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Abstract. For weakly regular bent functions in odd characteristic the dual

function is also bent. We analyse a recently introduced construction of non-

weakly regular bent functions and show conditions under which their dual is
bent as well. This leads to the definition of the class of dual-bent functions

containing the class of weakly regular bent functions as a proper subclass. We

analyse self-duality for bent functions in odd characteristic, and characterize
quadratic self-dual bent functions. We construct non-weakly regular bent func-

tions with and without a bent dual, and bent functions with a dual bent func-

tion of a different algebraic degree.

1. Introduction

For a prime p, let f be a function from Fnp to Fp. The Fourier transform of f is

then defined to be the complex valued function f̂ on Fnp

f̂(b) =
∑
x∈Fn

p

εf(x)−b·x
p

where εp = e2πi/p and b ·x denotes the conventional dot product in Fnp . The Fourier

spectrum of f is the set of all values of f̂ . We remark that one can equivalently
consider functions from an arbitrary n-dimensional vector space over Fp to Fp, and
substitute the dot product with any (non-degenerate) inner product. Frequently
the finite field Fpn with the inner product Trn(bx) is used, where Trn(z) denotes
the absolute trace of z ∈ Fpn .

The function f is called a bent function if |f̂(b)|2 = pn for all b ∈ Fnp . The

normalized Fourier coefficient of a bent function f at b ∈ Fnp is defined by p−n/2f̂(b).
For p = 2 bent functions can only exist when n is even, the normalized Fourier
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The first author is supported by Tübitak BİDEB 2219 Scholarship Programme. The second

author is supported by Tübitak Project no.111T234.
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coefficients are obviously ±1. For p > 2 bent functions exist for both, n even and n
odd. For the normalized Fourier coefficients we always have (cf. [11])

(1) p−n/2f̂(b) =

{
±εf

∗(b)
p : n even or n odd and p ≡ 1 mod 4;

±iεf
∗(b)
p : n odd and p ≡ 3 mod 4,

where f∗ is a function from Fnp to Fp.
A bent function f : Fnp → Fp is called regular if for all b ∈ Fnp

p−n/2f̂(b) = εf
∗(b)
p .

When p = 2, a bent function is trivially regular, and as can be seen from (1),
for p > 2 a regular bent function can only exist for even n and for odd n when
p ≡ 1 mod 4.

A function f : Fnp → Fp is called weakly regular if, for all b ∈ Fnp , we have

p−n/2f̂(b) = ζ εf
∗(b)
p

for some complex number ζ with |ζ| = 1, otherwise it is called non-weakly regular.
By (1), ζ can only be ±1 or ±i. Note that regular implies weakly regular.

A function f : Fnp → Fp is called near-bent if |f̂(b)|2 = pn+1 or 0 for all b ∈ Fnp .

The support supp(f̂) of the Fourier transform of f is defined by supp(f̂) = {b ∈
Fnp | f̂(b) 6= 0}. By Parseval’s identity we then have |supp(f̂)| = pn−1. The
normalized non-zero Fourier coefficients of a near-bent function resemble those of
a bent function. Only the condition n even (odd) has to be changed to n+ 1 even

(odd), and f∗ is now a function from supp(f̂) to Fp. The notion of weak regularity
is then also meaningful for near-bent functions.

Weakly regular bent functions always appear in pairs, since the weak regularity
of f guarantees that the function f∗ which is called the dual of f is also (weakly
regular) bent (see also [11]): For y ∈ Fnp we get

(2)
∑
b∈Fn

p

εb·yp f̂(b) =
∑
b∈Fn

p

εb·yp
∑
x∈Fn

p

εf(x)−b·x
p =

∑
x∈Fn

p

εf(x)
p

∑
b∈Fn

p

εb·(y−x)
p = pnεf(y)

p ,

a special case of Poisson Summation Formula. If f is weakly regular, i.e. f̂(b) =

ζpn/2ε
f∗(b)
p , with ζ independent from b, then

pnεf(y)
p = ζpn/2

∑
b∈Fn

p

εf
∗(b)+b·y
p = ζpn/2f̂∗(−y).

Consequently

(3) f̂∗(−y) = ζ−1pn/2εf(y)
p

and therefore f∗ is weakly regular bent. Furthermore we have f∗∗(x) = f(−x) - if
p = 2 forming the dual is an involution - and f∗∗∗∗(x) = f(x). A weakly regular
bent function f is called self-dual if f∗ = f . We observe that self-dual bent functions
must satisfy f(x) = f(−x). A weakly regular bent function f is called anti-self-dual
if f∗ = f + e for a constant e ∈ F∗p. As we will see in Remark 4 the latter term is
only meaningful for p = 2 and then we have e = 1.

In Section 2 we analyze a construction of bent functions with respect to their
duals. With this construction one can recursively obtain bent functions of a large
degree in arbitrary dimension and their duals simultaneously. As we will see this
construction also yields non-weakly regular bent functions for which the dual is
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bent as well. Until now the dual of a bent function has only been defined for
weakly regular bent functions. This motivates the definition of a new class of bent
functions, the class of bent functions for which the dual is also bent. In Section 3
we describe the duality properties of quadratic bent functions, and we completely
characterize self-dual bent functions in odd characteristic. In Section 4 we give
a general construction of self-dual non-quadratic bent functions in characteristic
p ≡ 1 mod 4, and some results on self-dual bent functions for p ≡ 3 mod 4. In
Section 5 we use our results and construct examples of bent functions and their
duals with some interesting properties, amongst others non-weakly regular bent
functions for which the dual is also bent, and self-dual bent functions.

2. Bent functions and their duals

In [5] the subsequent construction of bent functions has been utilized to construct
the first infinite classes of non-weakly regular bent functions. We give a short proof
of the correctness of the construction since the dual function f∗ which will be the
object of our interest implicitly appears in this proof.

Proposition 1 ([5]). Let f0(x), f1(x), . . . , fp−1(x) be near-bent functions from Fnp
to Fp such that supp(f̂i) ∩ supp(f̂j) = ∅ for 0 ≤ i 6= j ≤ p − 1. Then the function
F (x, y) from Fn+1

p to Fp defined by

F (x, y) = fy(x)

is bent. An explicit formula for F (x, y) is obtained with the principle of Lagrange
interpolation as

F (x, y) = (p− 1)

p−1∑
k=0

y(y − 1) · · · (y − (p− 1))

y − k
fk(x).

Proof. For a ∈ Fnp and b ∈ Fp we have

F̂ (a, b) =
∑
y∈Fp

∑
x∈Fn

p

εfy(x)−a·x−by
p =

∑
y∈Fp

ε−byp f̂y(a).

Since a ∈ Fnp belongs to the support of exactly one f̂y, y ∈ Fp, for this y we have

(4) F̂ (a, b) = ε−byp f̂y(a) = ζp
n+1
2 ε

f∗y (a)−by
p

where ζ ∈ {±1,±i} depends on y and a.

Theorem 1. Let f0(x), f1(x), . . . , fp−1(x) be near-bent functions from Fnp to Fp with

Fourier transforms with pairwise disjoint supports, and let F (x, y) : Fn+1
p → Fp be

the bent function defined as in Proposition 1. Then the dual function F ∗(x, z) :
Fn+1
p → Fp of F is given by

F ∗(x, z) = f∗y (x)− yz, when x ∈ supp(f̂y),

where the function f∗y : supp(f̂y)→ Fp is given by

f̂y(x) = ξp
n+1
2 ε

f∗y (x)
p for all x ∈ supp(f̂y).

If for all j = 0, . . . , p − 1 the near-bent functions fj : Fnp → Fp are weakly regular,
then the dual F ∗ is a bent function. Moreover F ∗∗(x, y) = F (−x,−y), F ∗∗∗∗(x, y) =
F (x, y).
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Proof. From equation (4) we see that the dual function F ∗ of F is given by F ∗(x, z) =

f∗y (x)− yz when x ∈ supp(f̂y). We suppose that all near-bent functions are weakly
regular and show that F ∗ is bent: With Poisson Summation Formula (2) we obtain
the equality

εf(x)
p = p−n

∑
a∈Fn

p

εa·xp f̂(a) = p−n
∑

a∈supp(f̂)

εa·xp f̂(a).

For a weakly regular near-bent function f , i.e. for a ∈ supp(f̂) we have f̂(a) =

p(n+1)/2ζε
f∗(a)
p where ζ is independent from a, this yields

(5)
∑

a∈supp(f̂)

εf
∗(a)+a·x
p = p(n−1)/2εf(x)

p ζ−1.

Let a ∈ Fnp and b ∈ Fp, then

F̂ ∗(a, b) =
∑

x∈Fn
p ,z∈Fp

εF
∗(x,z)−a·x−bz

p =
∑
z∈Fp

ε−bzp

∑
x∈Fn

p

εF
∗(x,z)−a·x

p

=
∑
y∈Fp

∑
x∈supp(f̂y)

ε
f∗y (x)−a·x
p

∑
z∈Fp

ε−zy−bzp = p
∑

x∈supp(f̂−b)

ε
f∗−b(x)−a·x
p

= p
n+1
2 εf−b(−a)

p ζ−1
b ,

where the last step follows from (5). We remark that ζb depends on b but is inde-
pendent from a. As can be seen from the last equality, the dual F ∗∗(x, y) of F ∗ is
F (−x,−y).

Let fj , j = 0, . . . , p − 1, be bent functions from Fnp to Fp, then the functions

fj + jxn+1, j = 0, . . . , p − 1, form a set of near-bent functions from Fn+1
p to Fp

with Fourier transforms with pairwise disjoint supports, see [6]. With this set of
near-bent functions one obtains an interesting special case of Proposition 1. The
resulting bent function F is then a function from Fn+2

p to Fp, and can be described
by

(6) F (x, xn+1, y) = fy(x) + xn+1y.

Theorem 2. For j = 0, . . . , p − 1 let fj be bent functions in dimension n, and
let F : Fn+2

p → Fp be the bent function defined as in equation (6). Then the dual
function F ∗ of F is given by

(7) F ∗(x, xn+1, y) = f∗xn+1
(x)− xn+1y.

If the dual functions f∗j of fj, j = 0, . . . , p − 1, are all bent, then also F ∗ is a
bent function. Furthermore, then fj(x)∗∗ = fj(−x) for j = 0, . . . , p − 1, implies
F ∗∗(x, xn+1, y) = F (−x,−xn+1,−y) and F ∗∗∗∗(x, xn+1, y) = F (x, xn+1, y).

Proof. For a ∈ Fnp , b, c ∈ Fp we have

F̂ (a, b, c) =
∑
x∈Fnp

xn+1,y∈Fp

εfy(x)+xn+1y−a·x−bxn+1−cy
p

=
∑
x∈Fnp
y∈Fp

εfy(x)−a·x−cy
p

∑
xn+1∈Fp

εxn+1(y−b)
p = pε−bcp

∑
x∈Fn

p

εfb(x)−a·x
p

= pε−bcp f̂b(a) = p
n+2
2 ζε

f∗b (a)−bc
p
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for some ζ ∈ {±1,±i} which depends on b and a. Consequently the dual function
F ∗ of F is described by equation (7).

The function F ∗ in (7) is obtained like the bent function F in (6), only the dual
functions f∗j are used as building blocks and the roles of xn+1 and y are interchanged.
Hence if all f∗j , 0 ≤ j ≤ p− 1, are bent, then F ∗ is bent as well. Similarly as above
we also get

F̂ ∗(a, b, c) = p
n+2
2 ζε

f∗∗−c(a)+bc
p

for some ζ ∈ {±1,±i} which depends on c and a. Hence F ∗∗(a, b, c) = f∗∗−c(a)+bc =
f−c(−a) + bc = F (−a,−b,−c) for (a, b, c) ∈ Fnp × Fp × Fp. Immediately one then
sees that F ∗∗∗∗ = F .

Remark 1. By a recursive application of Theorems 1,2 a large variety of bent
functions and their duals can be constructed simultaneously, see Section 5. For
instance for the application of Theorem 2 one only needs a set of p bent functions
and their duals as a starting point.

As easily seen, a bent function obtained by the construction described in Proposi-
tion 1 is weakly regular if and only if all near-bent functions used as building blocks
are weakly regular with the same sign in their normalized Fourier coefficients. This
has been utilized in [5] to present the first construction of non-weakly regular bent
functions. Until then only sporadic examples of non-weakly regular bent functions
were known, namely

1. g1 : F36 → F3 with g1(x) = Tr6(ξ7x98), where ξ is a primitive element of F36 ,
see [11],

2. g2 : F34 → F3 with g2(x) = Tr4(a0x
22 + x4), where a0 ∈ {±ξ10,±ξ30} and ξ

is a primitive element of F34 , see [12],
3. g3 : F33 → F3 with g3(x) = Tr3(x22 + x8), or alternatively g̃3 : F3

3 → F3 with
g̃3(x1, x2, x3) = x2

2x
2
3 + 2x2

3 + x1x3 + x2
2, see [19].

4. g4, g5 : F36 → F3 with g4(x) = Tr6(ξx20+ξ41x92), g5(x) = Tr6(ξ7x14+ξ35x70),
where ξ is a primitive element of F36 , see [13].

We emphasize that Theorems 1,2 show that the construction of bent functions F
described as in Proposition 1 yields bent functions which have a bent dual, also if F
is non-weakly regular. Whereas in the proof of Theorem 1 we use that the near-bent
functions fj , j = 0, . . . , p−1, are weakly regular, in Theorem 2 it suffices that for all
bent functions fj , j = 0, . . . , p− 1, the dual bent function exists. However, having
a dual which is bent is not a universal property of bent functions. Using MAGMA
one sees that the duals of the bent functions g1, g2, g5 are not bent, whereas the
duals of g3, g4 are bent functions. This motivates the definition of a new class of
bent functions. We call a bent function a dual-bent function if its dual function is
also bent. The class of weakly regular bent functions is then a subclass of the class
of dual-bent functions, non-weakly regular bent functions can be both, dual-bent
functions or non-dual-bent functions.

Remark 2. By the properties P1-P4 below and Theorem 1 in [6], EA-equivalence
transformations on a bent function f imply EA-equivalence transformations on the
dual f∗. Hence the class of dual-bent functions is invariant under EA-equivalence.
For bent functions, CCZ-equivalence, see [2], is the same as EA-equivalence, see [8].
The existence of non-weakly regular dual-bent functions f for which the dual f∗ is
weakly regular is an open problem (in this case f∗∗ must be weakly regular as well,
and f∗∗∗∗∗ = f∗).
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3. Quadratic bent functions and their duals

In some sense the simplest bent functions are quadratic bent functions. In order
to be able to use quadratic bent functions as a starting point to construct bent
functions and their duals in higher algebraic degree, we describe the duals of qua-
dratic bent functions in the following. First we collect the effect of EA-equivalence
transformations to the Fourier coefficients of a function f from Fnp to Fp, which com-
pletely describes the effect of these transformations to the dual of a bent function:
Let b, u, v ∈ Fnp and e ∈ Fp, then we have

P1: ̂(f + e)(b) = εepf̂(b),

P2: if fv(x) = f(x) + v · x then f̂v(b) = f̂(b− v),

P3: ̂f(x+ u)(b) = εb·up f̂(b),

P4: if A ∈ GLn(Fp) then f̂(Ax)(b) = f̂((A−1)T b), where AT denotes the transpose
of the matrix A.

Remark 3. If p is odd, a further EA-equivalence transformation is the multipli-
cation of f by a nonzero constant of Fp. The effect of this transformation to the
Fourier coefficients is somewhat more involved. For details we refer to [6, Theorem
1] and its proof.

Remark 4. If f : Fnp → Fp is bent, then with Property P1 we have (f+e)∗ = f∗+e.
If f is a weakly regular anti-self-dual bent function then with f∗ = f + e, e ∈ F∗p,
we have f = f∗∗∗∗ = f + 4e, which implies p = 2.

As it is well known, every quadratic bent function from Fn2 to F2 is EA-equivalent
to the function Q(x) = x1x2 +x3x4 +· · ·+xn−1xn which is a self-dual bent function,
see [3, 14]. With Properties P1-P4 this describes the duals of all quadratic bent
functions when p = 2.

We remark that Properties P1-P4 imply that self-duality of bent functions is
not invariant under EA-equivalence transformations. As one can further see, self-
duality is invariant under the transformation described in P4 if the matrix A is
orthogonal, see also [3, Theorem 4.6]. For a complete characterization of self-dual
and anti-self-dual quadratic bent functions from Fn2 to F2 we again refer to [14].

We now consider the case of quadratic bent functions from Fnp to Fp for odd
primes p. Using the Properties P1, P2, we can omit the affine part and restrict
ourselves to the determination of the duals of quadratic bent functions of the form
f(x) = f(x1, . . . , xn) =

∑
1≤i≤j≤n aijxixj , aij ∈ Fp.

We utilize the fact that every quadratic function f of this form can be associated
with a quadratic form

f(x) = xTAx

where xT denotes the transpose of the vector x, and A is a symmetric matrix with
entries in Fp. Every quadratic form can be transformed into a diagonal quadratic
form by a coordinate transformation, i.e. there exists an invertible matrix C over
Fp and a diagonal matrix D = diag(d1, . . . , dn), such that D = CTAC, see [17,
Theorem 6.21]. Moreover, the corresponding function f(x) is bent if and only if
the quadratic form is nonsingular, i.e. di 6= 0, i = 1, . . . , n (cf. [5, Theorem 4.3]).
Therefore it is sufficient to determine the dual of quadratic functions of the form

(8) Q(x) = d1x
2
1 + d2x

2
2 + · · ·+ dnx

2
n
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for some di ∈ F∗p, i = 1, . . . , n. We follow the proof of [5, Theorem 4.3], where the
expression of the dual is also implicitly given (see also the proof of Proposition 1 in
[11]).

Proposition 2. The dual of the quadratic bent function Q : Fnp → Fp given by

Q(x) = d1x
2
1 + d2x

2
2 + · · ·+ dnx

2
n is

Q∗(x) = − x2
1

4d1
− x2

2

4d2
− · · · − x2

n

4dn
.

Proof. For the function Q(x) = dx2 on Fp we have by [17, Theorem 5.33]

Q̂(0) =
∑
x∈Fp

εdx
2

p = η(d)G(η, χ1)

where χ1 is the canonical additive character of Fp, η denotes the quadratic character
of Fp, and G(η, χ1) is the associated Gaussian sum. Consequently,

Q̂(b) =
∑
x∈Fp

εdx
2−bx

p =
∑
x∈Fp

εd(x−b/(2d))2−b2/(4d)
p = ε−b

2/(4d)
p η(d)G(η, χ1),

and with [17, Theorem 5.15] we obtain

(9) Q̂(b) =

 η(d)p
1
2 ε
−b2/(4d)
p : p ≡ 1 mod 4;

η(d)ip
1
2 ε
−b2/(4d)
p : p ≡ 3 mod 4,

which shows the correctness of the assertion for n = 1.
For two functions g1 : Fmp → Fp and g2 : Fnp → Fp, the direct sum g1 ⊕ g2 from

Fnp ×Fmp = Fm+n
p to Fp is defined by (g1⊕ g2)(x, y) = g1(x) + g2(y). Then (see also

[4])

(10) ̂(g1 ⊕ g2)(u, v) = ĝ1(u)ĝ2(v).

The assertion for arbitrary n follows then from (9) applying (10) recursively.

As a consequence of Proposition 2 we can also characterize self-dual quadratic
bent functions in odd characteristic, which adds to the results of [3, 14] for the case
that p = 2.

Corollary 1. Let f : Fnp → Fp be a bent function given by f(x) = xTAx for a

symmetric matrix A over Fp. Then f is self-dual if and only if A2 = −4−1I.

Proof. We can write A as A = CTDC for a nonsingular matrix C and a (non-
singular) diagonal matrix D = diag(d1, . . . , dn). Equivalently, f(x) = xTAx =
xTCTDCx equals f1(Cx) with f1(x) = xTDx. From Proposition 2 we know that

the dual of f1 is given by f∗1 (x) = xT D̃x where D̃ = diag(−1/(4d1), . . . ,−1/(4dn)) =
−4−1D−1.

With Property P5 we get for the dual f∗(x) of f(x) = f1(Cx),

f∗(x) = f∗1 ((C−1)Tx) = ((C−1)Tx)T D̃(C−1)Tx

= xTC−1−1

4
D−1(C−1)Tx = xT (CT (−4)DC)−1x = xT

−1

4
A−1x.

Consequently f is self-dual if and only if for all x ∈ Fnp we have

xTAx = xT
−1

4
A−1x.
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Since by assumption A and hence also −1
4 A
−1 is symmetric, and the representation

of a p-ary quadratic function with a symmetric matrix is unique, f is self-dual if
and only if A = −1

4 A
−1 or equivalently A2 = −1

4 I.

Remark 5. A weakly regular self-dual bent function satisfies f(x) = f(−x), hence
(quadratic) self-dual bent functions do not have linear terms. Consequently Corol-
lary 1 describes all p-ary self-dual quadratic bent functions.

Remark 6. As it follows immediately from Corollary 1, the quadratic function
Q(x) = d1x

2
1 + d2x

2
2 + · · · + dnx

2
n is self-dual if and only if d2

i = −4−1 ∈ Fp for
i = 1, 2, . . . , n. In particular, Q(x) can only be self-dual if p ≡ 1 mod 4.

One example of a quadratic self-dual bent function in characteristic p with p ≡

3 mod 4, is the function f : F2
3 → F3 given by f(x) = xTAx with A =

(
2 1
1 1

)
.

4. Self-dual bent functions in odd characteristic

As pointed out, for p = 2 quadratic self-dual (and anti-self-dual) bent functions
have been completely characterized in [14]. Some results on self-duality for some
primary and secondary constructions of bent functions from Fn2 to F2 are presented
in [3]. In general it seems not to be easy to construct self-dual bent functions
of degree other than 2. Some examples in [3] are self-dual partial spreads bent
functions and bent functions arising from a secondary construction presented in [1]
which is limited to the case p = 2 (see [3, Theorem 4.9]). In the following we present
a construction of self-dual bent functions from Fnp to Fp, p ≡ 1 mod 4.

The idea is to use self-dual bent functions in the construction (6), where we may
use quadratic functions given as in Corollary 1. The resulting bent function is not
yet self-dual, but one may try to use Property P4 to transform this function into a
self-dual bent function with an appropriate coordinate transformation. We will use
the following Lemma.

Lemma 1. Let Θ : F2
p → Fp be defined by Θ

((
x
y

))
= xy. The matrix

B =

(
a b
c d

)
satisfies

(11) ( 0 1 )B

(
y

z

)
= ( k 0 )(B−1)T

(
y

z

)
and

(12) Θ

(
B

(
y

z

))
= −Θ

(
(B−1)T

(
y

z

))
for all y, z ∈ Fp if and only if k2 = −1, d ∈ F∗p, b = k/(2d), and a = ±kb, c = ∓kd,
where different signs have to be chosen for a and c.

Proof. To satisfy condition (11) the transpose of the inverse of B has to be of the
form

(B−1)T =

(
k−1c k−1d
u v

)
which yields the conditions

(i) ak−1c+ bk−1d = 1, (ii) cu+ dv = 1,
(iii) au+ bv = 0, (iv) c2 + d2 = 0.
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Furthermore, by condition (12) we require (ay+bz)(cy+dz) = −(k−1cy+k−1dz)(uy+
vz). Comparison of the coefficients yields

(v) a = −k−1u and (vi) b = −k−1v.

Using (v), (vi), from (i), (ii) we obtain k2 = −1. We note that then k−1 = −k and
we arrive at the conditions

I a2 + b2 = 0, i.e. a = ±kb (from (iii)),
II c2 + d2 = 0, i.e. c = ∓kd (from (iv)),

III ac+ bd = k (from (i)).

Observe that I and II also imply that a, b, c, d 6= 0. With I, II, equation III yields
b = k/(2d), where we remark that the signs for a and c in equations I and II have
to be chosen different such that the left side of III does not vanish. For an arbitrary
choice of d ∈ F∗p (and a choice of k with k2 = −1) the value for b is uniquely
determined, which then also determines the pair (a, c) ambiguously.

Theorem 3. For a prime p ≡ 1 mod 4 let k be a square root of −1, and let
f0, f1, . . . , fp−1 be (quadratic) self-dual bent functions from Fnp to Fp such that

fi = fj when i ≡ jkl mod p for some 0 ≤ l ≤ 3. Let F (x, y, z) be the corresponding
bent function (6) in dimension n+ 2, A an orthogonal n× n matrix over Fp and B
a 2× 2 matrix as described in Lemma 1, and let L(x, y, z), x ∈ Fnp , y, z ∈ Fp, be the
linear transformation given by the matrix

A =

(
A 0
0 B

)
.

Then F (L(x, y, z)) is a self-dual bent function in n+ 2 variables.

Proof. Since L(x, y, z) = (Ax,B
(
y
z

)
), from (6) we obtain

F (L(x, y, z)) = F (Ax,B

(
y

z

)
) = fh(Ax) + Θ

(
B

(
y

z

))
where

h = ( 0 1 )B

(
y

z

)
.

Using (A−1)T = A, Property P4 and equation (7) we get

F (L(x, y, z))∗ = F ∗(Ax, (B−1)T
(
y

z

)
) = f∗h̄(Ax)−Θ

(
(B−1)T

(
y

z

))
where

h̄ = ( 1 0 )(B−1)T
(
y

z

)
.

As B is chosen such that the conditions in Lemma 1 are satisfied we have h̄ = kh
by condition (11) and then by condition (12)

f∗h̄(Ax)−Θ

(
(B−1)T

(
y

z

))
= f∗kh(Ax) + Θ

(
B

(
y

z

))
.

By assumption we have f∗kh = fkh = fh̄ which completes the proof.

Remark 7. Starting with quadratic self-dual bent functions, Theorem 3 can be
applied recursively to obtain self-dual bent functions from Fnp to Fp, p ≡ 1 mod 4,
with high algebraic degree.
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The construction in Theorem 3 requires that p ≡ 1 mod 4. The question arises
naturally when self-dual bent functions exist for p ≡ 3 mod 4. A quadratic example
in dimension 2 was given in Section 3. We start with a non-existence result.

Corollary 2. Self-dual weakly regular bent functions f : Fnp → Fp do not exist when
p ≡ 3 mod 4 and n is odd.

Proof. If f(x) is a weakly regular self-dual bent function we have f∗(x) = f(x) and
f(x) = f∗∗(x) = f(−x). By equation (3), for any b ∈ Fnp , the Fourier coefficients of
f(x) and f∗(x) can be written as

f̂(b) = ζpn/2εf
∗(b)
p , f̂∗(−b) = ζ−1pn/2εf

∗(b)
p .

Using these two equations and f̂(−b) = f̂(b), one sees that ζ2 = 1 and hence ζ 6= ±i,
which by equation (1) contradicts p ≡ 3 mod 4 and n odd.

We remark that equation (3) was obtained under the assumption that f is weakly
regular. On the other hand, self-dual non-weakly regular bent functions from Fnp
to Fp, p ≡ 3 mod 4 and n is odd exist: By MAGMA we see that the function
g3(x) = Tr3(x22 + x8) from F33 to F3 is self-dual. As a consequence, for any self-
dual bent function h on F3n with n even, for which the existence is guaranteed by
Proposition 3 below, also the function f on F33 × F3n defined by

f(x, y) = g3(x) + h(y)

is bent and by the fact that f∗ = g∗3 + h∗ also self-dual. Finally we remark that
using weakly regular bent functions as building blocks in our construction - which at
least insures that the resulting function is dual-bent - we cannot find such self-dual
functions since equation (3) holds then.

We finish this section with an example of a ternary bent function which shows
that for n even and p ≡ 3 mod 4 (weakly regular) nonquadratic self-dual bent
functions exist. The example arises from bent functions from F3n to F3 presented
in [11]. In the following proposition Kk(a) denotes the Kloosterman sum (see [17,
Definition 5.42])

Kk(a) =
∑
x∈F∗

pk

εTrk(x+ax−1)
p .

Proposition 3 ([11, Theorem 2]). Let n = 2k and t be a positive integer satisfying

gcd(t, pk+1) = 1 and pk > 3. Then the function f(x) = Trn(axt(p
k−1)) from Fpn to

Fp is bent if and only if Kk(ap
k+1) = −1. If Kk(ap

k+1) = −1 then f(x) is regular

bent and f̂(b) = pkε
−Trn(ap

k
bt(p

k−1))
p .

Remark 8. In [11] the existence of bent functions given as in Proposition 3 has
been shown for p = 3. The existence of such bent functions in the general case was
left as an open problem. It was shown in [15, Corollary 3] that bent functions of
this form cannot exist for finite fields of characteristic p > 3.

Remark 9. In [16, Corollary 4], it was shown that the binary Dillon bent function

f(x) = Trn(ax2k−1) is self-dual bent if and only if Kk(a) = −1.

From Proposition 3 we see that if f(x) = Trn(axt(3
k−1)) is bent, then its dual

is the function f∗(x) = −Trn(a3k

xt(3
k−1)). Consequently f(x) is a self-dual bent

function if and only if a satisfies the conditions

A. Kk(a3k+1) = −1, B. a3k

= −a.
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Let α ∈ F3n be a primitive element of F3n . Then a = α
3k+1

2 satisfies condition

B. We note that a3k+1 = α
3k+1

2 (3k+1) := w
3k+1

2 , and observe that w = α3k+1 is

a primitive element of F3k . We may hence write Kk(a3k+1) = Kk(w
3k+1

2 ) and

therefore, f(x) = Trn(α
3k+1

2 xt(3
k−1)) from F3n to F3 is self-dual bent if and only if

Kk(w
3k+1

2 ) = −1. Using MAGMA one can confirm that for k = 3, 5, 7 and some
choices of the primitive element α this condition is satisfied.

Consequently for k = 3, 5, 7 there exist self-dual bent functions f with f(x) =

Trn(α
3k+1

2 xt(3
k−1)) from F3n to F3, n = 2k.

When k is even then f(x) = Trn(α
3k+1

2 xt(3
k−1)) is never bent. In this case

w
3k+1

2 cannot be a square in F3k since w is a primitive element of F3k , and then

Kk(w
3k+1

2 ) 6= −1 due to a divisibility result in Theorem 1.4 of [9] (see also [10,
Corollary 1]).

5. Examples

In this section we highlight our main achievements with examples of bent func-
tions obtained with the procedure described in Section 2.

5.1. Constructing bent functions and their duals simultaneously, p =
2. We apply construction (6) to the quadratic bent functions f0 = x1x2 +x3x4 and
f1 = x1x3 + x2x4 from F4

2 to F2, which are both self-dual, to obtain F1 : F6
2 → F2,

and its dual F ∗1 by equation (7). We may then recursively continue the procedure
for instance using the obtained bent functions and their duals. With Lagrange
interpolation principle we obtain the algebraic normal form of F1 as

F1(x1, . . . , x6) = (x6 + 1)(x1x2 + x3x4) + x6(x1x3 + x2x4 + x5)

= x1x2x6 + x1x3x6 + x2x4x6 + x3x4x6 + x1x2 + x3x4 + x5x6.

With (7) we similarly obtain

F ∗1 (x1, . . . , x6) = x1x2x5 + x1x3x5 + x2x4x5 + x3x4x5 + x1x2 + x3x4 + x5x6.

Using F1 and F ∗1 as building blocks we then obtain

F2(x1, . . . , x8) = x1x2x5x8 + x1x2x6x8 + x1x3x5x8 + x1x3x6x8 +

x2x4x5x8 + x2x4x6x8 + x3x4x5x8 + x3x4x6x8 + x1x2x6 + x1x3x6 +

x2x4x6 + x3x4x6 + x1x2 + x3x4 + x5x6 + x7x8

and the dual

F ∗2 (x1, . . . , x8) = x1x2x5x7 + x1x2x6x7 + x1x3x5x7 + x1x3x6x7 +

x2x4x5x7 + x2x4x6x7 + x3x4x5x7 + x3x4x6x7 + x1x2x5 + x1x3x5 +

x2x4x5 + x3x4x5 + x1x2 + x3x4 + x5x6 + x7x8,

both bent functions in dimension 8 with algebraic degree 4.

5.2. Constructing bent functions and their duals simultaneously, weak-
ly regular. By using the quadratic functions f0 = x2

1, f1 = 4x2
1, f2 = 4x2

1, f3 =
x2

1, f4 = x2
1 from F5 to F5, we obtain F1 by construction (6):

F1(x1, x2, x3) = 4x2
1x

4
3 + x2

1x
3
3 + x2

1 + x2x3.
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The functions f0, f1, f2, f3, f4 are self-dual bent. Then with (7) we similarly obtain

F ∗1 (x1, x2, x3) = 3x2
1x

4
2 + x2

1 + 4x2x3.

As the coefficients of x2
1 are squares in F5 for all fi, i = 0, · · · , 4, the bent function

F1 (and also F ∗1 ) is weakly regular, see [5, Section 5].
By putting f0 = f1 = f2 = F1 and f3 = f4 = 4F1, we may continue the

construction of bent functions. Since we multiply F1 by squares only, to obtain our
functions fi, i = 0, · · · , 4, we use for the construction, the resulting bent function
and its dual will be weakly regular again. For details we again refer to [5]. We get

F2(x1, x2, x3, x4, x5) = x2
1x

4
3x

4
5 + x2

1x
4
3x

4
5 + 3x2

1x
4
3x5 + 4x2

1x
4
3 + 4x2

1x
3
3x

4
5

+ 4x2
1x

3
3x

3
5 + 2x2

1x
3
3x5 + x2

1x
3
3 + 2x2

1x3x
4
5 + 2x2

1x3x
3
5

+ x2
1x3x5 + 3x2

1x3 + 4x2
1x

4
5 + 4x2

1x
3
5 + 2x2

1x5 + x2
1

+ 4x2x3x
4
5 + 4x2x3x

3
5 + 2x2x3x5 + x2x3 + x4x5,

F ∗2 (x1, x2, x3, x4, x5) = 4

4∑
j=0

x4(x4 − 1)(x4 − 2)(x4 − 3)(x4 − 4)

x4 − j
((fj)

∗ − jx5)

= 4x2
1x

4
2x

4
4 + 4x2

1x
4
2x

3
4 + 2x2

1x
4
2x4 + 3x2

1x
4
2 + 2x2

1x
3
2x

4
4

+ 2x2
1x

3
2x

3
4 + x2

1x
3
2x4 + x2

1x2x
4
4 + x2

1x2x
3
4 + 3x2

1x2x4

+ 4x2
1x

4
4 + 4x2

1x
3
4 + 2x2

1x4 + x2
1 + x2x3x

4
4 + x2x3x

3
4

+ 3x2x3x4 + 4x2x3 + x4x5.

Here the dual (4F1)∗ is given by

(4F1)∗(x1, x2, x3) = 4

4∑
j=0

x2(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)

x2 − j
((4fj)

∗(x1) + jx3).

As indicated in Remark 3, a direct way to obtain the dual of cF , c ∈ F∗p from the
dual F ∗ of F is shown in the proof of [6, Theorem 1].

5.3. Constructing bent functions and their duals simultaneously, non-
weakly regular. Consider the bent functions f0 = x2

1, f1 = 2x2
1, f2 = x2

1 from F3

to F3, then by Proposition 2 their duals are f∗0 = 2x2
1, f
∗
1 = x2

1, f
∗
2 = 2x2

1. Using the
principle of Lagrange interpolation, from construction (6) we get the bent function

F1(x1, x2, x3) = 2
(
(x3 − 1)(x3 − 2)x2

1 + x3(x3 − 2)(2x2
1 + x2)

+x3(x3 − 1)(x2
1 + 2x2)

)
= 2x2

1x
2
3 + 2x2

1x3 + x2x3 + x2
1.

With (7) we get its dual bent function

F ∗1 (x1, x2, x3) = 2
(
(x2 − 1)(x2 − 2)2x2

1 + x2(x2 − 2)(x2
1 − x3)

+x2(x2 − 1)(2x2
1 − 2x3)

)
= x2

1x
2
2 + x2

1x2 + 2x2x3 + 2x2
1.

As the coefficient of x2
1 is the square 1 for f0 and f2, but the coefficient of x2

1 in f1

is the non-square 2, the bent function F1 (and also F ∗1 ) is non-weakly regular, see
[5, Section 5].
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We may recursively continue for instance putting f0 = F1, f1 = 2F1, f2 = F1 and
obtain the non-weakly regular bent function F2 and its dual F ∗2 from F5

3 to F3

F2(x1, . . . , x5) = 2
(
(x5 − 1)(x5 − 2)f0 + x5(x5 − 2)(f1 + x4)

+ x5(x5 − 1)(f2 + 2x4)
)

= x2
1x

2
3x

2
5 + x2

1x
2
3x5 + 2x2

1x
2
3 + x2

1x3x
2
5 + x2

1x3x5 + 2x2
1x3

+ 2x2
1x

2
5 + 2x2

1x5 + x2
1 + 2x2x3x

2
5 + 2x2x3x5 + x2x3 + x4x5,

F ∗2 (x1, . . . , x5) = 2
(
(x4 − 1)(x4 − 2)f∗0 + x4(x4 − 2)(f∗1 − x5)

+ x4(x4 − 1)(f∗2 − 2x5)
)

= x2
1x

2
2x

2
4 + x2

1x
2
2x4 + x2

1x2x
2
4 + x2

1x2x4 + 2x2
1x

2
3x

2
4 + 2x2

1x
2
3x4

+ 2x2
1x

2
3 + 2x2

1x3x
2
4 + 2x2

1x3x4 + 2x2
1x3 + x2

1 + 2x2x3x
2
4

+ 2x2x3x4 + x2x3 + 2x4x5.

Here the dual of f∗1 (x1, x2, x3) = (2F1)∗(x1, x2, x3) is given by the formula

(2F1)∗(x1, x2, x3) = 2
(
(x2 − 1)(x2 − 2)x2

1 + x2(x2 − 2)(2x2
1 − x3)

+x2(x2 − 1)(x2
1 − 2x3)

)
= 2x2

1x
2
2 + 2x2

1x2 + 2x2x3 + x2
1.

5.4. Bent functions with duals of different algebraic degree. We choose
the bent functions f0 = x2

1, f1 = x2
1, f2 = 2x2

1, f3 = x2
1, f4 = 4x2

1 from F5 to F5, then
by Proposition 2 their duals are f∗0 = x2

1, f
∗
1 = x2

1, f
∗
2 = 3x2

1, f
∗
3 = x2

1, f
∗
4 = 4x2

1.
With (6) and (7) we obtain the bent function F and its dual F ∗ as

F (x1, x2, x3) = x2
1x

4
3 + x2

1x
3
3 + 3x2

1x
2
3 + x2

1 + x2x3,

F ∗(x1, x2, x3) = 4x2
1x

3
2 + 4x2

1x
2
2 + 2x2

1x2 + x2
1 + 4x2x3.

We observe that F has algebraic degree 6 whereas F ∗ has algebraic degree only 5,
and thus F and F ∗ are inequivalent. We remark that in the construction of F ∗

the term of degree 6 cancels, which results from the fact that the coefficients of the
functions f∗i add to 0, i.e.

∑4
i=0 f

∗
i = 0. Moreover, as the coefficients for some

fi (f∗i ) are squares and some are non-squares in F5, the bent function F (F ∗) is
non-weakly regular.

The following example is a weakly regular bent function in characteristic 7 with
a dual of different algebraic degree. Let g0 = x2

1, g1 = x2
1, g2 = x2

1, g3 = x2
1, g4 =

2x2
1, g5 = 4x2

1, g6 = 4x2
1 bent functions on F7, then their duals are g∗0 = 5x2

1, g
∗
1 =

5x2
1, g
∗
2 = 5x2

1, g
∗
3 = 5x2

1, g
∗
4 = 6x2

1, g
∗
5 = 3x2

1, g
∗
6 = 3x2

1. Note that the functions gi
are chosen so that

∑6
i=0 gi = 0. With (6) and (7) we obtain the weakly regular

bent function G of degree 7 and its dual G∗ of degree 8

G(x1, x2, x3) = 6
(
(x3 − 1)(x3 − 2)(x3 − 3)(x3 − 4)(x3 − 5)(x3 − 6)g0

+ x3(x3 − 2)(x3 − 3)(x3 − 4)(x3 − 5)(x3 − 6)(g1 + x2)

+ x3(x3 − 1)(x3 − 3)(x3 − 4)(x3 − 5)(x3 − 6)(g2 + 2x2)

+ x3(x3 − 1)(x3 − 2)(x3 − 4)(x3 − 5)(x3 − 6)(g3 + 3x2)

+ x3(x3 − 1)(x3 − 2)(x3 − 3)(x3 − 5)(x3 − 6)(g4 + 4x2)

+ x3(x3 − 1)(x3 − 2)(x3 − 3)(x3 − 4)(x3 − 6)(g5 + 5x2)

+ x3(x3 − 1)(x3 − 2)(x3 − 3)(x3 − 4)(x3 − 5)(g6 + 6x2)
)

= 5x2
1x

5
3 + 4x2

1x
4
3 + 5x2

1x
3
3 + x2

1x
2
3 + 6x2

1x3 + x2
1 + x2x3,
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G∗(x1, x2, x3) = 6
(
(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)(x2 − 5)(x2 − 6)g0

+ x2(x2 − 2)(x2 − 3)(x2 − 4)(x2 − 5)(x2 − 6)(g1 − x3)

+ x2(x2 − 1)(x2 − 3)(x2 − 4)(x2 − 5)(x2 − 6)(g2 − 2x3)

+ x2(x2 − 1)(x2 − 2)(x2 − 4)(x2 − 5)(x2 − 6)(g3 − 3x3)

+ x2(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 5)(x2 − 6)(g4 − 4x3)

+ x2(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)(x2 − 6)(g5 − 5x3)

+ x2(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)(x2 − 5)(g6 − 6x3)
)

= 3x2
1x

6
2 + 4x2

1x
5
2 + x2

1x
4
2 + 2x2

1x
3
2 + 2x2

1x
2
2 + 2x2

1x2 + 5x2
1 + 6x2x3.

5.5. Non-dual-bent functions. To obtain more bent functions for which the
dual is not bent, we have to employ one of the known non-dual-bent functions
for our construction. An algebraic normal form for the non-weakly regular bent
function g2(x) in Section 2 for a0 = ξ10 ∈ F34 is as follows:

f0 = x2
1x

2
2 + x2

1x2x3 + 2x2
1x2x4 + x2

1x
2
3 + x2

1x3x4 + x2
1x

2
4 + 2x1x

2
2x4 + 2x1x2x

2
3

+ x1x2x3x4 + 2x1x3 + 2x1x4 + 2x2
2x3x4 + x2

2x
2
4 + 2x2

2 + x2x3 + x2
3x

2
4 + x2

3 + 2x2
4.

Using the quadratic bent functions f1 = x2
1 + x2

2 + x2
3 + x2

4, f2 = 2x2
1 + x2

2 + x2
3 + x2

4

together with f0 we obtain the following bent function:

F = 2x2
1x

2
2x

2
6 + x2

1x
2
2 + 2x2

1x2x3x
2
6 + x2

1x2x3 + x2
1x2x4x

2
6 + 2x2

1x2x4

+ 2x2
1x

2
3x

2
6 + x2

1x
2
3 + 2x2

1x3x4x
2
6 + x2

1x3x4 + 2x2
1x

2
4x

2
6 + x2

1x
2
4

+ x2
1x6 + x1x

2
2x4x

2
6 + 2x1x

2
2x4 + x1x2x

2
3x

2
6 + 2x1x2x

2
3 + 2x1x2x3x4x

2
6

+ x1x2x3x4 + x1x3x
2
6 + 2x1x3 + x1x4x

2
6 + 2x1x4 + x2

2x3x4x
2
6 + 2x2

2x3x4

+ 2x2
2x

2
4x

2
6 + x2

2x
2
4 + x2

2 + 2x2x4x
2
6 + x2x4 + 2x2

3x
2
4x

2
6 + x2

3x
2
4

+ 2x2
3x

2
6 + 2x2

3 + 2x3x4x
2
6 + x3x4 + x2

4x
2
6 + x5x6.

Using MAGMA one can confirm that the dual of this function is in fact not bent.

5.6. Self-dual bent functions. In order to satisfy the conditions of Theorem 3
we choose the quadratic functions f0 = x2

1, f1 = f2 = f3 = f4 = 4x2
1, from F5 to F5,

which are self-dual bent functions. With the construction (6) we obtain the bent
function

F (x1, x2, x3) = 3x2
1x

4
3 + x2

1 + x2x3.

According to Lemma 1 we may choose B =

(
2 1
3 1

)
, and we obtain the matrix

A =

 1 0 0
0 2 1
0 3 1


as described in Theorem 3. Applying the coordinate transform defined by this
matrix to the bent function F we then obtain the following self-dual bent function:

F (A

 x1

x2

x3

) = F (x1, 2x2 + x3, 3x2 + x3)

= 3x2
1x

4
2 + 4x2

1x
3
2x3 + 2x2

1x
2
2x

2
3 + x2

1x2x
2
3 + 3x2

1x
4
3 + x2

1 + x2
2 + x2

3.
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Note that the dual of F (A

 x1

x2

x3

) is

F ∗(x1, (B
−1)T

(
x2

x3

)
) = F ∗(x1, 4x2 + 3x3, x2 + 3x3)

and F ∗(x1, x2, x3) = 3x2
1x

4
2 + x2

1 + 4x2x3.
We finish the article with a remark on bent functions and strongly regular graphs.

In [7, 18] it is shown that for weakly regular bent functions f : F2n
p → Fp satisfying

(13) f(tx) = tkf(x) for all t ∈ Fp
for a constant k with gcd(k − 1, p− 1) = 1, the sets

DS = {x ∈ F2n
p : f(x) is a nonzero square in Fp},

DN = {x ∈ F2n
p : f(x) is a nonsquare in Fp},

D0 = {x ∈ F2n
p \ {0} : f(x) = 0},

are partial difference sets of F2n
p . Their Cayley graphs are strongly regular. In [7]

it is pointed out that the sets D0, DN , DS for the non-weakly regular bent function
g1(x) = Tr6(ξ7x98) defined in Section 2, which satisfies (13) for k = 2, are not partial
difference sets. As this counterexample is a non-weakly regular bent function which
is not dual-bent, one may ask the question if the condition of being dual-bent is
already sufficient for obtaining partial difference sets. We looked at the following
non-weakly regular but dual-bent functions obtained as described in Theorem 2,
starting with some quadratic functions. All are in even dimension and satisfy (13)
for k = 2:

F1(x1, x2, x3, y) = x2
1y

2 + x2
1 + x2

2 + x3y ∈ F3[x1, x2, x3, y],

F2(x1, x2x3, y) = 2x2
1 + 2x2

2y
2 + 2x2

2 + x3y ∈ F3[x1, x2, x3, y] and

F1(x1, x2, x3, y) = 3x2
1y

4 + x2
1 + 4x2

2y
4 + 2x2

2 + x3y ∈ F5[x1, x2, x3, y],

F2(x1, x2, x3, y) = 2x2
1y

4 + x2
1 + x2

2 + x3y ∈ F5[x1, x2, x3, y].

With MAGMA we obtained that for all four functions none of the sets D0, DN , DS

are partial difference sets, and conclude that in general the weakly regular condition
is needed to obtain strongly regular graphs.
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[9] K. Garaschuk and P. Lisonĕk, On ternary Kloosterman sums modulo 12, Finite Fields Appl.,

14 (2008), 1083–1090.
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