to be compatible with analytical solution of the equilibrium lens length. To further test the capabilities of the proposed
method in handling dynamic problems, a droplet levitation test case has been simulated for different surface tension ratios.
It is observed that, higher surface tension ratios result in faster break up from the surface due to a larger force exerted at the



a b

c d
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Fig. 8. Equilibrium particle position and droplet boundary (0.5 level contour of color function, phase 2). Only half of the computational domain has been
shown for brevity. Solid lines indicate bottom wall (phase 3). (a) Eo = 0.475; (b) Eo = 0.95; (c) Eo = 1.9; (d) Eo = 3.8; (e) Eo = 7.6; (f) Eo = 13.3.

Fig. 9. Normalized equilibrium droplet height versus Eo. Letters a through f correspond to the droplet shapes shown in Fig. 8.

triple junction. Furthermore, a higher surface tension ratio resulted in largermaximumdroplet velocity and higher stopping
height. As the last test case, droplet spreading with a contact angle of 90° has been considered. With minor modifications,
the method has been able to simulate contact line dynamics for a variety of Eotvos numbers, demonstrating the flexibility
of the method and its capability in handling density and viscosity differences between phases. Results obtained for Eo ≫ 1
and Eo ≪ 1 are compatible with analytical values available for these two extremes while a transition form spherical cap to
puddle shape occurs for Eo values in between.

The simulations conductedhere and comparison of the results show that the proposed ISPHmethod is capable of handling
different three-phase flow problems involving a single droplet.
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