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Abstract

We study a first passage time problem for a class of spectrally positive Lévy pro-
cesses. By considering the special case where the Lévy process is a compound
Poisson process with negative drift, we obtain the Laplace-Stieltjes transform
of the steady-state waiting time distribution of low-priority customers in a two-
class M/GI/1 queue operating under a dynamic non-preemptive priority disci-
pline. This allows us to observe how the waiting time of customers is affected
as the policy parameter varies.

Keywords: Lévy processes, Martingales, First passage time, Priority queues,
Dynamic priority, Due-date scheduling

1. Introduction

Consider a two-class M/GI/1 queueing system with static non-preemptive
priority (SNPP) in favor of class 1 customers. A new class 2 arrival has to wait
for the total work she finds in the system as well as the work input by subsequent
class 1 arrivals to be processed before she can start service. It follows that the
steady-state waiting time of class 2 customers can be represented as the first
passage time of class 1 workload to 0, initiated by the steady-state workload of
the system [3]. While the static policy ensures the minimum possible wait for
class 1 customers (when preemption is not allowed), it can lead to excessively
long waiting times for class 2 customers, especially when the relative arrival
rate of class 1 customers is high. To address this issue, one can consider a more
flexible policy referred to as a dynamic priority discipline; if a class 2 customer
has not started service by a pre-determined time threshold, which we shall call
the policy parameter and denote by u, she is upgraded to class 1 and does no
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longer have to wait for future class 1 arrivals who arrive during her remaining
queueing time. In this case, the steady-state waiting time of class 2 customers
can similarly be viewed as the first passage time of class 1 workload to 0 initiated
by the steady-state workload, but where the class 1 input is turned off after u
time units (see Section 3).

In this paper, we study the distribution of this first passage time under a
general setting where the net input could be any spectrally positive Lévy process.
By considering the special case where the net input is a compound Poisson
process with a unit negative drift, we obtain the Laplace-Stieltjes Transform
(LST) of the steady-state waiting time of class 2 customers in the dynamic
priority queue. This allows us to observe, both analytically and numerically,
how the waiting time of class 2 customers is affected as the policy parameter
varies. We observe that while the mean and the variance of the class 2 waiting
time are strictly increasing in the policy parameter u, the tail probability or
the proportion of customers who wait longer than a certain threshold, say t0,
remains unchanged for all u ≥ t0. Clearly, the policy also affects the waiting
time of class 1 customers, but that is not studied here; see the discussion in
Subsection 3.4.

The dynamic priority discipline is appealing since it enables the decision
maker to assign priorities not only by customer type, but also by the amount
of wait a customer has experienced in the system. Furthermore, this is done
through a controllable parameter which can be adjusted to manipulate the wait-
ing time of both classes. The policy therefore finds applications in healthcare
and customer contact centers where usually different levels of service must be
provided for different types of customers.

Despite its wide application area, however, the literature on dynamic pri-
oritization is limited. The policy described above, also known as the due-date
scheduling, was originally introduced by Jackson [12, 13, 14] using urgency num-
bers, denoted by ui, for a class i customer. Accordingly, a class i customer
arriving at time t is assigned t+ ui as its attribute. At each service completion
epoch, the next customer to be served is the customer with the lowest attribute.
In a two-class system letting u ≡ u2 − u1 (u2 ≥ u1), the policy is the same as
assigning t (t+ u) as an attribute for class 1 (2) customers when they arrive at
time t. Then, it is easy to see that for u = 0, the policy reduces to the first-
come, first-served (FCFS) discipline and for u =∞ the queue operates under the
SNPP rule. By altering u, hence, one can control the priority assignment rule.
Jackson studied a discrete-time queue and conducted simulation experiments for
the continuous system. Bounds for the steady-state mean waiting times were
obtained by Holtzman [11] for a queue with Poisson arrivals and multiple pri-
ority classes. Goldberg [9] analyzed the virtual waiting time process for class 1
and class 2 customers and derived an expression for the mean steady-state wait-
ing times of each class in the same queueing system we consider in this paper.
Then, Goldberg [10] provided a proof for Jackson’s conjecture [13] on the shape
of the tails of the waiting time distributions. Prabhu and Reseer [18] studied a
sequence of two-class queueing systems with u ranging from 0 to∞, and charac-
terized the transient as well as the steady-state waiting time distribution of each
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class when u is a random variable (r.v.) with an exponential density on (0,∞)
and discrete atoms at 0 and ∞. Koole et al. [17] recently considered a different
implementation of the priority rule which is to assign customers of each class to
a separate queue, and keep track of the waiting time of the first in line (FIL)

customer in both queues. In this case, letting WFIL
i (s) denote the waiting time

of the FIL customer in queue i at time s, when a service is completed at time
s0, the next customer to be served is chosen from the queue with the higher

value of WFIL
i (s0)−ui (which is the customer with the lowest attribute in both

queues). Koole et al. [17] introduced a discrete-time approximation to describe
the waiting times of FIL customers and used it to approximate the waiting time
distributions of class 1 and class 2 customers in an M/M/c queue. There does
not seem to be any other results for the distribution of the waiting times under
the dynamic priority discipline. The importance of waiting-time distribution
is however evident in many service systems such as contact centers where the
service levels are expressed as the proportion of customers who wait longer than
a certain time threshold [8].

In the next section, we present our main result for the distribution of the
first passage time with Lévy net input. In Section 3, we use this result to obtain
the LST of the distribution of class 2 waiting time in the dynamic priority queue
and study the effect of changing the parameter on its mean, variance and tail
probabilities.

2. The first passage time problem with Lévy net input

Let X ≡ {X(t); t ≥ 0} be a càdlàg (right-continuous with left limits) Lévy
process with respect to some filtration satisfying the usual conditions (aug-
mented by null sets and right-continuous), that is, X has independent and sta-
tionary increments, and X(0) = 0 (for background on Lévy processes see e.g.,
[7] or chapter 1 of [5]). We further assume that X is spectrally positive (has
no negative jumps) and is not non-decreasing (subordinator or identically zero).
Let ϕ(θ) ≡ logE[e−θX(1)], be the Laplace-Stieltjes exponent of X. Then it is
well known that ϕ(θ) is convex, finite for all θ ≥ 0 and ϕ(θ) → ∞ as θ → ∞;
see e.g., [7].

For a given x, u > 0 consider the process Y ≡ {Y (t); t ≥ 0} with

Y (t) = x+X(t ∧ u)− (t− u)+, (1)

where a ∧ b = min(a, b) and a+ = max(a, 0). When positive, Y behaves like a
storage process which, starting from x, receives the net input X for u time units
and then depletes linearly with unit rate. If X is comprised of a Lévy input
I ≡ {I(t); t ≥ 0} (e.g., a Brownian motion or compound Poisson process) and a
linear output with unit rate, i.e., X(t) = I(t)− t, then Y reduces to

Y (t) = x+ I(t ∧ u)− t, (2)

that is the input I is turned off after u time units. We are interested in the LST
of the distribution of the stopping time Tx ≡ inf{t ≥ 0;Y (t) = 0} or the first
passage time of Y to zero.
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Consider the stopping time τx ≡ inf{t ≥ 0;x+X(t) = 0} and define

αx(θ) ≡ E[e−θτx1{τx ≤ u}] =

ˆ u

0

e−θydP(τx ≤ y). (3)

Theorem 1. The LST of the distribution of Tx, i.e., the first passage time of
Y to zero is given by

E[e−θTx ] = e−u(θ−ϕ(θ))
(
e−θx − αx

(
ϕ(θ)

))
+ αx(θ), (4)

with αx(θ) defined in Eq. (3).

Proof. Setting J(t) ≡ 1{t ≤ u} one can write Y as

Y (t) = x+

ˆ
(0,t]

J(s)dX(s)−
ˆ
(0,t]

(1− J(s))ds,

where the second term on the right is a stochastic integral interpreted in the Itô
sense. Then from Corollary 5.2.2 and Theorem 5.2.4 of [5] (pages 253-254) (see
[16] for a multidimensional version), it is known that M ≡ {M(t); t ≥ 0} with

M(t) = e−θY (t)−ϕ(θ)
´ t
0
J(s)ds−θ

´ t
0
(1−J(s))ds = e−θY (t)−ϕ(θ)(t∧u)−θ(t−u)+ ,

is a Martingale. We proceed by applying the optional stopping theorem to the
bounded stopping time Tx ∧ υ for some υ > 0. Letting υ → ∞ and using the
bounded convergence theorem, we arrive at

E[M(Tx)] = E[e−θY (Tx)−ϕ(θ)(Tx∧u)−θ(Tx−u)+ ] = E[M(0)] = e−θx. (5)

Noting that since u is finite, P(Tx < ∞) = 1 and hence Y (Tx) = 0 with
probability 1, Eq. (5) yields

E[e−ϕ(θ)(Tx∧u)−θ(Tx−u)+ ] = e−θx. (6)

Next, observe that

E[e−ϕ(θ)(Tx∧u)−θ(Tx−u)+ ] = E[e−ϕ(θ)Tx1{Tx ≤ u}]+
e−u(ϕ(θ)−θ)E[e−θTx1{Tx > u}]. (7)

Furthermore,

E[e−θTx1{Tx > u}] = E[e−θTx ]− E[e−θTx1{Tx ≤ u}]. (8)

Substituting from Eqs. (8) and (6) in Eq. (7) after some algebra we get

E[e−θTx ] = e−u(θ−ϕ(θ))(e−θx − E[e−ϕ(θ)Tx1{Tx ≤ u}])+
E[e−θTx1{Tx ≤ u}]. (9)
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Now, observe that

Tx = τx ∧ u+ (x+X(u))1{τx > u}. (10)

Thus, Tx ≤ u if and only if τx ≤ u in which case Tx = τx. It follows that,

E[e−θTx1{Tx ≤ u}] = E[e−θτx1{τx ≤ u}] ≡ αx(θ),

and thus we can rewrite Eq. (9) to obtain the LST of Tx as given in Eq. (4).

Note that the LST of the distribution of τx is known e.g., from Kella and
Whitt [15] to be

E[e−θτx ] = e−ψ(θ)x,

where ψ(β) ≡ inf{θ;ϕ(θ) > β} for β ≥ 0 is the right inverse of ϕ(θ). Therefore,
in principal one has the distribution of τx and hence the value of αx(θ). If
instead of u we set U ∼ exp(γ) then αx(θ) = E[e−(θ+γ)τx ] = e−ψ(θ+γ)x. For a
fixed u, αx(θ) can be computed numerically.

3. Application: the dynamic priority queue

3.1. The class 2 waiting time distribution

In this subsection, we use the above result to obtain the LST of the distri-
bution of the steady-state waiting time of class 2 customers W2, in the dynamic
priority queue described in the introduction. For a class i customer, i = 1, 2, let

λi denote the Poisson arrival rate, and bi, b
(2)
i , and b̃i(θ) the mean, the second

moment, and the LST of the cumulative distribution function (CDF) of the ser-
vice time, respectively. In addition, define ρi ≡ λibi and λ ≡ λ1+λ2, and denote
the workload process by {V (t) : t ≥ 0}. That is, V (t) is the total amount of work
in the system at time t, including the work submitted by both classes of cus-
tomers. Assuming ρ ≡ ρ1+ρ2 < 1, as t→∞, the distribution of V (t) converges
to that of the steady-state workload V , i.e., limt→∞ P (V (t) ≤ x) = P (V ≤ x)
for all x ≥ 0. Note that V has a discrete atom at 0 and a continuous density
on (0,∞). The LST of the CDF of V for any work-conserving and non-idling
service discipline is given by (e.g., [19])

ṽ(θ) ≡ E[e−θV ] =
(1− ρ)θ

θ − λ+ λ1b̃1(θ) + λ2b̃2(θ)
.

Consider a tagged class 2 customer arriving in the steady-state. Then the cus-
tomer has to wait for the total work she finds in the system plus the amount of
work brought by class 1 customers in the next u time units, before she starts
receiving service [9]. Since Poisson Arrivals See Time Averages (PASTA) [20]
the amount of work observed by the customer upon arrival is the steady-state
workload V . Thus, the steady-state waiting time of class 2 customers W2, is the
first passage time of class 1 workload to 0, which is initiated by the steady-state
workload V , and is turned off after u time units.
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It is now easy to see, in light of Eq. (2), that the above is a special case of the
problem studied in Section 2 where the net input is a compound Poison process
(with rate λ1 and jump size distribution having LST b̃1(θ)) with a unit negative
drift. Also the initiating level is a random variable with LST ṽ(θ). Denote
by {A(t); t ≥ 0} the Poisson process associated with class 1 arrivals, and by
{Sn;n ≥ 1} the sequence of independent and identically distributed (i.i.d) class

1 service times. If we set the net input process to X(t) =
∑A(t)
i=1 Si − t, in Eq.

(1) then we have

Y (t) = x+

A(t∧u)∑
i=1

Si − t,

and hence Tx ≡ inf{t ≥ 0;Y (t) = 0} is the first passage time of class 1 workload
to zero starting from level x and with input turned off after u time units. It
follows for the LST of the distribution of W2 that

E[e−θW2 ] =

ˆ ∞
0

E[e−θTx ]dP(V ≤ x). (11)

For this case the exponent of X can be easily verified to be ϕ(θ) = λ1(̃b1(s)−
1) + θ. Also the LST of τx ≡ inf{t ≥ 0 : x + X(t) = 0} is readily available by
observing that it is the first passage time to 0 for class 1 workload starting from
level x. We have (e.g., [3])

E[e−θτx ] = e−x(θ+λ1−λ1g̃(θ)),

where g̃(θ) is the solution to the Kendall functional equation g̃(θ) = b̃1(θ +
λ1 − g̃(θ)), and can be computed by iteration; see [1]. If we replace x with the
random variable V then

f̃(θ) ≡ E[e−θτV ] = E[e−(θ+λ1−λ1g̃(θ))V ] = ṽ(θ + λ1 − λ1g̃(θ)), (12)

which is the LST of the waiting time distribution of class 2 customers under the
SNPP policy.

Figure 1 depicts a sample path of x + X(t) and Y (t) and the associated
realization of stopping times Tx, τx. Marks on the time axis indicate class 1
arrivals. Note that sample paths are identical up until the fourth class 1 arrival
which happens after u time units pass from the tagged class 2 arrival at time 0.

We are now in the position to present the LST of the distribution of W2.
First, from Eq. (4) we have

E[e−θTx ] = e−u
(
−λ1 (̃b1(θ)−1)

)(
e−θx − αx

(
λ1(̃b1(θ)− 1) + θ

))
+ αx(θ).

Removing the condition on V = x, via Eq. (11) we obtain the result stated in
the following corollary.

Corollary 1. The LST of the CDF of the class 2 waiting time is given by
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Figure 1: A sample path of x + X(t) and Y (t).

w̃2(θ) ≡ E[e−θW2 ] =

e−u(−λ1 (̃b1(θ)−1))
(
ṽ(θ)− αV

(
λ1(̃b1(θ)− 1) + θ

))
+ αV (θ), (13)

where αV (θ) is the restricted transform

αV (θ) =

ˆ u

0

e−θydP(τV ≤ y). (14)

Given the above result one can compute the complimentary distribution or
tail probabilities of W2 by numerically inverting (1 − w̃2(θ))/θ, e.g., using the
methods due to Abate and Whitt [2]. This, however, requires evaluating the
restricted transform which in turn requires computing dP(τV ≤ y). In what
follows we shall give an expression for αV (θ) based on P(τV > y) instead of
dP(τV ≤ y). This way since P(τV > y) < 1 for all y > 0, the error bound for
the discretization error of the inversion algorithm given in Abate and Whitt [2]
applies; see also Abate et al. [4] for more details.

Consider random variable τV ∧ u and observe that

E[e−θ(τV ∧u)] =

ˆ u

0

e−θydP(τV < u) +

ˆ ∞
u

e−θudP(τV < u)

= αV (θ) + e−θuP(τV > u). (15)

Furthermore, ˆ τV ∧u

0

θe−θydy = 1− e−θ(τV ∧u).

Taking the expectation of both sides, we have

E[e−θ(τV ∧u)] = 1− θ
ˆ u

0

e−θyP(τV > y)dy,
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which together with Eq. (15), gives

αV (θ) = 1− θ
ˆ u

0

e−θyP(τV > y)dy − e−θuP(τV > u). (16)

Given Eq. (16) and having f̃(θ), i.e., the LST of the CDF of τV (see Eq.
(12)) one can compute P(τV > y) for any y > 0 by numerically inverting (1 −
f̃(θ))/θ, and use it together with numerical integration to evaluate the restricted
transform.

Finally, we mention that our results are also applicable to the multiserver
M/M/c queue with c identical servers where service times for both classes are
exponentially distributed with rate µ, i.e., 1/b1 = 1/b2 = µ. In this case, the
total workload has the same distribution as the waiting time of customers in a
single class FCFS M/M/c queue with arrival rate λ and service rate µ and g̃(θ)
is the LST of the busy period distribution in an M/M/1 queue with arrival rate
λ1 and service rate cµ, which is available in closed form (see e.g., [6], page 105).

3.2. Monotonicity results

In this subsection, we discuss the monotonicity of the expected value, vari-
ance and tail probability of W2 with respect to the policy parameter u.

First, by differentiating Eq. (13) we have

E[W2] = E[V ] + ρ1

ˆ u

0

P(τV > t)dt, (17)

which is the same result given in [9]. Clearly, we have dE[W2]/du = ρ1P(τV >
u) > 0, and hence the expected waiting time for class 2 customers is strictly
increasing in u.

Next we obtain the second moment by evaluating the second derivative of
w̃2(θ) at θ = 0. After some algebra, we get

E[W 2
2 ] = w̃′′2 (0) = E[V 2] + 2uρ1E[V ] + α′′V (0)ρ1(2− ρ1)

+ α′V (0)
(
2uρ1(1− ρ1)− λ1b(2)1

)
+ (1− αV (0))

(
λ1ub

(2)
1 + u2ρ21

)
. (18)

Note that from Eq. (14), 1 − αV (0) = P(τV > u). Also, using integration by
parts we have

α′V (0) = uP(τV > u)−
ˆ u

0

P(τV > t)dt,

α′′V (0) = −u2P(τV > u) + 2

ˆ u

0

tP(τV > t)dt,

which are substituted in Eq. (18), and after some simplification, we obtain

E[W 2
2 ] = E[V 2] + 2uρ1E[V ] +

(
λ1b

(2)
1 − 2uρ1(1− ρ1)

) ˆ u

0

P(τV > t)dt

+ 2ρ1(2− ρ1)

ˆ u

0

tP(τV > t)dt. (19)



3.3 Numerical example 9

Having the first moment from Eq. (17), from Var[W2] = E[W 2
2 ] − E[W2]2, we

obtain

Var[W2] = Var[V ] + 2ρ1uE[V ]+(
λ1b

(2)
1 − 2uρ1(1− ρ1)− 2ρ1E[V ]

) ˆ u

0

P(τV > t)dt−
(
ρ1

ˆ u

0

P(τV > t)dt
)2

+ 2ρ1(2− ρ1)

ˆ u

0

tP(τV > t)dt. (20)

To show that Var[W2] is also strictly increasing in u, we differentiate the former
with respect to u. Then, after simplifying we have

d

du
Var[W2] = 2ρ1

(
1− P(τV > u)

)
E[W2]−

2ρ1
(ˆ u

0

P(τV > t)dt− uP(τV > u)
)

+ λ1b
(2)
1 P(τV > u)

> 0,

where the inequality follows from the fact that (1− P(τV > u))E[W2] >
´ u
0
P(τV >

t)dt − uP(τV > u). To see this, note that for u = 0 the inequality holds, also
both sides are strictly increasing in u and converge to E[τV ] as u→∞.

Similarly one might expect the tail probability P(W2 > t) to be also strictly
increasing in u. However, From Eq. (10), we can see that Tx > t0 if and only
if τx > t0 and hence P(W2 > t0) = P(τV > t0) for any t0 ≤ u. Since the
distribution of τV , as given in Eq. (12), is independent of u, it follows that for
a fixed t = t0, the tail probability P(W2 > t0) remains identical for any u such
that u ≥ t0. We also demonstrate this via numerical examples in the following
subsection.

3.3. Numerical example

In this subsection, using a numerical example, we demonstrate some of our
findings.

We consider a multiserver system with c = 8 servers and exponentially dis-
tributed service times with µ = 1. Poisson arrival rates for classes 1 and 2 are
λ1 = 3.5 and λ2 = 2.5, respectively. Table 1 lists the mean and variance of class
2 waiting times computed for different values of u. One can see that they are
both increasing in u.

In Figure 2 (a) we plot the complimentary distribution function of class 2
waiting times for different values of u. As shown analytically in Subsection 3.2,
and also observed in the figure, changing the policy parameter u does not affect
the distribution in all percentiles. For instance, we observe that a service level
in form of P (W2 > 0.5) remains identical for u =1, 2, and ∞. Thus, to improve
the service level at level 0.5, a policy parameter u < 0.5 must be considered. We
also used simulation to estimate the tail probabilities for class 1 waiting times.
Figure 2 (b) presents the point estimates which shows that, contrary to what we
observe for class 2 customers, changing the parameter u affects all parts of the
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u 0 0.5 1.0 1.5 2.0 2.5 3.0 ∞
E[W2] 0.178 0.234 0.265 0.285 0.297 0.305 0.310 0.317

Var[W2] 0.147 0.223 0.298 0.364 0.417 0.459 0.492 0.575

Table 1: Mean and variance of class 2 waiting times for different values of u
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Figure 2: Complimentary distribution function of the waiting time of (a) class 2 and (b) class
1 customers for different values of u

waiting time distribution. Hence, for example, even though changing u from
2 to ∞ does not affect the service level for class 2 customers at level 0.5, it
improves the performance for class 1 customers.

3.4. Discussions

Here, we only characterize the class 2 waiting time distribution. In Goldberg
[9] an expression for the mean waiting time of class 1 customers is derived using
a simple probabilistic argument. It remains for future research to characterize
the distribution of class 1 customers for a given policy parameter.

Regarding applicability, we should mention that the class 2 waiting time
distribution is sufficient for a decision maker who, given a fixed capacity, wants
to provide the lowest possible wait to class 1 customers while assuring a certain
service level for class 2 customers. If for some u, the desired service level is
attained for class 2 customers then the same service level is clearly guaranteed
for class 1 customers as well. To have an estimate of the tail probabilities
for class 1 customers in the case of exponential service times one can use the
approximation developed in Koole et al. [17].
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