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Abstract—In this paper we study the impact of compressed signal reconstructions from measurement of extremely theiv,
data coIIectlor!s from a .SAR sensor on reconstruction .qualyt randomly chosen Fourier samples of a signal [2], [5]. Since
of a scene of interest. Different monostatic and multistati SAR  gAR can be viewed as obtaining samples of the spatial Fourier

measurement configurations produce different Fourier samfing . .
patterns. These patterns reflect different spectral and spial transform of the scattering field [6], these results suggest

diversity trade-offs that must be made during task planning interesting opportunities for SAR sensing. _
Compressed sensing theory argues that the mutual coherence The use of sparsity constrained reconstructions for SAR

of the measurement probes is related to the reconstruction image formation was first presented in [7], although not
performance of sparse domains. With this motivation we pro- \iinin the compressed sensing framework. More recently,

pose a closely relatedt-average mutual coherence parameter there have been several applications of compressed sensin
as a sensing configuration quality parameter and examine its pp P g

relationship to the reconstruction behavior of various morostatic  ideas to radar [8], [9], [10], [11]. The authors in [_8] acceyt
and ultra-narrow band multistatic configurations. We investigate reconstruct a small number of targets on a time-frequency

howlthis easily computed metric is related to SAR reconstrution  plane by transmitting a sufficiently incoherent pulse and em
quality. ploying the techniques of compressed sensing. The authors
in [10] propose the use of chirp pulses and pseudo-random
sequences for compressed sensing with imaging radars. A
compressed sensing technique for a synthetic apertureisada
Synthetic aperture radar (SAR) is a remote sensing sydso discussed in [9], where the authors obtain measurement
tem capable of producing high-resolution imagery of targeyy random subsampling of a regular aspect-frequency grid in
scenes independent of time of day, distance, and weathespace. A SAR compressed sensing with reduced number of
Conventional SARs are monostatic, with collocated trahsnurobes was first discussed in [12] and [13].
and receive antenna elements. These SAR sensors coherently contrast to the previous work, we extend compressed
process multiple, sequential observations of a scene undensing treatments to the multistatic scenario and propose
the assumption that the scene is static. Imaging resolutiBpr-mutual coherence parameter of the measurement operator
is determined by the bandwidth of the transmitted signads a simple measure of sensing configuration quality. Within
and the size of the synthesized antenna. Greater resolutibis framework, we examine different monostatic and ultra-
requires wider bandwidths and larger aspect angles olotaimarrowband multistatic configurations, which trade off-fre
from a longer baseline observation interval. An alterrativquency and geometric diversity. We show how themutual
approach is based on multistatic configurations, whereia sgoherence of the measurement operator is affected by the
tially dispersed transmitters and receivers sense theescarmumber of transmitting probes as well as by the number of
Such configurations provide the opportunity for spatial aseasurements, and we investigate and demonstrate how this
well as frequency diversity and offer potential advantaiges simple metric is related to reconstruction quality.
flexible sensor planning, sensing time reduction, and jamgmi
robustness. 1. MULTISTATIC SAR SIGNAL MODEL
To exploit the promise of multistatic sensing, robust meth- We consider a general multistatic system with spatially
ods of reconstructing imagery obtained from general multilistributed transmit and receive antenna elements within a
static configurations are needed, as well as tools to uradetstcone positioned at the center of a scene of interest. Theescen
and evaluate the performance of various sensor configudd-interest is modeled by a set of point scatterers reflecting
tion choices in a straightforward, tractable manner. Régenimpinging electromagnetic waves isotropically to all rieees
the area known as compressed sensing (CS) [1], [2] haghin the cone. We introduce a coordinate system with the
received much attention in the signal processing field. G8igin in the center of the area of interest and, for simpjici
seeks to acquire as few measurements as possible aboumadel the scene as two dimensional (Fig. 1). The relative siz
unknown signal, and given these measurements, reconstafcthe scene is assumed to be small compared to distances
the signal either exactly or with provably small probalilit from the origin of the coordinate system to all transmittemel
of error. The reconstruction methods used in CS are relateteivers, such that transmit and receive angles wouldgghan
to sparsity-constrained, non-quadratic regularizatiSignal negligibly if the coordinate origin moved to any point in the
reconstruction accuracy is shown to be related to the mutsakne. Furthermore, we neglect signal propagation attienua
coherence of the corresponding measurement operator [3]The complex signal received by thieh receiver, located
[4]. Furthermore, the CS literature has demonstrated ateurat x, = [z;, v, for the narrow-band excitation from the

I. INTRODUCTION



where Qi (t) = wr — 200 (t — Tri(x,))], depends on the
frequency content of the transmitted waveform.

The received signal model for the monostatic configuration
corresponds to collocated transmit-receiver pairs, and, tts
a special case of the multistatic model obtained by setting
X = X|.

k—th transmitfer

IIl. COMPRESSED SENSINGGAR

Compressed sensing enables reconstruction of sparse or
compressible signals from a small set of linear, non-adapti
measurements, much smaller in size than required by the
Fig. 1. Geometry of thél-th transmit-receive pair with respect to the scene[\lyqUIS'[_Shannon th.eorem 2, 1] .Wlth high proba}blllty,
of interest. All transmit and receive pairs are restrictedid within a cone accurate reconstructions can be obtained by sparsity-@nép
of the angular extenf\é. optimization techniques provided that the signal’s srsj

basis and the random measurement basis are sufficiently
incoherent.
k-th transmitter, located at, = [xx,yx|”, reflected from a  According to (2), SAR data represent Fouriespace mea-
point scatterer at the spatial locatian= [z, y]” is given by surements of the underlying spatial reflectivity field. Bifint
rei(t) = s(x) vk (t — Ti(x)) , wheres(x) is the reflectivity monostatic and multistatic SAR measurement configurations
of the scatterery,(¢) is the transmitted waveform from theproduce different Fourier sampling patterns. These pater
k-th transmitter, and; (x) is the propagation delay from thereflect different spectral and spatial trade-offs that rruest
transmitter to the scatterer and back from the scatterdndo inade during task planning. Compressed sensing theoryargue
receiver. The overall received signal from the entire gbunhat random Fourier measurements represent good prajsctio
patch with radiusL is then modeled as a superposition ofor compressive sampling of point-like signals [2]. Thiggsu
the returns from all the scattering centers. For narrondbagests a natural application to the sparse aperture SARmggnsi
waveforms, defined by (t) = i (t)e/“**, where¥,(t) is @ problem and opens a question of how different monostatic and
low-pass, slowly varying signal ang; the carrier frequency, multistatic SAR sensing configuration constraints influenc
the received signal is given by: reconstruction quality for fixed number of measurements.
‘ Furthermore, we are interested in a simple goodness measure
Tt (t) :/ s(x)elor (=) 3, (+ — 71y(x)) dx. (1) that can predict configuration quality before sensing even
el < £ takes place. Such a quality predictor would allow bettek tas

In the far-field case, whefix|| < ||xx||, ||x|| < ||x:||, and planning and resource utilization. From compressed sgnsin
wi/elx||? < |Ixxll, we/c|lx||? < [|Ix:|, we can use the first we know that the mutual coherence of the measurement probes
order Taylor series expansion to approximate the propamatis related to the worst case reconstruction performance of

delay 7x;(x) as: sparse domains [3], [4]. With this motivation we examine
the relationship of the sensing geometry and a closelyaglat
1 1 7 .
(%) = = (||xx — x|| + ||x; — x||) = 71(0) — =x" ey, parameter we term thg,-average mutual coherence, as this
C C

parameter is expected to provide a better measure of the av-
where 7, (0) = (||xx|| + ||x:|])/c is the known transmitter- erage reconstruction quality than the mutual coherencetwhi
origin-receiver propagation delay, ang, = e; +¢; is thekl- is a pessimistic measure.
th transmit-receiver pair's bistatic range vector. Theteer  In the following we first describe reduced data collections

ep = [cos¢y,sing,]T and e; = [cos¢y,sing]? are unit with non-conventional SARc-space sampling patters. Next,
vectors in the direction of the-th transmitter and-th receiver we describe the sparsity-enforcing reconstruction anchdefi
respectively. the to-average mutual coherence parameter use@fpriori

The chirp signal is the most commonly used spotlight SABvaluation of such sensing configurations.
pulse [6], given byy, (&) = efort’ . giwnt, —Z <t < I where
wy, is the center frequency aritdy, is the so-called chirp rate 5 Sampling configurations
of the k-th transmit element. The narrow-band assumption is

satisfied by choosing the chirp signal parameters such tha{l) Monostatic SAROne approach to reduced data collec-

27 By /wi, < 1. Ultra-narrow band waveforms are speciali'on is to directly reduce the number of transmitted probes
caseks Olf“ the cHirp signal obtained by setting— 0 with regular or random interrupts in the synthetic aperture

We use a general transmitted chirp signal in (1), along wi}p(e CO”S“?'EF several regular anq random observation sa_mplin
the far-field delay approximation, and apply typical demodpatters within a fixed observation exteito, coupled with

ulation and baseband processing [6], to obtain the follgwir{egmar_ and random frequency sampling W'th'n a desired
observed signal model: chirp-signal bandwidthB. We do not constrain random as-

pect/frequency samples to fall on a regular rectangulat. gri
£~ 32 (0)x"en g 2 Fig. 2(a) illustrates thé-space sampling pattern When_ both
ria(t) /”x||<LS(X)e % 2 aspect and frequency are sampled regularly, and Fig. 2(b)



where s is the unknown spatial reflectivity vector, an@

T is derived by discretizing (2). The vectar represents the

S R observed, thus known, set of return signals at all receivers

across time. Its elements are indexed by the tupld, ¢.),

with t, being the sampling times associated with #ieth

transmit-receive pair, and the spatial frequeriy(¢) and

SN S R SN SR S — aspect-vector samples;,; are determined from the sampling
: 5 configuration requirements.

(a) (b) Both the observed SAR dataand the underlying scattering

: field s are complex valued. In SAR applications reflectiv-

ity magnitudes are of primary interest. We apply sparsity-

enforcing regularization directly on the magnitudes of the

complex reflectivity fields. In particular, we define the reduced

data SAR reconstruction problem as:

s = argmin [|s||} st r—®sla <o, (3)
S

where o represents the regularization parameter dsith =
(© (d) > V(R(s)i)? + (Z(s):)2. We solve the optimization prob-

Fig. 2. (a), (b) Monostatic SAR-space sampling patterns for a fixeespace  |em (3) using the software described in [14].
extent (fo = 10GHz, B = 600MHz, A6 = 3.5deg). (c), (d) Multistatic k-

space sampling patterns for circular, ultra-narrowbandr S#perator, with _
Ny = 1, Ntz = 20 transmitters andV,, = 30 receivers. (a) Regular C. Thet% average mutual coherence

aspect-frequency sampling. (b) Random aspect, randomdney sampling.  The mutual coherence of a measurement operator was
(c) Regular transmitter-receiver aspect positioning. Rdndom transmitter, discussed as a simple, but conservative measure of thQ/abiIi
random receiver aspect positioning. i . B
of sparsity-enforcing reconstruction to accurately retaret a
signal [3], [4]. In the case of complak, the mutual coherence
f a sensing geometry is defined as:

illustrates a realization of &-space sampling pattern wher’
both aspept apd frequency_ are_ sampled randomly. N (@) = maxg;;, gij = | < -(bza(bj.> |’Z- e (4)

2) Multistatic SAR: Multistatic SAR offers the possibil- i#] l¢ill2ll9;ll2
ity of different k-space sampling patterns with trade-off§vhere¢i is the i-th column of the matrix®, and the inner
in temporal frequency and spatial transmit/receiver liocat product is defined asc ¢;,¢; >= ¢H¢;. The i-th column
diversity. In the monostatic case, the chirp signal bantiwidyectorg, can be viewed as a range-aspect 'steering vector’ of
allowed for extended coverage of thespace in the range 3 sensing geometry or a contribution of a scatterer at afgpeci
direction. However, in the multistatic case, extendespace spatial location to the received, phase history signal. The
coverage can also be achieved with ultra-narrowband signglytual coherence measures the worst case correlationdetwe
provided there is spatial diversity of transmitter and fe®e responses of two distinct spatially distributed reflectoks
locations. Here, we consider a circular multistatic SARhWit|ess conservative measure connected to average recdiustruc
a continuous wave, ultra-narrowband signal transmisgton. performance was proposed in [15] for compressed sensing
the general multistatic SAR, the total number of measurgrojection optimization. The-average mutual coherence was
ments is calculated a8/ = N, NNy, where Ny, is the defined as the average value of the $gt; | g;; > t}. In
number of transmitters/transmitted prob#s,, is the number -qntrast to the-average mutual coherence, we propose to use
of receivers, andV; is the number of frequency samplesthe ¢, -average mutual coherence as a measure more closely
In the case of the ultra-narrowband transmission we hapgated to the average reconstruction performance of (8). W
Ny = 1 and different sampling patterns are achieved Ryefine thety,-average mutual coherenge,, , as follows. Let
varying transmitter and receiver angular locations. RQ(C) ¢, e the set of thes, percent of the largest column cross-

illustrates thek-space sampling pattern when both ”ansmitt%rorrelationSgij. The to,-average mutual coherence is defined

and receiver angular locations are sampled regularly, agg:
Figure 2(d) illustrates a realization &fspace sampling when 1 ce
both transmitter and receiver locations are sampled ratdom;,,, («i) = ’ Gii € Sty

0, otherwise

2iz; 9T (b%) () =
Doig; Ligltn) 7T

In other words.,, () measures an average cross-correlation
value in a set of thely, most similar column pairs. The
We consider image formation of target scenes consistifgrametety, should have a small value in order to accurately
of a sparse set of point reflectors. The spatial reflectivéty fepresent the tail of the column cross-correlation distidn.
reconstructed on a rectangular grid, resulting in the line&dhis measure is more robust to outliers, which can unfairly
discrete-data SAR model: dominate the mutual coherence. A large value Qf (®)
indicates a large number of similar columns &f that can
r=®s+n, potentially confuse the reconstruction algorithm.

B. Sparse reconstruction



IV. SIMULATIONS 1 1
0.8 0.8

In this section we present simulation results averaged over
100 Monte Carlo runs. For regular sampling, we average ,"*
over different ground truth scene realizations. In cases th =,
involve random sampling we average over different SAR
operator and ground scene realizations. For each realwati
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?
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of & we measure they-average mutual coherengg,, (<i>), 0 P

. . °© 0 2% ¢ b40N 60 00 400 600 800 1000 1200
for t, = 0.5%, and display its average over all Monte number of probes, N,, number of measurements, M
Carlo runs. The ground truth scene consistsTofandomly (@) 1 (d)

dispersed scatterers each with unit magnitude and random
phase uniformly distributed in the rand@ 2x|.

Reconstruction performance is measured through the rel- °¢
ative mean square error (RMSE), and the percentage of os
identified support. The RMSE is defined as RMSHE-[|[s — o4 \
soll2/|Isoll2], wheresg is the ground truth signak is its esti- N }} o
mate from a reduced set of measurements, Epfdstands for °
an empirical average over Monte Carlo runs. The percentage %
of identified support measures the percentage of the ctyrect
identified support of th& largest components of the estimated (b)}; 100 ’ge)
signal. 7 \L“i f

1) Simulation results for monostatic CS SARe consider 1
monostatic spotlight SAR imaging of a small ground patch of
size (D,, D,) = (10,10)m , when observed over a narrow-
angle aspect cone ahd = 3.5deg. The transmitted wave-
forms are chirp signals witlf, = 10GHz and B = 600MHz. 20 20 [
The nominal range resolution ig, = 5% = .25m and the
nominal cross-range resolution ig, = rrrixgrsy = -25M. R T N e
Assuming that the pixel spacing matches the nominal resolu- (©) )
tion, W.e seek to reconstructdd) x 40 pixel reflectivity image. Fig. 3. Monostatic SAR when the ground scene consistg"of= 140

In Fig. 3 we show results when the ground scene consistatterers. (a), (b), (c) Performance vs. sensing configardor the fixed
of T' = 140 randomly dispersed, non-zero, scatterers. The |eftmber of measuremente/ = 600. (d), (e), (f) Performance vs. number of
column shows results at the fixed number of measuremefgsurements/ for sensing configurations Witt, = Ny. (a), (d) The

; o,-average mutual coherenceg 5o (b), (€) RMSE. (c), (f) Percentage of
M = Ny Ny = 600 as we vary the number of transmltted:orrectly identified support of” largest estimated signal peaks.
probesN,,. The right column shows results as a function of
the number of measuremenid for sensing configurations
with equal number of frequency and aspect samples, iwhereN., = 40. In the right column, we observe the number
Ni, = Ny. Comparing theu,,, curves to the correspondingof measurements needed for accurate reconstruction is 4-5
reconstruction performance metrics we see that astdfre times the number of scatterers in a scene.
average mutual coherence is lowered, the reconstructiah qu 2) Simulation results for multistatic CS SARhe main
ity improves. Regular sampling introduces signal aliasiman- advantage of compressed sensing in the monostatic scénario
ifested as periodic and large column cross-correlatiorkpedhe reduction of data storage and reduction in the number of
that confuse the reconstruction algorithm. Thg-average transmitted probes. Data collection time can not be reduced
mutual coherence is the lowest whierspace sampling points as the monostatic SAR platform covers the whole aspect
cover the availablék-space extent most uniformly. The mostange sequentially in time. On the other hand, multistatic
uniform coverage in the regular subsampling case is actlie@AR has the potential to further reduce the data acquisition
when the ratio of the number of aspect angles to the numbettiofie through the use of a multitude of spatially dispersed
frequency samples is approximateM;, /Ny = AK,/AK,, transmitters and receivers. Theoretically, there exishyna
where AK, (AK,) is thek-space extent in the cross-rangenultistatic geometries with similak-space coverage as in
(range) direction. On the other hand, in the random samplittte monostatic case, and thus, similar reconstructionltsesu
case, thek-space coverage becomes more uniform as tire the case of isotropic scattering. In an extreme case, we
number of transmitted probes increases. This is reflectdtkin consider ultra-narrowband circular multistatic configimas
lower values of theus,, . We see that increasing the numbewith Ny = 1 and transmitters and receivers placed around the
of transmitted probes after a certain value.Qj, is reached scene in a full circle [16].
has only a small impact on the reconstruction performance.n order to carry out simulations comparable to the monos-
Finally, the monostatic random sensing enables high-tyualtatic case presented earlier, the carrier wavelength iscest
reconstructions with a smaller number of prob&§,(> 25) such that spatial resolutions of the two configurations are
than required by the conventional, SAR Nyquist samplingpproximately the same. In our simulations, each transmit-

—=—rand. subsamp.|| —=—rand. subsamp|
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of the sparse reconstruction is primarily determined by the
sampling pattern in the spatial-frequency domain. We slklowe
that reconstructions of similar quality can be obtainedgi-
ther the wide-band monostatic or ultra-narrow band maltist
configurations, effectively trading off frequency for geetnic
diversity. In both cases, configurations with sufficienthyadl
values of thety-average mutual coherence achieve high-

% 20 40 60 0o
number of probes, N‘x

(a)
- * -reg. subsamp.
—=—rand. subsamp|

400 600 800 1000 1200
number of measurements, M

(©
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Fig. 4. Multistatic ultra-narrowband SAR when the grounérszs consists
of T" = 140 scatteres. (a), (b) Performance vs. sensing configuratipthé
fixed number of measurementg = 600. (d), (e) Performance vs. number of
measurementd/ for sensing configurations witiV:, = N,. (a), (c) The
to,-average mutual coherenceg 5o,. (b), (d) RMSE.

400 600 800 1000 1200

but

(1]

[2]

ter sends out an ultra-narrow band waveform signal with a
frequency that satisfies, = p, = 0.25 = v/2/4 - ¢/ f,. The
scene size is the same as in the monostatic simulation cas&s.
We assume that the isotropic scattering assumption is fa@lid [4]
the circular multistatic configuration.

In the left column of Fig. 4 we show results as a function[s]
of the number of spatially dispersed transmité¥g, when
the total number of measurements is held fixedMb =
600 = NN, N¢. In the right column of Fig. 4, we show 6]
the results as a function of the number of measurements
M for sensing configurations withV,, = N,,. In both [7]
cases, the signal support size 15 = 140. All sampling 8]
cases result in &-space pattern that deviates significantly
from a regulark-grid. This translates into significantly re-
duced coherence of configurations with a few transmittet!
probes and higher-reconstruction quality as compared éo th
monostatic case with the same number of transmitted probjas]
Furthermore, different multistatic sampling patterns iaeh
similar performance. While the random sampling was ti%ll
key to the improved performance in the monostatic case, the
circular multistatic configuration is robust to transneteive [12]
sensor aspects. Similarly to the monostatic case the number
of required measurements needed for accurate reconetructi
is 4-5 times the number of scatterers in a scene. (13]

V. CONCLUSION [14]

In this paper we studied different monostatic and muliistat]15]
SAR measurement configurations in the context of compressed
sensing. Compressed sensing techniques when applied to é}ﬂ?
allow for reliable sparsity-driven imaging with dramatiga
reduced number of transmitted probes. The image quality

quality reconstruction performance. The-average mutual
coherence is an easily computed parameter that can be used
in the real time design or evaluation of sensing configunatio
for e.g. task planning of multi-mode radars. In the multista

case, it is straightforward to obtain low coherence either b
regular or random transmit/receive aspect sampling, vasere
in the monostatic case randomness in the sampling pattern
leads to lower coherence. In the monostatic case, compresse
sensing and sparsity-driven reconstruction allow for oediu
on-board data storage and sensing with a reduced number of
transmitted probes relative to what is conventionally resgl
In the multistatic case, compressed sensing and sparsigrd
reconstruction allow for sensing with fewer transmittedhms,

also reduced acquisition time when compared to the

monostatic case.
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