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Abstract—This paper presents a novel method for ground force 
sensor faults detection and faulty signal reconstruction using 
Virtual force Sensor (VFS) for slow walking bipeds. The design 
structure of the VFS consists of two steps, the total ground 
reaction force (GRF) and its location estimation for each leg 
based on the center of mass (CoM) position, the leg kinematics, 
and the IMU readings is carried on in the first step. In the second 
step, the optimal estimation of the distributed reaction forces at 
the contact points in the feet sole of walking biped is carried on.  
For the optimal estimation, a constraint model is obtained for the 
distributed reaction forces at the contact points and the 
quadratic programming optimization method is used to solve for 
the GRF. The output of the VFS is used for fault detection and 
recovery. A faulty signal model is formed to detect the faults 
based on a threshold, and recover the signal using the VFS 
outputs. The sensor offset, drift, and frozen output faults are 
studied and tested. The proposed method detects and estimates 
the faults and recovers the faulty signal smoothly. The validity of 
the proposed estimation method was confirmed by simulations on 
3D dynamics model of the humanoid robot SURALP while 
walking. The results are promising and prove themselves well in 
all of the studied fault cases. 

Index Terms— Quadratic programming, ground reaction 
forces, inertial measurement unit (IMU), virtual force sensor, 
sensor faults. 

I. INTRODUCTION 

Humanoid robots have attracted a great attention of many 
researchers due to the suitability of the biped structure for 
tasks in the human environment.  In this field, the ground 
reaction forces (GRF) [1] have crucial role in the humanoid 
stability and control. The zero moment point (ZMP) [2] and 
foot rotation indicator (FRI) [3] stability criteria both depend 
on the knowledge of the GRF which can be measured by 
sensors embedded in the robot feet of the humanoid robot as 
in [4-9] or estimated. The measured force may have faults and 
force sensors may have unreliable readings which would 
affect the control law adversely and thus cause the robot to 
lose its stability which may result in damaging the human 
being, the robot or parts of it, or the environment. A useful 
approach is to estimate the reaction forces to track the faults in 
the force sensor readings fixed in the feet sole of the robot. 

The reaction force estimation for a standing robot using 
the joint torque information is reported in [4], where the motor 
current is used to calculate the torque, then the torque is 
mapped into force using the Jacobian. In [5], the total reaction 
force is estimated based on the inertial measurement unit 
(IMU) and joint encoders, with no indication to the contact 
points and their corresponding forces. In [6], the pseudo 
inverse is used to estimate the contact force distribution based 
on known ZMP, however, the pseudo inverse may fail and 
doesn’t fulfill the reaction force constraints. The above studies 
were for controlling without using force sensors, however, 
force estimation can be used for sensor fault detection as in 
this paper. 

Sensor faults [7] will inevitably affect the control laws 
adversely. Thus it is a necessity to design a fault detection and 
isolation (FDI) scheme to monitor and estimate the faults so 
that the controller can compensate for them in real time. The 
FDI methods are either model-free or model-based methods. 
The model-free FDI methods [8, 9] depend on the system 
features without using the system model, however, they don’t 
reconstruct the faulty signals. The model-based FDI methods 
[10] utilize the system dynamic model that is operating in 
parallel to the real system and utilizing the same input. Their 
outputs are used to form the residual [10-16]. In the model-
based methods, the faulty signal can be reconstructed 
however,  its performance depends on the quality of the model 
[17]. Furthermore, obtaining the dynamic model for 
complicated systems such as the humanoid robot is a 
challenge due to the many degrees of freedom, coupling 
effects, nonlinear dynamics, and parameter and environment 
uncertainty [18]. An alternative method is to  use software 
sensors or virtual sensors [19] based on simple mathematical 
models, this increase the measurement redundancy and 
reliability in the system. And they can be used for the fault 
detection and signal recovery as in this paper. 

In this paper, a novel method for feet force sensors fault 
detection and tracking, and signal recovery based on virtual 
force sensor (VFS) is proposed. It is applicable on three types 
of faults: constant offset, drift and frozen output at constant 
value regardless the true value of the force. The VFS is 
designed to track the output of the force sensors assembled at 



the foot sole of the robot leg while the foot is in full contact 
and assuming slow walking robot. The VFS has two 
functional steps: the first step requires the estimated center of 
mass (CoM) position which is reported by the author in [20], 
the leg kinematics, and the IMU readings to estimate the total 
reaction force and its location at each leg. In the second step, 
the total force is distributed optimally on the contact points for 
each leg by forming a constraint model and solving it using 
the quadratic programming optimization method. The number 
of the contact points and their locations are known in the foot 
frame. For the fault detection and recovery, a state space 
model for the measured forces from the sensors is formed 
including the fault, then the output of the VS is used to detect 
the faults and recover the true force for all the contact points 
simultaneously by using Kalman filter and threshold.  

 The rest of the paper is organized as follows: Section 2 
describes the virtual force sensor design. Section 3 shows the 
threshold selection. Section 4 introduces the simulation 
platform and presents the simulation results. The paper 
conclusion is in Section 5.  

II. VIRTUAL FORCE SENSOR VFS
The VFS model structure consists of two models: the 

linear inverted pendulum model (LIPM) and the Newton-
Euler model. The LIPM function is to estimate the CoM 
position, while the Newton-Euler model is to estimate the 
ground reaction forces. 

a) CoM position estimation

The CoM position c  and the ZMP error errp  are estimated 
as in Fig. 1 by utilizing the actual Zero Moment Point ZMP 
trajectory actp into the LIPM as presented by the author in[20]. 
The LIMP dynamics model in Eq(1) is used in its discrete 
form (Eq(2)) to form the process model in Kalman filter. The 
measurement model is the acceleration coma measured from 
the IMU fixed the CoM. The error in the ZMP is modeled as 
the difference between the reference ZMP refp and actp as in 
Eq(4). Then this error is decomposed into acceleration error 
and position error c∆  based on the disturbance observer as in 
[21, 22]. The final corrected estimated Com position ĉ is 
obtained as in Eq(5) .  
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Fig. 1: CoM position estimation 

where cz is the constant height of CoM, g is the gravity 
acceleration ( 29.806 /m s ), T  is the sampling time, c is the 
CoM position, and k is the time instant. 

b) Reaction force estimation
The force magnitude on each leg depends on the location 

of ĉ . Assuming the slow walking and neglecting the swinging 
leg and arms inertial forces, the forces for each leg are 
calculated using  
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where, m is the robot mass, RF and LF , are the reaction 
forces at the right and left feet respectively. ˆyc  is the 
estimated position of the CoM in the y-direction (lateral ) and 

maxyc is the maximum  of yc obtained from the desired value or 
by recording the maximum of ˆyc when the single support 
phase starts. 

The robot is considered rotationally stable, so the angular 
momentum rate of change is zero[23]. For fully contact and 
not rotating foot, the moment from the CoM around the origin 
of the foot is  

,   R R R L L LM f F M f F= × = × (10) 

Where Rf and Lf are the position of the right and left feet 
frame-origins respectively from the CoM, they are known by 
using the forward kinematics for each leg. RM  and LM are 
moments at the right and left feet frame-origins respectively. 



By the knowledge of the forces and moments, the location 
of the force d in the horizontal plane from the CoM point as 
projected on the horizontal plane is calculated for each foot 
using 

, , , ,/ / T
i y i z i x i z id M F M F= −   (11) 

Where the subscripts , ,x y and z refer to the x − , y − and
z − components respectively. The subscript i refers to right or 
left leg.  

The Center of Pressure point CoP as expressed from the 
foot frame origin is 

[ ](1) (1) (2) (2) T
i i i i iCoP d f d f= − − , (12) 

which is constraint to the support polygon dimensions. 

c) Distributed contact-point force estimation
The computed forces RF and LF are distributed among the 

contact points of the right and left feet respectively. The force 
distribution depends on the number of contact points Rn  and 

Ln and their locations for the right and left feet respectively. 
For simplicity, an equal number of contact points for both feet 
is considered, i.e. R Ln n n= = . The CoP coordinates ( CoPx  and 

CoPy ) with zF  can be written in a matrix form as 
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where kx , ky are the x − and y − positions of the contact 
point l that has the z −  reaction force ,z lF , 0m n× is a zero 
matrix of dimension m n× . 

Since C is a nonsquare matrix, the pseudo inverse of it can 
be calculated and then find N . However, the inverse suffers 
from singularities and doesn’t fulfill the constraints in Eq (16). 
While the optimal solution is still required, the constraints in 
Eq(16) are written in matrix form as 
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where 1m  is row vector of one’s of dimension m , and mI is the 
identity matrix of dimension m . 

For the optimal solution of the vector N , the cost function 
J is defined as  

( ) ( )T TJ CN b CN b N WN= − − + , (21) 

where W is a diagonal weighting matrix. 
The quadratic programming optimization method is used to 

solve the least square problem subjected to the constraints in 
Eq(17) and Eq(18) as in 
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After some mathematical manipulation, Eq(22) is written 
to be used directly in the quadratic programming method as 
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d) Fault detection and signal recovery

The output of the VFS N̂  in Eq(23) is used to estimate 
the faults in the force sensors and recover the faulty signal. 
The output of the sensors measN is modeled as the addition of 
the true force vector N , and the fault vectorη  as in 

meas NN N vη= + + (24) 



And the fault is assumed to be a zero mean Gaussian 
noise ,kvη  driven as 

1 ,k k kvηη η −= + (25) 

then the true force vector is modeled as 

, 1 ,k meas k k kN N vηη −= − −  (26) 

The Gaussian noises Nv and vη  are considered to be 
independent. For n contact points, Eq(25) and Eq(26) can be 
written in linear state space model as 
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w  and v  represent  the process and the measurement 
noises respectively. They are considered Gaussian with 
covariance’s  Q  and R as 
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Kalman filter is useful tool when the noise is 
contaminated in the system. It used to estimate the states in Eq 
(27), the estimated vector N̂ serves as the measurement 
vector in the correction part of Kalman filter. 

For more stable fault detection due to the oscillations in 
the estimatedη , it is filtered using low pas filter then used in 
the threshold in the next section. 

III. THRESHOLD SELECTION 

The threshold tr value is selected based on value of the 
filteredη for sensor j in the free fault case. Then the value of 
η determines whether a fault exists or not based on the selected
tr as in 
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IV. SIMULATION RESULTS

The simulations are carried on 12 degrees of freedom 
(DOF) biped model. It consists of two 6-DOF legs and a trunk 
connecting them. Three joint axes are positioned at the hip, 
two joints are at the ankle and one at the knee (Fig. 2). The 
numerical values of the parameters (Table I) are taken to 
match our experimental humanoid robot SURALP  (Sabanci 
University Robotics Research Laboratory Platform) [24]. The 
details of contact modeling and simulation algorithm are in 
[25]. The coordinate frames are shown in Fig. 3.  All the 
measurements and calculation are in the world frame. The 
transformation is done using the rotational matrix obtained by 
the author in [26]. Kalman filter parameters are listed in Table 
II. The value 80.01W I= .The results shown here are for the 
right leg of the robot. 

The output of the VFS compared to the true one is shown in 
Fig. 4.  Since the VFS depends on the acceleration of the 
CoM, its output is bounded and doesn’t suffer from the peeks 
as in the model. In the same context, the effect of the impact 
forces on its output is much less. In the simulation, three types 
of sensor faults are tested: offset, drift, and frozen output. 
These faults are added to the sensor output (the force). For the 
frozen output case, the sensor output is considered to have a 
constant value of zero. The considered fault for each force is 
shown in Fig. 5. For the force sensor at contact point 1 its 
output is considered 0, for the force sensor at contact point 2 
its output is shifted by positive 100N, for the force sensor at 
contact point 3 its output has a time drift of slope 15, and the 
force sensor at contact point 4 its output has a negative shift of 
100N.  The estimated fault is shown in the same figure, 
because of high noise amplitude, the estimated fault is filtered 
using low pass filter and then used for the fault detection. The 
oscillations in the estimated fault are due to the error between 
the VFS output and the model. The estimated fault η (solid 
line) tracks the true fault (dashed line) as clear in Fig. 5. The 
recovered signal after removing the fault is depicted in Fig. 6. 
Recovering the signal in case of the offset and drift faults uses 
both the VFS output and the faulty signal which increases the 
accuracy of the estimation. For the frozen output, the 
estimation depends only on the VFS output.  The fault 
detection is shown in Fig. 7 where the zero indicates no faults 
and the one indicates the fault occurrence. All the faults occur 
at the time instant 5, however their detection depends on the 
value of the threshold. In the first two seconds the threshold 
may indicate the fault existence while there is no fault. This is 
due the initialization of the algorithm. Different thresholds are 
applied, which explains the false detection and miss detection 
of the faults. Even the faults are applied suddenly the 
algorithm still able to track them and reconstruct the faulty 
signal. 



Fig. 2: The kinematic arrangement of SURALP

Fig. 3: Coordinate systems . ow and ob stand for the origins of the world and 
body coordinate frames, respectively. The foot coordinate frames are fixed to 
the foot soles.  

Fig. 4: The virtual force sensor output and the model force output 

Table I: Robot Parameters 

Parameter Value 

Upper leg length 280mm 

Lower leg length 270mm 

Sole-ankle distance 124mm 

Foot dimensions 240mm×150mm 

Upper arm length 219mm 

Lower arm length 255mm 

Robot weight 114 kg 

Table II: simulation parameters 

Parameter value 
Q 1010−

R 410−  
T 0.001 

Fig. 5: The added fault (true), estimated filtered fault and the estimated 
unfiltered fault 

Fig. 6: The recovered signal (solid line) and the actual one (dotted line) 

V. CONCLUSION AND FUTURE WORK 
A method of detecting the force faults and reconstructing the 
faulty signal for a walking biped is proposed. It is based on 
designing the virtual force sensor which uses the CoM 
position and quadratic optimization method to estimate the 
distributed forces at the contact points of the feet. These forces 
are used as bases for the fault detection and faulty signal 
recovery.  The algorithm uses both information from the 
sensor and the VFS to increase the accuracy of the estimation. 
The simulations validate the proposed method and motivate us 
to implement it into our humanoid robot SURALP in future. 
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Fig. 7: Fault detection 
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