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Abstract—In this paper we study the impact of compressed
data collections from a SAR sensor on reconstruction quality
of a scene of interest. Different monostatic and multistatic SAR
measurement configurations produce different Fourier sampling
patterns. These patterns reflect different spectral and spatial
diversity trade-offs that must be made during task planning.
Compressed sensing theory argues that the mutual coherence
of the measurement probes is related to the reconstruction
performance of sparse domains. With this motivation we pro-
pose a closely relatedt%-average mutual coherence parameter
as a sensing configuration quality parameter and examine its
relationship to the reconstruction behavior of various monostatic
and ultra-narrow band multistatic configurations. We investigate
how this easily computed metric is related to SAR reconstruction
quality.

I. I NTRODUCTION

Synthetic aperture radar (SAR) is a remote sensing sys-
tem capable of producing high-resolution imagery of target
scenes independent of time of day, distance, and weather.
Conventional SARs are monostatic, with collocated transmit
and receive antenna elements. These SAR sensors coherently
process multiple, sequential observations of a scene under
the assumption that the scene is static. Imaging resolution
is determined by the bandwidth of the transmitted signals
and the size of the synthesized antenna. Greater resolution
requires wider bandwidths and larger aspect angles obtained
from a longer baseline observation interval. An alternative
approach is based on multistatic configurations, wherein spa-
tially dispersed transmitters and receivers sense the scene.
Such configurations provide the opportunity for spatial as
well as frequency diversity and offer potential advantagesin
flexible sensor planning, sensing time reduction, and jamming
robustness.

To exploit the promise of multistatic sensing, robust meth-
ods of reconstructing imagery obtained from general multi-
static configurations are needed, as well as tools to understand
and evaluate the performance of various sensor configura-
tion choices in a straightforward, tractable manner. Recently
the area known as compressed sensing (CS) [1], [2] has
received much attention in the signal processing field. CS
seeks to acquire as few measurements as possible about an
unknown signal, and given these measurements, reconstruct
the signal either exactly or with provably small probability
of error. The reconstruction methods used in CS are related
to sparsity-constrained, non-quadratic regularization.Signal
reconstruction accuracy is shown to be related to the mutual
coherence of the corresponding measurement operator [3],
[4]. Furthermore, the CS literature has demonstrated accurate

signal reconstructions from measurement of extremely few,but
randomly chosen Fourier samples of a signal [2], [5]. Since
SAR can be viewed as obtaining samples of the spatial Fourier
transform of the scattering field [6], these results suggest
interesting opportunities for SAR sensing.

The use of sparsity constrained reconstructions for SAR
image formation was first presented in [7], although not
within the compressed sensing framework. More recently,
there have been several applications of compressed sensing
ideas to radar [8], [9], [10], [11]. The authors in [8] accurately
reconstruct a small number of targets on a time-frequency
plane by transmitting a sufficiently incoherent pulse and em-
ploying the techniques of compressed sensing. The authors
in [10] propose the use of chirp pulses and pseudo-random
sequences for compressed sensing with imaging radars. A
compressed sensing technique for a synthetic aperture radar is
also discussed in [9], where the authors obtain measurements
by random subsampling of a regular aspect-frequency grid in
k-space. A SAR compressed sensing with reduced number of
probes was first discussed in [12] and [13].

In contrast to the previous work, we extend compressed
sensing treatments to the multistatic scenario and proposea
t%-mutual coherence parameter of the measurement operator
as a simple measure of sensing configuration quality. Within
this framework, we examine different monostatic and ultra-
narrowband multistatic configurations, which trade off fre-
quency and geometric diversity. We show how thet%-mutual
coherence of the measurement operator is affected by the
number of transmitting probes as well as by the number of
measurements, and we investigate and demonstrate how this
simple metric is related to reconstruction quality.

II. M ULTISTATIC SAR SIGNAL MODEL

We consider a general multistatic system with spatially
distributed transmit and receive antenna elements within a
cone positioned at the center of a scene of interest.The scene
of interest is modeled by a set of point scatterers reflecting
impinging electromagnetic waves isotropically to all receivers
within the cone. We introduce a coordinate system with the
origin in the center of the area of interest and, for simplicity,
model the scene as two dimensional (Fig. 1). The relative size
of the scene is assumed to be small compared to distances
from the origin of the coordinate system to all transmittersand
receivers, such that transmit and receive angles would change
negligibly if the coordinate origin moved to any point in the
scene. Furthermore, we neglect signal propagation attenuation.

The complex signal received by thel-th receiver, located
at xl = [xl, yl]

T , for the narrow-band excitation from the
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Fig. 1. Geometry of thekl-th transmit-receive pair with respect to the scene
of interest. All transmit and receive pairs are restricted to lie within a cone
of the angular extent∆θ.

k-th transmitter, located atxk = [xk, yk]
T , reflected from a

point scatterer at the spatial locationx = [x, y]T is given by
rkl(t) = s(x) γk (t− τkl(x)) , wheres(x) is the reflectivity
of the scatterer,γk(t) is the transmitted waveform from the
k-th transmitter, andτkl(x) is the propagation delay from the
transmitter to the scatterer and back from the scatterer to the
receiver. The overall received signal from the entire ground
patch with radiusL is then modeled as a superposition of
the returns from all the scattering centers. For narrow-band
waveforms, defined byγk(t) = γ̃k(t)e

jωkt, where γ̃k(t) is a
low-pass, slowly varying signal andωk the carrier frequency,
the received signal is given by:

rkl(t) =

∫

‖x‖≤L

s(x)ejωk(t−τkl(x)) γ̃k (t− τkl(x)) dx. (1)

In the far-field case, when‖x‖ ≪ ‖xk‖, ‖x‖ ≪ ‖xl‖, and
ωk/c‖x‖2 ≪ ‖xk‖, ωk/c‖x‖2 ≪ ‖xl‖, we can use the first
order Taylor series expansion to approximate the propagation
delayτkl(x) as:

τkl(x) =
1

c
(‖xk − x‖+ ‖xl − x‖) ≈ τkl(0)−

1

c
x
T
ekl,

where τkl(0)
.
= (‖xk‖ + ‖xl‖)/c is the known transmitter-

origin-receiver propagation delay, andekl
.
= ek+el is thekl-

th transmit-receiver pair’s bistatic range vector. The vectors
ek

.
= [cosφk, sinφk]

T and el
.
= [cosφl, sinφl]

T are unit
vectors in the direction of thek-th transmitter andl-th receiver
respectively.

The chirp signal is the most commonly used spotlight SAR
pulse [6], given byγk(t) = ejαkt

2 ·ejωkt,− τc
2 ≤ t ≤ τc

2 where
ωk is the center frequency and2αk is the so-called chirp rate
of the k-th transmit element. The narrow-band assumption is
satisfied by choosing the chirp signal parameters such that
2πBk/ωk ≪ 1. Ultra-narrow band waveforms are special
cases of the chirp signal obtained by settingαk = 0.

We use a general transmitted chirp signal in (1), along with
the far-field delay approximation, and apply typical demod-
ulation and baseband processing [6], to obtain the following
observed signal model:

rkl(t) ≈
∫

‖x‖<L

s(x)ejΩkl(t)x
T
ekl dx, (2)

whereΩkl(t) = 1
c [ωk − 2αk(t − τkl(xo))], depends on the

frequency content of the transmitted waveform.
The received signal model for the monostatic configuration

corresponds to collocated transmit-receiver pairs, and thus, is
a special case of the multistatic model obtained by setting
xk = xl.

III. C OMPRESSED SENSINGSAR

Compressed sensing enables reconstruction of sparse or
compressible signals from a small set of linear, non-adaptive
measurements, much smaller in size than required by the
Nyquist-Shannon theorem [2], [1]. With high probability,
accurate reconstructions can be obtained by sparsity-enforcing
optimization techniques provided that the signal’s sparsifying
basis and the random measurement basis are sufficiently
incoherent.

According to (2), SAR data represent Fourierk-space mea-
surements of the underlying spatial reflectivity field. Different
monostatic and multistatic SAR measurement configurations
produce different Fourier sampling patterns. These patterns
reflect different spectral and spatial trade-offs that mustbe
made during task planning. Compressed sensing theory argues
that random Fourier measurements represent good projections
for compressive sampling of point-like signals [2]. This sug-
gests a natural application to the sparse aperture SAR sensing
problem and opens a question of how different monostatic and
multistatic SAR sensing configuration constraints influence
reconstruction quality for fixed number of measurements.
Furthermore, we are interested in a simple goodness measure
that can predict configuration quality before sensing even
takes place. Such a quality predictor would allow better task
planning and resource utilization. From compressed sensing
we know that the mutual coherence of the measurement probes
is related to the worst case reconstruction performance of
sparse domains [3], [4]. With this motivation we examine
the relationship of the sensing geometry and a closely related
parameter we term thet%-average mutual coherence, as this
parameter is expected to provide a better measure of the av-
erage reconstruction quality than the mutual coherence which
is a pessimistic measure.

In the following we first describe reduced data collections
with non-conventional SARk-space sampling patters. Next,
we describe the sparsity-enforcing reconstruction and define
the t%-average mutual coherence parameter used fora-priori
evaluation of such sensing configurations.

A. Sampling configurations

1) Monostatic SAR:One approach to reduced data collec-
tion is to directly reduce the number of transmitted probes
with regular or random interrupts in the synthetic aperture.
We consider several regular and random observation sampling
patters within a fixed observation extent∆Θ, coupled with
regular and random frequency sampling within a desired
chirp-signal bandwidthB. We do not constrain random as-
pect/frequency samples to fall on a regular rectangular grid.
Fig. 2(a) illustrates thek-space sampling pattern when both
aspect and frequency are sampled regularly, and Fig. 2(b)
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Fig. 2. (a), (b) Monostatic SARk-space sampling patterns for a fixedk-space
extent (f0 = 10GHz, B = 600MHz, ∆θ = 3.5 deg). (c), (d) Multistatick-
space sampling patterns for circular, ultra-narrowband SAR operator, with
Nf = 1, Ntx = 20 transmitters andNrx = 30 receivers. (a) Regular
aspect-frequency sampling. (b) Random aspect, random frequency sampling.
(c) Regular transmitter-receiver aspect positioning. (d)Random transmitter,
random receiver aspect positioning.

illustrates a realization of ak-space sampling pattern when
both aspect and frequency are sampled randomly.

2) Multistatic SAR: Multistatic SAR offers the possibil-
ity of different k-space sampling patterns with trade-offs
in temporal frequency and spatial transmit/receiver location
diversity. In the monostatic case, the chirp signal bandwidth
allowed for extended coverage of thek-space in the range
direction. However, in the multistatic case, extendedk-space
coverage can also be achieved with ultra-narrowband signals
provided there is spatial diversity of transmitter and receiver
locations. Here, we consider a circular multistatic SAR with
a continuous wave, ultra-narrowband signal transmission.For
the general multistatic SAR, the total number of measure-
ments is calculated asM = NtxNrxNf , whereNtx is the
number of transmitters/transmitted probes,Nrx is the number
of receivers, andNf is the number of frequency samples.
In the case of the ultra-narrowband transmission we have
Nf = 1 and different sampling patterns are achieved by
varying transmitter and receiver angular locations. Figure 2(c)
illustrates thek-space sampling pattern when both transmitter
and receiver angular locations are sampled regularly, and
Figure 2(d) illustrates a realization ofk-space sampling when
both transmitter and receiver locations are sampled randomly.

B. Sparse reconstruction

We consider image formation of target scenes consisting
of a sparse set of point reflectors. The spatial reflectivity is
reconstructed on a rectangular grid, resulting in the linear
discrete-data SAR model:

r = Φ̃s+ n,

where s is the unknown spatial reflectivity vector, and̃Φ
is derived by discretizing (2). The vectorr represents the
observed, thus known, set of return signals at all receivers
across time. Its elements are indexed by the tuple(k, l, ts),
with ts being the sampling times associated with thekl-th
transmit-receive pair, and the spatial frequencyΩkl(t) and
aspect-vector samplesekl are determined from the sampling
configuration requirements.

Both the observed SAR datar, and the underlying scattering
field s are complex valued. In SAR applications reflectiv-
ity magnitudes are of primary interest. We apply sparsity-
enforcing regularization directly on the magnitudes of the
complex reflectivity fields. In particular, we define the reduced
data SAR reconstruction problem as:

ŝ = argmin
s

‖s‖11 s.t. ‖r− Φ̃s‖2 ≤ σ, (3)

whereσ represents the regularization parameter and‖s‖11 =∑
i

√
(R(s)i)2 + (I(s)i)2. We solve the optimization prob-

lem (3) using the software described in [14].

C. Thet%-average mutual coherence

The mutual coherence of a measurement operator was
discussed as a simple, but conservative measure of the ability
of sparsity-enforcing reconstruction to accurately reconstruct a
signal [3], [4]. In the case of complex̃Φ, the mutual coherence
of a sensing geometry is defined as:

µ(Φ̃) = max
i6=j

gij , gij =
| < φi, φj > |
‖φi‖2‖φj‖2

, i 6= j (4)

whereφi is the i-th column of the matrixΦ̃, and the inner
product is defined as< φi, φj >= φH

i φj . The i-th column
vectorφi can be viewed as a range-aspect ’steering vector’ of
a sensing geometry or a contribution of a scatterer at a specific
spatial location to the received, phase history signal. The
mutual coherence measures the worst case correlation between
responses of two distinct spatially distributed reflectors. A
less conservative measure connected to average reconstruction
performance was proposed in [15] for compressed sensing
projection optimization. Thet-average mutual coherence was
defined as the average value of the set{gij | gij > t}. In
contrast to thet-average mutual coherence, we propose to use
the t%-average mutual coherence as a measure more closely
related to the average reconstruction performance of (3). We
define thet%-average mutual coherence,µt% , as follows. Let
Et% be the set of thet% percent of the largest column cross-
correlationsgij . The t%-average mutual coherence is defined
as:

µt%(Φ̃) =

∑
i6=j gijIij(t%)∑
i6=j Iij(t%)

, Iij(t%) =
{
1, gij ∈ Et%
0, otherwise.

In other words,µt%(Φ̃) measures an average cross-correlation
value in a set of thet% most similar column pairs. The
parametert% should have a small value in order to accurately
represent the tail of the column cross-correlation distribution.
This measure is more robust to outliers, which can unfairly
dominate the mutual coherence. A large value ofµt%(Φ̃)
indicates a large number of similar columns ofΦ̃ that can
potentially confuse the reconstruction algorithm.
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IV. SIMULATIONS

In this section we present simulation results averaged over
100 Monte Carlo runs. For regular sampling, we average
over different ground truth scene realizations. In cases that
involve random sampling we average over different SAR
operator and ground scene realizations. For each realization
of Φ̃ we measure thet%-average mutual coherenceµt%(Φ̃),
for t% = 0.5%, and display its average over all Monte
Carlo runs. The ground truth scene consists ofT randomly
dispersed scatterers each with unit magnitude and random
phase uniformly distributed in the range[0, 2π].

Reconstruction performance is measured through the rel-
ative mean square error (RMSE), and the percentage of
identified support. The RMSE is defined as RMSE= E[‖ŝ−
s0‖2/‖s0‖2], wheres0 is the ground truth signal,̂s is its esti-
mate from a reduced set of measurements, andE[·] stands for
an empirical average over Monte Carlo runs. The percentage
of identified support measures the percentage of the correctly
identified support of theT largest components of the estimated
signal.

1) Simulation results for monostatic CS SAR:We consider
monostatic spotlight SAR imaging of a small ground patch of
size (Dx, Dy) = (10, 10)m , when observed over a narrow-
angle aspect cone of∆θ = 3.5 deg. The transmitted wave-
forms are chirp signals withfo = 10GHz andB = 600MHz.
The nominal range resolution isρx = c

2B = .25m and the
nominal cross-range resolution isρy = λ

4 sin(∆θ/2) = .25m.
Assuming that the pixel spacing matches the nominal resolu-
tion, we seek to reconstruct a40× 40 pixel reflectivity image.

In Fig. 3 we show results when the ground scene consists
of T = 140 randomly dispersed, non-zero, scatterers. The left
column shows results at the fixed number of measurements
M = NtxNf = 600 as we vary the number of transmitted
probesNtx. The right column shows results as a function of
the number of measurementsM for sensing configurations
with equal number of frequency and aspect samples, i.e.,
Ntx = Nf . Comparing theµt% curves to the corresponding
reconstruction performance metrics we see that as thet%-
average mutual coherence is lowered, the reconstruction qual-
ity improves. Regular sampling introduces signal aliasingman-
ifested as periodic and large column cross-correlation peaks
that confuse the reconstruction algorithm. Thet%-average
mutual coherence is the lowest whenk-space sampling points
cover the availablek-space extent most uniformly. The most
uniform coverage in the regular subsampling case is achieved
when the ratio of the number of aspect angles to the number of
frequency samples is approximatelyNtx/Nf = ∆Kx/∆Ky,
where∆Kx (∆Ky) is the k-space extent in the cross-range
(range) direction. On the other hand, in the random sampling
case, thek-space coverage becomes more uniform as the
number of transmitted probes increases. This is reflected inthe
lower values of theµt% . We see that increasing the number
of transmitted probes after a certain value ofµt% is reached
has only a small impact on the reconstruction performance.
Finally, the monostatic random sensing enables high-quality
reconstructions with a smaller number of probes (Ntx ≥ 25)
than required by the conventional, SAR Nyquist sampling

(a) (d)

(b) (e)

(c) (f)
Fig. 3. Monostatic SAR when the ground scene consists ofT = 140
scatterers. (a), (b), (c) Performance vs. sensing configuration for the fixed
number of measurementsM = 600. (d), (e), (f) Performance vs. number of
measurementsM for sensing configurations withNtx = Nf . (a), (d) The
t%-average mutual coherence,µ0.5%. (b), (e) RMSE. (c), (f) Percentage of
correctly identified support ofT largest estimated signal peaks.

whereNtx = 40. In the right column, we observe the number
of measurements needed for accurate reconstruction is 4-5
times the number of scatterers in a scene.

2) Simulation results for multistatic CS SAR:The main
advantage of compressed sensing in the monostatic scenariois
the reduction of data storage and reduction in the number of
transmitted probes. Data collection time can not be reduced,
as the monostatic SAR platform covers the whole aspect
range sequentially in time. On the other hand, multistatic
SAR has the potential to further reduce the data acquisition
time through the use of a multitude of spatially dispersed
transmitters and receivers. Theoretically, there exist many
multistatic geometries with similark-space coverage as in
the monostatic case, and thus, similar reconstruction results
in the case of isotropic scattering. In an extreme case, we
consider ultra-narrowband circular multistatic configurations
with Nf = 1 and transmitters and receivers placed around the
scene in a full circle [16].

In order to carry out simulations comparable to the monos-
tatic case presented earlier, the carrier wavelength is reduced,
such that spatial resolutions of the two configurations are
approximately the same. In our simulations, each transmit-
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(a) (c)

(b) (d)

Fig. 4. Multistatic ultra-narrowband SAR when the ground scenes consists
of T = 140 scatteres. (a), (b) Performance vs. sensing configuration for the
fixed number of measurementsM = 600. (d), (e) Performance vs. number of
measurementsM for sensing configurations withNtx = Nrx. (a), (c) The
t%-average mutual coherence,µ0.5%. (b), (d) RMSE.

ter sends out an ultra-narrow band waveform signal with a
frequency that satisfiesρx = ρy = 0.25 =

√
2/4 · c/fo. The

scene size is the same as in the monostatic simulation cases.
We assume that the isotropic scattering assumption is validfor
the circular multistatic configuration.

In the left column of Fig. 4 we show results as a function
of the number of spatially dispersed transmitersNtx when
the total number of measurements is held fixed toM =
600 = NtxNrxNf . In the right column of Fig. 4, we show
the results as a function of the number of measurements
M for sensing configurations withNtx = Nrx. In both
cases, the signal support size isT = 140. All sampling
cases result in ak-space pattern that deviates significantly
from a regulark-grid. This translates into significantly re-
duced coherence of configurations with a few transmitted
probes and higher-reconstruction quality as compared to the
monostatic case with the same number of transmitted probes.
Furthermore, different multistatic sampling patterns achieve
similar performance. While the random sampling was the
key to the improved performance in the monostatic case, the
circular multistatic configuration is robust to transmit/receive
sensor aspects. Similarly to the monostatic case the number
of required measurements needed for accurate reconstruction
is 4-5 times the number of scatterers in a scene.

V. CONCLUSION

In this paper we studied different monostatic and multistatic
SAR measurement configurations in the context of compressed
sensing. Compressed sensing techniques when applied to SAR
allow for reliable sparsity-driven imaging with dramatically
reduced number of transmitted probes. The image quality

of the sparse reconstruction is primarily determined by the
sampling pattern in the spatial-frequency domain. We showed
that reconstructions of similar quality can be obtained using ei-
ther the wide-band monostatic or ultra-narrow band multistatic
configurations, effectively trading off frequency for geometric
diversity. In both cases, configurations with sufficiently small
values of thet%-average mutual coherence achieve high-
quality reconstruction performance. Thet%-average mutual
coherence is an easily computed parameter that can be used
in the real time design or evaluation of sensing configurations
for e.g. task planning of multi-mode radars. In the multistatic
case, it is straightforward to obtain low coherence either by
regular or random transmit/receive aspect sampling, whereas
in the monostatic case randomness in the sampling pattern
leads to lower coherence. In the monostatic case, compressed
sensing and sparsity-driven reconstruction allow for reduced
on-board data storage and sensing with a reduced number of
transmitted probes relative to what is conventionally required.
In the multistatic case, compressed sensing and sparsity-driven
reconstruction allow for sensing with fewer transmitted probes,
but also reduced acquisition time when compared to the
monostatic case.
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