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Abstract. We study the thermal quantum correlations and entanglement in spin-

1 Bose-Hubbard model with two and three particles. While we use negativity to

calculate entanglement, more general non-classical correlations are quantified using

a new measure based on a necessary and sufficient condition for zero-discord state.

We demonstrate that the energy level crossings in the ground state of the system are

signalled by both the behavior of thermal quantum correlations and entanglement.

1. Introduction

Entanglement, being considered as the resource of quantum information science, has

been utilized to investigate various properties of condensed matter systems [1,2].

However, it has been discovered that entanglement is not the only kind of useful non-

classical correlation present in quantum systems. Numerous quantifiers of quantum

correlations have been proposed to reveal the non-classical correlations that cannot be

captured by entanglement measures [3].

Quantum phase transitions (QPTs) are critical changes in the ground states of

many-body systems when one or more of its physical parameters are continuously

changed at absolute zero temperature. These qualitative changes can be signalled by

energy level crossings in the ground state of the system. Signatures of QPTs are also

present at sufficiently low but experimentally accessible temperatures, where thermal

fluctuations are still negligible as compared to quantum fluctuations. In recent years, the

techniques of quantum information theory have been implemented for the investigation

of quantum critical systems. For instance, several correlation measures have been shown

to identify the critical points of QPTs with success in quantum critical spin chains [3-5].

In this work, we analyze quantum correlations in a spin-1 Bose-Hubbard model

with two and three particles considering periodic boundary conditions. As a measure of

quantum correlations, we use a recently introduced measure for an arbitrary bipartite

system based on a necessary and sufficient condition for a zero-discord state in the

coherence-vector representation of density matrices [6]. On the other hand, we adopt

negativity to measure the amount of entanglement in a quantum state. We demonstrate
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that both quantum correlations that are more general than entanglement and negativity

mark the critical points corresponding to energy level crossings in the ground state of

the system. Although we only consider few particle systems in our study, this interesting

behavior might have consequences even for actual quantum critical systems, where the

number of particles is very large and the energy level crossings really lead to quantum

QPTs.

2. Correlation Measures

In this section, we briefly review the measures of quantum correlations used in our work.

We first introduce a measure of non-classical correlations recently proposed by Zhou et

al. based on a necessary and sufficient condition for a zero-discord state [6]. A general

bipartite state ρab can be expressed in coherence-vector representation as

ρab =
1

mn
Ia ⊗ Ib +

m2−1∑

i=1

xiXi ⊗
Ib

2n
+

Ia

2m
⊗

n2−1∑

j=1

yjYj

+
1

4

m2−1∑

i=1

n2−1∑

j=1

tijXi ⊗ Yj, (1)

where the matrices {Xi : i = 0, 1, · · · , m2 − 1} and {Yj : j = 0, 1, · · · , n2 − 1}, satisfying

tr(XkXl) = tr(YkYl) = 2δkl, define an orthonormal Hermitian operator basis associated

to the subsystems a and b, respectively. Here, I is the identity matrix for the specified

subsystem. The components of the local Bloch vectors ~x = {xi}, ~y = {yj} and the

correlation matrix T = tij can be obtained as

xi = trρab(Xi ⊗ Ib),

yj = trρab(Ia ⊗ Yj),

tij = trρab(Xi ⊗ Yj). (2)

By making use of the above representation of bipartite quantum states, the measure of

non-classical correlations is given by

Q(ρab) =
1

4

m2−1∑

i=m

|Λi|, (3)

where Λi are the eigenvalues of the criterion matrix Λ = TT t − ~yt~y~x~xt in decreasing

order. The motivation behind the definition of this measure and details of its derivation

can be found in Ref. [6].

Negativity is a measure of entanglement that can be straightforwardly calculated for

an arbitrary bipartite system in all dimensions. Although we cannot conclude whether

a positive partial transpose state (zero negativity state) is entangled or separable in

general, negativity is still a reliable measure for all negative partial transpose states [7,8].

For a given bipartite density matrix ρab, it can be defined as the absolute sum of the
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negative eigenvalues of partial transpose of ρab with respect to the smaller dimensional

system,

N(ρab) =
1

2

∑

i

|ηi| − ηi, (4)

where ηi are all of the eigenvalues of the partially transposed density matrix (ρab)tA.

3. Spin-1 Bose-Hubbard Model

The Hamiltonian describing the system of spin-1 atoms in an optical lattice is given by

[9,10]

H = −t
∑

〈ij〉,σ

(a†iσajσ + aiσa
†
jσ) +

U0

2

∑

i

n̂i(n̂i − 1)

+
U2

2

∑

i

((Si
tot)

2 − 2n̂i), (5)

where a†iσ (aiσ) is the creation (annihilation) operator for an atom on site i with z

component of its spin being equal to σ = −1, 0, 1. Here n̂i =
∑

σ a
†
iσaiσ is the total

number of atoms on site i and Si
tot gives the total spin on ith lattice site. The parameter

t represents the tunneling amplitude, U0 is the on-site repulsion and U2 differentiates

the scattering channels between atoms with different Stot values.

From this point on, we assume that the temperature is low enough and the tunneling

amplitude t is small so that the overlap between the wavefunctions of the particles in

neighboring sites is almost zero. Under these assumptions, the spin-1 Bose-Hubbard

Hamiltonian can be treated perturbatively. Second order perturbation theory in t gives

the effective Hamiltonian as [10]

He
t

t
= ωJz + rI + τ

∑

〈ij〉

(Si · Sj) + γ
∑

〈ij〉

(Si · Sj)
2. (6)

In addition to the original spin-1 Bose-Hubbard Hamiltonian, an external magnetic field

ω has been added to the effective Hamiltonian. Si is the spin operator of the particle

on site i with J =
∑

i Si and I represents the identity operator. In terms of the original

Bose-Hubbard Hamiltonian parameters t, U0, U2, the effective coupling constants r, τ ,

γ for single particle per site are given by

r =
4t

3(U0 + U2)
−

4t

3(U0 − 2U2)
,

τ =
2t

U0 + U2
,

γ =
2t

3(U0 + U2)
+

4t2

3(U0 − 2U2)
. (7)

with r = τ − γ. In what follows, we will consider the two and three particle cases with

a single particle per site.
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3.1. Two particles

In this setting, the explicit form of the effective Hamiltonian given by Eq. (6) reads

H2 = ωJz + rI + τS1 · S2 + γ(S1 · S2)
2. (8)

Using the identity S1 · S2 = (J2 − S2
1 − S2

2)/2, the two particle Hamiltonian H2 can be

written in the total spin basis as

H2 = ωJz +
τ

2
(J2 − 4I) +

γ

4
(J2 − 4I)2 + rI, (9)

where the energy eigenvalues are determined as EJM = ωM+τ(j(j+1)−2)/2+γ[(j(j+

1)−4)2−4]/4. The density matrix of our system at finite temperature T can be written

as

ρT =
e−βH

Z
, (10)

with the partition function of the system is given by Z = tr(e−βH) = e−βτ [2 cosh βτ(1+

2 cosh βω)+e−β(3γ−2τ)+2e−βτ cosh 2βτ ] and β = 1/T with Boltzmann constant kB = 1.

In Fig. 1 (a) and (b), we present our results related to the thermal entanglement and

quantum correlations in the system of two particles as a function of τ when γ = ω = 1

for T = 0.05, 0.5, 1. Leggio et al. have recently discussed the behavior of thermal

entanglement in this model, revealing a connection between the different phases of

entanglement and the energy level crossings in the ground state of the system [11].

We demonstrate here that not only the negativity but also the non-classical correlations

of the system experience two sharp transitions at points τ = 0.5 and τ = 4 when the

temperature is sufficiently low. Examining the Fig. 1 (c), it is not difficult to see that

these sharp transitions are connected with the appearance of energy level crossings in

the ground state of the system. In fact, ground state crossings occur at the points

2τ = ω and τ = ω + 3γ, and the connection between the crossings and the considered

correlation measures is independent of the values of γ and ω. We also note that when

τ < 0, non-classical correlations in the system grows and reaches to a constant value in

this regime as the temperature is increased.

3.2. Three particles

When it comes three particles, the effective Hamiltonian with periodic boundary

conditions takes the form

H3 = ωJz + rI + τ(S1 · S2 + S2 · S3 + S3 · S1)

+ γ[(S1 · S2)
2 + (S2 · S3)

2 + (S3 · S1)
2]. (11)

Similarly to the case of two particles, we straightforwardly obtain the energy eigenvalues

of the Hamiltonian and the thermal density matrix ρT to evaluate the negativity

and non-classical correlations in the system. In this case, negativity and quantum

correlations are calculated considering the bipartition of 3 ⊗ 9, that is, we look at the

correlations between the first particle and the remaining two particles in the system.
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Despite the fact that we do not investigate the multipartite non-classical correlations,

one can indeed use tripartite negativity defined in Ref. [12] to analyze the multipartite

entanglement. It is easy to see that, due to the symmetry of the considered system,

the tripartite negativity reduces to usual negativity which is calculated by taking the

partial transpose with respect to any of the three qubits.

Fig. 2 (a) and (b) display our results on the thermal entanglement and quantum

correlations in the system of three particles with periodic boundary conditions as a

function of τ when γ = ω = 1 for T = 0.05, 0.5, 1. The low lying energy levels and their

crossing points are also shown in Fig. 3 (c). Looking at the figures, we observe that the

two sudden jumps of negativity and quantum correlations correspond to the crossings

of the energy levels in the ground state of the system at τ = 1/3 and τ = 2/3. We

note that, different from the case of two particles, negativity and quantum correlations

do not show a decreasing behavior about the second transition point, τ = 2/3, in case

of three particles. Moreover, the plateau occurring after the first transition here is

considerably shorter as compared to the two particle case. Lastly, the revival of non-

classical correlations with increasing temperature can also be seen when τ < 0.

4. Conclusion

In summary, we have investigated the thermal quantum correlations and entanglement

in a spin-1 Bose-Hubbard model with two and three particles with periodic boundary

conditions. Our results demonstrate that both the behavior of thermal quantum

correlations and entanglement spotlight the energy level crossings in the ground

state of the system. Despite the fact that our discussion is limited to few particle

systems, the connection between the behavior of correlations measures and ground

state crossings might have consequences even for real quantum critical systems having

large number of particles. Finally, it would be interesting to analyze the relation of

some thermodynamical quantities (such as the specific heat) and correlations measures

since various non-trivial behaviors of certain thermodynamical quantities might give

information about the correlations in the system [13,14].
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[12] Sab́ın C and Garćıa-Alcaine G 2002 Eur. Phys. J. D 48 435
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(a)

(b)

(c)

Figure 1. The thermal entanglement (a) and quantum correlations (b) of Spin-1 Bose-

Hubbard model with two particles as a function of the parameter τ when γ = ω = 1

for T = 1 (dotted line), T = 0.5 (dashed line) and T = 0.05 (solid line). The low lying

energy levels and their crossings in the ground state of the system are displayed in (c).
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(a)

(b)

(c)

Figure 2. The thermal entanglement (a) and quantum correlations (b) of Spin-1 Bose-

Hubbard model with three particles as a function of the parameter τ when γ = ω = 1

for T = 1 (dotted line), T = 0.5 (dashed line) and T = 0.05 (solid line).The low lying

energy levels and their crossings in the ground state of the system are displayed in (c).
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