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Abstract: For many decision making problems under uncertainty, it is crucial to develop risk-averse models

and specify the decision makers’ risk preferences based on multiple stochastic performance measures (or criteria).

Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing

studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing

multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we

focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation,

and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization.

To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is

obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely

many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our

results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a

flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making.

We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate

CVaR constraints and demonstrate the computational performance of the proposed solution methods.

Keywords: multivariate risk-aversion; conditional value-at-risk; multiple criteria; cut generation; coherent risk

measures; stochastic dominance; Kusuoka representation

1. Introduction The ability to compare random outcomes based on the decision makers’ risk pref-

erences is crucial to modeling decision making problems under uncertainty. In this paper we focus on

optimization problems that feature risk preference relations as constraints. Risk measures are functionals

that represent the risk associated with a random variable by a scalar value, and provide a direct way to de-

fine such preferences. Popular risk measures include semi-deviations, quantiles (under the name value-at-

risk), and conditional value-at-risk (CVaR). Desirable properties of risk measures, such as law invariance

and coherence, are axiomatized in Artzner et al. (1999). CVaR, introduced by Rockafellar and Uryasev

(2000), is a risk measure of particular importance which not only satisfies these axioms, but also serves

as a fundamental building block for other law invariant coherent risk measures (as demonstrated by

Kusuoka (2001)). Due to these attractive properties, univariate risk constraints based on CVaR have

been widely incorporated into optimization models, primarily in a financial context (see, e.g., Uryasev,

2000; Rockafellar and Uryasev, 2002; Fabian and Veszpremi, 2008).

Relations derived from risk measures use a single scalar-valued functional to compare random out-

comes. In contrast, stochastic dominance relations provide a well-established (Mann and Whitney, 1947;

Lehmann, 1955) basis for more sophisticated comparisons; for a review on these and other comparison

methods we refer the reader to Shaked and Shanthikumar (1994), Müller and Stoyan (2002), and the

references therein. In particular, the second-order stochastic dominance (SSD) relation has been receiv-

ing significant attention due its correspondence with risk-averse preferences. Dentcheva and Ruszczyński

(2003) have proposed to incorporate such relations into optimization problems as constraints, requiring the

decision-based random outcome to stochastically dominate some benchmark random outcome. Recently,

such optimization models with univariate stochastic dominance constraints have been studied, among

others, by Luedtke (2008); Noyan et al. (2008); Noyan and Ruszczyński (2008); Rudolf and Ruszczyński

(2008); Gollmer et al. (2011), and they have been applied to various areas including financial portfolio op-

timization (see, e.g., Dentcheva and Ruszczyński, 2006), emergency service system design (Noyan, 2010),

power planning (see, e.g., Gollmer et al., 2008), and optimal path problems (Nie et al., 2011).
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For many decision making problems, it may be essential to consider multiple random outcomes of

interest. In contrast to the scalar-based comparisons mentioned above, such a multi-criteria (or multi-

objective) approach requires specifying preference relations among random vectors, where each dimension

of a vector corresponds to a decision criterion. This is usually accomplished by extending scalar-based

preferences to vector-valued random variables. Incorporating multivariate preference rules as constraints

into optimization models is a fairly recent research area, focusing on problems of the general form

max f(z)

s.t. G(z) � Y

z ∈ Z.

Here G(z) is the random outcome vector associated with the decision variable z according to some

outcome mapping G, the relation � represents multivariate preferences, and Y is a benchmark (or

reference) random outcome vector. A key idea in this line of research, initiated by the work of

Dentcheva and Ruszczyński (2009), is to consider a family of scalarization functions and require that

the scalarized versions of the random variables conform to some scalar-based preference relation. In

case of linear scalarization, one can interpret scalarization coefficients as the weights representing the

subjective importance of each criterion. However, in many decision making situations, especially those

involving multiple decision makers, it can be difficult to exactly specify a single scalarization. In such

cases one can enforce the preference relation over a given set of weights representing a wider range of

views.

Dentcheva and Ruszczyński (2009) consider linear scalarization with positive coefficients and apply

a univariate SSD dominance constraint to all nonnegative weighted combinations of random outcomes,

leading to the concept of positive linear SSD. They provide a solid theoretical background and develop

duality results for this problem, while Homem-de-Mello and Mehrotra (2009) propose a cutting surface

method to solve a related class of problems. The latter study considers only finitely supported random

variables under certain linearity assumptions, but the set of scalarization coefficients is allowed to be

an arbitrary polyhedron. However, their method is computationally demanding as it typically requires

solving a large number of non-convex cut generation problems. Hu et al. (2010) introduce an even more

general concept of dominance by allowing arbitrary convex scalarization sets, and apply a sample average

approximation-based solution method. Not all notions of multivariate stochastic dominance rely on

scalarization functions. Armbruster and Luedtke (2010) consider optimization problems constrained by

first and second order stochastic dominance relations based on multi-dimensional utility functions (see,

e.g., Müller and Stoyan, 2002).

As we have seen, the majority of existing studies on optimization models with multivariate risk-

averse preference relations focus on extending univariate stochastic dominance rules to the multivariate

case. However, this approach typically results in very demanding constraints that can be excessively

hard to satisfy in practice, and sometimes even lead to infeasible problems. For example, Hu et al.

(2011b) solve a multivariate SSD-constrained homeland security budget allocation problem, and ensure

feasibility by introducing a tolerance parameter into the SSD constraints. Other attempts to weaken

stochastic dominance relations in order to extend the feasible region have resulted in concepts such as

almost stochastic dominance (Leshno and Levy, 2002; Lizyayev and Ruszczyński, 2011) and stochastically

weighted stochastic dominance (Hu et al., 2011a).

In this paper we propose an alternative approach, where stochastic dominance relations are replaced by

a collection of conditional value-at-risk (CVaR) constraints at various confidence levels. This is a very nat-

ural relaxation, due to the well known fact that the univariate SSD relation is equivalent to a continuum

of CVaR inequalities (Dentcheva and Ruszczyński, 2006). Furthermore, compared to methods directly
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based on dominance concepts, the the ability to specify confidence levels allows a significantly higher

flexibility to express decision makers’ risk preferences. At the extreme ends of the spectrum CVaR-based

constraints can express both risk-neutral and worst case-based decision rules, while SSD relations can

be approximated (and even exactly modeled) by simultaneously enforcing CVaR inequalities at multiple

confidence levels. Comparison between random vectors is achieved by means of a polyhedral scalarization

set, along the lines of Homem-de-Mello and Mehrotra (2009), leading to multivariate polyhedral CVaR

constraints. We remark that this concept is not directly related to the risk measure introduced under

the name “multivariate CVaR” by Prékopa (2012), defined as the conditional expectation of a scalar-

ized random vector. To the best of our knowledge, incorporating the risk measure CVaR is a first for

optimization problems with multivariate preference relations based on a set of scalarization weights.

The contributions of this study are as follows.

• We introduce a new multivariate risk-averse preference relation based on CVaR and linear scalar-

ization.

• We develop a modeling approach for multi-criteria decision making under uncertainty featuring

multivariate CVaR-based preferences.

• We develop a finitely convergent cut generation algorithm to solve polyhedral CVaR-constrained

optimization problems. Under linearity assumptions we provide explicit formulations of the

master problem as a linear program, and of the cut generation problem as a mixed integer linear

program.

• We provide a theoretical background to our formulations, including duality results. We also show

that on a finite probability space a polyhedral CVaR constraint can be reduced to a finite number

of univariate CVaR inequalities. This important result, which is used to prove finite convergence

of our cut generation algorithm, is then extended to polyhedral constraints based on a wider

class of coherent risk measures.

• We adapt and extend some existing results from the theory of risk measures to fit the framework

of our problems, as necessary. In particular, we prove the equivalence of relaxed SSD relations

to a continuum of relaxed CVaR constraints, and show that for finite probability spaces this

continuum can be reduced to a finite set. We also provide a form of Kusuoka’s representation

theorem for coherent risk measures which does not require the underlying probability space to

be atomless.

• In a small-scale numerical study we examine the feasible regions associated with various poly-

hedral CVaR constraints, and compare them to their SSD-based counterparts. We also conduct

a comprehensive computational study of a budget allocation problem, previously explored in

Hu et al. (2011b), to evaluate the effectiveness of our proposed model and solution methods.

The rest of the paper is organized as follows. In Section 2 we review fundamental concepts related to

CVaR, SSD, and linear scalarization. Then we define multivariate CVaR relations, and present a general

form of optimization problems involving such relations as constraints. Section 3 contains theoretical

results including optimization representations of CVaR, and finite representations of polyhedral CVaR

and SSD constraints. In Section 4 we provide a linear programming formulation and duality results under

certain linearity assumptions. In Section 5 we generalize our finite representation results to a class of

coherent risk measures, extending Kusuoka’s representation theorem to non-atomless measures in the

process. In Section 6 we briefly discuss a vertex enumeration-based solution approach, then proceed

to present a detailed description of a cut generation algorithm, and prove its correctness and finite

convergence. Section 7 is dedicated to numerical results, while Section 8 contains concluding remarks.
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2. Basic concepts and fundamental results In this section we aim to introduce a stochastic

optimization framework for multi-objective (multi-criteria) decision making problems where the decision

leads to a vector of random outcomes which is required to be preferable to a reference random outcome

vector. We begin by discussing some widely used risk measures and associated relations which can be

used to establish preferences between scalar-valued random variables. We also recall and generalize some

fundamental results on the connections between these relations. Next, we extend these relations to

vector-valued random variables, and present a general form of optimization problems involving them as

constraints.

Remark 2.1 Throughout our paper larger values of random variables are considered to be preferable. In

the literature the opposite convention is also widespread, especially in the context of loss functions. When

citing such sources, the definitions and formulas are altered to reflect this difference.

2.1 VaR, CVaR, and second order stochastic dominance We now present some basic defini-

tions and results related to the risk measure CVaR. Unless otherwise specified, all random variables in

this paper are assumed to be in L1, which ensures that the following definitions and formulas are valid.

For a more detailed exposition on the concepts described below we refer to Pflug and Römisch (2007)

and Rockafellar (2007).

• Let V be a random variable with a cumulative distribution function (CDF) denoted by FV . The

value-at-risk (VaR) at confidence level α ∈ (0, 1], also known as the α-quantile, is defined as

VaRα(V ) = inf{η : FV (η) ≥ α}. (1)

• The conditional value-at-risk at confidence level α is defined (Rockafellar and Uryasev, 2000) as

CVaRα(V ) = sup

{
η − 1

α
� ([η − V ]+) : η ∈ �

}
, (2)

where [x]+ = max(x, 0) denotes the positive part of a number x ∈ �.

• It is well-known (Rockafellar and Uryasev, 2002) that if VaRα(V ) is finite, the supremum in the

above definition is attained at η = VaRα(V ), i.e.,

CVaRα(V ) = VaRα(V )− 1

α
� ([VaRα(V )− V ]+) . (3)

• CVaR is also known in the literature as average value-at-risk and tail value-at-risk, due to the

following expression:

CVaRα(V ) =
1

α

∫ α

0

VaRγ(V ) dγ. (4)

We note that the expected shortfall term � ([η − V ]+) introduced in (2) is closely related to the the second

order distribution function F2,V : �→ � of the random variable V defined by

F2,V (η) =

∫ η

−∞
FV (ξ) dξ.

Using integration by parts we obtain the following well-known equality:

F2,V (η) =

∫ η

−∞
FV (ξ) dξ = ηFV (η)−

∫ η

−∞
ξ dFV (ξ) =

∫ η

−∞
(η − ξ) dFV (ξ) =

∫ ∞

−∞
[η − ξ]+ dFV (ξ)

= � ([η − V ]+) .

(5)

CVaR is a widely used risk measure with significant advantages over VaR, due to a number of useful

properties. For example, in contrast to VaR, the risk measure CVaRα is coherent (Pflug, 2000), and

serves as a fundamental building block for other coherent measures (see Section 5 for more details).
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Furthermore, for a given random variable V the mapping α �→ CVaRα is continuous and non-decreasing.

CVaR can be used to express a wide range of risk preferences, including risk neutral (for α = 1) and

pessimistic worst-case (for sufficiently small values of α) approaches. We now introduce notation to

express some risk preference relations associated with CVaR.

• Let V1 and V2 be two random variables with respective CDFs FV1 and FV2 . We say that V1 is

CVaR-preferable to V2 at confidence level α, denoted as V1 �CVaRα V2, if

CVaRα(V1) ≥ CVaRα(V2). (6)

• We say that V1 is second-order stochastically dominant over V2 (or that V1 dominates V2 in the

second order), denoted as V1 �(2) V2, if F2,V1(η) ≤ F2,V2(η) holds for all η ∈ �.

Remark 2.2 According to (3) one can view CVaRα(V ) as the expected value of UV (V ), where

UV (t) = VaRα(V )− 1
α [VaRα(V )− t]+ is a probability-dependent utility function (Street, 2009). In this

context the relation (6) can be interpreted in terms of expected utilities as

�(UV1(V1)) ≥ �(UV2(V2)).

We proceed by examining the close connection between CVaR-preferability and second-order stochastic

dominance (SSD) relations. In preparation let us recall some basic definitions and facts from the theory

of conjugate duality (for a good overview see Rockafellar (1970)).

• Denoting the extended real line by � = �∪{∞}, the Fenchel conjugate of a function f : �→ �

is the mapping f∗ : �→ � defined by f∗(α) = sup{αη − f(η) : η ∈ �}.
• For a constant ι, the conjugate of f + ι is given by f∗ − ι.

• Conjugation is order-reversing: if the relation f1(η) ≤ f2(η) holds for all η ∈ �, then

f∗
2 (α) ≤ f∗

1 (α) holds for all α ∈ �.

• Fenchel-Moreau theorem: If f is lower semi-continuous and convex, then it is equal to its

biconjugate, i.e., f∗∗ = f .

The first part of the proposition below is a well-known result (Dentcheva and Ruszczyński, 2006;

Pflug and Römisch, 2007). Our proof of the more general second part uses a straightforward extension

of the arguments in (Dentcheva and Ruszczyński, 2006).

Proposition 2.1 Let V1 and V2 be two random variables with respective CDFs FV1 and FV2 .

(i) An SSD constraint is equivalent to the continuum of CVaR-constraints for all confidence levels

α ∈ (0, 1], i.e.,

V1 �(2) V2 ⇐⇒ CVaRα(V1) ≥ CVaRα(V2) for all α ∈ (0, 1].

(ii) Let ι ∈ �+ be a tolerance parameter. Then the relaxed SSD constraint

F2,V1(η) ≤ F2,V2(η) + ι for all η ∈ � (7)

is equivalent to the continuum of relaxed CVaR constraints given by

CVaRα(V1) ≥ CVaRα(V2)− ι

α
for all α ∈ (0, 1]. (8)

Proof. Since (i) is a special case of (ii), it suffices to prove the latter. The second order distribution

function F2,V of a random variable V is the integral of a monotone non-decreasing function, therefore it

is continuous and convex. By the Fenchel-Moreau theorem it follows that both of the functions F2,V1 and
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F2,V2 + ι are equal to their respective biconjugates. This implies, due to the order reversing property of

conjugation, that the condition (7) is equivalent to

F ∗
2,V1

(α) ≥ F ∗
2,V2

(α)− ι for all α ∈ �. (9)

According to (5) we have F2,V (η) = �([η − V ]+). Taking into account (2) it is easy to verify that

F ∗
2,V (α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ α < 0

0 α = 0

αCVaRα(V ) α ∈ (0, 1]

∞ α > 1

holds for any random variable V . Substituting into (9) our claim immediately follows. �

The mapping α �→ αCVaRα(V ), which appears as the Fenchel conjugate of F2,V in the previous proof,

is a well-studied function, known in the literature under various names.

• The function F
(−1)
V : (0, 1] → � defined by F

(−1)
V (α) = inf{η : FV (η) ≥ α} is called the first

quantile function (or simply quantile function) of the random variable V . Note that VaRα(V ) =

F
(−1)
V (α) holds by definition.

• The second quantile function F
(−2)
V : (0, 1] → � of V is defined as

F
(−2)
V (α) =

∫ α

0

F
(−1)
V (γ) dγ =

∫ α

0

VaRγ(V ) dγ. (10)

This function is also known in the literature as the generalized Lorenz curve and the absolute

Lorenz curve. Somewhat confusingly, the latter term is sometimes used to refer to the mean

centered second quantile function F
(−2)
V −�(V ).

• According to (4) we have F
(−2)
V (α) = αCVaRα(V ) for all α ∈ (0, 1]. It follows that the inequality

CVaRα(V1) ≥ CVaRα(V2) is equivalent to F
(−2)
V1

(α) ≥ F
(−2)
V2

(α), while the SSD relation V1 �(2)

V2 is equivalent to the continuum of constraints F
(−2)
V1

(α) ≥ F
(−2)
V2

(α) for all α ∈ (0, 1].

It is interesting to note that when the probability space is finite, the continuum of CVaR constraints

in the first part of Proposition 2.1 can be reduced to a finite number of inequalities. We conclude this

section by proving a more general form of this statement, using the properties of the second quantile

function outlined above. Our proof relies on the following trivial observation.

Observation 2.1 Let f1, f2 : � → � be affine functions and consider three real numbers a ≤ b ≤ c. If

we have f1(a) ≥ f2(a) and f1(c) ≥ f2(c), then the inequality f1(b) ≥ f2(b) also holds.

Proposition 2.2 Consider two random variables V1 and V2 on the (not necessarily discrete) probability

space (Ω,A,Π), let Q = {Π(S) : S ∈ A, Π(S) > 0} denote the set of all non-zero probabilities of events,

and let ι ∈ �+ be a tolerance parameter. If the relation F
(−2)
V1

(α) ≥ F
(−2)
V2

(α) + ι holds for all α ∈ Q,

then it holds for all α ∈ (0, 1].

Proof. Assume that F
(−2)
V1

(α) ≥ F
(−2)
V2

(α)+ι holds for all α ∈ Q and consider an arbitrary confidence

level α̂ ∈ (0, 1]. Since the random variables V1 and V2 are measurable, the values

α− = max
i∈{1,2}

Π(Vi < VaRα̂(Vi)) and α+ = min
i∈{1,2}

Π(Vi ≤ VaRα̂(Vi))

both belong to the set Q, therefore by our assumption we have

F
(−2)
V1

(α−) ≥ F
(−2)
V2

(α−) + ι and F
(−2)
V1

(α+) ≥ F
(−2)
V2

(α+) + ι. (11)
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Furthermore, by the definition of VaR the inequalities α− ≤ α̂ ≤ α+ hold, and for any γ ∈ (α−, α+],

i ∈ {1, 2} we have VaRγ(Vi) = VaRα̂(Vi). It follows that, according to the definition in (10), the

functions F
(−2)
V1

and F
(−2)
V2

+ ι are both affine on the interval [α−, α+], with respective slopes VaRα̂(V1)

and VaRα̂(V2). Recalling (11), our claim immediately follows from Observation 2.1. �

Corollary 2.1 If (Ω, 2Ω,Π) is a finite probability space, then there exists a finite set Q ⊂ (0, 1] of

confidence levels such that for any two random variables V1, V2 on (Ω, 2Ω,Π) the SSD relation V1 �(2) V2

is equivalent to the collection of CVaR inequalities

CVaRα(V1) ≥ CVaRα(V2) for all α ∈ Q.

Furthermore, if all elementary events in Ω = {ω1, . . . , ωn} have equal probability, then the SSD relation

V1 �(2) V2 is equivalent to

CVaR k
n
(V1) ≥ CVaR k

n
(V2) for all k = 1, . . . , n.

Proof. Let Q be the set defined in Proposition 2.2, and set ι = 0. Note that |Q| < 2|Ω|, and in the

equal probability case Q =
{

1
n , . . . ,

n
n

}
. Since by part (ii) of Proposition 2.1 the SSD relation V1 �(2) V2

is equivalent to the the continuum of CVaR-constraints for all confidence levels α ∈ (0, 1], our result now

immediately follows from Proposition 2.2. �

It is easy to see that by combining Proposition 2.2 with part (ii) of Proposition 2.1 one can obtain

analogous finiteness results for the relaxed SSD and CVaR constraints introduced in (7)-(8).

In the next section we extend CVaR-based preferences to allow the comparison of random vectors.

2.2 Comparing random vectors via scalarization To be able to tackle multiple criteria we need

to extend scalar-based preferences to vector-valued random variables. The key concept is to consider a

family of scalarization functions and require that all scalarized versions of the random variables conform

to some preference relation. In order to eventually obtain computationally tractable formulations, we

restrict ourselves to linear scalarization functions.

Definition 2.1 Let � be a preordering of scalar-valued random variables, and let C ⊂ �
d be a set of

scalarization vectors. Given two d-dimensional random vectors X and Y we say that X is �-preferable

to Y with respect to C, denoted as X �C Y, if

cTX � cTY for all c ∈ C.

Remark 2.3 A natural way to compare two random vectors X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd)

is by coordinate-wise preference: we say that X is preferable to Y if Xl � Yl for all l = 1, . . . , d. It is

easy to see that this is a special case of Definition 2.1 obtained with the choice C = {e1, . . . , ed}, where
el = (0, . . . , 0, 1, 0, . . . , 0) ∈ �d is the unit vector with the 1 in the lth position. In addition, whenever

{e1, . . . , ed} ⊂ C, preference with respect to C implies coordinate-wise preference. Notably, this is the

case for the positive linear SSD relation mentioned below.

An example of the type of preference rule introduced in Definition 2.1 has been suggested under

the name positive linear SSD by Dentcheva and Ruszczyński (2009), with the choice C = �
d
+, and �

representing the SSD relation �(2). Homem-de-Mello and Mehrotra (2009) generalize this approach by

allowing the C ⊂ �
d to be an arbitrary polyhedron, leading to the concept of polyhedral linear SSD.

Their idea is motivated by the observation that, by taking C to be a proper subset of the positive

orthant, polyhedral dominance can be a significantly less restrictive constraint than positive linear domi-

nance. This reflects a wider trend in recent literature suggesting that in a practical optimization context
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stochastic dominance relations are often excessively hard to satisfy. Attempts to weaken stochastic dom-

inance relations in order to extend the feasible region have resulted in the study of concepts such as

almost stochastic dominance and stochastically weighted stochastic dominance (Leshno and Levy, 2002;

Lizyayev and Ruszczyński, 2011; Hu et al., 2011b). Recalling Proposition 2.1, another natural way to

relax the stochastic dominance relation is to require CVaR-preferability only at certain confidence lev-

els, as opposed to the full continuum of constraints. This motivates us to introduce a special case of

Definition 2.1.

Definition 2.2 (Multivariate CVaR relation) Let X and Y be two d-dimensional random vectors,

C ⊂ �d a set of scalarization vectors, and α ∈ (0, 1] a specified confidence level. We say that X is CVaR-

preferable to Y at confidence level α with respect to C, denoted as X �C
CVaRα

Y , if

CVaRα(c
TX) ≥ CVaRα(c

TY ) for all c ∈ C. (12)

In our following analysis we focus on CVaR-preferability with respect to polyhedral scalarization sets.

We begin by proving a close analogue of Proposition 1 in Homem-de-Mello and Mehrotra (2009), which

shows that in these cases we can assume without loss of generality that the polyhedron C is compact,

i.e., a polytope. In preparation, we recall the representation of CVaR as a distortion risk measure (see,

e.g., Pflug and Römisch, 2007):

CVaRα(V ) = −
∫ 0

−∞
g(FV (η)) dη +

∫ ∞

0

g̃(1 − FV (η)) dη (13)

where g : [0, 1] → [0, 1] is the distortion function defined by g(γ) = min( γα , 1), while g̃(γ) = 1 − g(1 − γ)

denotes the dual distortion function.

Proposition 2.3 Let C be a nonempty convex set, and let C̃ = {c ∈ cl cone(C) : ‖c‖1 ≤ 1}, where

cl cone(C) denotes the closure of the conical hull of the set C. Then, for any confidence level α ∈ (0, 1],

the relations �C
CVaRα

and �C̃
CVaRα

coincide.

Proof. For any non-zero vector c ∈ C we have c
‖c‖1

∈ C̃. Since CVaR is positive homogenous it

immediately follows that, for any two random variables V1 and V2, the relation V1 �C̃
CVaRα

V2 implies

V1 �C
CVaRα

V2. On the other hand, let us assume that V1 �C
CVaRα

V2 and consider a non-zero vector

c̃ =
∑k

i=1 λici ∈ cone(C), where λi > 0 and ci ∈ C for all i = 1, . . . , k. Since C is convex, we have
c̃∑k

i=1 λi
∈ C, implying

CVaRα(c̃
TV1) ≥ CVaRα(c̃

TV2) for all c̃ ∈ cone(C). (14)

Finally, let c̄ be a vector in C̃. Since C̃ ⊂ cl cone(C), there exists a sequence {ck} ⊂ cone(C) such that

ck → c̄. It follows that, for i = 1, 2, the sequence {cTk Vi} converges pointwise to c̄TVi. As pointwise con-

vergence implies convergence in distribution, this means that FcTk Vi
(η) → Fc̄TVi

(η) holds at all continuity

points η of Fc̄T Vi
. Keeping in mind that the distortion functions g, g̃ are bounded and continuous, by

applying the bounded convergence theorem to (13) we obtain CVaRα(c
T
k Vi) → CVaRα(c̄

TVi). Therefore

(14) implies the inequality CVaRα(c̄
TV1) ≥ CVaRα(c̄

TV2), which proves our claim. �

2.3 Optimization with multivariate CVaR constraints Let (Ω, 2Ω,Π) be a finite probability

space with Ω = {ω1, . . . , ωn} and Π(ωi) = pi. Consider a multi-criteria decision making problem where

the decision variable z is selected from a feasible set Z, and associated random outcomes are determined

by the outcome mapping G : Z ×Ω → �
d. We introduce the following additional notation:

• For a given decision z ∈ Z the random outcome vector G(z) : Ω → �
d is defined by

G(z)(ω) = G(z, ω).
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• For a given elementary event ωi the mapping gi : Z → �
d is defined by gi(z) = G(z, ωi).

Let f : Z → � be an objective function, Y a d-dimensional benchmark random vector, C ⊂ �
d a

polytope of scalarization vectors, and α ∈ (0, 1] a confidence level. Our goal is to provide an explicit

mathematical programming formulation and, in some cases, a computationally tractable solution method

to problems of the following form.

max f(z)

s.t. G(z) �C
CVaRα

Y

z ∈ Z

(GeneralP)

While the benchmark random vector can be defined on a probability space different from Ω, in practical

applications it often takes the form Y = G(z̄), where z̄ ∈ Z is a benchmark decision. For risk-averse

decision makers typical choices for the confidence level are small values such as α = 0.05.

In order to keep our exposition simple, in (GeneralP) we only consider a single CVaR constraint.

However, all of our results and methods remain fully applicable for problems of the more general form

max f(z)

s.t. G(z) �Cij

CVaRαij
Yi i = 1, . . . ,M, j = 1, . . . ,Ki

z ∈ Z,

(15)

with CVaR constraints enforced for M multiple benchmarks, multiple confidence levels, and varying

scalarization sets. In addition, constraints can be replaced by the relaxed versions introduced in (8). In

Section 7.2.2 we present numerical results for a budget allocation problem featuring relaxed constraints

on two benchmarks, enforced at up to 9 confidence levels for each. Even more generally, our approach

can be naturally extended to include mixed CVaR constraints (Rockafellar, 2007) based on risk measures

of the form 
(V ) = λ1 CVaRα1(V ) + · · ·+ λr CVaRαr(V ). The necessary theoretical background for the

latter extension is laid out in Section 5, while formulation (56) provides a blueprint for combining CVaR

at various confidence levels in a mathematical programming context.

3. Main theoretical results In this section we provide the theoretical background necessary to

develop, and prove the finite convergence of, our solution methods. We begin by expressing CVaR

as the optimum of various minimization and maximization problems, then proceed to prove that in

finite probability spaces one can replace scalarization polyhedra by a finite set of scalarization vectors.

To conclude the section, we show that this finiteness result extends to multivariate SSD constraints,

providing an alternative to the representation in Homem-de-Mello and Mehrotra (2009).

3.1 Alternative expressions of CVaR By definition, CVaR can be obtained as a result of a

maximization problem. On the other hand, CVaR is also a spectral risk measure (Acerbi, 2002) and thus

can be viewed as a weighted sum of the least favorable outcomes. This allows us to express CVaR as the

optimum of minimization problems.

Theorem 3.1 Let V be a random variable with (not necessarily distinct) realizations v1, . . . , vn and

corresponding probabilities p1, . . . , pn. Then, for a given confidence level α the optimum values of the

following optimization problems are all equal to CVaRα(V ).
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(i)

max η − 1

α

n∑
i=1

piwi

s.t. wi ≥ η − vi i = 1, . . . , n

wi ≥ 0 i = 1, . . . , n

(16)

(ii)

min
1

α

n∑
i=1

γivi

s.t.

n∑
i=1

γi = α

0 ≤ γi ≤ pi i = 1, . . . , n

(17)

(iii)

min Ψα(V,K, k)

s.t. K ⊂ [n]

k ∈ [n] \K∑
i∈K

pi ≤ α

α−
∑
i∈K

pi ≤ pk,

(18)

where [n] = {1, . . . , n} and

Ψα(V,K, k) =
1

α

[∑
i∈K

pivi +

(
α−

∑
i∈K

pi

)
vk

]
.

Proof. It is easy to see that at an optimal solution of (16) we have wi = max(η− vi, 0) = [η− vi]+.

Therefore, by the definition given in (2), the optimum value equals CVaRα(V ). Problem (17) is equivalent

to the linear programming dual of (16), therefore its optimum also equals CVaRα(V ).

Without loss of generality assume v1 ≤ v2 ≤ · · · ≤ vn, and let k∗ = min

{
k ∈ [n] :

k∑
i=1

pi ≥ α

}
. Since

(17) is a continuous knapsack problem, the greedy solution given by the following formula is optimal.

γ∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi i = 1, . . . , k∗ − 1

α−
k∗−1∑
i=1

pi i = k∗

0 i = k∗ + 1, . . . , n

Setting K∗ = {1, . . . , k∗ − 1}, the pair (K∗, k∗) is a feasible solution of (18) with objective value

Ψα(V,K
∗, k∗) = CVaRα(V ). On the other hand, for any feasible solution (K, k) of (18) we can construct

a feasible solution

γi =

⎧⎪⎨
⎪⎩

pi i ∈ K

α−∑i∈K pi i = k

0 i /∈ K ∪ {k}
of (17) with objective value Ψα(V,K, k). This implies that the optimum values of (17) and (18) coincide,

which completes our proof. �

Remark 3.1 The minimization problem in (17) is equivalent to the well-known risk envelope-based dual

representation of CVaR (see, e.g., Rockafellar, 2007).
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Corollary 3.1 A simple consequence of claim (i) in Theorem 3.1 is the well known fact that CVaR-

relations can be represented by linear inequalities. For a benchmark value b ∈ � the inequality

CVaRα(V ) ≥ b holds if and only if there exist η ∈ � and w ∈ �n satisfying the following system.

η − 1
α

n∑
i=1

piwi ≥ b

wi ≥ η − vi i = 1, . . . , n,

wi ≥ 0 i = 1, . . . , n

When realizations of the random variable V are equally likely, CVaR has alternative closed form

representations, presented below. These results prove useful in developing tractable solution methods

(see Section 6.2.3).

Proposition 3.1 Let V be a random variable with (not necessarily distinct) realizations v1, . . . , vn and

corresponding equal probabilities p1 = · · · = pn = 1
n .

(i) Let v(1) ≤ v(2) ≤ · · · ≤ v(n) denote an ordering of the realizations. Then

CVaR k
n
(V ) =

1

k

k∑
i=1

v(i)

holds for all k = 1, . . . , n.

(ii) For a confidence level α ∈ [ kn ,
k+1
n ), k ∈ [n− 1], we have

CVaRα(V ) = λα CVaR k
n
(V ) + (1 − λα)CVaR k+1

n
(V ),

where λα = k(k+1−αn)
αn . Note that 0 < λα ≤ λ k

n
= 1.

Proof. Since VaR k
n
(V ) = v(k), by (3) we have

CVaR k
n
(V ) = v(k) − n

k

n∑
i=1

pi[v(k) − v(i)]+ = v(k) − 1

k

k∑
i=1

(v(k) − v(i)) =
1

k

k∑
i=1

v(i),

proving (i). For α = k
n claim (ii) trivially holds. Now suppose that α ∈ ( kn ,

k+1
n ). Then VaRα(V ) = v(k+1),

and using (i) we have

λα CVaR k
n
(V ) + (1 − λα)CVaR k+1

n
(V ) =

k(k + 1− αn)

αn

1

k

k∑
i=1

v(i) +
(k + 1)(αn− k)

αn

1

k + 1

k+1∑
i=1

v(i)

= v(k+1) − 1

αn

k∑
i=1

(v(k+1) − v(i)) = v(k+1) − 1

α

n∑
i=1

pi[v(k+1) − v(i)]+ = CVaRα(V ).

�

3.2 Finite representations of scalarization polyhedra For any nontrivial polyhedron C of

scalarization vectors the corresponding CVaR-preferability constraint is equivalent by definition to a

collection of infinitely many scalar-based CVaR constraints, one for each scalarization vector c ∈ C. The

following theorem shows that for finite probability spaces it is sufficient to consider a finite subset of these

vectors, obtained as projections of the vertices of a higher dimensional polyhedron.

Theorem 3.2 Let X and Y be d-dimensional random vectors with realizations x1, . . . ,xn and

y1, . . . ,ym, respectively. Let p1, . . . , pn and q1, . . . , qm denote the corresponding probabilities, and let
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C ⊂ �
d be a polytope of scalarization vectors. X is CVaR-preferable to Y at confidence level α with

respect to C if and only if

CVaRα(c
T
(�)X) ≥ CVaRα(c

T
(�)Y) for all � = 1, . . . , N,

where (c(�), η(�),w(�)), � = 1, . . . , N, are the vertices of the (line-free) polyhedron

P (Y, C) =
{
(c, η,w) ∈ C ×�×�m

+ : wj ≥ η − cT yj, j = 1, . . . ,m
}
. (19)

Proof. If X is preferable to Y, the condition trivially holds, since c(�) ∈ C for all � = 1, . . . , N . Now

assume that X is not preferable to Y. Then the optimal objective value Δ of the following problem is

negative:

min
c∈C

CVaRα(c
TX)− CVaRα(c

TY). (20)

Using Theorem 3.1 we can reformulate this problem as

min Ψα(c
TX,K, k)− η +

1

α

m∑
j=1

qjwj

s.t. K ⊂ [n]

k ∈ [n] \K∑
i∈K

pi ≤ α

α−
∑
i∈K

pi ≤ pk

wj ≥ η − cT yj j = 1, . . . ,m

wj ≥ 0 j = 1, . . . ,m

c ∈ C.

(SetBased)

Let (K∗, k∗, c∗, η∗,w∗) be an optimal solution of (SetBased). Then, by fixing K = K∗ and k = k∗ we

obtain the following problem, which clearly has the same optimal objective value Δ.

min Ψα(c
TX,K∗, k∗)− η +

1

α

m∑
j=1

qjwj

s.t. wj ≥ η − cT yj j = 1, . . . ,m

wj ≥ 0 j = 1, . . . ,m

c ∈ C.

(FixedSet)

Since Ψα(c
TX,K∗, k∗) is a linear function of c, (FixedSet) is a linear programwith feasible set P (Y, C).

Therefore, problem (FixedSet) has an optimal solution which is a vertex of P (Y, C), i.e., of the form

(c(�), η(�),w(�)) for some � ∈ [N ]. Let V = cT(�)X; then Theorem 3.1 implies that CVaRα(c
T
(�)X) =

CVaRα(V ) is equal to the optimal objective value of the minimization problem (18). Since (K∗, k∗) is a
feasible solution of (18), we have

Ψα(c
T
(�)X,K∗, k∗) ≥ CVaRα(c

T
(�)X). (21)

Observe that if we fix c = c(�) in problem (FixedSet), it becomes

Ψα(c
T
(�)X,K∗, k∗)−max

{
η − 1

α
qTw : wj ≥ η − cT(�)yj , j = 1, . . . ,m, w ∈ �m

+

}
,

where by (2) the maximization term equals CVaRα(c
T
(�)Y). Consequently, taking into account (21) we

have

0 > Δ = Ψα(c
T
(�)X,K∗, k∗)− CVaRα(c

T
(�)Y) ≥ CVaRα(c

T
(�)X)− CVaRα(c

T
(�)Y), (22)

which completes our proof. �
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Corollary 3.2 Under the conditions of the previous theorem there exists an index � ∈ {1, . . . , N} such

that c(�) is an optimal solution of problem (20).

Proof. Let c(�) be the vector obtained as part of a vertex optimal solution to (FixedSet) like in

the previous proof. By (22) we have CVaRα(c
T
(�)X)−CVaRα(c

T
(�)Y) ≤ Δ, where Δ denotes the optimal

objective value of the minimization problem (20). On the other hand, c(�) is a feasible solution, which

proves our claim. �

Remark 3.2 In Theorem 3.2 the confidence levels applied to the two sides coincide. However, this is

not a necessary condition, as it is easy to verify that the same proof is valid for the following asymmetric

relation with any α1, α2 ∈ (0, 1]:

CVaRα1(c
TX) ≥ CVaRα2(c

TY ) for all c ∈ C.

An even more general form of this theorem, featuring a wider class of risk measures, will be presented in

Section 5.2.

Corollary 3.3 Using our previous notation, X dominates Y in polyhedral linear second order with

respect to C if and only if

cT(�)X �(2) c
T
(�)Y for all � = 1, . . . , N.

Proof. We show that the following statements are equivalent:

(i) cTX �(2) c
TY for all c ∈ C.

(ii) CVaRα(c
TX) ≥ CVaRα(c

TY) for all α ∈ (0, 1], c ∈ C.

(iii) CVaRα(c
T
(�)X) ≥ CVaRα(c

T
(�)Y) for all α ∈ (0, 1], � = 1, . . . , N .

(iv) cT(�)X �(2) c
T
(�)Y for all � = 1, . . . , N .

Equivalences (i) ⇔ (ii) and (iii) ⇔ (iv) follow from the fact that, by Proposition 2.1, the SSD constraint

is equivalent to the continuum of CVaR constraints for all α ∈ (0, 1]. On the other hand, Theorem 3.2

states the equivalence of (ii) and (iii). �

Remark 3.3 The previous result is closely related to Theorem 1 of Homem-de-Mello and Mehrotra

(2009), where the continuous variable η in (19) is replaced by the finite set of terms cTyj for j = 1, . . . ,m,

leading to a set of m lower-dimensional polyhedra instead of our single polyhedron P (Y, C).

4. Linear programming formulation and duality In this section we develop duality results for

problem (GeneralP) under certain conditions. Working under the assumption that C is a polytope we

begin by introducing, for any subset C̃ ⊂ C, the following relaxed problem:

max f(z)

s.t. CVaRα(c
TG(z)) ≥ CVaRα(c

TY) for all c ∈ C̃

z ∈ Z.

(Relax(C̃))

Observation 4.1 Let Ĉ denote the set consisting of vectors c(1), . . . , c(N), as defined in Theorem 3.2.

Then, according to the theorem, (Relax(Ĉ)) is equivalent to (Relax(C)), which in turn is equivalent to

our original problem (GeneralP).

From a practical perspective the case when the probability space is finite, the mappings f and G are

linear, and the set Z is polyhedral, is of particular interest. Let us introduce the following notation:
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• Z = {z ∈ �r1 : Az ≤ b} for some A ∈ �r2×r1 and b ∈ �r2 .

• f(z) = fT z for some vector f ∈ �r1 .

• G(z, ω) = Γ(ω)z for a random matrix Γ : Ω → �
d×r1. In addition, let Γi = Γ(ωi) for i = 1 . . . , n.

By Corollary 3.1 scalar-based CVaR-relations can be represented by linear inequalities. For a finite

set C̃ = {c̃(1), . . . , c̃(L)} this allows us to formulate (Relax(C̃)) as a linear program:

max fT z

s.t. η� − 1

α

n∑
i=1

piwi� ≥ CVaRα(c̃
T
(�)Y) � = 1 . . . , L

wi� ≥ η� − c̃T(�)Γiz i = 1, . . . , n, � = 1 . . . , L

wi� ≥ 0 i = 1, . . . , n, � = 1 . . . , L

Az ≤ b.

(RelaxP(C̃))

The dual problem of (RelaxP(C̃)) can be written as follows.

min λTb−
L∑

�=1

μ�CVaRα(c̃
T
(�)Y)

s.t.

n∑
i=1

piνi� = μ� � = 1 . . . , L

νi� ≤ 1

α
μ� i = 1, . . . , n, � = 1 . . . , L

n∑
i=1

pi

L∑
�=1

νi�c̃
T
(�)Γi = λTA− fT

λ ∈ �r2
+ , μ ∈ �L

+, ν ∈ �n×L
+

(RelaxD(C̃))

Note that the above formulation slightly differs from the usual LP dual, since a scaling factor of pi has

been applied to each dual variable νi�.

Observation 4.2 The dual variable μ can be viewed as a measure supported on the finite set C̃, while

ν can be interpreted as a random measure on the same set. For instance, the sum in the dual objective

and the first set of dual constraints can be written as
∫
C
CVaRα(c

TY)μ(dc) and �(ν) = μ, respectively.

In this context, the complementary slackness conditions can be expressed as

support(μ) ⊂ {
c : CVaRα(c

TΓz) = CVaRα(c
TY)

}
support(ν(ωi)) ⊂ {

c : cTΓiz < VaRα(c
TΓz)

}
λT (Az− b) = 0.

This interpretation motivates us to introduce a general dual scheme. Let MF
+(S) denote the set of

all finitely supported finite non-negative measures on a set S. For a family of measures M ⊂ MF
+(C)

consider the following dual problem:

min λTb−
∫
C

CVaRα(c
TY)μ(dc)

s.t. �(ν) = μ

ν ≤ 1

α
μ

�

(∫
C

cTΓ ν(dc)

)
= λTA− fT

λ ∈ �r2
+ , μ ∈ M, ν : Ω → M

(GeneralD(M))
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Proposition 4.1 If our original (primal) problem (GeneralP) has a finite optimum value, then so does

the dual problem (GeneralD(MF
+(Ĉ))), and the optimum values coincide.

Proof. According to the interpretation of the measures μ and ν given in Observation 4.2, the problem

(GeneralD(MF
+(Ĉ))) is equivalent to (RelaxD(Ĉ)), which has the same optimum value as (RelaxP(Ĉ))

due to linear programming duality. By Observation 4.1 this optimum coincides with that of (GeneralP),

proving our claim. �

Notice that, while the above proposition provides a strong duality result, the dual problem features the

set Ĉ, which depends on the reference variable Y, and can potentially consist of an exponential number

of scalarization vectors. Since this set can be impractical to explicitly construct in practice, we conclude

this section by providing a different dual formulation which can serve as the foundation of a column

generation-type solution method.

Theorem 4.1 If our original (primal) problem (GeneralP) has a finite optimum value, then so does the

dual problem (GeneralD(MF
+(C))), and the optimum values coincide.

Proof. Since MF
+(Ĉ) is a subset of MF

+(C), the feasible region of problem (GeneralD(MF
+(Ĉ))) is

a subset of the feasible region of (GeneralD(MF
+(C))). Therefore, taking into account Proposition 4.1

the following relation holds for the respective optimum values:

OPT(GeneralD(MF
+(C))) ≤ OPT(GeneralD(MF

+(Ĉ))) = OPT(GeneralP).

On the other hand, let (λ∗, μ∗, ν∗) be an optimal solution of (GeneralD(MF
+(C))) and consider the

finite set

C∗ = support(μ∗) ∪
(

n⋃
i=1

support(ν∗(ωi))

)
⊂ C.

Then the optimum values of (GeneralD(MF
+(C

∗))) and (GeneralD(MF
+(C))) coincide, therefore we have

OPT(GeneralD(MF
+(C))) = OPT(GeneralD(MF

+(C
∗))) = OPT(RelaxD(C∗)) = OPT(RelaxP(C∗))

= OPT(Relax(C∗)) ≥ OPT(Relax(C)) = OPT(GeneralP),

which completes our proof.

�

5. Coherent risk measures For finite probability spaces, Theorem 3.2 shows that when the set

of scalarization vectors is polyhedral, the multivariate CVaR constraints given in (12) can be reduced to

finitely many univariate CVaR constraints. This fact is the key to proving the finite convergence of our

cut generation method outlined in Section 6.2. Our goal here is to extend this important finiteness result

to constraints based on a wider class of coherent risk measures.

5.1 Geometric preliminaries We now provide some necessary geometrical background to the gen-

eral finiteness results that follow. The notation for this section is largely independent from that used for

the rest of the paper.

Definition 5.1 Let p ∈ P be a point belonging to some polyhedron P ⊂ �
n. We say that a vector

d ∈ �n is a P -direction of p if there exists ε > 0 such that both p+ εd and p− εd belong to P .

Proposition 5.1 Let P ⊂ �n be a polyhedron.

(i) If p belongs to the interior of P , then every vector d ∈ �n is a P -direction of p.
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(ii) The point p is a vertex of P if and only if it has no non-zero P -directions.

(iii) If p1 and p2 are two points which belong to the relative interior of the same face of P , then the

sets of their P -directions coincide.

Proof. Claims (i) and (ii) are trivial. To prove (iii), consider a point p belonging to the relative

interior of a face F of P . Notice that a vector is a P -direction of p if and only if it is an F -direction of p.

Let A denote the smallest affine subspace of Rn which contains F , then A is of the form p+ S for some

linear subspace S. The polyhedron F is full-dimensional in A, therefore by (i) the set of all F -directions

(and thus the set of all P -directions) of p is the linear subspace S. As S is uniquely defined by F , our

claim immediately follows. �

Definition 5.2 Let P ⊂ �n ×�m be a polyhedron. We call a vector x ∈ �n an n-vertex of P if it can

be extended into a vertex, i.e., if there exists some y ∈ �m such that (x,y) is a vertex of P .

Observe that the vectors c(�) in Theorem 3.2 are the d-vertices of the polyhedron P (Y, C). When

we extend this theorem to a more general class of risk measures, it is necessary to consider some more

complicated polyhedra in place of P (Y, C). Given a polyhedron P = P (1) ⊂ �n×�m we next introduce

a series of “liftings”.

P (k) =
{
(x,y(1), . . . ,y(k)) ∈ �n ×�m × · · · ×�m : (x,y(i)) ∈ P for all i = 1, . . . , k

}
(23)

Observation 5.1 A vector (d(0),d(1), . . . ,d(k)) is a P (k)-direction of a point (x,y(1), . . . ,y(k)) ∈ P (k)

if and only if (d(0),d(i)) is a P -direction of (x,y(i)) for all i = 1, . . . , k.

The following example shows that lifting a polyhedron in the above manner can introduce additional

n-vertices.

Proposition 5.2 Let P ⊂ �
2 × �1 be the tetrahedron depicted in Figure 1 with vertices (−1, 0,−1),

(1, 0,−1), (0,−1, 1), (0, 1, 1). In accordance with (23), let

P (2) =
{
(x1, x2, y

(1), y(2)) : (x1, x2, y
(1)) ∈ P, (x1, x2, y

(2)) ∈ P
}
.

The point (0, 0) is not a 2-vertex of P , but it is a 2-vertex of P (2).

Proof. The fact that (0, 0) is not a 2-vertex of P can be verified by simply looking at the list

of the vertices of P . We now show that (0, 0,−1, 1) is a vertex of P (2), which proves our claim. As-

sume that (d
(0)
1 , d

(0)
2 , d(1), d(2)) is a P (2)-direction of (0, 0,−1, 1). Then, by Observation 5.1 the vector

(d
(0)
1 , d

(0)
2 , d(1)) is a P -direction of the point (0, 0,−1). Since this point lies in the relative interior of

the edge [(−1, 0,−1), (1, 0,−1)] = {(λ, 0,−1) : λ ∈ [−1, 1]} of P , it is easy to see that d
(0)
2 = d(1) = 0.

Analogously, (d
(0)
1 , d

(0)
2 , d(2)) is a P -direction of the point (0, 0, 1), which lies in the relative interior of the

edge [(0,−1, 1), (0, 1, 1)], implying d
(0)
1 = d(2) = 0. Therefore (0, 0,−1, 1) has no non-zero P (2)-directions,

so according to part (ii) of Proposition 5.1 it is a vertex. �

We conclude this subsection by showing the crucial result that, even though the lifting procedure can

introduce new n-vertices, the set of n-vertices of the series of polyhedra P1, P2, . . . eventually stabilizes.

Theorem 5.1 For any given polyhedron P ⊂ �n × �m there exists a positive integer k∗ such that for

all k = 1, 2, . . . any n-vertex of P (k) is also an n-vertex of P (k∗).

Proof. Let k∗ denote the number of the faces of P (including the trivial faces, i.e., the vertices and

the polyhedron itself). We prove our theorem by showing that the following two statements hold:
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Figure 1: Tetrahedron P in Proposition 5.2

(i) For an integer k < k∗ any n-vertex of P (k) is also an n-vertex of P (k+1).

(ii) For an integer k > k∗ any n-vertex of P (k) is also an n-vertex of P (k−1).

Let us first assume k < k∗, and let v(k) = (x,y(1), . . . ,y(k)) be a vertex of P (k). We prove (i) by show-

ing that v(k+1) = (x,y(1), . . . ,y(k),y(k)) is a vertex of P (k+1). Indeed, if d = (d(0),d(1), . . . ,d(k+1))

is a P (k+1)-direction of v(k+1), then by Observation 5.1 both (d(0),d(1), . . . ,d(k−1),d(k)) and

(d(0),d(1), . . . ,d(k−1),d(k+1)) are P (k)-directions of v(k). According to claim (ii) of Proposition 5.1,

the vertex v(k) has no non-zero P (k)-directions. Therefore every component of d is zero, which (by the

same claim) implies that v(k+1) is a vertex.

Now assume k > k∗, and again let v(k) = (x,y(1), . . . ,y(k)) be a vertex of P (k). Then, due to our

choice of k∗, by the pigeonhole principle at least two of the points (x,y(1)), . . . , (x,y(k)) belong to the

relative interior of the same face of P . Without loss of generality assume that (x,y(k−1)) and (x,y(k))

are two such points, and note that by claim (iii) of Proposition 5.1 their P -directions coincide. We

conclude our proof by showing that v(k−1) = (x,y(1), . . . ,y(k−1)) is a vertex of P (k−1). As before, let

d = (d(0),d(1), . . . ,d(k−1)) be a P (k−1)-direction of v(k−1). Analogously to the previous case it is easy

to verify that (d(0),d(1), . . . ,d(k−1),d(k−1)) is a P (k)-direction of the vertex v(k), implying that every

component of d is zero. �

5.2 General finiteness proof The proof of the finite representation in Theorem 3.2 relied on

representing CVaR both as a supremum and an infimum. Along these lines we begin this section by

introducing two general classes of risk measures with similar representations.

Let V denote the set of all random variables V : Ω → � on the probability space (Ω, 2Ω,Π), and let
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L denote the set of all linear functions Λ : V → � of the form Λ(V ) =
∑n

i=1 λiV (ωi). For a family of

linear functions L ⊂ L we define the risk measure 
L : V → � by


L(V ) = inf
Λ∈L

Λ(V ). (24)

Let M+((0, 1]) denote the set of all non-negative measures on the interval (0, 1]. For a family of measures

M ⊂ M+((0, 1]) we define the risk measure ρM : V → � by

ρM(V ) = sup
μ∈M

∫ 1

0

CVaRα(V )μ(dα). (25)

Note that for a family consisting of a single measure μ we have

ρ{μ}(V ) =

∫ 1

0

CVaRα(V )μ(dα). (26)

Structurally, the definitions in (24) and (25) correspond to the risk envelope representation and the

Kusuoka representation of coherent risk measures, respectively (see Section 5.3). We are now going to

prove a very general analogue of the finiteness result in Theorem 3.2. A key step in showing this result

involves replacing a measure in representations of type (26) with a finitely supported approximating

measure. In preparation, we prove that such an approximation always exists, achieving a preset level of

precision. Note that for any given random variable V with finitely many realizations the mapping α �→
CVaRα(V ) is a bounded continuous non-decreasing function on (0, 1], and thus satisfies the conditions of

the following lemma.

Lemma 5.1 Let μ ∈ M+((0, 1]) be a measure and let f1, . . . , fN be bounded continuous non-decreasing

functions on (0, 1]. Then, for any ε > 0 there exists a finitely supported measure μ̄ on the interval (0, 1]

such that ∣∣∣∣∣
∫
(0,1]

f� dμ−
∫
(0,1]

f� dμ̄

∣∣∣∣∣ < ε

holds for all � = 1, . . . , N .

Proof. Since f1, . . . , fN are bounded, we can assume without loss of generality that they are non-

negative. Let us consider the following functions.

f
(k)
� (α) =

{
0 α ∈ (0, 1

2k
]

f�(
i
2k
) α ∈ ( i

2k
, i+1

2k
], i = 1, . . . , 2k − 1

k = 1, 2, . . .

For any given � the sequence f
(1)
� , f

(2)
� , . . . is pointwise non-decreasing and converges pointwise to f�,

therefore by Beppo Levi’s monotone convergence theorem we have lim
k→∞

∫
(0,1]

f
(k)
� dμ =

∫
(0,1]

f� dμ. Let

us now define the measures μ(k) on support
{

1
2k
, . . . , 2k−1

2k

}
by setting μ(k)

({
i
2k

})
= μ

(
( i
2k
, i+1

2k
]
)
. Then

lim
k→∞

∫
(0,1]

f� dμ
(k) = lim

k→∞

2k−1∑
i=1

f�

(
i

2k

)
μ

(
(
i

2k
,
i+ 1

2k
]

)
= lim

k→∞

∫
(0,1]

f
(k)
� dμ =

∫
(0,1]

f� dμ

holds for all � = 1 . . . , N , therefore for a sufficiently large choice of k the measure μ̄ = μ(k) will satisfy

the requirements of the lemma. �

Theorem 5.2 Let X and Y be d-dimensional random vectors with realizations x1, . . . ,xn and

y1, . . . ,ym, respectively. Let p1, . . . , pn and q1, . . . , qm denote the corresponding probabilities, and let

C ⊂ �d be a polytope of scalarization vectors. Given a family of linear functions L ⊂ L and a family of

probability measures M ⊂ M+((0, 1]) the relation


L(c
TX) ≥ ρM(cTY) for all c ∈ C (27)
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holds if and only if


L(c
T
(�)X) ≥ ρM(cT(�)Y) ∀� = 1, . . . , N∗, (28)

with c(1), . . . , c(N∗) denoting the d-vertices of P (k∗)(Y, C), where P (Y, C) is the polyhedron defined in

(19), and k∗ is a positive integer as introduced in Theorem 5.1.

Proof. Relation (27) trivially implies (28), since c(�) ∈ C for all � = 1, . . . , N∗. Now assume that

(27) does not hold, implying

inf
c∈C


L(c
TX)− ρM(cTY) < 0.

By the definitions of 
L and ρM this means that there exist Λ∗ ∈ L and μ∗ ∈ M such that

inf
c∈C

Λ∗(cTX)− ρ{μ∗}(cTY) < 0.

Since C is compact, the infimum is attained at some c(0) ∈ C. As mentioned above, let c(1), . . . , c(N∗)

denote the d-vertices of P (k∗)(Y, C). Then there exists a threshold ε > 0 such that

Λ∗(cT(�)X)− ρ{μ∗}(cT(�)Y) < −ε

holds for all indices � ∈ {0, . . . , N∗} that make the left-hand side negative. We now approximate the

measure μ∗ with a measure μ̄ supported on a finite set {α1, . . . , αM} ⊂ (0, 1] with corresponding weights

μ̄1, . . . , μ̄M , and require ∣∣∣ρ{μ∗}(cT(�)Y)− ρ{μ̄}(cT(�)Y)
∣∣∣ < ε

2
(29)

to hold for all � = 0, . . . , N∗. The existence of such an approximation is guaranteed by Lemma 5.1. It

follows that

Λ∗(cT(0)X)− ρ{μ̄}(cT(0)Y) = Λ∗(cT(0)X)− ρ{μ∗}(cT(0)Y) +
(
ρ{μ∗}(cT(0)Y)− ρ{μ̄}(cT(0)Y)

)
< −ε+

ε

2
= − ε

2
,

which implies

inf
c∈C

Λ∗(cTX)− ρ{μ̄}(cTY) < − ε

2
. (30)

This infimum can be expressed as the optimum value of the following linear program:

min

n∑
i=1

λ∗
i c

Txi −
M∑
h=1

μ̄h

⎛
⎝ηh − 1

αh

m∑
j=1

qjwjh

⎞
⎠

s.t. wjh ≥ ηh − cT yj j = 1, . . . ,m, h = 1, . . . ,M

wjh ≥ 0 j = 1, . . . ,m, h = 1, . . . ,M

c ∈ C.

Recalling the notation introduced in (23), the feasible set of this problem is P (M)(Y, C). Therefore, there

exists an optimal solution (c∗, η∗,w∗) which is a vertex of P (M)(Y, C). By Theorem 5.1 the vector c∗ is

a d-vertex of P (k∗)(Y, C), i.e., c∗ = c(�∗) for some �∗ ∈ [N∗]. Recalling (29) and (30), we have

Λ∗(cT(�∗)X)−ρ{μ∗}(cT(�∗)Y) = Λ∗(cT(�∗)X)−ρ{μ̄}(cT(�∗)Y)−
(
ρ{μ∗}(cT(�∗)Y)− ρ{μ̄}(cT(�∗)Y)

)
< − ε

2
+

ε

2
= 0.

Thus, relation (28) does not hold, which completes our proof. �

5.3 Functionally coherent risk measures In this section we apply the finite representation re-

sult in Theorem 5.2 to a class of coherent risk measures. In order to accomplish this, we first need to

extend Kusuoka’s representation of coherent risk measures to probability spaces which are not necessarily

atomless. Let V(Ω,A,Π) denote the set of all real valued random variables on an arbitrary probabil-

ity space (Ω,A,Π), and let F(Ω,A,Π) = {FV : V ∈ V(Ω,A,Π)} denote the corresponding family of

CDFs. Similarly, for a value p ∈ [1,∞] let Fp(Ω,A,Π) = {FV : V ∈ Lp(Ω,A,Π)}. Let us recall some

elementary properties of these distribution functions.
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Proposition 5.3 For any two atomless probability spaces (Ω1,A1,Π1), (Ω2,A2,Π2) and p ∈ [1,∞]

the sets Fp(Ω1,A1,Π1) and Fp(Ω2,A2,Π2) coincide; let us denote this common family of CDFs by F ∗
p .

Furthermore, for an arbitrary space (Ω,A,Π) we have Fp(Ω,A,Π) ⊂ F ∗
p , and equality holds if and only

if Ω is atomless.

Definition 5.3 A mapping ρ : Lp(Ω,A,Π) → � is called law invariant if the value ρ(V ) depends only

on the distribution of the random variable V , i.e., if there exists a mapping ϕρ : Fp(Ω,A,Π) → � such

that ρ(V ) = ϕρ(FV ) holds for all V ∈ Lp(Ω,A,Π). Note that in this case ϕρ is uniquely determined by

ρ.

Recalling formulas (1) and (4) it is easy to verify that for any confidence level α the risk measure

CVaRα is law invariant, with the corresponding mapping

ϕCVaRα
: F �→ 1

α

∫ α

0

inf {η : F (η) ≥ γ} dγ. (31)

A mapping ρ : Lp(Ω,A,Π) → � is called a coherent risk measure (Artzner et al., 1999) if it has the

following properties:

• Monotone: X ≤ Y ⇒ ρ(X) ≤ ρ(Y).

• Superadditive: ρ(X+Y) ≥ ρ(X) + ρ(Y).

• Positive homogeneous : ρ(λX) = λρ(X) for all λ ≥ 0.

• Translation invariant : ρ(X+ λ) = ρ(X) + λ.

It is well known (Pflug, 2000) that CVaRα is a law invariant coherent risk measure for any confidence

level α ∈ (0, 1]. Moreover, these CVaRα can be viewed as building blocks of coherent risk measures, as the

following fundamental theorem shows. The result for p = ∞ is due to Kusuoka (2001) and Jouini et al.

(2006), while the proof for p ∈ [1,∞) can be found in Shapiro et al. (2009).

Theorem 5.3 (Kusuoka representation) Let (Ω,A,Π) be an atomless probability space and p ∈
[1,∞]. Then a mapping ρ : Lp(Ω,A,Π) → � is a law invariant coherent risk measure if and only if

there exists a family M ⊂ P((0, 1]) of probability measures on the interval (0, 1] such that the following

representation holds for all V ∈ Lp(Ω,A,Π).

ρ(V ) = sup
μ∈M

∫ 1

0

CVaRα(V )μ(dα) (32)

If the underlying probability space has atoms, the above Kusuoka representation does not hold in general,

as the next example shows.

Example 5.1 Let Ω = {ω1, ω2} with Π(ω1) >
1
2 . It is easy to verify that the risk measure ρ defined by

ρ(V ) = V (ω1) is coherent. In addition, the equality ρ(V ) = sup
{
v : FV (v) <

1
2

}
shows that ρ is law

invariant. However, it can be proven (Pflug and Römisch, 2007) that ρ has no Kusuoka representation.

The risk measure ρ in the above example is “pathological” in the sense that its corresponding mapping

ϕρ cannot be coherently extended to the set F∗
p of all CDFs. We now formalize this intuitive notion.

Definition 5.4 Consider a value p ∈ [1,∞]. A mapping φ : F∗
p → � is called coherent if φ = ϕρ holds

for some law invariant coherent risk measure ρ defined on an atomless probability space. Given a not

necessarily atomless probability space (Ω,A,Π), a mapping ρ : Lp(Ω,A,Π) → � is called a functionally

coherent risk measure if there exists a coherent mapping φ∗ : F∗
p → � such that ϕρ is a restriction of φ∗,

i.e., we have ϕρ = φ∗|Fp(Ω,A,Π).
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The class of functionally coherent risk measures preserves the desirable properties of law invariant coherent

risk measures on atomless spaces without sacrificing generality. To our best knowledge the following

theorem is the first published extension of Kusuoka representations to probability spaces having atoms1.

Theorem 5.4 Let (Ω,A,Π) be an arbitrary probability space and p ∈ [1,∞]. A mapping ρ :

Lp(Ω,A,Π) → � is a functionally coherent risk measure if and only if it has a Kusuoka representa-

tion of the form (32). In particular, if (Ω,A,Π) is atomless, the class of functionally coherent risk

measures coincides with the class of law invariant coherent risk measures.

Proof. First assume that ρ is functionally coherent. Then, according to Definition 5.4, there exists

a law invariant risk measure ρ∗ on an atomless space such that ρ(V ) = ϕρ∗(FV ) holds for all V ∈
Lp(Ω,A,Π). By Theorem 5.3 this ρ∗ has a Kusuoka representation. Recalling the notation introduced

in (31), we then have

ρ(V ) = ϕρ∗(FV ) = sup
μ∈M

∫ 1

0

ϕCVaRα
(FV )μ(dα) = sup

μ∈M

∫ 1

0

CVaRα(V )μ(dα)

for some family M ⊂ P((0, 1]), as required.

Now assume that ρ has a Kusuoka representation given by a family M ⊂ P((0, 1]), and consider the

risk measure ρ∗ on some atomless probability space (for instance ([0, 1],B, λ) with the Lebesgue measure)

given by the same Kusuoka representation. According to Theorem 5.3 the risk measure ρ∗ is law invariant

and coherent, therefore by definition ϕρ∗ : F∗
p → � is a coherent mapping. Then, since

ϕρ(FV ) = ρ(V ) = sup
μ∈M

∫ 1

0

CVaRα(V )μ(dα) = sup
μ∈M

∫ 1

0

ϕCVaRα
(FV )μ(dα) = ϕρ∗(FV )

holds for all V ∈ Lp(Ω,A,Π), we have ϕρ = ϕρ∗ |Fp(Ω,A,Π), which proves our claim. �

We are now ready to provide a finite representation for scalarization polyhedra associated with mul-

tivariate preference relations based on functionally coherent risk measures.

Corollary 5.1 Let ρ be a functionally coherent risk measure on a finite probability space. Then the

relation X �C
ρ Y is equivalent to

ρ(cT(�)X) ≥ ρ(cT(�)Y) for all � = 1, . . . , N∗,

where c(1), . . . , c(N∗) denote the d-vertices of P (k∗)(Y, C).

Proof. According to the well-known risk envelope representation of coherent risk measures

(Artzner et al., 1999) there exists a coherent risk envelope Q ⊂ {Q ∈ V : Q ≥ 0, �(Q) = 1} such that

ρ(V ) = inf
Q∈Q

�(QV ). Introducing the set L = {V �→ �(QV ) : Q ∈ Q} and recalling the notation in (24)

we have ρ = 
L. On the other hand, by Theorem 5.4 the risk measure ρ has a Kusuoka representation.

This provides a set of probability measures M ⊂ P((0, 1]) for which, using the notation in (25), we have

ρ = ρM. Our assertion now follows directly from Theorem 5.2. �

1Bertsimas and Brown (2009) prove the related result that the integral representation of distortion

risk measures (also due to Kusuoka (2001)) can be expressed via a finite sum on finite probability spaces

where every outcome has equal probability.
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6. Solution methods Here we develop methods to solve the multivariate CVaR-constrained opti-

mization problem (GeneralP) in the case when the probability space is finite and the scalarization set C is

polyhedral. We first briefly discuss a “brute force” approach based on vertex enumeration, which is made

possible by the finite representation in Theorem 3.2. We then proceed to present a cut generation algo-

rithm which avoids many of the pitfalls associated with an enumeration-based approach. After proving

finite convergence, we provide a detailed discussion on implementing various steps of the algorithm.

6.1 Vertex enumeration In this section we consider a polytope C =
{
c ∈ �d : Bc ≤ h

}
of scalar-

ization vectors, where the matrix B ∈ �r×d and the vector h ∈ �r provide a non-degenerate linear

description. Let us recall that according to Observation 4.1 the formulation (Relax(Ĉ)), while formally

a relaxation of our original problem (GeneralP), is actually equivalent to it. Here Ĉ = {c(1), . . . , c(N)}
denotes the set of all d-vertices of the polyhedron P (Y, C); assuming that we have access to this set, we

can attempt a “brute force” solution by using non-linear programming techniques to tackle (Relax(Ĉ)).

Assuming concavity of the functions f and G we obtain a convex programming problem, while un-

der the linearity assumptions introduced in the beginning of Section 4 we arrive at the linear program

(RelaxP(Ĉ)).

There are various methods available in the literature to construct the set Ĉ from the linear description

wj ≥ η − cT yj j = 1, . . . ,m

wj ≥ 0 j = 1, . . . ,m

Bc ≤ h

of the polyhedron P (Y, C). While enumerating the vertices of a polyhedron is an NP-hard problem

(Khachiyan et al., 2008), the well-known vertex enumeration algorithm in Avis and Fukuda (1992) pro-

vides a solution for the bounded case. If we construct a polytope P̂ (Y, C) by adding a non-restrictive

lower bound on η and similar upper bounds on w, the algorithm produces a complete list of its vertices in

time O
(
N̂(d+m)2

)
, where N̂ denotes the number of vertices of P̂ (Y, C). The fact that the polyhedron

P (Y, C) depends only on Y and C (and not on the confidence level α or the feasible set Z) indicates

some potential advantages of vertex enumeration: once d-vertices are generated, they can be reused in a

variety of situations, including the following.

• Solving multiple problems with the same reference vector Y (e.g., solving a problem at various

confidence levels, or for different feasible regions).

• Enforcing CVaR constraints for multiple confidence levels in an optimization problem.

However, in large-scale applications using such a vertex enumeration approach can become impractical

for a variety of reasons:

• The number of vertices is potentially exponential in (d+m).

• The additional bounding constraints used to construct P̂ (Y, C) introduce new vertices which are

not relevant to the original problem.

• The list c(1), . . . , c(N) might contain duplicates, as a d-vertex can be part of multiple vertices of

P (Y, C). When such duplicates occur, enumerating all vertices can create significant redundancy.

In the next section we outline a cut generation approach which addresses some of the above concerns.

Some advantages of this method over vertex enumeration are listed below.

• It is typically not necessary to generate all d-vertices before arriving at the optimal solution.

• No additional vertices are introduced.

• Each d-vertex is generated at most once.
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6.2 A cut-generation algorithm In this section we present an iterative algorithm which solves

our original problem (GeneralP) in the case when the objective function f is continuous, the scalarization

set C is a non-empty polytope and the feasible set Z is compact2. Each iteration consists of two steps:

first we find an optimal solution z∗ of the relaxed problem (Relax(C̃)) for some finite set C̃ ∈ C. Then

given the associated outcome vector X = G(z∗) we attempt to find a scalarization vector c∗ ∈ C for

which the corresponding condition

CVaRα(c
∗TX) ≥ CVaRα(c

∗TY) (33)

is violated. We accomplish this by solving the cut generation problem (20). If the optimal objective

value is non-negative, it follows that z∗ is an optimal solution of (GeneralP). Otherwise, by Corollary

3.2 there exists an optimal solution c∗ which is a d-vertex of the polyhedron P (Y, C) introduced in (19).

We find such a vector and add it to the set C̃, which creates a tighter relaxation to be solved in the

next iteration. This corresponds to introducing the constraint (33), which is a valid cut for the current

solution z∗. Note that introducing the new constraint requires calculating the parameter CVaRα(c
∗TY).

This simple calculation is automatically performed as a byproduct of solving the optimization problems

presented in Sections 6.2.2-6.2.3. Algorithm 1 provides a formal description of our solution method.

Algorithm 1 Cut-Generation Algorithm

1: Initialize a set of scalarization vectors C̃ = {c(1), . . . , c(L)} ⊂ C.

2: Solve the master problem

max f(z)

s.t. CVaRα(c
T
(�)G(z)) ≥ CVaRα(c

T
(�)Y) � = 1, . . . , L

z ∈ Z.

(Master)

3: if the master problem is infeasible then

4: Stop.

5: else

6: Let z∗ be an optimal solution.

7: Given the optimal decision vector z∗ set X = G(z∗), and solve the cut generation problem

min
c∈C

CVaRα(c
TX)− CVaRα(c

TY). (CutGen)

8: if the optimal objective value of the cut generation problem is nonnegative then

9: Stop.

10: else

11: Find an optimal solution c(L+1) of the cut generation problem which is a d-vertex of P (Y, C). Set

C̃ = C̃ ∪ {c(L+1)} and L = L+ 1, then go to Step 2.

12: end if

13: end if

Remark 6.1 A trivial way to perform the initialization in Step 1 is by setting L = 0 and C̃ = ∅. However,
since the cut generation problem often presents a computational bottleneck, more aggressive initialization

strategies can improve the performance of the algorithm. When the master problem is comparatively easier

to solve, considering a large initial scalarization set does not result in a significant burden. For instance, if

the vertices ĉ(1), . . . , ĉ(k) of the scalarization polyhedron are known, setting L = k and C̃ = {ĉ(1), . . . , ĉ(k)}
can provide a suitable initialization.

2While the assumption of having a polyhedral scalarization set is essential to proving finite convergence,

the compactness assumptions on C and Z are adopted for the ease of exposition only.
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While Algorithm 1 is presented for the case of a single CVaR constraint, it can naturally be extended

to problems of the more general form (15). In this case a separate cut generation problem is defined for

each pair of a benchmark vector and an associated confidence level. Note that, in contrast to the method

proposed in Homem-de-Mello and Mehrotra (2009) to solve SSD-constrained models, the number of cut

generation problems does not depend on the number of benchmark realizations.

Theorem 6.1 Algorithm 1 terminates after a finite number of iterations, and provides either an optimal

solution of (GeneralP), or a proof of infeasibility.

Proof. Note that under our assumptions both the master problem and the cut generation problem

involve the optimization of a continuous function over a compact set. It follows that the master problem

either has an optimal solution or it is infeasible, while the cut generation problem always has an optimal

solution since its feasible set C is non-empty. In addition, Corollary 3.2 states that at least one of the

optimal solutions of the cut generation problem is a d-vertex of P (Y, C). Therefore, the cut generation

algorithm operates as described, and can terminate in one of two ways:

• The master problem is infeasible. Since the master problem is a relaxation of (GeneralP), this

constitutes a proof of infeasibility for our original problem.

• The optimum of the cut generation problem is non-negative. This implies that the current optimal

solution z∗ of the master problem is a feasible, and therefore optimal, solution of (GeneralP).

It remains to show that the algorithm always terminates in a finite number of iterations. This follows from

the fact that every non-terminating iteration introduces a distinct d-vertex of the polyhedron P (Y, C),

and the number of d-vertices is finite. �

Remark 6.2 It is possible to introduce a dual counterpart to Algorithm 1, reminiscent of a column

generation method. Under linearity assumptions the master problem will take the form of (RelaxD(C̃))

and the pricing problem will be equivalent to (CutGen). In accordance with Observation 4.2, introducing

a new vector c(L+1) can be interpreted as adding a new point to the finite supports of the measures μ and

ν.

6.2.1 Solving the master problem Corollary 3.1 allows us to represent CVaR constraints by

linear inequalities, leading to the following formulation of (Master).

max f(z)

s.t. η� − 1

α

n∑
i=1

piwi� ≥ CVaRα(c
T
(�)Y) � = 1, . . . , L

wi� ≥ η� − cT(�)gi(z) i = 1, . . . , n, � = 1, . . . , L

wi� ≥ 0 i = 1, . . . , n, � = 1, . . . , L

z ∈ Z

In the general case we can attempt to solve this problem using non-linear programming techniques,

or, with appropriate assumptions on f and Z, a convex programming approach. Under the linearity

assumptions of Section 4 the master problem becomes the linear program (RelaxP(C̃)), providing a

computationally tractable formulation.

6.2.2 Solving the cut generation problem In this section we consider two d-dimensional random

vectors X and Y with realizations x1, . . . ,xn and y1, . . . ,ym, respectively. Let p1, . . . , pn and q1, . . . , qm

denote the corresponding probabilities, and let C =
{
c ∈ �d : Bc ≤ h

}
be a polytope of scalarization
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vectors for some matrix B and vector h of appropriate dimensions. The cut generation problem at

confidence level α ∈ (0, 1] involves either finding a vector c ∈ C such that CVaRα(c
TX) < CVaRα(c

TY)

or showing that such a vector does not exist. To accomplish this, we aim to solve the optimization problem

(CutGen). Recalling Theorem 3.1, we represent CVaRα(c
TX) and CVaRα(c

TY) using formulations (17)

and (16), respectively. This allows us to restate (CutGen) as a quadratic program:

min
1

α

n∑
i=1

γic
Txi − η +

1

α

m∑
j=1

qjwj

s.t.

n∑
i=1

γi = α

0 ≤ γi ≤ pi i = 1, . . . , n

wj ≥ η − cTyj j = 1, . . . ,m

c ∈ C, w ∈ �m
+ .

(34)

Note that this quadratic problem is not necessarily convex, and therefore can present a significant

computational challenge. This motivates us to introduce an alternate mixed integer linear programming

(MIP) formulation which is potentially more tractable.

According to (3) the supremum in the classical definition of CVaRα is attained at VaRα. Since the

probability space is finite, VaRα(c
TX) = cTxk for at least one k ∈ {1, . . . , n}, implying

CVaRα(c
TX) = max

k∈{1,...,n}
cTxk − 1

α

n∑
i=1

pi[c
Txk − cTxi]+.

Representing CVaRα(c
TY) as before, we obtain the following intermediate formulation of (CutGen).

min z − η +
1

α

m∑
j=1

qjwj

s.t. z ≥ cTxk − 1

α

n∑
i=1

pi[c
Txk − cTxi]+ k = 1, . . . , n

wj ≥ η − cTyj j = 1, . . . ,m

c ∈ C, w ∈ �m
+

(35)

The term [cTxk − cTxi]+ is not linear. To obtain a MIP formulation we linearize it by introducing

additional variables and constraints (a similar linearization is used in Homem-de-Mello and Mehrotra

(2009)).

min z − η +
1

α

m∑
j=1

qjwj (36)

s.t. z ≥ cTxk − 1

α

n∑
i=1

piυik i = 1, . . . , n, k = 1, . . . , n (37)

υik − δik = cTxk − cTxi i = 1, . . . , n, k = 1, . . . , n (38)

Mβik ≥ υik i = 1, . . . , n, k = 1, . . . , n (39)

M(1− βik) ≥ δik i = 1, . . . , n, k = 1, . . . , n (40)

βik ∈ {0, 1} i = 1, . . . , n, k = 1, . . . , n (41)

υ ∈ �n×n
+ , δ ∈ �n×n

+ (42)

wj ≥ η − cTyj j = 1, . . . ,m (43)

Bc ≤ h (44)
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w ∈ �m
+ (45)

Here M is a sufficiently large constant to make the above system feasible. Constraints (39)-(42) ensure

that only one of the variables υik and δik is positive. Then by constraint (38) we have υik = [cTxk−cTxi]+

for all pairs of i and k. The equivalence of the MIP (36)-(45) to (35) follows immediately.

Remark 6.3 The choice of the constant M can significantly impact computational performance. In order

to achieve tighter bounds, M in constraints (39) and (40) can be replaced by Mki = max
c∈C

[cTxk − cTxi]+

and M̂ki = max
c∈C

[cTxi − cTxk]+, respectively.

The above formulation (36)-(45) contains O(n2) binary variables. In the next section we show that, in

the special case when scalarization vectors are non-negative and all the outcomes of X are equally likely,

this can be reduced to O(n).

6.2.3 Solving the cut generation problem in the equal probability case In this section we

consider a polytope C =
{
c ∈ �d

+ : Bz ≤ h
}
of non-negative scalarization vectors. Since we consider

larger outcomes to be preferable, the assumption of non-negativity is justified. In addition, we assume

that each realization of X has probability 1
n , and at first consider confidence levels of the form α = k

n for

some k ∈ {1, . . . , n}. Recalling formula (17) in Theorem 3.1 and introducing the scaled variables βi = nγi

we have

CVaR k
n
(cTX) = min

{
1

k

n∑
i=1

βic
Txi :

n∑
i=1

βi = k, β ∈ [0, 1]n

}
.

The cut generation problem (34) now reads

min
1

k

n∑
i=1

βic
Txi − η +

1

α

n∑
j=1

qjwj

s.t.
n∑

i=1

βi = k

β ∈ [0, 1]n

wj ≥ η − cTyj j = 1, . . . ,m

c ∈ C, w ∈ �m
+ .

(46)

We linearize the quadratic terms βic
Txi, i = 1, . . . , n, appearing in the objective function of problem

(46) by introducing some additional variables and constraints. Using the notation δi = (δi1, . . . , δid)
T we

obtain a MIP formulation with n binary variables.

min
1

k

n∑
i=1

δTi xi − η +
1

α

m∑
j=1

qjwj (47)

s.t.

n∑
i=1

βi = k (48)

β ∈ {0, 1}n (49)

0 ≤ δil ≤ cl i = 1, . . . , n, l = 1, . . . , d (50)

δil ≤ Mβi i = 1, . . . , n, l = 1, . . . , d (51)

− δil + cl ≤ M(1− βi) i = 1, . . . , n, l = 1, . . . , d (52)

wj ≥ η − cTyj j = 1, . . . ,m (53)

Bc ≤ h (54)
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c ∈ �d
+, w ∈ �m

+ , (55)

where M is again a sufficiently large constant ensuring the feasibility of the problem. It is easy to see

that constraints (49)-(52) guarantee that

δil =

{
cl if βi = 1

0 if βi = 0

holds for all i = 1, . . . , n and l = 1, . . . , d. Therefore, we have
n∑

i=1

δTi xi =
n∑

i=1

βic
Txi which shows the

equivalence of (46) and the MIP (47)-(55).

We proceed by extending the above formulation (47)-(55) to allow arbitrary confidence levels. The

key observation is that for a given α ∈ [ kn ,
k+1
n ) Proposition 3.1 allows us to express CVaRα(c

TX) as a

convex combination of CVaR k
n
(cTX) and CVaR k+1

n
(cTX):

CVaRα(c
TX) = λα CVaR k

n
(cTX) + (1− λα)CVaR k+1

n
(cTX),

where λα = k(k+1−αn)
αn . Analogously to the previous formulation, we express CVaR k

n
and CVaR k+1

n
using

the binary vectors β(1) and β(2), respectively. This leads to an alternate MIP representation of (CutGen):

min
λα

k

n∑
i=1

δ
(1)T

i xi +
(1− λα)

k

n∑
i=1

δ
(2)T

i xi − η +
1

α

m∑
j=1

qjwj

s.t.

n∑
i=1

β
(1)
i = k

δ
(1)
il ≤ Mβ

(1)
i i = 1, . . . , n, l = 1, . . . , d

0 ≤ δ
(1)
il ≤ cl i = 1, . . . , n, l = 1, . . . , d

− δ
(1)
il + cl ≤ M(1− β

(1)
i ) i = 1, . . . , n, l = 1, . . . , d

β(1) ∈ {0, 1}n
n∑

i=1

β
(2)
i = k + 1

δ
(2)
il ≤ Mβ

(2)
i i = 1, . . . , n, l = 1, . . . , d

0 ≤ δ
(2)
il ≤ cl i = 1, . . . , n, l = 1, . . . , d

− δ
(2)
il + cl ≤ M(1− β

(2)
i ) i = 1, . . . , n, l = 1, . . . , d

β(2) ∈ {0, 1}n
wj ≥ η − cTyj j = 1, . . . ,m

Bc ≤ h

c ∈ �d
+, w ∈ �m

+ .

(56)

Remark 6.4 Similarly to the general case in Section 6.2.2, the parameter M in constraints (51) and

(52), as well as their counterparts in (56), can be replaced by Ml = max{cl : c ∈ C}.

To conclude this section, we present a set of valid inequalities to strengthen the MIP formulation in (56).

Proposition 6.1 There exists an optimal solution to the problem (56) satisfying the relations below.

n∑
i=1

β
(2)
i − β

(1)
i = 1

β(1) ≤ β(2)



Noyan and Rudolf: Multivariate CVaR constraints 28

Proof. Keeping in mind the knapsack structure explored in the proof of Theorem 3.1, note that

in the above formulation CVaR k
n
(cTX) and CVaR k+1

n
(cTX) are expressed as the mean of k and k +

1 smallest realizations of the random variable cTX, respectively. The selection of realizations to be

featured in these means is encoded by the binary variables β(1) and β(2). While some of the realizations

cTx1, . . . , c
Txn might coincide, our claim immediately follows from the trivial observation that a set of

k smallest realizations can always be extended to a set of k + 1 smallest realizations by adding to it a

single new realization. For example, the choice of the lexicographically smallest optimal vectors β(1) and

β(2) provides a solution with the desired properties. �

6.2.4 Finding a d-vertex solution The provable finite convergence of Algorithm 1 depends on

finding a solution to the cut generation problem which is d-vertex of the polyhedron P (Y, C). Let c∗ be

an optimal solution obtained using one of the methods outlined in Sections 6.2.2 and 6.2.3, and let π be

a permutation describing a non-decreasing ordering of the realizations of the random vector c∗TX, i.e.,

c∗Txπ(1) ≤ · · · ≤ c∗Txπ(n). Defining k∗ = min

{
k ∈ [n] :

k∑
i=1

pπ(i) ≥ α

}
and K∗ = {π(1), . . . , π(k∗ −

1)}, we can obtain the desired d-vertex solution ĉ by finding a vertex optimal solution (ĉ, η̂, ŵ) of the linear

program (FixedSet). According to Corollary 3.2 the vector ĉ is also an optimal solution of (CutGen). We

remark that this step is often redundant in practice, since MIP solvers typically provide vertex solutions.

7. Computational Study In this section we demonstrate the effectiveness of our approach by

presenting two numerical studies. First we examine feasible regions associated with various multivariate

risk constraints on an illustrative example. Then we evaluate the effectiveness of our optimization models

and solution methods by applying them to a homeland security budget allocation problem.

We used MATLAB R© 7.11.0 to generate data and perform supporting calculations, AMPL

(Fourer et al., 2003) to formulate models and implement solution methods, and CPLEX 11.2 (ILOG,

2008) to solve optimization problems. All experiments were carried out on a single core of an HP Linux

workstation with two Intel R© Xeon R©W5580 3.20GHz CPUs and 32GB of memory.

7.1 A small-scale study of feasibility regions In this section we present a simple two-dimensional

problem to illustrate feasible regions associated with multivariate CVaR constraints, along with the

effects of various parameter choices. The problem originally appeared in Hu et al. (2011a), where the

authors compare the feasible regions associated with various multivariate SSD constraints: positive linear

dominance, weak stochastically weighted dominance, stochastically weighted dominance with chance, and

relaxed strong stochastically weighted dominance. We chose to explore the same numerical example, as

this allows a direct comparison between our CVaR constraints and the dominance concepts mentioned

above.

Consider the probability space (Ω, 2Ω,Π) whereΩ = {ω1, ω2} and Π(ω1) = Π(ω2) =
1
2 . Let Δ : Ω → �

denote the random variable with realizations Δ(ω1) = 1, Δ(ω2) = −1, and let

Γ =

⎡
⎢⎣ 1 + 0.25Δ 0.5

0.5 0.5− 0.25Δ

0.25 0.03

⎤
⎥⎦ , Y(1) =

⎡
⎢⎣ 0.5− 0.0025Δ

0.4

0.1 + 0.013Δ

⎤
⎥⎦ , Y(2) =

⎡
⎢⎣ 0.05

0.2− 0.025Δ

0.01 + 0.013Δ

⎤
⎥⎦ .

In addition, we define the scalarization polyhedra

Cϑ =
{
(c1, c2, c3) ∈ �3 : c1 + c2 + c3 = 1, c1 ≥ ϑ, c2 ≥ ϑ, c3 ≥ ϑ

}
, ϑ ∈

[
0,

1

3

]
.

Note that C0 is the simplex used to define positive linear dominance, while C 1
3
consists of the single

scalarization vector
(
1
3 ,

1
3 ,

1
3

)
. We are interested in feasibility regions defined by the constraints of the
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Figure 2: Feasible regions for α(1) = α(2) ∈ [0.5, 1] and ϑ = 0
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form

−Γz �Cϑ

CVaR
α(1)

−Y(1)

Γz �Cϑ

CVaR
α(2)

Y(2)

z ∈ �2
+,

where z = (z1, z2) is a decision vector. Figure 2 shows the feasible regions associated with the scalarization

polyhedron C0 and confidence levels α(1) = α(2) changing between 0.5 and 1. Note that these regions

are not nested, i.e., CVaR-preferability at a certain confidence level does not imply preferability at other

levels. In accordance with Corollary 2.1, the intersection of these regions (filled area) corresponds to the

region associated with the positive linear SSD constraint (compare with Figure 2(a) in Hu et al. (2011b)).

Figure 3 illustrates shapes of feasible regions obtained by various combinations of α(1) and α(2), for a

range of ϑ values between 0 and 1
3 . Note that ϑ1 ≤ ϑ2 implies Cϑ1 ⊃ Cϑ2 , therefore CVaR-preferability

with respect to Cϑ1 implies preferability with respect to Cϑ2 . This results in a nested structure between

the corresponding feasible regions.

Further customization of the feasible region can be achieved by requiring CVaR constraints to hold at

multiple different confidence levels, and with respect to different corresponding scalarization polyhedra,

for each reference variable.

7.2 Homeland security budget allocation To explore the computational performance of our

methods, along with the impact of various polyhedral CVaR constraints, we examine a budget allocation

problem. This problem was presented in Hu et al. (2011b) with polyhedral SSD constraints in a homeland

security context, and also inspired the numerical study in Armbruster and Luedtke (2010). Our exposition

below closely follows that in Hu et al. (2011b), replacing the SSD constraints with CVaR-based ones. The

model concerns the allocation of a fixed budget to ten urban areas (New York, Chicago, etc.). The budget

is used for prevention, response, and recovery from national catastrophes. The risk share of each area

is defined based four criteria: property losses, fatalities, air departures, and average daily bridge traffic.

Accordingly, we consider a random risk share matrix A : Ω → �
4×10
+ , where the entry Aij : Ω → �

denotes, for criterion i, the proportion of losses in urban area j relative to the total losses. The penalty for

allocations under the risk share is expressed by the budget misallocation functions Mi : Z → V(Ω, 2Ω,Π)

defined as

Mi(z) =

10∑
j=1

[Aij − zj ]+ for each criterion i = 1, . . . , 4,

where Z =
{
z ∈ �10

+ : ‖z‖1 = 1
}
denotes the set of all feasible allocations. Let us also introduce the

notation M = (M1,M2,M3,M4)
T .

We consider two benchmark solutions: one based on average government allocations by the Department

of Homeland Security Urban Areas Security Initiative, and one based on suggestions in the RAND report

by Willis et al. (2005). These benchmark allocations are denoted by zG and zR, respectively. The

scalarization polyhedron is of the form C =
{
c ∈ �4 : ‖c‖1 = 1, ci ≥ c∗i − θ

3

}
, where c∗ ∈ �

4 is a

center satisfying ‖c∗‖1 = 1, and θ ∈ [0, 1] is a constant for which θ
3 ≤ min

i∈{1,...,4}
c∗i holds. It is easy to

see that if θ is positive, the polyhedron C is a 3-dimensional simplex. Denoting the vertices of C by

ĉ(1), . . . , ĉ(4) the objective function of the budget allocation problem, based on a robust approach, is

defined as

f(z) = max
k∈{1,...,4}

�

(
ĉT(k)M(z)

)
.

Selecting two finite sets of confidence levels AG,AR ⊂ (0, 1] we introduce an optimization problem with
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multivariate CVaR constraints:

max − f(z)

s.t. −M(z) �C
CVaRα

−M(zG) α ∈ AG

−M(z) �C
CVaRα

−M(zR) α ∈ AR

z ∈ Z.

(57)

Note that the negative signs were added in order to be consistent with our convention of preferring large

values. To keep the exposition concise, we refer the reader to Hu et al. (2011b, Section 4) for a description

of how the objective function f can be linearized, along with the explicit construction of the benchmarks

zG, zR and the realizations of the risk share matrix A. Unless otherwise specified, we consider the “base

case” with the choices of θ = 0.25, the equality center c∗ = (14 ,
1
4 ,

1
4 ,

1
4 ), and additional correlation and

volatility parameters π = 1
2 , γ = 3.

7.2.1 Computational performance We use the cut generation method outlined in Section 6.2

to solve problem (57) in the case when each scenario in Ω = {ω1, . . . , ωn} has probability 1
n , and all

confidence levels in AG and AR are chosen from the set
{

1
n , . . . ,

n
n

}
. When necessary, the confidence

levels in our tables were rounded up to a multiple of 1
n during computation. Note that we have a separate

cut generation problem for each pair of a benchmark and an associated confidence level. Under our

assumptions all of these cut generation problems take the form of the MIP (47)-(55). All numerical

results in Sections 7.2.1-7.2.2 were obtained using batch sampling, averaging over 5 samples.

Table 1 shows the computational performance of our implementation when solving problem (57) with a

single CVaR constraint based on the RAND benchmark (AG = ∅, AR = {α}). We report the total number

of cuts, including those introduced in the initialization step (associated with the four vertices of the

scalarization polyhedron). Additional cuts are generated in each iteration except the final one, at which

the algorithm terminates by proving optimality. While solving the master problem is nearly instantaneous,

as the number of scenarios increases, solving the cut generation MIP becomes a computational bottleneck.

It is interesting to note that CPU times are typically higher for α = 0.05 than for α = 0.01 when

solving otherwise identical problems. The reason lies in the increased combinatorial complexity of the

cut generation MIP, which involves selecting �αn� binary variables (out of a total of n) to take value 1.

This point is further illustrated by Figure 4(a), which shows that CPU times are significantly lower for α

values near the endpoints of the interval [0, 1] despite generating a similar number of cuts. By contrast,

for a fixed value of α, considering larger scalarization sets by increasing θ results in a higher number of

cuts and a proportional increase of CPU time; see Figure 4(b).

7.2.2 Numerical study on the effect of risk constraints We now look at optimal solutions of

problem (57) and its SSD-constrained counterpart, along with an “unconstrained” variant of the problem

which features no risk constraints. To keep our presentation simple, for the purposes of discussing

allocation results we have divided the set of urban areas into three groups:

• New York (highest risk);

• Chicago, Bay Area, Washington DC-MD-VA-WV, and Los Angeles-Long Beach (medium risk);

• Philadelphia PA-NJ, Boston MA-NH, Houston, Newark, and Seattle-Bellevue-Everett (lower risk).

Figure 5 shows optimal results for problem (57) with CVaR preferability required over the benchmark

zR at a single confidence level of 0.1, along with solutions of SSD-constrained and unconstrained versions

of the problem. As the parameter θ increases, the scalarization set becomes larger, leading to more

restrictive constraints. Accordingly, as illustrated in Figure 5(a), optimal objective values of the CVaR-

and SSD-constrained problems diverge sharply from that of the unconstrained version. We observe that
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Number of Cuts Number of CPU Time (sec)

α n Total Initial CutGen Iterations MIP solved CutGen Total CutGen/Total

0.01
50 5.2 4 1.2 2.2 2.2 0.14 0.34 40.356%

100 5.2 4 1.2 2.2 2.2 0.36 1.10 33.809%

150 5 4 1 2 2 23.60 25.15 93.889%

200 5.2 4 1.2 2.2 2.2 56.48 58.82 96.054%

250 5 4 1 2 2 6312.35 6315.66 99.948%

500 4.6 4 0.6 1.6 1.6 11507.10 11528.40 99.792%

0.05
50 5 4 1 2 2 12.19 12.41 98.213%

100 4.8 4 0.8 1.8 1.8 5244.96 5245.48 99.990%

150 4 4 0 1 1 3921.22 3922.16 99.976%

200 4 4 0 1 1 5004.41 5006.03 99.968%

250 4 4 0 1 1 6021.99 6024.31 99.962%

500 5 4 1 2 2 14386.69 14413.13 99.817%

Table 1: Computational performance of the cut generation algorithm for a single CVaR constraint

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

θ

(b) n=50,   α=0.1

 

 
Number of cuts
CPU time (1000s)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

α

(a) n=50,   θ=0.25

 

 
Number of cuts
CPU time (1000s)

Figure 4: Computational performance of cut generation algorithm for a single benchmark

while the budget allocated to urban areas with medium risk remains relatively unchanged in all three

models, under CVaR and SSD constraints there is a significant tradeoff between allocations to New

York and areas with lower risk. It is interesting to note that enforcing the CVaR constraint at a single

confidence level yields results very close to those obtained under SSD constraints, although the difference

between the two models becomes more pronounced for larger values of θ.

We next present results for problem (57) with CVaR constraints on both benchmarks zG and zR,

enforced at multiple common confidence levels (AG = AR = A). While problems requiring (weak)

preference over a single benchmark solution are always feasible, this is not necessarily the case when

considering multiple benchmarks. A natural approach to overcome this issue is to relax risk constraints

by introducing a tolerance parameter ι, as described in part (ii) of Proposition 2.1. In accordance with

Hu et al. (2011b), we set ι = 0.005. We remark that smaller values of ι typically result in infeasible SSD-

constrained problems, and at some confidence level settings we encounter infeasibility in certain problem

instances even under CVaR constraints. Table 2 contains our results for the relaxed two-benchmark

problem. We can see that enforcing CVaR constraints at low confidence levels yields solutions close

to the unconstrained allocations, while requiring them to hold at both ends of the spectrum results
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Figure 5: Optimal results for benchmark zR and n = 100

in convergence to the SSD-constrained solution. Although the latter fact is not surprising given the

equivalence established in Proposition 2.1, it is interesting to note that simply requiring CVaR to hold

at the lowest and highest levels (corresponding to worst case- and expectation-based constraints) already

leads to a close approximation of the SSD constraint. In line with the conclusions reached by Hu et al.

(2011b) we finally observe that the budget allocated to New York, the area with the highest risk, gradually

increases with the introduction of additional risk constraints (from 32.9% in the unconstrained case to a

maximum of 49.3% under SSD).

Confidence levels Objective New York Medium risk Lower risk

Unconstrained model (A = ∅) 0.316245 0.331189 0.377809 0.291002

0.01 0.316245 0.331189 0.377809 0.291002

0.01,0.05 0.316245 0.331189 0.377809 0.291002

0.01,0.05,0.1 0.321030 0.388341 0.355589 0.256069

0.01,0.05,0.1,0.2 0.329228 0.447436 0.332685 0.219879

0.01,0.05,0.1,0.2,0.3 0.332944 0.467037 0.326971 0.205992

0.01, 1 0.338968 0.490263 0.327498 0.182239

0.01,0.05, 1 0.338968 0.490263 0.327498 0.182239

0.01,0.05,0.1, 1 0.338968 0.490263 0.327498 0.182239

0.01,0.05,0.1,0.2, 1 0.338968 0.490263 0.327498 0.182239

0.01,0.05,0.1,0.2,0.3, 1 0.338968 0.490263 0.327498 0.182239

0.01,0.05,0.1,0.2,0.3, 0.9, 1 0.339043 0.490795 0.326833 0.182372

0.01,0.05,0.1,0.2,0.3, 0.8, 0.9, 1 0.339101 0.490891 0.327012 0.182097

0.01,0.05,0.1,0.2,0.3, 0.7, 0.8, 0.9, 1 0.339101 0.490891 0.327012 0.182097

SSD-constrained model (A = (0, 1]) 0.339167 0.491158 0.327025 0.181817

Table 2: Optimal objective and allocations for two benchmarks, n = 100, θ = 0.25 and ι = 0.005

8. Conclusion and future research We have introduced new multivariate risk-averse preference

relations based on CVaR and linear scalarization, referred to as polyhedral CVaR constraints. We have

demonstrated that they provide an efficient and computationally tractable way of relaxing multivariate

stochastic dominance constraints. Additionally, we have illustrated that the flexibility of our approach

allows for modeling a wide range of risk preferences. In particular, unlike existing SSD-based relations,

the ability to specify confidence levels allows us to focus on various aspects of the distribution (including
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the tails, expectation, and worst case behavior) separately or in arbitrary combinations. We have shown

that our framework can be extended from CVaR to a wider class of coherent risk measures, including

mixed CVaR risk measures.

We have incorporated polyhedral CVaR constraints into optimization problems, providing a novel way

of modeling risk preferences in stochastic multi-criteria decision making. We have developed a finitely

convergent cut generation algorithm to solve such problems on finite probability spaces. Under certain

linearity assumptions we have formulated the master problem as a linear program, and the cut generation

problem as a MIP, solvable by off-the-shelf software such as CPLEX. We have applied our solution

methods to a budget allocation problem featuring CVaR constraints at multiple confidence levels for two

benchmark solutions, and compared our results to those obtained by an SSD-based approach. While

problem instances featuring up to 500 scenarios were found to be tractable, solving our MIP formulations

increasingly became a computational bottleneck. Developing valid inequalities and heuristics which lead

to more efficient solution of these MIPs is the topic of future research. In addition, utilizing CVaR-

based Kusuoka representations, such advances could also be crucial to solving large-scale problems with

polyhedral constraints featuring other coherent risk measures.
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