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Abstract. We investigate the dynamics of quantum discord and entanglement for a

class of mixed qubit-qutrit states assuming that only the qutrit is under the action of a

dephasing channel. We demonstrate that even though the entanglement in the qubit-

qutrit state disappears in a finite time interval, partial coherence left in the system

enables quantum discord to remain invariant throughout the whole time evolution.

1. Introduction

Entanglement is not only considered as one of the most profound traits of quantum

mechanics but also widely regarded as the central resource of quantum information

science [1]. Although most of the quantum computation and communication processes

rely on entanglement, it has been revealed that it is not the only kind of resource

responsible for the computational speed-up in quantum information tasks. Indeed, no

entanglement is needed for the model of deterministic quantum computation with one

qubit, where more general non-classical correlations is accountable for the efficiency

of computation [2-4]. These non-classical correlations, that cannot be captured by

entanglement measures, is characterized by quantum discord [5,6]. In recent years,

quantum discord has been used for analyzing a wide range of problems related to open

quantum system dynamics, quantum phase transitions and quantum algorithms [7].

When quantum systems interact with their surroundings, most fundamental

quantum features such as the existence of quantum superpositions are irreversibly

destroyed through a process known as decoherence [8]. A remarkable consequence of this

system-environment interaction is the total disappearance of entanglement between the

parts of a composite system in finite time, a phenomenon known as entanglement sudden

death [9]. Werlang et al. have comparatively investigated the dynamics of entanglement

and quantum discord in Markovian environments and shown that, unlike entanglement,

quantum discord is immune to sudden death [10]. On the other hand, Mazzola et al.

have discovered the existence of a sudden transition between classical and quantum loss

of correlations for a special class of Bell diagonal states under local dephasing noise

[11]. This phenomenon implies that there exists a finite time interval, in which only
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classical correlations decay and quantum discord is frozen despite the presence of a

noisy environment. Moreover, Haikka et al. have demonstrated that quantum discord

might get forever frozen at a positive value depending on the initial state when both

qubits locally interact with non-Markovian purely dephasing environments [12].

A comprehensive analysis of the dynamics of various quantum and classical

correlation measures for qubit-qutrit systems interacting with multilocal and global

dephasing environments has been carried out in Ref. [13]. It has been shown that

the phenomenon of sudden transition between classical and quantum decoherence can

also be observed in certain families of qubit-qutrit states under multilocal dephasing

noise. In this work, we explore the dynamics of quantum discord and entanglement for

qubit-qutrit states assuming that only the qutrit is under the action of a Markovian

dephasing channel and the qubit is not affected by noisy environment. We show that

although the entanglement between the qubit and the qutrit, as quantified by negativity,

evaporates in a finite time interval, quantum discord does not feel the noisy environment

and remains invariant during the whole dynamics.

2. Measures of Quantum Correlations

In this section, we introduce the measures of quantum correlations used in our study.

Despite the fact that the quantification of entanglement is completely understood for the

quantum systems composed of two-qubits [14,15], the problem is still widely open for the

case of higher dimensional mixed states. Negativity is a reliable measure of entanglement

that can be computed straightforwardly for an arbitrary bipartite state regardless of its

dimension, provided that the state has a negative partial transpose. It is in general

not possible to conclude whether a positive partial transpose state is separable or not.

However, it has been proved that all positive partial transpose states of qubit-qubit and

qubit-qutrit systems are separable [16,17]. Hence, negativity completely characterizes

the qubit-qutrit entanglement. For a given bipartite system ρAB, negativity is calculated

as twice the absolute sum of the negative eigenvalues of partial transpose of ρAB with

respect to the smaller dimensional system,

N(ρAB) =
∑

i

|ηi| − ηi, (1)

where ηi are all of the eigenvalues of the partially transposed density matrix (ρAB)TA .

The quantum mutual information quantifies the total amount of classical and

quantum correlations contained in a quantum state, and can be evaluated as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (2)

where S(ρ) = −Tr(ρlog2ρ) is the von-Neumann entropy with ρAB and ρk (k = A,B)

being the density matrix of the total system and reduced density matrix of subsystems,

respectively. The amount of classical correlations present in a quantum state can be

measured by [5,6]

C(ρAB) = S(ρB)− min
{ΠA

k
}

∑

k

pkS(ρ
B
k ), (3)
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where {ΠA
k } defines a set of orthonormal projection operators, acting on the subsystem

A and ρBk = TrA((Π
A
k ⊗ IB)ρAB)/pk is the remaining state of the subsystem B after

obtaining the outcome k with the probability pk = Tr((ΠA
k ⊗ IB)ρAB). We will evaluate

C(ρAB) for qubit-qutrit states under the assumption that the measurement is performed

on the qubit part of the composite system. The measurement operators {ΠA
1
,ΠA

2
} can

be parameterized as

ΠA
1
=

1

2

(

IA
2
+

3
∑

j=1

njσ
A
j

)

,

ΠA
2
=

1

2

(

IA
2
−

3
∑

j=1

njσ
A
j

)

, (4)

where σj(j = 1, 2, 3) are the Pauli spin matrices and n = (sin θ cosφ, sin θ sinφ, cos θ)T

is a unit vector on the Bloch sphere with θ ∈ [0, π) and φ ∈ [0, 2π). Then, quantum

discord [5], that measures the amount of non-classical correlations, is defined as the

difference between total and classical correlations,

D(ρAB) = I(ρAB)− C(ρAB). (5)

Considering the fact that the optimization process involved in the calculation of quantum

discord might get complicated depending on the quantum state, there exists no closed

analytical expression even for most general case of two-qubit states. For the simple

qubit-qutrit states that we consider in our work, we will calculate the quantum discord

via numerical minimization over two independent real parameters θ and φ.

3. Time Invariant Quantum Discord

Dynamical evolution of an open quantum system can be described in terms of a

completely positive trace preserving linear map E acting on the state space of the

considered system. It has been shown that, for every completely positive trace preserving

map, there exists a corresponding operator-sum representation also known as the Kraus

representation [18,19]. For an arbitrary initial density matrix, the effect of the linear

quantum map E is represented by the collective action of a set of (non-unique and not

necessarily unitary) Kraus operators {Ki} as

ρ(t) = E(ρ(0)) =
N
∑

i=1

Ki(t)ρ(0)K
†
i (t), (6)

where the Kraus operators Ki satisfy the normalization condition

N
∑

i=1

K†
i (t)Ki(t) = I, (7)

for all values of t. The operator-sum approach is quite general since the set of Kraus

operators {Ki} intrinsically contains the entire information about the environment

without explicitly considering its detailed properties.
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We now evaluate the dynamics for hybrid qubit-qutrit states under the assumption

that only the qutrit is interacting with Markovian dephasing environment and the

qubit is protected. The operator-sum representation of the considered qutrit dephasing

channel can be described by a set of Kraus operators [20],

M1 = diag(1, γ(t), γ(t)), M2 = diag(0, ω(t), 0), M3 = diag(0, 0, ω(t)), (8)

where γ(t) = e−Γt/2 and ω(t) =
√

1− γ2(t) with Γ denoting the decay rate. This specific

channel is chosen so that the rate of dephasing between the ground state and each of

the two excited states are the same. We also note that, as a general property, dephasing

channels do not change the quantum state populations and thus only produces a loss of

coherence without altering the energy of the system. Having defined the decoherence

channel for a single qutrit, we can obtain the time evolution of an arbitrary initial

qubit-qutrit system ρ(0) under local dephasing of the qutrit as

ρ(t) =

3
∑

i=1

(I2 ⊗Mi)ρ(0)(I2 ⊗Mi)
†, (9)

where I2 denotes the 2 × 2 identity matrix acting on the qubit part of the composite

system. The resulting time-evolved density matrix in the product basis {|ij〉 : i =

0, 1, j = 0, 1, 2} can be then written as

ρ(t) =



















ρ11 ρ12γ ρ13γ ρ14 ρ15γ ρ16γ

ρ21γ ρ22 ρ23γ
2 ρ24γ ρ25 ρ26γ

2

ρ31γ ρ32γ
2 ρ33 ρ34γ ρ35γ

2 ρ36
ρ41 ρ42γ ρ43γ ρ44 ρ45γ ρ46γ

ρ51γ ρ52 ρ53γ
2 ρ54γ ρ55 ρ56γ

2

ρ61γ ρ62γ
2 ρ63 ρ64γ ρ65γ

2 ρ66



















. (10)

In the following, we analyze the time evolution of quantum correlations for a one-

parameter family of entangled qubit-qutrit mixed states

ρ =
p

2
(|00〉〈00|+ |01〉〈01|+ |12〉〈12|+ |11〉〈11|+ |01〉〈11|+ |11〉〈01|+ |00〉〈12|

+|12〉〈00|) +
1− 2p

2
(|02〉〈02|+ |02〉〈10|+ |10〉〈02|+ |10〉〈10|), (11)

where p ∈ [0, 0.5] and ρ is separable only for p = 1/3.

In Fig. 1(a), we present our results on the dynamics of negativity and quantum

discord as a function of the dimensionless parameter Γt for p = 0.15. We notice that

although the coherence in the qubit-qutrit system is only partially lost, entanglement

as quantified by negativity suffers a sudden death and disappears after a certain finite

time. On the other hand, quantum discord remains frozen for a while but then when a

critical instance is reached, it decays to a finite non-zero value. The survival of quantum

discord at the asymptotic limit (t → ∞) is not unexpected since the quantum state is

still partially coherent and almost all quantum states have non-classical correlations

[21]. Regardless, Fig. 2(a) displays a curious behavior of the correlations for p = 0.23.

In this case, we observe that even if the negativity evaporates quickly due to sudden
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(a)

(b)

Figure 1. Dynamics of negativity (dotted line) and quantum discord (solid line) as a

function of the dimensionless parameter Γt for p = 0.15 (a) and p = 0.23 (b).

death, the partial coherence left in the qubit-qutrit system enables quantum discord to

remain invariant during the whole time evolution. It is important to emphasize that

this is a rather surprising feature of non-classical correlations that are more general than

entanglement.

4. Conclusion

In summary, we have studied time evolutions of entanglement and quantum discord for

a certain class of hybrid qubit-qutrit states assuming that the qutrit is interacting with a

Markovian dephasing environment. We have shown that the entanglement between the

qubit and the qutrit vanishes exhibiting a sudden death, despite the partial coherence

left in the system. Nonetheless, for some special initial conditions, quantum discord

may not feel the effect of the noisy environment and remain unchanged at all times.

Since there is no available analytical expression for the quantum discord of qubit-qutrit

states, we are not able to deduce the general form of the quantum states having this

property. Finally, whether this kind of dynamics can be also observed for two-qubit

states or it can only be seen in higher dimensions, remains as an open question.
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