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Abstract

In many process and manufacturing industries, early detection of faults

has great practical importance. Since it saves time and cost involved in the

repairing of the equipment.

Qualitative methods such as neural networks and fuzzy logic are popular

tools in model based fault detection and classification of nonlinear dynamic

systems. Since it is difficult to accurately model these kind of systems. In

the first part of this work, neural network and adaptive neuro-fuzzy logic

methods are used in the modeling of a water-tank system to produce residu-

als for fault classification. This study shows that neural networks have better

performance but longer training time compared to the adaptive neuro-fuzzy

logic. The second part of this research investigates the classification tree

and Fisher Discriminant Analysis (FDA) approaches in fault classification of

nonlinear dynamic systems. Comparing the performance of these approaches

indicates that FDA method results in longer computational time but lower

tree size for high dimensional training data. The contributions of this thesis

are modeling and fault diagnosis of lead-acid battery system using qualita-

tive techniques in combination with statistical methods such as classification

tree.
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Şarj Edilebilen Kurşun-Asit Bataryalarda Rezidu Oluşturma ve

Hata Diyagnozu

Sena Ergüllü

ME, Master Tezi, 2011

Tez Danışmanı: Doç. Dr. Ahmet Onat

Anahtar Kelimeler: Hata Diyagnozu, Rezidu Üretme, Lineer Olmayan

Dinamik Sistemin Modellenmesi, Yapay Zeka Metodları

Özet

Birçok üretim endüstrisinde hatanın erken tespiti önemli rol oynamak-

tadır. Bu zamandan ve maliyetten kazanç sağlayacaktır.

Yapay Sinir Ağları ve Bulanık Mantık gibi kalitatif metodlar, lineer ol-

mayan dinamik sistemlerin modele dayalı hata tespit ve sınıflandırılmasında

sıkça kullanılan yöntemlerdir. Bunun sebebi, bu sistemlerin doğru mod-

ellenmesi çok zordur. Bu çalışmanın ilk kısmında yapay sinir ağları ve

adaptif sinir ağı-bulanık mantık metodları ile su tankı sistem modellemesi

yapılmıştır. Böylece hata sınıflandırmada kullanılacak artıkların üretilmesi

hedeflenmiştir. Bu çalışmadan görülmüştür ki yapay sinir ağları , adaptif sinir

ağı-bulanık mantıktan daha iyi sonuç vermektedir, ama eğitim süresi uza-

maktadır. Araştırmanın ikinci kısmında lineer olmayan dinamik sistemlerde

hatanın sınıflandırması için sınıflandırma ağacı ve Fisher Diskriminant Anal-

izi (FDA) yöntemleri kullanılmıştır. Bunların performansları karşılaştırıldığında

FDA yöntemiyle büyük boyutlu eğitim verileri için daha uzun sürede ama

daha az yapraklı ağaç oluşturulduğu görülmüştür. Bu tezin katkıları Şarj

Edilebilir Kurşun-Asit Bataryaların modellenmesi ve hata diyagnozu alanında

olmuştur. Bunun için gözlemsel metotlarla istatistik metotlar (sınıflandırma

ağacı gibi) birleştirilmiştir.
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Chapter I

1 Introduction

Fault Diagnosis research deals with real world problems such as plant

efficiency, maintainability and reliability. For safety critical systems, such as

nuclear applications in plants and aircrafts, the detection of fault occurrence

is highly important.

The consequences of the faults could be disastrous in these systems in

terms of human mortality and environmental impact. Also in process and

manufacturing industries, fault detection is crucial in order to improve the

production efficiency, quality of the product and cost of the production.

There are two important approaches for fault diagnosis: hardware redun-

dancy and analytical redundancy. Hardware redundancy uses multiplication

of physical devices and a system to detect the occurrence of a fault and its

location in the system. The main problem is the significant cost of the extra

equipment. Analytical redundancy uses redundant functional relationships

between the variables of the system. The main advantage of this approach

compared to the hardware redundancy is that no extra equipment is neces-

sary. However it requires more processing power.

1.1 Fault Detection and Diagnosis

In the early 1970s fault detection based on analytical methods has begun.

Beard [1] designed an observer-based fault detection scheme and Johns [2]



continued his work. Their contribution is named as Beard-Johns Fault Detec-

tion Filter. Statistical approaches to fault diagnosis were first used in [3]. Lu-

enberger observers were applied for the first time in [4]. Also Mironovsky [5]

proposed a residual generation scheme based on consistency checking on the

system input and output over a time window.

In 1980s and early 1990s major approaches on quantitative fault diagnosis

were developed: observer-based approach, parity relation method, parameter

estimation method etc [6]. It must be noticed that these methods are well-

established theoretically. Therefore they are called classical or quantitative

fault detection methods.

These methods have in common the use of a set of analytical redundancy

relationships that represent the model of the system which follows the de-

sired performance of the monitored system. The system is monitored for

possible digressions that indicate the occurrence of the faults and may assist

in isolating the faulty components.

In the last decade the research focused on fault diagnosis for nonlinear

dynamic systems. Computational intelligence techniques such as neural net-

works, fuzzy systems and genetic algorithms have been successfully applied

to the fault diagnosis.

1.1.1 Basic Terminology

These definitions are taken from International Federation of Automatic

Control (IFAC) terminology.

Fault Diagnosis, Fault Tolerant Control

A fault represents an unexpected change of system function, although

it may not represent a physical failure. Failure indicates a serious breakdown

of a system component or function that leads to a significantly deviated
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behavior of the whole system. The term fault rather indicates a malfunction

that does not affect significantly normal behavior of the system.

An incipient (soft) fault represents a small and slowly increasing fault.

At the beginning effects on the system are unnoticeable. A fault is called

hard (abrupt) fault if its effects on the system are longer and bring the system

very close to the limit of unacceptable behavior.

A fault is called intermittent if its effects on the system are hidden for

discontinuous periods of time [6]. Although a fault is tolerable at the moment

it occurs, it must be diagnosed as early as possible, otherwise it may lead to

serious consequences in time.

A fault diagnosis system is a monitoring system that is used to detect

faults and diagnose their location and significance. The system performs the

following three functions:

Fault Detection: to indicate if a fault occurred or not in the system.

Fault Isolation: to determine the location of the fault

Fault Identification: to estimate the size and nature of the fault.

As another concept, a fault tolerant control system is a controlled system

that continues to operate normally although there are faults in the system or

in the controller. An important aspect of this system is automatic reconfig-

uration, once a malfunction is detected and isolated. Fault diagnosis decides

how to perform the reconfiguration.

1.1.2 Statement of the Problem

Although technological developments have led to increasingly reliable

mechanical, electrical and electronic vehicle systems, these systems still fail.

The main goal of fault diagnosis system in a vehicle is to avoid damage to

the vehicle and prevent dangerous situations for occupants.

3



In this research fault diagnosis of commercial vehicles, which requires di-

agnosis of all faults in the system, is performed. Fault diagnosis in vehicles

is essential for low fuel consumption, high safety, efficient service and main-

tenance.

Objectives of This Research

• Investigate model based fault detection and diagnosis algorithms for

nonlinear dynamic systems such as water-tank system, lead-acid bat-

tery system and mass-spring-damper system.

• Design a reasonable model of these systems and create fault scenarios.

• Validate the developed fault diagnosis algorithms on simulation and

real time environment and compare their performances.

1.2 Fault Diagnosis Based on Analytical Models

Model based fault diagnosis is determination of the faults by comparing

available system measurements with a priori information represented by the

analytical model of the system through generation of residuals and their

analysis. A residual is a fault indicator that reflects the faulty condition

of the monitored system [7] similar to temperature or blood glucose level

measurements of a patient which are used as symptoms to diagnose a disease.

Unfortunately an analytical model of the system is rarely accurate due to

uncertainties, disturbances and noise. This results in differences between the

analytical model output and the system output due to unmodelled dynamics

and other uncertainties.

A fault diagnosis task contains two stages: residual generation and resid-

ual evaluation which are shown in Figure 1.1. Residual generation is a pro-

cedure to extract fault symptoms from the system using available input and

4



output information.

Input OutputPlant

Residuals

Fault Alarm

Residual

Generation

Residual

Evaluation

N

M

Figure 1.1: Two main stages in Fault Diagnosis

Residual generation represents an algorithm which is used to generate

residuals. Residual evaluation represents examining residual signals in order

to decide if a fault has occurred. It also isolates the fault. In most cases they

must themselves be nonlinear dynamic systems. They may be implemented

using statistical methods, e.g. likelihood ratio testing or classification tree [6].
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Chapter II

2 System Modeling

In this section residual generation structure will be given and analytical

conditions for fault detectability and isolability will be discussed. For sim-

plicity it will be assumed that a linear model can reproduce system dynamics.

In the case of nonlinear dynamics, it is assumed that the model is lin-

earized around a few operating points. The transition between different

operating regions is performed using qualitative techniques such as fuzzy

logic [8]. However nonlinear systems will be considered later in the thesis.

The information used for fault diagnosis and isolation is the measured

input to the actuators and the output of the sensors. The measured output

y(t) is also used by feedback control and the controller generates the control

signal u(t) which is shown in Figure 2.1.

Fault time

Fault location

Residual

Generation

Decision

Function

Generator

Fault

Decision

Logic

SensorsSystem

Dynamics
ActuatorsController

f
a

(t)

uR(t)
uc(t)

u(t)

y(t)

fs(t)

yR(t)

Figure 2.1: Fault Diagnosis System Scheme

If u(t) is available Fault Diagnosis System (FDS) uses open loop model



of the system even if it is in a closed control loop. If the signal is not

available, then FDS uses reference command uc(t) as an input. In this case

the controller plays an important role because a robust controller can hide

the effects of faults, therefore making fault diagnosis difficult [9].

2.1 General Structure of Faulty Systems

The state space model of the plant shown in Figure 2.1:

ẋ(t) = Ax(t) + BuR(t)

yR(t) = Cx(t)
(2.1)

where x ∈ Rn is the state vector of the plant, uR ∈ Rr is the input vector to

the actuator and yR ∈ Rm is the output vector of the plant. Under normal

operating conditions,
uR(t) = u(t)

y(t) = yR(t)
(2.2)

A, B, C are known matrices with known dimensions. Faults in the system

could occur due to actuators, system components and sensors. The dynamics

of the system can change as follows:

• actuator fault

uR(t) = u(t) + fa(t) (2.3)

where fa ∈ Rr is the actuator vector fault.

• system dynamics (component) fault

ẋ(t) = Ax(t) + BuR(t) + fc(t) (2.4)

where fc ∈ Rn is the component vector fault.

7



• sensor fault

y(t) = yR(t) + fs(t) (2.5)

where fs ∈ Rm is the sensor vector fault.

If the previous three fault categories are considered simultaneously, the

time domain representation of the system model changes to:

ẋ(t) = Ax(t) + Bu(t) + Bfa(t) + fc(t)

y(t) = Cx(t) + fs(t)
(2.6)

In more general case with all possible faults in the state space model:

ẋ(t) = Ax(t) + Bu(t) + R1f(t)

y(t) = Cx(t) + R2f(t)
(2.7)

where f(t) ∈ Rg is a fault vector, fi(t)(i= 1...g) are specific faults and R1

and R2 are fault entry matrices which represents the effect of faults on the

system.

Input-output transfer matrix in frequency domain for the faulty system

model is:

y(s) = Gu(s)u(s) + Gf (s)f(s) (2.8)

where
Gu(s) = C(sI − A)−1B

Gf (s) = C(sI − A)−1R1 + R2

(2.9)

2.2 General Structure of Residual Generation

Input values of a residual generator are inputs and outputs of the monitored

system as expressed by:

r(s) = Hu(s)u(s) + Hy(s)y(s) (2.10)

8



where Hu(s) and Hy(s) are transfer matrices realizable using stable linear

systems.

The residual (r(t)) must be designed (in ideal case) to be zero for fault

free case and nonzero when a fault occurs which is shown in (2.11).

r(t) = 0 if and only if f(t) = 0 (2.11)

Therefore the matrices Hu(s), Hy(s) and Gu(s) (defined in (2.9)) must

satisfy the following constraint condition:

Hu(s) + Hy(s)Gu(s) = 0 (2.12)

Equation (2.12) is a generalized representation of all residual genera-

tors [7]. For the aim of residual generation design, one must choose two

matrices which satisfy (2.12). Based on the parametrization chosen for Hu(s)

and Hy(s), a different way to generate residuals is obtained.

Assume that J is a function of residual signal r(t). Fault detection is

done by comparing the residual evaluation function J(r(t)) with a threshold

function T (t) using condition in (2.13). If the residual exceeds the threshold,

a fault may be occurred.

J(r(t)) ≤T(t) for f(t) = 0

J(r(t)) > T (t) for f(t) 6= 0
(2.13)

2.3 Fault Detectability and Fault Isolability

For a faulty system the residual vector is defined as:

r(s) = Hy(s)Gf (s)f(s) = Grf (s)f(s)

= [Grf (s)]1f1(s) + [Grf (s)]2f2(s)... + [Grf (s)]ifi(s)
(2.14)

where Hy(s), Gf (s) and f(s) are given in (2.10), (2.9) and (2.8), respectively.

9



The residual-fault relationship is represented by Grf (s) = Hy(s)Gf (s),

where [Grf ]i is the ith column matrix of Grf and fi is the ith component of

f(s).

Fault Detectability Condition:

If the ith column of Grf (s) is nonzero, Grf (s)i 6= 0, the fault fi is de-

tectable in the residual r(s). This is called the fault detectability condition

of the residual r(s) to the fault fi [7].

Fault Isolability Condition:

A fault is isolable using a residual vector set, if it is distinguishable from

other faults using this set. Usually each residual from the considered set is

sensitive to a subset of faults and insensitive to the others [10].

2.4 Quantitative Diagnosis Methods

The main point in model based fault diagnosis is residual generation

method each of which has its specific technique of computing the residual

vector.

Three important methods will be represented in this section. These meth-

ods focus on discrete-time dynamic linear models.

2.4.1 Residual Generation via Parameter Estimation

When the process parameters are not known exactly, they can be de-

termined with parameter estimation methods by measuring the input and

output signals, if the basic structure of the model is known [6] .

It is assumed that the faults are reflected in the physical system parame-

ters and these parameters are estimated online using well-known parameter

estimation methods. The results are then compared with the parameters of

the reference model obtained under fault-free assumptions. Any discrepancy
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would indicate that a fault may have occurred.

For the nth order discrete-time estimated model:

Θ = [a1...an, b1...bn]T (2.15)

is the parameter vector where ai and bi (i=1,..,n) represent the coefficients

in A(z) and B(z) transfer matrices.

Output error of the system (or the loss function) is calculated as:

e(t) = y(t)− ŷ(Θ, t) (2.16)

where

ŷ(Θ, z) =
B̂(z)

Â(z)
u(z) (2.17)

is the model output in which Â(z) and B̂(z) correspond to the estimates of

A(z) and B(z) as depicted in Figure 2.2.

Since e(t) is a nonlinear parameter, direct calculation of Θ is generally

not possible. Numerical optimization methods can be used to minimize the

loss function (2.16) as (2.17).

If a fault in the process changes one or several parameters by ∆Θ the

output changes for small deviations according to

∆y(t) = ψ(t)T ∆Θ(t) + ∆ψ(t)T Θ(t) + ∆ψ(t)T ∆Θ(t) (2.18)

and the parameter estimator indicates a change ∆Θ.

Generally the process parameters Θ depend on physical process coeffi-

cients p(like stiffness,damping factor, resistance...). If L is a function de-

pending on p,

Θ = L(p) (2.19)
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Figure 2.2: Parameter Estimation Method Output

via nonlinear algebraic equations. If the inversion of the relationship ex-

ists [11]:

p = L−1(Θ) (2.20)

where changes (∆p) of the process coefficients, from which the fault alarm is

obtained, can be calculated.

2.4.2 Observer Based Approaches

The main idea of the observer based technique is to estimate the outputs

of the system from the measurements by using either Luenberger observers in

a deterministic setting or Kalman filters in a noisy environment. The output

estimation error is used as residual. The advantage of using observer is the

flexibility in the selection of its gains which leads to a rich variety of FDS

schemes [12].
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In order to obtain the structure of an observer the discrete-time, time-

invariant and linear dynamic model for the plant in a state space form is

considered.

x(t + h) = Ax(t) + Bu(t)

y(t) = Cx(t)
(2.21)

where h is the sampling time interval, u(t) ∈ Rr, x(t) ∈ Rn and y(t) ∈ Rm.

Assuming that all matrices A,B and C are perfectly known, an observer

is used to reconstruct the system variables based on the measured inputs and

outputs u(t) and y(t).

x̂(t + h) = Ax̂(t) + Bu(t) + He(t)

e(t) = y(t)− Cx̂(t)
(2.22)

The observer scheme described by (2.22) is drawn in Figure 2.3. For the

state estimation error ex(t), it follows from the equations (2.22) as:

ex(t) = x(t)− x̂(t)

ex(t + h) = (A−HC)ex(t)
(2.23)

If the observer is stable, the state error ex(t) vanishes asymptotically.

lim
t→∞

ex(t) = 0 (2.24)

This can be achieved by the proper design of the observer feedback matrix

H [7]. Thus, the design of the observer feedback matrix H is important in

residual generation. However if the signals are affected by noise, Kalman

filter must be used instead of classical observers [13].
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Figure 2.3: Process and State Observer

2.4.3 Parity Vector (relation) Methods

Parity relations approach provides a proper check of the parity (consis-

tency) of measurements acquired from the monitored system. In the early

development of fault diagnosis, the parity vector (relation) approach was ap-

plied to static or parallel redundancy schemes [14] which may be obtained

directly from measurements (hardware redundancy) or from analytical rela-

tions (analytical redundancy).

In the first case, two methods can be used to obtain redundant relations

which requires several sensors with similar functions to measure the same

variable. The second approach consists of dissimilar sensors to measure dif-

ferent variables but their outputs being relative to each other.

In case of analytical model based fault detection, the model can be written

in the form of Gm(z) = Â(z)/B̂(z) and to run it in a parallel to the process

described by the transfer function Gp(z) :

Gp(z) =
A(z)

B(z)
(2.25)
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Thereby forming an error vector eP (z):

eP (z) = (
A(z)

B(z)
− Â(z)

B̂(z)
)u(z) (2.26)

The methodology described here is shown in Figure 2.4.

r(t)

y(t)
u(t)

A(z)

B(z)

B(z)

A(z) y(t)
^^

^

Figure 2.4: Output Error Method

Assume that
Gm(z) = Gp(z) i. e.

Â(z)

B̂(z)
= A(z)

B(z)

(2.27)

then the residual becomes

eP (z) =
A(z)

B(z)
fu(z) + fy(z) (2.28)

where fu(z) and fy(z) are additive input and output faults which are shown

in Figure 2.5. Moreover the error vector r(z) computed by (2.28) corresponds

to the output error of the parameter estimation method which is computed

by (2.16).

The residuals generated are called parity equations [10] under the as-

sumptions of fault occurrence and of exact agreement between the process

and the model.
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Figure 2.5: Fault Topology of the Monitored System

Therefore (2.28) can be used to implement and design the residual gener-

ation system in order to meet fault detection and isolation specifications as

well [15] .

2.5 Qualitative Diagnosis Methods

2.5.1 Fuzzy Model Based Residual Generation

During the last forty years, modeling and control of dynamic systems with

fuzzy set techniques have received considerable attention. Many systems are

not suitable to conventional modeling techniques due to lack of precise, formal

knowledge about the system and due to time varying characteristics [16] .

Fuzzy modeling along with neural networks are powerful tools to facilitate

effective development models. One of the reasons for this case is that fuzzy

systems are capable of integrating information from different sources such as

physical laws, measurements and heuristics.

Fuzzy models can be seen as logical models which use "IF-THEN" rules

to establish qualitative relationships among variables in the model. Fuzzy

sets serve as smooth interfaces between the qualitative variables involved in

the numerical data at the inputs and outputs of the model. The rule-based

nature of fuzzy models uses the information expressed in the form of natural

language statements.
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More specifically, Mamdani [17] and Takagi Sugeno (TS) [8] are two suc-

cessful fuzzy system types, since they are able to approximate any continuous

function with a desired level of accuracy [18] .

Mamdani Fuzzy System

Fuzzy information is expressed as fuzzy sets and linguistic variables which

are called membership functions. Also fuzzy rule base is required for the

representation of fuzzy information generally in the form :

Rulel : IF (x1 is Al
1) ...(xn is Al

n) THEN (y is Bl) (2.29)

The membership functions of fuzzy sets Al
i and Bl are denoted as µAl

i
and

µBl , respectively, where

µAl
i

: X → [0, 1], (i = 1, 2, .., n)

µBl : Y → [0, 1], (l = 1, 2, ..., M)
(2.30)

In (2.30); n is the number of inputs of the fuzzy system and M is the

number of IF-THEN rules. In the Mamdani fuzzy model minimum fuzzy

inference system is used. For a given input x∗ = (x∗1, x
∗
2, .., x

∗
n) ∈ X, the

output of the fuzzy inference system µBl(y) is defined as:

µBl(y) = max(1≤l≤M,y∈Y )[min(y∈Y )µAl
1
(x∗1), µAl

2
(x∗2), .., µAl

n
(x∗n), µBl(y)]

(2.31)

where the min operator selects the minimum value among the values of mem-

bership functions in the IF proposition of a given input x∗ and the member-

ship function of the THEN proposition of the output universe Y . For the

final output of the fuzzy system, a defuzzifier is needed which represents the

fuzzy set at the output of the system.

TS Fuzzy System

Generally in nonlinear dynamic processes TS fuzzy models are preferred.
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Unlike Mamdani fuzzy rules, TS rules use piecewise linear functions of the

input variables.

Each rule comprises IF-THEN condition and has the following form:

Rulel : IF (x1is Al
1) ...(xnis Al

n) THEN yl =
n∑

i=1

kl
ixi + cl

i) (2.32)

where l refers to the lth rule, n is the number of inputs, Al
i is the fuzzy set in

the input (antecedent) and yl is a crisp first-order polynomial function in the

output (consequent) [19]. Finally ki and ci represent a factor and a constant

of the polynomial defined in the first order TS model, respectively.

Output of the fuzzy system with M rules is aggregated as:

y =

∑M
l=1 µlyl∑M

l µl

(2.33)

where µl is the degree of activation of the rule l:

µl =
l∏

i=1

µAl
i

(2.34)

where µAl
i
is defined in (2.30).

Generally with the similar system requirements such as number of rules

and membership function TS is more accurate than Mamdani model. Due

to the incompleteness of knowledge, the rules and its predicates need to

be updated to optimize the system. Also the main relations representing

the Mamdani model is not continuous due to the presence of MAX or MIN

operator. Therefore the optimization techniques that use derivatives, e.g.

gradient descent method can not be applied. This makes the Mamdani model

less adaptable to fault diagnosis application [20].

2.5.2 Neural Network Model Based Residual Generation

The potential of neural networks for fault detection and isolation has

been better understood recently. Artificial neural network based approach is
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especially suitable for processes for which accurate mathematical models are

too difficult or too expensive to obtain.

Neural networks try to mimic the computational structures of the mam-

mal brains by nonlinear mapping between the input and output that consists

of interconnected nodes arranged in layers. The layers are connected such

that the signal on the input side can propagate through the network and

reach output side. Neural network behaviors are determined by the transfer

functions of the units, network topology and connection pattern of layers.

Among all the forms of Neural Networks, the two layer feed-forward neural

network has been the most popular. This class of networks consists of two

layers of nodes, namely the hidden layer and the output layer. Also there

exist two layers of weights serving as connection between the input and the

hidden layer, as well as between the hidden layer and the output layer. No

connection is allowed with its own layer and the information flows in one

direction. Sigmoid functions are usually selected as the transfer function for

hidden layer nodes and linear functions for the nodes of the output layer.

Equations of the transfer functions are:

f1(x) = x (2.35)

f2(x) =
1

1 + e−x
(2.36)

f3(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(2.37)

where the functions are pure linear, log-sigmoid and tan-sigmoid functions

respectively.

This class of neural networks can approximate any functional continu-

ous mapping from one finite dimensional space to the other arbitrarily well,

provided that the number of hidden neurons is sufficiently large. Therefore

this class of neural networks and two layers of weights can approximate any
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decision boundary to within arbitrary accuracy. This is the reason why two

layer functions are applied to process modeling and fault diagnosis by pattern

recognition.

During the training time, neural network uses the error in the output

values to update the weights connecting layers, until the accuracy is within

the tolerance level. The training time for the feed forward neural network

using one of the variations of backpropagation is important. For large scale

applications, memory and computation time required for training a neural

network can exceed the hardware limits. Therefore the performance of neural

networks is determined by the available data. It is possible that neural

networks will generate unpredictable outputs when presented with an input

out of the range of training data. So retraining of neural network may be

required.

Neural networks can be applied to fault detection and diagnosis as a

process model or a pattern classifier. For this purpose neural networks can

be summarized in three categories which is shown in Figure 2.6.

In the first one, neural network is used to differentiate various faulty out-

put patterns from normal operating conditions. According to the different

measured process output data. Training of the neural network can be per-

formed offline or online. In the second figure, neural networks are used as

classifiers to isolate faults represented by process model-generated residuals.

The process model is the mathematical model of the process based on fault

diagnosis structure which uses the mechanism provided by the model. When

the mathematical models are not available, a neural network process model

can be employed to generate residuals; another network is then used to isolate

faults.
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Figure 2.6: Neural Network Applications in Fault Diagnosis

2.5.3 Neuro-Fuzzy Model Based Residual Generation

The main drawback of neural networks as stated in the previous section

is their "black box" nature, while the disadvantage of fuzzy systems is repre-

sented by difficult and time consuming process of knowledge acquisition. The

advantage of neural network over fuzzy systems is learning and adaptation

capabilities, while the advantage of fuzzy system is the human understand-

able form of knowledge representation. Neural networks use an implicit way

of knowledge representation while neuro-fuzzy systems represent knowledge

in an explicit form, such as rules.

The combination of neural networks and fuzzy systems can be done in

two ways:
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Neural networks implemented using fuzzy logic

These hybrid systems are mainly neural networks equipped with abil-

ities of processing fuzzy information. These systems are usually termed as

Fuzzy Neural Networks and they are networks where the inputs, outputs and

weights are fuzzy sets, and they consist of a special type of neurons called

fuzzy neurons.

Fuzzy logic implemented using neural networks

These systems can be viewed as fuzzy systems augmented with neural net-

work facilities, such as learning, adaptation and parallelism. These systems

are usually called Neuro-Fuzzy Systems. Neuro-Fuzzy Systems can be always

interpreted as a set of fuzzy rules and can be represented as a feed-forward

network architecture [21].

In addition to these two approaches, there is another way of hybridization

of neural networks and fuzzy systems, where each method maintains its own

identity and the hybrid neuro-fuzzy system consists of modules cooperating

in solving the problem. These kind of neuro-fuzzy systems are combinations

of hybrid systems. Detailed explanations and related equations are given in

section 3.2.2.

In some approaches a neural network (such as self organizing map) can

preprocess the input data for fuzzy system. However in fault diagnosis ap-

plications, fuzzy system is used as a pre-processor for a neural network.

A Neuro-fuzzy (NF) system is a neural network which is topologically

equivalent to the structure of a fuzzy system. Network inputs/outputs and

weights are real numbers but the network operations are specific to fuzzy

systems: fuzzification, fuzzy operations (conjunction , disjunction), defuzzi-

fication. Therefore NF systems can be used to identify fuzzy models directly

from input-output relationships, but they can be used to optimize an initial
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fuzzy model acquired from human expert, using additional data.

2.6 Conclusion

In this section the importance of fault diagnosis for industrial systems is

explained, a literature overview is done and basic terminology about fault

detection is given.

The ways of designing residuals are discussed. The most commonly used

residual generation techniques are introduced and applicability of analytical

model based fault diagnosis are discussed.

Other Fault Diagnosis methods such as fuzzy logic, neural networks and

qualitative modeling have been discussed. In the next chapter this method

will be implemented on a water-tank system and the residual will be obtained

using the analytical model. Then the residual will be classified using the same

methodology and faults will be identified clearly.
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Chapter III

3 Fault Diagnosis Based on Qualitative Meth-

ods

3.1 Introduction

The main objective of fault diagnosis is early warning for the operators

to take appropriate measures and prevent the system from breaking down

after the occurrence of faults. This will improve the reliability and safety of

the system [22]. Since the systems are becoming more complex, automated

fault monitoring schemes are developed in case of human operators.

For fault diagnosis of nonlinear plants, computer intelligence based meth-

ods such as neural networks, fuzzy logic and genetic algorithms are often

used [23] [24]. Among these techniques, neural networks are important for

their ability to approximate nonlinear functions and their online learning

ability. Also they can be used as a model to generate residuals for classifying

and isolating the faults [25]. However their disadvantage is the difficulty in

isolating the faults due to their black box nature. Another approach is fuzzy

reasoning which allows symbolic generalization of numerical data by fuzzy

rules and expert knowledge integrated into the fault diagnosis procedures

to achieve better diagnosis [26]. On the other hand adaptive neuro-fuzzy

systems have the ability of neural networks which can approximate nonlin-

ear functions with arbitrary accuracy and they are able to incorporate fuzzy



rules which allows expert knowledge in linguistic form to be included.

In this section, a brief overview is given about Adaptive Neuro Fuzzy Sys-

tem (ANFIS) structure and neural network structure. The proposed scheme

is to be illustrated by a simulation example of a water-tank system. Per-

formances of these two approaches are compared. Finally a conclusion is

drawn.

3.2 ANFIS Structure

A Fuzzy Logic System (FLS) is a nonlinear mapping from an input space

to an output space. The mapping is based on the conversion of the inputs

from crisp numerical domain to fuzzy domain using fuzzy sets and fuzzifiers,

and then applying fuzzy rules and fuzzy inference engine to perform the nec-

essary operations in the fuzzy domain. In the end, the result is converted

back to the crisp numerical domain using defuzzifiers. Hence, a FLS con-

tains five main components: fuzzy sets, fuzzifiers, fuzzy rules, an inference

engine and defuzzifiers [27]. Adaptive neuro-fuzzy networks are enhanced

FLSs with learning, generalization and adaptation capabilities. These net-

works encode the fuzzy if-then rules into a neural network-like structure and

then use appropriate learning algorithms to minimize the output error based

on training/validation datasets.

ANFIS is a Fuzzy-Sugeno model of integration where the final fuzzy infer-

ence system is optimized via neural network training [8]. It maps the inputs

through the input membership functions and parameters, then through the

output membership to the outputs. It will be explained next.

For simplicity a first order Sugeno model is considered to represent the

25



fuzzy inference system which is expressed with four rules as follows:

Rule 1 : If x is A1 and y is B1 then f1 = p1x + q1y + r1

Rule 2 : If x is A2 and y is B2 then f2 = p2x + q2y + r2

Rule 3 : If x is A1 and y is B2 then f3 = p3x + q3y + r3

Rule 4 : If x is A2 and y is B1 then f4 = p4x + q4y + r4

(3.1)

where x and y are the inputs, Ai and Bi are the fuzzy sets and fi (i=1,2,3,4)

are the membership functions (fuzzy region specified by the fuzzy rules) and

pi,qi and ri are the design parameters. "If x is A1 and y is B1" part is called

the premise part of a rule, and "then f1 = p1x + q1y + r1" is called the

consequent part of a rule. Using fi (i=1,2,3,4) the output function for this

model is expressed as,

f = w1f1+w2f2+w3f3+w4f4

w1+w2+w3+w4

= w̄1f1 + w̄2f2 + w̄3f3 + w̄4f4

(3.2)

where wi (i=1,2,3,4) is explained in (3.6). ANFIS architecture for these four

rules is illustrated in Figure 3.1.

Figure 3.1: ANFIS Model of Sugeno’s fuzzy inference method

This structure has five layers and the node functions in each of these

layers are explained below:

Layer 1: Membership Value of Input
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The fuzzification process is taken here where the membership functions

transform the input x to the output O1
i . The output of every node i in the

first layer is defined with a node function O1
i where the superscript denotes

the layer number:

O1
i = µAi

(x), (for i=1,2) (3.3)

O1
i = µBi−2

(x), (for i=3,4) (3.4)

where x is the input to node i, µAi
(x) is the membership function defining

linguistic label (small, large, etc.) Ai (or Bi). Generally the µAi
(x) is chosen

as bell-shaped, which is between 0 and 1, with the following formula:

µAi
(x) =

1

1 +
∣∣∣x−ci

ai

∣∣∣
2bi

(3.5)

where ai, bi, ci are referred to the premise parameter set of this layer. Other

continuous and piecewise differentiable functions such as trapezoidal or triangular-

shaped membership functions can also represent the node functions in this

layer.

Layer 2: Firing Strength of Rule

Each node output represents a firing strength of a rule. The T-norm

(product, fuzzy-AND..) operators perform the node function in this layer.

These nodes multiply the incoming signals and send the product out. For

instance,

O2
i = wi = µAi

(x)× µBi
(y), (i = 1,2) (3.6)

where x is the T-norm implemented as product.

Layer 3: Normalized Firing Strengths

The normalization process is performed in this layer. The ith node cal-

culates the ratio of the ith rule’s firing strength to the sum of all rules’ firing

strengths:

O3
i = w̄i =

wi

w1 + w2 + w3 + w4

, (i = 1,2,3,4) (3.7)
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Layer 4: Consequent Parameters

Every node in this layer is shown with a node function:

O4
i = w̄ifi = w̄i(pix + qiy + ri) (3.8)

where w̄i is the node output of layer 3 and pi, qi, ri is the parameter set which

is called as consequent parameters. The output of this layer forms Takagi-

Sugeno outputs.

Layer 5: Overall Output

The single node in this layer sums all the incoming signals and computes

the overall output. Output is linear in terms of the consequent parameters

as seen in the last equation of (3.9):

O5
1 =

∑
i

w̄ifi =

∑
i wifi∑
i wi

=
w1

w1 + w2 + w3 + w4

f1 +
w2

w1 + w2 + w3 + w4

f2 + ...

= w̄1(p1x + q1y + r1) + w̄2(p2x + q2y + r2) + ...

= (w̄1x)p1 + (w̄1y)q1 + (w̄1)r1 + (w̄2x)p2 + (w̄2y)q2 + (w̄2)r2 + ...

(3.9)

Input space partitioning of the two-input ANFIS structure is shown in

Figure 3.2. Grey area shows the undetermined region whereas dark area is

the membership function combinations for these inputs. Two membership

functions are associated with each input. The premise part of a rule (defined

in 3.1) linearizes the fuzzy subspace and the consequent part (defined in 3.1)

specifies the output within this fuzzy subspace. Therefore ANFIS uses two

set of parameters which are called as S1 and S2 where S1 is the set of premise

parameters (ai,bi,ci for i=1,2,3,4 )and S2 is the set of consequent parameters

(pi,qi,ri for i=1,2,3,4 ).
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Figure 3.2: Input space partitioning of ANFIS structure

ANFIS learning algorithm is a two-pass hybrid learning algorithm con-

sisting of forward pass and backward pass. In the forward pass, functional

signals go forward up to the layer 4 and S2 parameters are computed using

least squared error (LSE) algorithm on layer 4. In the backward pass, the

error rates are propagated backward and S1 parameters are computed using

a gradient descent algorithm (usually backpropagation) to be explained next.

In Table 1 the signals and parameters for each pass is represented.

Table 1: Two passes in hybrid learning algorithm for ANFIS

Forward Pass Backward Pass

Premise Parameters fixed gradient descent

Consequent Parameters least-squares fixed

Signals Node Outputs Error Signals
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3.2.1 ANFIS LSE Algorithm

In the forward pass of hybrid learning algorithm, consequent parameters

are identified by least squares estimate. Assume that S is the total parameter

set which is the combination of S1 and S2 sets.

S = S1 ∪ S2 and S1 ∩ S2 = φ (3.10)

Then the output becomes:

Output = F (Ī , S) (3.11)

where Ī is the input vector and

H(Output) = HoF (Ī , S) (3.12)

where H is a function of output and H o F is linear in terms of S2.

For the given values of S1, using P training data 3.12 can be transformed

into the equation:

B = AX (3.13)

where X is the unknown vector containing the elements of S2.

Generally no exact solution is found for this equation. Therefore LSE

minimizes the error ‖AX −B‖2 by approximating X with X∗ (least squares

estimate of X). The estimate of X, X∗ can be defined as:

X∗ = (AT A)−1AT B (3.14)

where AT is the transpose of A, and (AT A)−1AT is the pseudo-inverse of A

if AT A is nonsingular.

It is difficult to compute the LSE of X∗ because P is large. Therefore X

is often solved iteratively using the formulas [28]:

Si+1 = Si − Sia(i + 1)a(i + 1)T Si

1 + a(i + 1)T Sia(i + 1)
, (3.15)
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Xi+1 = Xi + S(i + 1)a(i + 1)(b(i + 1)T − a(i + 1)T Xi) (3.16)

for i = 0, 1, ..., P − 1 where X0 = 0, S0 = γI (γ is a large number and I is

identity matrix), aT
i is the ith row of matrix A, bT

i is ith element of vector B,

X∗ is XP (Xi+1 value for i = P − 1).

3.2.2 ANFIS Backpropagation Algorithm

For a training data set with P entries, the error measure or energy function

can be defined as:

Ep =

N(L)∑
m=1

(Tm,p −OL
m,p)

2 (3.17)

where (1 ≤ p ≤ P ); N(L) is the number of nodes in layer L; Tm,p is the

mth component of pth target output vector and OL
m,p is the mth component

of actual output vector. The overall error measure is:

E =
P∑

p=1

Ep (3.18)

Next, the error rate is calculated for the gradient descent in E over the pa-

rameter space. The error rate for the output node at (L, i) can be calculated

as:
∂Ep

∂OL
i,p

= −2(Ti,p −OL
i,p) (3.19)

For the internal node at (k, i) the error rate is defined by the chain rule:

∂Ep

∂Ok
i,p

=

N(k+1)∑
m=1

∂Ep

∂Ok+1
m,p

∂Ok+1
m,p

∂Ok
i,p

(3.20)

where (1 ≤ k ≤ L− 1).

Generalization of this equation for the α parameter is:

∂Ep

∂α
=

∑
O∗∈S

∂Ep

∂O∗
∂O∗

∂α
, (3.21)
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where S is the set of nodes whose outputs depend on α. The derivative of

the overall measure E with respect to α is:

∂Ep

∂α
=

P∑
p=1

∂Ep

∂α
(3.22)

For the generic parameter α the updated formula is:

∆α = −η
∂E

∂α
(3.23)

where η = k√∑
α(

∂E
∂α

)2
is the learning rate, k is the step size and ∂E

∂α
is the

ordered derivative.

Two-pass training is much faster than the gradient descent algorithm since

it decomposes the parameter set as S1 and S2. It is possible if the member-

ship function of each rule is replaced by a piecewise linear approximation with

two consequent parameters. As seen in Figure 3.3, the consequent parame-

ters constitute set S2 and the hybrid learning rule can be applied directly.
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Figure 3.3: Piecewise Linear Approximation of ANFIS Output
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3.3 Neural Network Structure

Feed-forward neural network is a nonlinear mapping between input and

output that consists of interconnected nodes arranged in layers. The layers

are connected such that signal on the input side propagates through the

network and reaches the output side without feedback loops.

Consider a multilayer feed-forward neural network with one hidden layer

shown in Figure 3.4. The input signals to the ni input layer nodes are

denoted by x1,x2...,xni
; the output signals of the nO output layer nodes are

denoted by y1,y2...,ynO
; and the output signals of the nh hidden layer nodes

are denoted by h1,h2...,hnh
. The nonshaded nodes are bias nodes with inputs

set equal to unity. Connection between nodes of different layers of network

are weights and biases which correspond to the dotted line connections in

Figure 3.4. No connection is allowed back to its own layer and the information

flow is only one directional.

Figure 3.4: A two layer feed-forward neural network

Consider an initial forward feed of the neural network structure. For a

specific input pattern (set of input values) output of jth hidden layer is given
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by,

hj = f(

ni∑
i=1

w′
jixi + b′j) (3.24)

where f is the activation function, w′
ji is the strength of connection from the

ith input to the jth hidden layer node and b′j is the bias value for the jth

hidden layer node.

The output of the kth output node is given by,

yk = f(

nh∑
j=1

wkjhj + bk) (3.25)

where bk is the bias for the kth output node and wkj is the strength of the

connection from the jth hidden layer node to the kth output node.

Backpropagation, one of the popular training algorithms, uses gradient

descent algorithm to update the weights and therefore the activation func-

tions must be differentiable. Some of the activation functions for the neural

networks are given in section 2.5.2. The result of the feed-forward process is

the output pattern y1, y2, ...ynO
.

In the training stage, the neural network uses input/output training sets

to learn the functional mapping of the inputs to the outputs. Output training

data is referred to the target output of the neural network. The goal is to

train the network until the output of the neural network is close to the target

output [29].

Training process goes until the output pattern is suitably close to the tar-

get pattern which is achieved by minimizing the sum-of-squares error (SSE)

with respect to weight vector w, given of the form;

E(w) =
1

2

N∑
n=1

c∑

k=1

(yk(x
n; w)− tnk)2 (3.26)

where
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N= the number of training patterns

c= the number of outputs

xn=input vector

tnk=target value for output node k when the input vector is xn

Neural Network is trained by updating the weights using a backpropa-

gation learning rule. Change in weight (w′
ji) is in the mth iteration is given

by:

w
(m)
ji = w

(m−1)
ji + ∆w

(m)
ji (3.27)

where

w
(m)
ji : the weight between the jth node of the output layer and the ith

node of the hidden layer in the mth training iteration.

w
(m−1)
ji : the weight between the jth node of the output layer and the ith

node of the hidden layer in the (m− 1)th training iteration.

∆w
(m)
ji : the weight adjustment

Weight adjustment is given by

∆w
(m)
ji = ηδ

(m)
j o

(m)
i + α∆w

(m−1)
ji (3.28)

η: learning rate,

δ
(m)
j : error signal of the jth node in the mth training iteration

o
(m)
i : output value of the ith node of the hidden layer in the mth iteration

α: momentum term, 0 < α < 1

If j is an output layer node, δ
(m)
j is:

δ
(m)
j = (t

(m)
j − y

(m)
j )g̃

′
(
∑

i

w
(m)
ji o

(m)
i + w

(m)
jo ) (3.29)

where t
(m)
j : target value for output layer node j

y
(m)
j : network output value of node j

g̃
′ : derivative of output layer transfer function
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w
(m)
jo : weight between the oth node of the hidden layer and the jth node

of the output layer in the mth training iteration.

If j is a hidden layer node,then we have:

δ
(m)
j = g′(

∑
i

w
(m)
ji o

(m)
i + w

(m)
jo )

∑

k

δ
(m)
k w

(m)
kj (3.30)

where g′ is the derivative of the hidden layer transfer function.

Using error backpropagation algorithm error for each node is calculated

and the weights of all nodes are recursively updated starting from the output

layer to the hidden layer.

Usually, the nodes in the hidden layer and in the output layer employ the

same transfer function, for instance log-sigmoid function for the hidden layer

nodes and linear function for the output layer nodes.

3.4 Case Study: Water-Tank System

3.4.1 Purpose and Method of the Study

Generally, in closed-loop controlled systems, it is difficult or not possible

to observe fault effect on the system, since the controller tolerates the faulty

situation and attempts to bring the system to the desired operating point.

The main purpose of this study is to detect and identify the predefined

faulty situations in the system. For this purpose the tank system is modeled

using the qualitative techniques. Then the residuals obtained from the nor-

mal mode and the faulty modes are classified using neural network classifiers.

3.4.2 Process Description

The process under investigation is a water-tank system obtained from

MATLAB/SIMULINK environment. The aim of this process is to model the
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water-tank system and simulate it in closed-loop such that water level is at

the desired position indicated by a reference. For this reason a PID controlled

valve is used which allows the entrance of water into the tank (Figure 3.7).

Also there is another valve at the bottom of the tank to deplete the water in

the tank.

Consider an open water tank with cross-sectional area A (see Figure 3.5).

Water is pumped into the tank through the valve at the top, at rate of flow

of qin cubic meters per second. Water is flowing out of the tank through a

hole in the bottom of the tank of area a. The rate of flow of water through

the hole is according to the Bernoulli equation given by,

qout = a
√

2gh (3.31)

where h is level of tank and g is the acceleration of gravity. Conservation of

mass yields,

A
dh

dt
= qin − qout = qin − a

√
2gh (3.32)

This relation shows the nonlinear behavior with dynamic characteristics

of the system depending on the operating point. It depends on the direction

of the valve position changes (opening or closing). Valve is driven by the

PID controller which controls the difference between the reference flow rate

and the actual flow rate. The system has two outputs which are water level

and instantaneous flow rate. The system is shown in Figure 3.6. Also the

dimensions of the tank are given in Table 2. Initial water level in the tank is

0.5 meter and the reference point is changed randomly with a sample time

of 50 seconds.

The problem is to detect and diagnose the faults in closed-loop operation

of the system. The investigated cases are :

37



qin

qout

H

h

Figure 3.5: Water-Tank System Parameters
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Figure 3.6: Water-Tank System Simulation

Table 2: Water-Tank Parameters

Height 2 m

Bottom Area 1 m2

Outpipe Cross Section 0.01 m2

Initial Level Height 0.5 m
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F0: Normal operating condition

F1: Restriction at the output valve of the tank

F2: Leakage on the wall of the tank at a specific height from the bottom.

The faults affect the system in different ways. Generally the remarkable

difference between the outputs of normal operating condition and neural

network model which are called residuals indicate the fault alarm in the

system.

3.4.3 Neural Network Process Model

As it is said in the previous section, residuals are necessary for the fault

diagnosis process. Therefore, it is important to determine the current value

of water level for normal operating conditions. A neural network can be used

for this purpose. Analytically modeling is not preferred since the aim of this

thesis is modeling of the automotive systems. Although these kind of systems

are not complicated, their structure is commercially reserved.

The simulink model of the tank and controller is shown in Figure 3.7.

Random

Number Saturation

error

Controller

Tank Max 

  In!ow
Tank

water level

!ow rate

over!ow

Water 

Tank

1

2

3

Valve
PID

0.5

Figure 3.7: Water-Tank System in Closed-Loop

Modeling is done by using the Neural Network Toolbox of MATLAB.

Since the actual system has two outputs, model of the actual system will

also have two outputs which are water level and water flow rate from the
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output valve. Therefore two neural network models are designed for this sys-

tem both of which are three-input, one-output including three layers: input

layer, hidden layer and output layer. In the input layer three neurons and

in the output layer one neuron is used. In the hidden layer 25 neurons are

used for both of the systems. Knowledge of the actual system, extensive

training of different combinations of input variables and network topologies

are utilized to identify the input to the neural network. The inputs represent

a trade off between performance of the neural network under normal and

faulty conditions. Input and output variables for training are;

Inputs = u(i), y(i− 1), dy
dt
|(i−1);

Output=y(i);

where i is the current discrete time value, (i-1) refers to the previous

value; u is instantaneous entering water flow rate, y(i-1) and dy/dt|i−1 are

one sample time delayed water level and output flow rate of the water. The

sampling interval is taken as 0.1 second.

One of the neural networks will model the water level whereas the second

one will model the flow rate of the water. The scheme of the neural network

model is given in Figure 3.8.
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Figure 3.8: Neural Network Model of the Water-Tank System
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The neural network is trained in a batch mode (offline) using experimen-

tal data obtained as the system operates in normal mode. The system is

simulated for 800 seconds. Therefore, the training data set with 8000 in-

put/output data is used until the average error for each training pattern is

approximately 10−4.

A tan-sigmoid activation function (2.37) is used for the hidden layer and

a pure linear activation function (2.36) is used for the output layer. Matlab

Neural Network Toolbox is utilized in the training process. The actual output

vs neural network output of the system are plotted as a function of time in

Figure 3.9 and Figure 3.10 .

w
a

te
r 

le
v

e
l

time

actual output

NN output

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.9: Neural Network Model Water Level vs Actual Water Level

3.4.4 Residual Generation Techniques

As it is mentioned, neural network model for the residual generation can

be used for fault diagnosis purposes. Residuals are based on the comparison

of features from the process with the nominal ones realized from the model.

41



time
0 50 100 150 200 250 300 350 400 450 500

w
a

te
r 

!
o

w
 r

a
te

0

0.05

0.1

0.15

-0.1

-0.15

-0.2

-0.05

actual output

NN output

Figure 3.10: Neural Network Model Flow Rate vs Actual Flow Rate

Model

Plant

Model

MCL

PCL

Controller

Controller

y1
^

y2
^

y

u

u
^

W

Figure 3.11: Residual Generation Using Model of the System

Simulation is performed with model in closed loop (MCL) control which

runs in paralel to the process in closed-loop (PCL) using the same reference

signal (Figure 3.11). For this case, two types of residuals are generated:

1. Output Based Residual

These types of residuals can be derived in both closed-loop and open-loop

operation, and they do not require process excitation. It is the output error
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between the process and the model within a time window of appropriate

length l :

Sr =
1

l

l∑
i=1

|ŷ1(k − i)− y(k − i)| (3.33)

For processes with multiple outputs, the residuals are decoupled from out-

puts [22].

2. Signal Based Residual

The performance of the controller in constant operation regions and dur-

ing the set point changes affects the system behavior. Therefore the symp-

toms can be derived by defining different performance indices (CPI). In this

case the difference between the control reference signal W (k) and the con-

trolled variable y(k):

SCPI = ICPI − ÎCPI (3.34)

=
1

l

l∑
i=1

(W (k − i)− y(k − i))2 − 1

l

l∑
i=1

(W (k − i)− ŷ2(k − i))2 (3.35)

In the constant operating regions SCPI is also affected from noise and dis-

turbances. Therefore, for comparable residuals these effects must be similar.

The next step of fault diagnosis is defining the fault-residual relationships.

This can be solved by prior knowledge or from experiments.

3.4.5 Relationship Between Residuals and Faults

In the system fuzzy logic and neural network methods are used to relate

the faults to the residuals.

Application of Adaptive Neuro-Fuzzy Logic as Residual Evaluators

For the purpose of relating the residuals with faults fuzzy logic method is

used. In this method, the membership functions for the residual are built and

for every faulty condition a chain of rules is chosen. By the way a database
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relating the residuals to the faults is created. The conditions are normal

condition, restriction at the output valve of the tank (fault 1) and a leak on

the wall of the tank (fault 2) conditions.

For building the membership functions, residual data is classified as one

dimensional. When there is a coincidence condition a new cluster is added.

In this case, a data cluster which is changing from fault to fault is composed.

The membership functions for the residual are shown in Figure 3.12. The

values of the membership functions change between 0 and 1. Figure 3.12a cor-

responds to the membership function of the residual 1 (SR) and Figure 3.12b

corresponds to the membership function of the residual 2 (SCPI). Those

membership functions are defined with linguistic labels (small, big, normal)

for the regions of residual data.
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Figure 3.12: Membership Functions for residuals

In the selection of rules it is important to minimize the training dataset.

When a rule is found to separate the fault from the training dataset, the data

which is in relation with this fault is eliminated. This process is continued

until a fuzzy logic rule is defined for every fault [30]. The rules obtained are

defined in (3.36). These rules are tested in the simulation and verified.
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1. IF (residual 1 "small" residual 2 "large") THEN no fault

2. IF (residual 1 "large" residual 2 "normal") THEN fault 1

3. IF (residual 1 "normal" residual 2 "small") THEN fault 2

(3.36)

Table 3: Fuzzy Logic Training Set

FAULT RESIDUAL 1 RESIDUAL 2

0 Small Large

1 Large Normal

2 Normal Small

From these rules a fuzzy logic table is generated for fault classification

purposes which is shown in Table 3. Based on this table, a Multiple Input-

Single Output (MISO) system having two inputs and one output is generated.

Each input variable is represented by two membership functions which make

four rules. The membership functions for this Takagi-Sugeno fuzzy model

are chosen as triangular functions. The inputs are output based residual

and signal based residual, and the output of the fuzzy block is assumed 0

for no fault condition and 0.5 for fault 1 condition, 1 for fault 2 condition

(Figure 3.13). As seen in this figure, the outputs represent the fault with

good accuracy. However, the coincidence of residuals gives wrong results

similar to fault 2 condition in which some of the residual indicate no fault

condition.

Application of Neural Networks as Residual Evaluators

It is also possible to apply neural networks for evaluating the residuals.

In order to define the fault condition, the system is exercised under healthy

condition and two faulty conditions which are mentioned in the previous
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Figure 3.13: ANFIS Output for Fault Classification

section. To utilize the network in fault diagnosis process, the neural network

is trained using these three conditions. The inputs of the neural network

are signal-based and output based residuals and the output of the network

constitutes a pattern that represents the normal mode or one of the two fault

modes of operation. Therefore three input data set, which are available from

the normal condition and fault conditions of the system, are used to train the

network whose outputs are zero or one, mapped from the three cases shown

in Figure 3.15. Since the output of the neural network is between zero and

one, the rounding block of MATLAB library is used (Figure 3.14).

The neural network architecture is composed of 2 input nodes, 5 hidden

layer nodes and 3 output layer nodes. A tan-sigmoid activation function is

used for hidden layer and purelin activation function is used for the output

layer. The network was trained until number of epochs reaches 5000.

The method described shows how neural networks can be used for fault

diagnosis purposes. Model based approach compares the neural network
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Figure 3.15: Neural Network Output in Fault Classification

model of normal plant operation to actual system operation to determine

residuals under faulty conditions. Then the residuals are classified using

ANFIS or neural networks.

3.5 Results

In the model based fault diagnosis of nonlinear dynamic systems, residuals

are necessary which compares the actual system with the analytical model.

Since it is difficult to mathematically model the water-tank system, neural

network modeling technique, which mimics the actual system, is used.

Actual system has two outputs which are water level and flow rate of

water. Therefore two neural network models with three layers and 25 nodes
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are generated which work in coordination.

In the training stage, gradient descent backpropagation algorithm is uti-

lized to update the weights in each layer. Chosen activation functions are

tan-sigmoid and pure linear functions for the hidden layer and the output

layer, respectively.

In residual evaluation stage of the nonlinear system, neural network and

fuzzy logic are used. Misclassification rates and computational times of both

approaches are given in Table 4.

Table 4: Comparison of NN with FL

NN FL

Elapsed Time(s) 1029.51 69.97

Misclassification Rate for F1 1.637e-3 4.8e-2

Misclassification Rate for F2 1.273e-4 2.375e-4

Comparing the performances of the neural network and fuzzy logic in

residual evaluation process, it is observed that the neural network gives better

results. However the computation time of the neural network takes longer

than the fuzzy logic.

3.6 Conclusions

In this section some system identification and fault diagnosis methods

have been introduced and a fault diagnosis approach for the nonlinear systems

is applied to the water-tank system. The aim of this study is to illustrate

the fault diagnosis methods on the simulation of the system. Therefore two

different fault scenarios are generated. One of them is opening a hole on

the surface of the wall and the other is the restriction at the output valve.
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Initially the system is exercised under normal conditions to generate a neural

network model of the actual plant which run in parallel. The training data

set of this network is the input and output data of the actual system.

Based on the nominal process model, two different residuals are generated

in closed-loop operation. Based on the difference between the model and the

system outputs, two types of residuals are defined which are the output

based and signal based residuals. Based on these residuals a neural network

model and fuzzy logic model are generated for the residual evaluation process.

Their performances and misclassification rates are compared. The faults are

detected and identified correctly.
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Chapter IV

4 Fault Diagnosis Based on Classification Tree

and Fisher Discriminant Analysis

4.1 Introduction

Classification trees (decision trees) were first introduced by social sci-

entists in the early 1960s [31]. In the 1980s Breiman et al [32] proposed

classification and regression tree methodology for the analysis of large data

sets with binary recursive partitioning procedure. Classification tree analysis

is a clear and fast computing method that makes no assumption about the

distribution of the predictor variables.

In this section process fault diagnosis scheme will be applied to recharge-

able lead acid batteries based on classification trees. The purpose of utilizing

the classification tree is reducing the amount of data to achieve good learn-

ing, classification accuracy, compact and easily understood knowledge-base,

and a reduction in computational time [33].

This new approach is an integrated method which combines the classifi-

cation and regression trees (CART) with neural networks for fault diagnosis

of lead acid batteries. The proposed approach has three main steps. First

the neural network modeling of the real-time system is performed. Then

residuals are obtained from the difference between the system and the model

output. Finally the classification tree is performed on the generated resid-



uals to diagnose the faults of lead-acid batteries which is also integrated

with Fisher Discriminant Analysis (FDA). Generally, classification tree with

FDA has longer training time and higher tree size compared to the normal

classification tree but it has lower error rate.

Evaluation is done experimentally. Actual data of a healthy lead acid

battery is acquired. Then faults are introduced into the battery and new

data is recorded. The analysis is performed on the gathered data.

In the next subsection the classification tree principles are reviewed and

the new analysis procedure is applied to residuals. Rechargeable Lead Acid

Batteries are presented as a first case study and performances of classification

trees with and without FDA are compared. The same procedure is applied on

mass-spring-damper systems as a second case study. Conclusions are given

in the final section.

4.2 Classification Tree Principles

Classification tree is a form of binary partitioning algorithm [32] which

is similar to those used in decision tree induction such as ID3 and C4.5 [34].

However, classification tree splits the training samples into smaller and smaller

subsets recursively. The trees produced by CART consist of internal nodes

(each of them with two children) and terminal nodes or leaf nodes (without

children). Each internal node uses a decision function to indicate which node

to visit next, whilst each terminal node shows the output of a given input

vector which leads the visit to this node [35]. The decision tree shown in

Figure 4.1 shows the classification regions resulting from analysis of a set of

process data. The training data contains three classes: normal (f1), fault 1

(f2), fault 2 (f3). At first, all samples are assigned to one node. The samples

in the first node are divided into two groups according to the property of the
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first residual (R1). The tree looks for the most suitable threshold to separate

each group and tries to find the purest node possible. For the second node

separating data based on property of the second residual (R2), gives purer

child nodes. Finally the partition stops when this data set has been split

into three pure sets where pure means that no sets contain points belonging

to another fault.
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Figure 4.1: Simple Classification Tree for Illustration

The fundamental principle of classification tree is to reach the most in-

formative property that makes the data reaching intermediate child nodes

as pure as possible based on a minimum cost-complexity principle. The first

phase is called tree building and second phase is called tree pruning.

4.2.1 Tree Building and Tree Cost

The initial state of a decision tree is the root node (the first internal

node) which assigns all examples of the training set. If all examples are in

the same class, no further decision is required and solution is completed.

If the examples at this node belong to two or more classes, a test is made
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to split the training set into two sub-spaces based on a threshold value of

a single variable. The process is recursively repeated for each of the new

terminal nodes until a completely discriminating tree is obtained.

The best known impurity measure of impurity is entropy impurity index.

Entropy impurity index denotes the tree cost which has the formula as shown

in (4.1):

E(t) = −
∑

j

p(j|t)log2p(j|t) (4.1)

where E(t) shows the impurity of a node t and p(j|t) is the portion of

observations at node t belonging to class j. If all the observations are in the

same class the impurity index is 0; otherwise it is positive and the maximum

value occurs when the different classes are equally possible.

Another impurity measure is the Gini diversity index [32] that describes

the expected error at node t if the node label is selected randomly from the

class distribution present at that node. The node cost is formulated as

i(t) =
∑

i6=j

p(i|t)p(j|t) (4.2)

where i(t) is the Gini diversity index of the node t and p(i|t) is the por-

tion of observations in node t belonging to class i. p(j|t) is the portion of

observations in node t belonging to class j.

Although the optimization is performed at a single node, the recursive

splitting process can go until each leaf node becomes perfectly pure. The

impurity measure of the tree which is defined below becomes zero if each

node corresponds to a single training sample.

I(T ) = 1−maxj[p(j|t)] (4.3)

where T is the classification and regression tree.

53



4.2.2 Optimal Tree Size Decision using Cross-Validation and Thresh-

old Value

When the classification tree is fully-grown and each leaf node achieves

zero impurity, the tree overfits the training data meaning that tree represents

the data explicitly and generalization or noise immunity performance is not

good; the tree is also large. However if the partitioning stops too early, the

error on the training data is not low enough and the performance on the new

data may not be sufficiently good.

Cross validation is a general approach to decide on the optimal tree size.

The training dataset is randomly split into N subsets and one of these subsets

is reserved as an independent test dataset and the other N -1 subsets are

combined as the training dataset. Trees with different sizes are tested and at

each size, N trees are generated, with a different subset of the data reserved

as the test dataset each time. Therefore N different trees are generated

each of which is tested against its corresponding test dataset. The average

performance of N trees is an excellent estimate of the performance of the

original tree which is entire training set. The average performance of these

trees is compared and the one with the lowest prediction error is selected as

optimal tree size.

Setting a threshold to the node impurity index is also used to reduce

the tree size. If the impurity reduction is less than this threshold value

the splitting stops at that node. This approach uses all the training data

set and generates classification trees with balanced leaf node impurity. The

major disadvantage is that it is often difficult to determine the threshold

value, because the relationship between the threshold value and the tree

performance is rarely simple.
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4.2.3 Tree pruning

Another approach for the optimum classification tree is tree pruning

method. The tree obtained from building phase utilizes the training dataset [36]

and may have a large number of branches which increases the tree complex-

ity. Therefore it is necessary to prune the tree to improve the accuracy of

the classifier and overcome the overfitting problem.

Pruning algorithm is based on the misclassification rate. Assume that

Tmax is the fully-grown tree obtained in the building phase. Entropy impurity

measure (or cost-complexity measure), Eα(T ) of subtree T ⊂Tmax is defined

as:

Eα(T ) = E(T )− α|T̃ | (4.4)

where T̃ is the set of terminal nodes in T , |T̃ | is the number of terminal nodes

in T and α is a complexity parameter which is denoted by αt in (4.5) as:

αt =
E(t)− E(Tt)

|T̃t| − 1
(4.5)

The aim in the pruning process is to find the minimal αt parameter which

makes T -Tt as the next minimizing tree for each internal node t. This param-

eter is recursively updated until the optimum tree size is achieved by using an

independent test data set or performing cross-validation which will determine

the best degree of pruning coming with a huge computational overhead.

Pruning of tree reduces the possibility of missing classification functions

close to the leaves for a fully-grown tree. Pruning used with cross validation

technique determines the best degree of pruning and decrease the computa-

tional cost of the tree significantly.
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4.2.4 Leaf Node Label Decision

Assigning class label to leaf nodes is simple: if the classification tree is

pruned to its optimal depth, it is most likely that each leaf node has zero or

a small positive impurity index. If the leaf node has only observations from

one class it will be labeled as that class otherwise it will be labeled by the

class that has most observations represented. Therefore every leaf node with

a large amount of same class observations will be generated.

The final decision tree is a representation of input/output mapping. For

instance, the decision tree shown in Figure 4.1 is equivalent to a set of crisp

rules,

If R1 < a then z = f1

If R1 > a and R1 ≤ b and R2 ≤ c then z = f2

If R1 > b and R2 > c then z = f3

(4.6)

4.3 Implementation of Classification Tree

The significant benefit of classification tree is that it is easy to render the

information on the tree as logical expressions so that the relationship between

the prior knowledge and the result of the tree can be obtained easily.

The performance of the classification tree highly depends on the quality

and quantity of the original training dataset. The faults on the tree must

match the faults on the training set from which the tree is built.

4.3.1 Decision Boundary Generation

The classification tree creates decision boundaries (based on the informa-

tion of the nodes) with portions perpendicular to the property axes as shown

in Figure 4.2b. If the tree is sufficiently large, any decision boundary can be
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approximated well, provided that enough training data is present.
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Figure 4.2: Decision Regions Created By Classification Tree

It is possible to obtain unnecessarily complicated decision boundaries

which do not align with the property axes. An obvious example is shown

in Figure 4.3. The simple decision boundary has to be approximated with

segments of lines. However using a linear combination of the variables it is

possible to result in a much simpler tree. For this reason Fisher Discriminant

Analysis (FDA) finds the optimal combination.

4.3.2 Computational Efficiency

Building a classification tree is computationally expensive. Assume that

there are n training patterns and the dimension of the patterns is d. The

computational complexity of a fully-grown tree is represented as follows.

At the root node, the training pattern must be sorted on each of the d

dimensions. It takes O(dn log(n)). Calculating impurity index takes O(dn),

therefore, the computational cost of the root node is O(dn log(n)). Since

there are two nodes at the next level, and each node takes O(1
2
dn log(n

2
)), the
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Figure 4.3: Simple Decision Boundary for Optimal Tree

computational cost of level 2 is O(dn log(n
2
)). Moreover the computational

cost for level 3 is O(dn log(n
4
)) and for level 4 O(dn log(n

8
)), and so on.

Since the depth of the tree is logn, by summing up the cost of each level, the

total cost of the tree is O(dn (logn)2).

In the process of pruning a classification tree, cross validation method

is generally applied to determine the optimal tree depth. For instance, one

wants to examine the classification performance of D different depths of

tree and divides n training patterns into M groups. For each depth, M

classification trees are built and their performance evaluated, which takes

O(Md(M−1
M

)n (log(M−1
M

)n)2), or O(d(M − 1)n (log(M−1
M

)n)2). A total of
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D different depths of trees are examined which results in a computational

cost of O(dD(M − 1)n (log(M−1
M

)n)2). Assuming that M>>1, the step of

determining the tree depth is O(DMdn (logn)2).

4.4 Generation of Classification Tree with Fisher Dis-

criminant Analysis

In pattern classification literature, dimensionality reduction is an impor-

tant factor when the dimension of the observation space is large while the

number of observations is relatively small [37]. Also the computational re-

quirements are greatly reduced for some applications like neural networks

when the training data is proportional to dimensions of the process data.

One of the most important dimensionality reduction technique is Fisher

Discriminant Analysis which takes into account the information between the

classes and provides an optimal lower dimensional representation in terms of

discriminating among classes of data [38]. FDA determines a set of projection

vectors which maximizes the scatter between the classes while minimizes the

scatter within each class.

Let’s define n as the number of observations, m as the number of mea-

surement variables, p as the number of classes and nj as the number of

observations in the jth class, xi ∈ Rm represents the vector of measurement

variables for the ith observation. If the training data for all classes have

been stacked into the matrix XεRnxm, then the transpose of the ith row of

X is the column vector xi. To perform FDA, it is necessary to calculate

the total-scatter, the within-class scatter and the between-class scatter. The

total scatter matrix is

St =
n∑

i=1

(xi − X̄)(xi − X̄)′ (4.7)
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where X̄ is the total mean vector

X̄ =
1

n

n∑
i=1

xi (4.8)

Let Xj be the set of vectors xi that belong to class j, the within-class

scatter matrix of class j is

Sj =
∑
xiεXj

(xi − x̄j)(xi − x̄j)
′ (4.9)

where x̄j is the mean vector of class j

x̄j =
1

nj

∑
xiεXj

xi (4.10)

The within class scatter matrix is

Sw =

p∑
j=1

Sj (4.11)

and the between class scatter matrix is

Sb =

p∑
j=1

nj(x̄j − X̄)(x̄j − X̄)′ (4.12)

The total scatter matrix is equal to the sum of the between-class scatter

matrix and the within-class scatter matrix

St = Sb + Sw (4.13)

FDA is given by a vector v ∈ Rm which maximizes the scatter between

the classes whereas minimizes the scatter within classes.

J(v) = max
v′Sbv

v′Swv
, v 6= 0 (4.14)
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The second FDA vector is computed so to maximize the scatter between

the classes while minimizing the scatter within classes among all axes per-

pendicular to the first FDA vector and so on for the remaining FDA vectors.

FDA vectors are equal to the eigenvectors vk of the generalized eigenvalue

problem.

Sbvk = λkSwvk (4.15)

where the eigenvalues λk indicate the degree of overall separability among

the classes by projecting data onto vk. Let’s define matrix WpεR
mxp with

the p FDA vectors as columns. Then the projection of the data from m-

dimensional space to p-dimensional space is described by

zi = W ′
pxi (4.16)

While generation of classification tree with FDA method, FDA extracts

the most significant scores in the original process data and achieves optimal

discrimination among different faults. The classification tree uses FDA re-

sults to separate the observations into different classes with lower dimensional

representation.

4.5 Case Study 1: Rechargeable Lead Acid Battery

4.5.1 Lead Acid Battery Principles

The Lead Acid Battery is an integral part of an automotive electrical sys-

tem for many decades and fundamentals of the lead acid battery technology

has not changed.

Essentially it consists of two electrodes immersed in sulfuric acid elec-

trolyte. Some modern techniques include adding valves to the battery and
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immobilizing the electrolyte (by gelling using silicon dioxide [39]), allowing it

to be used in any orientation, also allowing it to be "sealed" and maintenance-

free. Generally these type of batteries are called sealed valve-regulated lead-

acid (VRLA) batteries and used in automotive starting, lighting and ignition

(SLI) applications. The main purpose of the battery is starting the engine

in a vehicle and second one is to provide power during high transient loads

and maintain charge be fulfilled.

The basic structure of a lead-acid battery consists of two electrodes; neg-

ative electrode attached to a spongy active mass and positive electrode at-

tached to a porous grid containing granules of metallic lead dioxide. These

two materials are arranged in a matrix and immersed in concentrated sul-

furic acid electrolyte to provide the mobile positive and negative charges.

The matrix comprises a cell, several of which are placed in series to form

the battery [40]. Modern SLI batteries contain six cells, each with a nominal

voltage of 2.1 V.

The redox reactions at the electrodes during discharge are given in (4.17) [41].

Positive Electrode:

PbO2 + 4H+ + 2e− → Pb2+ + 2H2O

Pb2+ + SO2−
4 → PbSO4

(4.17)

Negative Electrode:

Pb → Pb2+ + 2e−

Pb2+ + SO2−
4 → PbSO4

(4.18)

In the discharge case, the positive electrode (anode) accepts electrons and

becomes oxidized whereas the negative electrode (cathode) gives up electrons

i.e., is reduced. In the charge case this process in reversed. Therefore it can

be said that the movement of charges uses the dissolving and precipitating

of charge-carrying ions through the electrolyte.
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In the next section some basic terminology will be given about lead-acid

batteries.

4.5.2 Lead Acid Battery Characteristics

In this section the characteristics and parameters of the lead-acid battery

will be given as they affect the modeling process.

Rechargeable vs. non-rechargeable

Rechargeable battery (secondary battery) is a kind of battery which

is designed to allow the charging chemical reaction efficiently as it may be

recharged by applying the current. All automotive batteries are these kind

of batteries. Primary battery is a type of battery which is not rechargeable.

Capacity

Capacity is the amount of charge that can be drawn for some length of

time before the battery is considered as discharged.

Theoretically for a battery rated 10 Amperes-hour(Ah), a discharge cur-

rent of 1 Amper (A) should deplete the battery in 10 hours or 10 A in 1 hour.

However due to the nonlinear behavior of available capacity as a function of

discharge current, these expectations are not accurate.

Automotive manufacturers specify a term called reserve capacity in terms

of hours during which a fully-charged battery can be discharged at constant

current without terminal voltage dropping below 10.5 V [39]. At this voltage

the battery is assumed to be completely discharged.

State of Charge

State of Charge(SoC) is a measure of how much current the battery can

deliver after partial discharge or charge. It is difficult to determine reliably

and precisely due to many nonlinear effects in batteries.

Integrating the amount of current that entering or leaving the battery
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should allow good estimation of SoC, based on the equation,

SOC = 100(1−
∫ t

0
IB(t)dt

Q
) (4.19)

where Q is nominal capacity in Ah, t is independent time variable in h, IB

is the battery current in A with negative defined as discharge.

Surface Charge

This is a major cause of nonlinearity in lead-acid batteries that does not

exist in modern battery technologies. It refers to the phenomenon resulting

from plates comprising the positive and negative electrodes being of finite

thickness. It causes a battery recently discharged partially, incorrectly appear

to be exhausted(indicated by terminal voltage) or a battery recently charged

to a small SoC to be fully charged.

The electrochemical reaction that produces electricity takes place only at

the interface of the electrode material and the electrolyte. Therefore when

the battery is being charged, the charge accumulated on the surface must

diffuse into the plates of electrodes. Since this happens in a solid, it is slower

than the charge carrying ions diffusing through the electrolyte.

Conventionally, to check the battery’s SoC, it must be released for 4 to

12 hours, and then it must be discharged at approximately 33% of its rated

capacity for 5 minutes to remove any surface charge. After waiting for 10

minutes, terminal voltage of the battery must be read and referred to a table.

This process linearly correlates the battery’s SoC to its open-circuit voltage.

Surface charge is important when the charging behavior of the lead-acid

batteries is modeled whereas in other battery types due to their different or

more advanced design it is not a parameter.
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4.5.3 Process Description and Data acquisition

The main objective of the study is to find whether the battery is in good

condition or in faulty condition preferably during actual use. If it is in faulty

condition then the aim is to discriminate the faults. This section is focused

on the classification tree for fault diagnosis of lead-acid battery. Referring to

Figure 4.4 sensor measurement and data acquisition will be discussed under

experimental equipment and procedure.

Figure 4.4: Experimental Setup of Lead-Acid Battery

Experimental Equipment

The experimental setup is composed of the following:

• 12V 5Ah lead-acid battery with 6 cells.

• Agilent N3300 1.8 kW programmable electronic load, capable of draw-

ing 120 A at 240V.

• Topward 6303D Digital Display manually adjustable current limited

Laboratory DC Power Supply(source), capable of delivering 5 A at 5V

up to 30 V.

• GT Power A-6 charger with maximum output power of 600 W and

maximum current of 10A which can charge/discharge up to 18 cells in

series.
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• DSPACE 1104 fast control loop prototyping system that is used for data

acquisition, setup control and for electronic communication commands

to the load using RS232 protocol.

• MATLAB R2009a and SIMULINK which is interconnected with DSPACE

and desktop PC.

• Voltage divider circuit for the DSPACE and relay circuit.

• 5A DC industrial Relay contactor which will isolate the battery when

not being charged or discharged.

• Three Hall effect current sensors that measure current through the

cables connected to the positive terminal of the battery, source and

electronic load.

• Desktop PC for control of the experimental setup.

Relay

Source
Load

Battery

Figure 4.5: Schematic Diagram of the Experimental Setup

Process Description and Data Acquisition

The process involves SoC control of rechargeable lead-acid battery cir-

cuit. As shown in Figure 4.5, the battery is connected to a power source and

an electric load. The load is controlled from the RS232 signals transmitted

by the DSPACE environment.
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The main purpose of the lead-acid battery system is to characterize the

battery, especially terminal voltage under various SoC and load (current) con-

ditions. Therefore a special discharge method is devised where the real-time

system is integrated with Matlab-Simulink toolboxes and DSPACE libraries.

Assumptions used in this process are as follow:

• Internal resistance is supposed to be constant during the charge and

discharge cycles and does not vary with the amplitude of the current.

• The capacity of the battery does not change with the amplitude of the

current.

• The temperature does not affect the battery’s behavior.

Under these assumptions closed-loop control system is built to control the

SoC of the battery. Such systems are particularly useful in hybrid vehicle

applications where battery SoC is controlled according to anticipated load

(incline, traffic jam etc.).

This system is exercised for nearly seven hours with a sampling time of

one second. A large amount of data, consisting of current, voltage and SoC

measurements of the battery, is obtained.

As it is seen in Figure 4.6, at t=0 the SoC value of the battery is 100%

which means that the battery is fully charged. Suddenly the SoC value is

pushed to be 65%. Therefore the battery is discharged until the SoC value

catches the reference point(at t=4900 s). When the reference point becomes

80% battery starts to be charged and SoC value increases etc. The operating

point of the process is changed after every 6000 second interval.
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Figure 4.6: Reference SoC vs Actual SoC

4.5.4 Neural Network Process Model

To build the neural network model of the lead-acid battery, data obtained

during the real-time process is used. Two neural network blocks are generated

one of which is for the modeling of the output voltage and the other one is

for the modeling of SoC value. In residual generation and feature extraction

process, which will be explained in the next subsection, neural network model

of the output voltage value will be used(Figure 4.8).

In the training stage of the neural network, all training data(obtained

under normal operating conditions) are scaled to the range of [0,1] prior to

the training process. The networks are trained using a Levenberg-Marquardt

optimization algorithm [42]. The input layer has tan-sigmoid function where

as output layer has pure linear function as shown in (1.25) and (1.27). 500

epochs are used for training stage and in the hidden layer 30 neurons are

used.

In the modeling of the output voltage, a multi layer feed forward neural
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network with one hidden layer is used to develop the nonlinear representation

of the lead-acid battery simulation. A three input one output feed forward

neural network is implemented offline with the Matlab Neural Network Tool-

box. Input and output values for training are;

Inputs= IB(i); VB(i-1); SoC(i-1)

Output= VB(i)

where i is the current discrete time value, (i-1) refers to the previous value;

IB(i) is the battery input current; VB(i-1) and SoC(i-1) are one sample time

delayed battery voltage and battery state of charge values. Neural network

voltage output is shown in Figure 4.7. The sampling interval is taken as 0.1

second.

Figure 4.7: Neural Network Output vs Actual Battery Voltage

The Matlab model of the system running in parallel with neural network
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model is shown in Figure 4.8.
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Figure 4.8: Lead-Acid Battery Model from the Actual Data

4.5.5 Residual Generation and Feature Extraction

After training the neural network for modeling the output, residuals are

generated and features are extracted for fault detection and diagnosis pur-

poses.

x(t) = yactual − ymodel (4.20)

Assume that x is a residual based on (4.20). Statistical methods have

been widely used in fault diagnosis which can provide the physical character-

istics of the nonlinear time based residual. Statistical analysis yields different

statistical parameters which are selected as basis for this study. These are;

RMS Value:
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RMS value is a measure of the magnitude of the varying quantity.

XRMS =

√√√√ 1

N

N∑
i=1

x2
i (4.21)

where xi (i = 1, .., N) is the amplitude at sampling point i and N is the

number of sampling points.

Kurtosis Value:

This value indicates the flatness or spikiness of the signal. It is low for

normal condition and high for faulty condition due to spiky nature of the

signal.

XKV
=

1
N

∑N
i=1(xi − x̄)4

X4
RMS

(4.22)

where

x̄ =
1

N

N∑
i=1

xi (4.23)

Power:

This is a measure of effective energy or power content of the signal asso-

ciated with average value of the signal.

P (x) = x̄ + 0.5σx (4.24)

where

σx =

√√√√ 1

N

N∑
i=1

(xi − x̄)2 (4.25)

The lead-acid battery system is simulated in real-time for three different

cases. These are system under normal operation, fault one and fault two

cases. Fault one case is reduction of electrolyte in the battery and fault

two case is irreversible damage caused by leaving battery at deep discharge

for 6 days. As it is denoted in Figure 4.8, the system works in parallel
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with neural network model and residual data is obtained for those three

cases. Applying (4.21), (4.22), (4.24) on the difference between the actual

output voltage and neural network model voltage, three different residuals

are extracted. By this way, three dimensional representation of the residual

space is obtained(Figure 4.9). There are some overlaps for fault 1 and fault

2 cases.
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Figure 4.9: Three Dimensional Residual Space

4.5.6 Residual Evaluation with Classification Tree

As a final step in the fault diagnosis procedure, residuals generated in

the previous section are evaluated and classified to the fault classes by using

classification tree approach.

The maximum tree (every leaf node containing only one class) is created

with the training dataset based on their respective fault classes (see Fig-

ure 4.10). In this tree, training data is classified into different classes for

fault detection. It is obvious that the maximum tree fits training data well

but have problem with the test dataset since the lower branches may be
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affected by the process noise of training data as explained in section 4.2.2.

Figure 4.10: Classification Tree Before Pruning

Cross validation technique (defined in 4.2.2) is applied to estimate the

optimal tree size. The procedure for this technique is as follows:

1. Divide data into 10 mutually exclusive subsets of approximately equal

size(S0, S1,..,S9).

2. Drop out each subset in turn, build a tree using data from the remaining

subsets, use it to predict the responses for the omitted subset.

3. Calculate the estimated error for each subset (e.g. for sum of least

squares regression tree, the error is the sum of squared differences of

the observations and predictions) and sum overall subsets.

4. Repeat steps 2 and 3 for each size of tree.

5. Select the estimated tree with the smallest error rate.
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Although chosen randomly, dividing into groups based on the value of

the response variable gives smaller and more accurate estimates of the true

error rate [32].

First "resubstitution error" is computed which means the proportion of

original observations that are misclassified by various subsets of the original

tree. Then "cross validation error" of various tree sizes is calculated and

plotted in Figure 4.11. As the tree size increases, the error rate decreases.

From the figure, best tree is taken as the smallest tree such that its esti-

mated error rate is within one standard error of the minimum. The standard

error of the estimate is calculated for each tree size.
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Figure 4.11: Cross Validation Error of Maximum Tree

This is shown on the graph by computing a cutoff value that is equal to

the minimum cost plus one standard error. (best level=0 corresponds to the

unpruned tree, so 1 is added to use it as an index into the vector outputs

from the tested tree.)
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According to the best tree size, the maximum tree is obtained which is

shown in Figure 4.12. After the pruning stage, the tree size is decreased

while decreasing the error rate.

Figure 4.12: Classification Tree After Pruning and Cross Validation

4.5.7 Residual Evaluation with Classification Tree and Fisher Dis-

criminant Analysis

Fisher Discriminant Analysis is implemented based on the algorithm de-

scribed in Section 4.4. The original training data are transformed into FDA

data which are used to build the classification tree. Testing data is also

transformed in the same way to get FDA data for the classification tree to

perform fault detection and diagnosis.

In this study, third order FDA, in which the order shows the dimension

of residual space, is performed on the classification trees generated. Cross

validation is applied to produce the optimal classification tree and the cost

of the tree is plotted in Figure 4.13.
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Figure 4.13: Cost of the Tree with FDA using Cross Validation

4.5.8 Results and Discussion

Comparing the performance of various approaches, both methods are

trained with training data and tested against the testing data. Procedure is

as follows:

1. The system is exercised for three cases (one healthy condition and two

faulty conditions) which are denoted by fi (i = 1, 2, 3).

2. Three different residuals are obtained using the neural network model of the

actual system which are denoted as Rfi
1 , Rfi

2 , Rfi
3 (i = 1, 2, 3).

3. First, classification procedure is applied on this residual set which is shown

in Figure 4.14. Each fault is denoted by a number in the classification tree

as "0" for healthy case, "1" for fault 1 case and "2" for fault 2 case. As it is

seen in the figure, for the fault 1 case and fault 2 cases the tree shows a small
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amount of data in wrong class but a great amount is classified correctly.

4. Second, the classification with FDA is applied on this residual set which is

shown in Figure 4.15. Same notation in the previous step is used for the

fault cases. In this tree overall misclassification error is less compared to

the classification tree. Although there is still some misclassification between

fault 1 and fault 2 cases.
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Figure 4.14: Classification Tree in Fault Classification

The misclassification rates on the testing data of classification tree and

classification tree with FDA are compared in Table 5.

As it is seen from Table 5, the misclassification rate for the FDA is very

close to that of the classification tree. However the elapsed time is increased

for classification tree with FDA because of the relatively small size of the
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Figure 4.15: Classification Tree with FDA in Fault Classification

Table 5: Comparison of CT and CT with FDA

CT FDA with CT

Elapsed Time(seconds) 22.442 32.756

Misclassification Rate for f1 3.333e-4 1.667e-4

Misclassification Rate for f2 5.833e-4 6.667e-4

training data set. Another disadvantage is that classification tree-based

methods are not effective when a big portion of the faulty states falls closely

to normal states.
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4.6 Case Study 2: Nonlinear Mass-Spring-Damper Sys-

tem with Coulomb Friction

An application example based on a nonlinear mass-spring-damper system

in a closed loop control is given in this section as a second example to illus-

trate the fault diagnosis procedure using classification tree and classification

tree with FDA approaches.

Modeling of the system is as follows:

1. Figure 4.16 represents the diagram of mass-spring-damper (MDS) sys-

tem with mass m (in kg), spring constant k (in N/m) and viscous

damper of damping coefficient c (in kg/s).

M Ftot(t)

k

c

x(t)

Figure 4.16: Schematic Diagram of Mass-Spring-Damper System

2. This system is subject to an oscillatory force:

Fs = −kx (4.26)

and a damping force:

Fd = −cv = −c
dx

dt
= −cẋ (4.27)

where x represents the position vector.
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3. In order to design a nonlinear effect in the system, Coulomb friction

force is added on the damping force which is represented as an effect

at zero velocity. In this study, Coulomb force is taken as an offset:

Fc = 0.5 (4.28)

4. Applying Newton’s Second Law on the free body mass, the total force

Ftot becomes:

Ftot = Fs + Fd + Fc

mẍ = −kx− cẋ− 0.5
(4.29)

5. Then the differential equation is:

ẍ +
k

m
x +

c

m
ẋ +

0.5

m
= 0 (4.30)

6. For a random step reference input force, PID controlled MSD system

is given in Figure 4.17.

Random

Number
Gain Controller

Ref vs Actual

c

k

x
..

x
.

Random

Number

Gain Controller
IntegratorIntegratorMass

Coulomb & 

Viscous Friction

x

Figure 4.17: Matlab Model of Mass-Spring-Damper System
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7. The system is modeled in Matlab/SIMULINK environment and sim-

ulated for 1500 seconds with fixed step ode4 type. Reference Point

Position vs Actual Position acting on the system is given in Figure 4.18.

Figure 4.18: Reference Input vs Actual Output

4.6.1 Neural Network Process Model

In the model-based fault diagnosis of the MSD system, a Neural Net-

work model of the actual output position, which is exercised under normal

operation, is used. A two input one output feedforward neural network is

implemented offline using Matlab Neural Network Toolbox. The inputs and

output (for the discrete time value i) are:

Inputs= Ftot(i), x(i− 1);

Output= x(i);
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Same procedure described in section 4.5.4 is used in the training stage.

However in this case, 25 neurons (in the hidden layer) and 300 epochs are

used in the training stage. Outputs of the neural network and actual system

in normal condition is shown in Figure 4.19.

Figure 4.19: Actual Output vs NN Output

4.6.2 Residual Generation and Feature Extraction

Residual Generation

Remembering Section 4.5.5, three different residuals applied on the

deviation between the actual system and neural network model of the sys-

tem are used in fault diagnosis procedure. These are RMS Value, Standard

Deviation and Power Value which are defined in (4.21), (4.25), (4.24).

Feature Extraction
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MSD system is simulated for four different cases which are system under

normal operation, fault 1 (f1) , fault 2 (f2) and fault 3 (f3) cases. f1 case is a

decrease in k value, f2 case is a decrease in m value and f3 case is an increase

in Coulomb friction. The system is simulated for each cases and residuals

related to the fault classes are obtained. Three dimensional representation

of the residuals is given in Figure 4.20.
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Figure 4.20: Residuals in Three Dimensional Space

4.6.3 Results and Discussion

Applying the same classification tree approaches used in lead-acid battery,

a maximum tree is obtained with 24 leaf nodes (Figure 4.21(a)) whereas CT

with FDA has 17 lead nodes (Figure 4.21(b)).

However in the second case study it is assumed that there is no noise or

disturbance effect on the system. So the pruning stage does not change the
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size of the tree. Pruned trees for Classification Tree and Classification Tree

with FDA are shown in Figure 4.21.

(a) Classi�cation Tree (b) Classi�cation Tree with FDAClassi�cation Tree with FDAClassi�cation Tree

Figure 4.21: Comparison of the Pruned Trees

Classification Tree is shown in Figure 4.22a and Classification Tree with

FDA is shown in Figure 4.22b.

In Table 6 the classification tree and CT with FDA are compared. FDA

has longer response time and poorer performance compared to the CT.

Table 6: Comparison of CT and CT with FDA

CT FDA with CT

Elapsed Time(seconds) 2.789 5.722

Misclassification Rate for F1 0.004 0.005

Misclassification Rate for F2 0 0.008

Misclassification Rate for F3 0.008 0.024

Comparing the performance of the tree in lead-acid battery and MSD

systems, the MSD system has shorter response time and lower misclassifica-

tion rate, since there is no noise effect on the system and the simulation time

is smaller than the Lead-Acid Battery system.
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4.7 Conclusion

In this chapter a general information is given about classification tree

and classification tree with FDA. The tree building and pruning methods

using cross-validation technique are covered. Error rate is calculated for the

obtained trees.

In the second subsection, rechargeable lead-acid battery principles are

demonstrated. The important parameters for the fault diagnosis are rep-

resented. Based on these parameters, the neural network modeling of the

actual battery is performed. Then the classification tree approach is applied

to the residuals obtained from the neural network model produced. It is

obvious that both of the approaches identifies the faultless case precisely.

However in the faulty cases their performances are close to each other. On

the other hand, normal classification tree can reach the optimum tree size in

shorter time than the tree with FDA.

In the third subsection, nonlinear mass-spring-damper system is modeled.

The algorithm used in lead-acid battery system is applied on this system.

However in this case classification tree has smaller error rate compared to

the classification tree with FDA. Also it has shorter computational time but

larger tree size.
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(a) Classification Tree
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(b) Classification Tree with FDA

Figure 4.22: Classification Tree Application on MSD System
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Chapter V

5 Conclusions

Fault Diagnosis and Detection in industrial processes are crucial in terms

of the production cost and quality of the product. There are two important

stages in fault diagnosis: residual generation and residual evaluation. Resid-

ual generation is based on the analytical model of the healthy system and

residual evaluation step consists of the classification of faults occurred in the

system using the generated residuals.

Therefore model based fault diagnosis methods have been very popular in

last thirty years. These can be grouped as qualitative and quantitative model

based diagnosis methods. Quantitative methods which are applied to only

linear systems include parameter estimation, parity relation and observer

based methods. On the other hand, qualitative methods which are applied

generally to nonlinear systems consist of neural network (NN), fuzzy logic

and neuro-fuzzy approaches.

Neural networks can be applied to fault diagnosis and detection as a

process model as well as a fault classifier to differentiate different faults in the

system. In this thesis three cases studies are investigated for fault diagnosis

and in modeling of these cases neural network tool is used. In the first

case study which is the water-tank system, neural network is also used as

fault classifier. Its performance is compared with the adaptive neuro-fuzzy

inference system. Although neural networks have longer training time, they



have better modeling capability.

In the second and third cases (lead-acid battery models and mass-spring

damper systems, respectively), statistical methods such as classification tree

and fisher discriminant analysis are applied on the residuals generated from

NN process model.

The classification tree with FDA has longer training time but smaller

tree size, since FDA extracts the most significant components in the original

process data and achieves optimal discrimination among different faults as

well as reduces the dimension of the original data. However misclassification

rates of both approaches for different faults, which are highly affected from

noise and disturbances, are close to each other.
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A Matlab Codes

A.1 Data Acquisition and Normalization of Data for

NN

load aku2pidli001; % no fault data (taken by four data blocks)

load aku2pidli002;

load aku2pidli003;

load aku2pidli004;

load aku2susuz001; % fault 1 data

load aku2derindeshr001; % fault 2 data

l1= aku2pidli001;

l2= aku2pidli002;

l3= aku2pidli003;

l4= aku2pidli004;

h1=aku2susuz001;

h2=aku2derindeshr001;

vo=[l1.Y(7).Data l2.Y(7).Data l3.Y(7).Data l4.Y(7).Data]; % actual volt-

age measured by DSpace

soc=[l1.Y(2).Data l2.Y(2).Data l3.Y(2).Data l4.Y(2).Data]; % actual SoC

measured by DSpace

cu=[l1.Y(3).Data l2.Y(3).Data l3.Y(3).Data l4.Y(3).Data]; % actual cur-

rent measured by DSpace

% Data Measured for Fault 1 Case

h1vo=[h1.Y(7).Data];

h1soc=[h1.Y(4).Data];

h1cu=[h1.Y(1).Data];

% Data Measured for Fault 2 Case



h2vo=[h2.Y(7).Data];

h2soc=[h2.Y(4).Data];

h2cu=[h2.Y(1).Data];

%Normalization of Data

cu1=(cu-mean(cu))/(max(cu)-min(cu));

vo1=(vo-mean(vo))/(max(vo)-min(vo));

soc1=(soc-mean(soc))/(max(soc)-min(soc));

cu2=(h1cu-mean(h1cu))/(max(h1cu)-min(h1cu));

vo2=(h1vo-mean(h1vo))/(max(h1vo)-min(h1vo));

soc2=(h1soc-mean(h1soc))/(max(h1soc)-min(h1soc));

cu3=(h2cu-mean(h2cu))/(max(h2cu)-min(h2cu));

vo3=(h2vo-mean(h2vo))/(max(h2vo)-min(h2vo));

soc3=(h2soc-mean(h2soc))/(max(h2soc)-min(h2soc));

A.2 Training of the Neural Network

% Inputs and outputs are taken from the Matlab simulation:

input1= simout2(:,1)’; % actual current

input2= simout2(:,2)’; % delayed Soc

input3= simout2(:,3)’; % delayed voltage

output1= simout2(:,4)’; % actual voltage

input=[input1;input2;input3];

net = newff(input,output1,30,’tansig’ ’purelin’,’trainlm’); % feedforward

backprop.

net.trainParam.epochs =15000;

net.trainParam.lr=0.30; % (learning rate)

net.trainParam.maxfail=13250;% (maximum failure)

net.trainParam.mc=0.6; % (momentum)
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net = train(net,input,output1);

gensim(net,1) % generation of NN block for simulink

A.3 Generation of Classification Tree

function m=cartmain(trainx,trainy,testx,testy)

tic;

T=optimaltreefit(trainx,trainy)

YFITnum=treeevaluate(T,testx)

m=misclass(YFITnum,str2num(testy));

plot(m)

toc

function YFITnum=treeevaluate(T,testx)

% Test the classification tree using test data

% returns numerical values of classes

YFIT=treeval(T,testx);

YFITnum=double(YFIT)-ones(size(YFIT));

function T=optimaltreefit(trainx,trainycart)

% Inputs: trainx–numerical

% trainycart– string

%

%Output: T–Classification Tree

%

% Get the original tree

T=treefit(trainx,trainycart,’prune’,’on’);

% Calculate the Resubsitition Error rate

resubcost=test(T,’resub’);

% Optimize the tree using cross-validation
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[c,s,n,best]=treetest(T,’cross’,trainx,trainycart);

% Prune the tree

T=treeprune(T,’level’,best);

view(T)

% Plot the Best Tree

plot(n,c,’b-’,n,resubcost,’r–’)

figure(gcf);

xlabel(’number of terminal nodes’);

ylabel(’cost(misclassification error)’)

legend(’Cross validation’)

%best tree

[mincost,minloc]=min(c);

cutoff=mincost+s(minloc);

hold on

plot([0 20],[cutoff cutoff],’k:’)

plot(n(best+1),c(best+1),’mo’)

legend(’Cross-validation’,’Resubstitution’,’Min+1 std. err.’,’Best choice’)

hold off

c(best+1)

function m=misclass(actual,target)

sizeofset=size(actual);

boundaryofclasses=zeros(20,2);

temp=target;

currentclass=1;

boundaryofclasses(currentclass,1)=1;

counter=1;

while counter<sizeofset(1)
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while target(counter)==0 counter<sizeofset(1)

counter=counter+1;

end

boundaryofclasses(currentclass,2)=counter-1;

currentclass=currentclass+1;

boundaryofclasses(currentclass,1)=counter;

target=target-ones(sizeofset);

end

boundaryofclasses(currentclass-1,1)=counter;

target=temp;

numberofclass=currentclass-1;

misclass=zeros(numberofclass+1,1);

temp=sign(abs(actual-target));

for i=1:numberofclass misclass(i,1)=sum(temp(boundaryofclasses(i,1):boundaryofclasses(i,2),1))/(boundaryofclasses(i,2)-

boundaryofclasses(i,1)+1); end

misclass(numberofclass+1,1)=sum(temp)/sizeofset(1);

m=misclass;

A.4 Generation of Classification Tree with FDA

function m=fdacartmain(trainx,trainy,testx,testy)

tic;

Wp=fdam(trainx,trainy);

fdatrainx=trainx*Wp;

fdatestx=testx*Wp;

T=optimaltreefit(fdatrainx,trainy);

YFITnum=treeevaluate(T, fdatestx);

m=misclass(YFITnum,str2num(testy));
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plot(m)

toc

function m=fdam(trainx,trainy)

% Fisher Discriminant Analysis

% trainx: numerical, training data, predicting variables

% trainy: string, training data, classes

%

% function returns Wp –loading vector

rowsize=size(trainx)*[1;0];

columnsize=size(trainx)*[0;1];

% backup trainy value

temp=trainy;

% convert to numerical

trainy=str2num(trainy);

%max no of classes=20

boundaryofclasses=zeros(20,2);

currentclass=1;

boundaryofclasses(currentclass,1)=1;

counter=1;

% find class boundaries

while counter<rowsize

while trainy(counter)==0 counter<rowsize

counter=counter+1;

end

boundaryofclasses(currentclass,2)=counter-1;

currentclass=currentclass+1;

boundaryofclasses(currentclass,1)=counter;
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trainy=trainy-ones(rowsize,1);

end

boundaryofclasses(currentclass-1,2)=counter;

numberofclass=currentclass-1;

% restore trainy

trainy=temp;

% total mean and covariance

avgT=mean(trainx);

sT=(rowsize-1)*cov(trainx);

% calculate class averages and covariances for max class=20

% sb– between class, sw–within class

s=zeros(columnsize,columnsize,20);

avg=zeros(20,columnsize);

sb=zeros(columnsize,columnsize);

sw=zeros(columnsize,columnsize);

for i=1:numberofclass

avg(i,:)=mean(trainx(boundaryofclasses(i,1):boundaryofclasses(i,2),:));

s(:,:,i)=(boundaryofclasses(i,2)-boundaryofclasses(i,1))*...

cov(trainx(boundaryofclasses(i,1):boundaryofclasses(i,2),:));

sw=sw+s(:,:,i); sb=sb+(boundaryofclasses(i,2)-boundaryofclasses(i,1)+1)*(avg(i,:)-

avgT)’*(avg(i,:)-avgT);

end

% test if sT=sb+sw;

% sT-sb-sw

[V,D]=eig(sb,sw);

diag(D)

order=input(’enter the FDA order you chose:’);
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m=V(:,1:order);

A.5 Generation of Data for Classification Tree

%Data Acquisition for Fault Cases :

load hatasiz;

load hatabir;

load hataiki;

% Three Different Residual Generation

sayi1=[hatasiz(:,1);hatabir(:,1);hataiki(:,1)];

sayi2=[hatasiz(:,2);hatabir(:,2);hataiki(:,2)];

sayi3=[hatasiz(:,3);hatabir(:,3);hataiki(:,3)];

% Generation of Training Data

k=0;

for j=1:2:120

for i=1:1:60

array2(i+50*k,1:3)=[sayi1(50*j+i,1) sayi2(50*j+i,1) sayi3(50*j+i,1)];

array2=array2(:,1:3);

end

k=k+1;

end

% Generation of Test Data

k=0;

for j=0:2:119

for i=1:1:60

array1(i+50*k,1:3)=[sayi1(50*j+i,1) sayi2(50*j+i,1) sayi3(50*j+i,1)];

array1=array1(:,1:3);

end
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k=k+1;

end

trainx=array1(1:3000,1:3);

testx=array2(1:3000,1:3);

trainy=[repmat(’0’,750,1);repmat(’1’,750,1);repmat(’2’,750,1);repmat(’3’,750,1)];

testy=trainy;

% Call the program for Classification:

fdacartmain(trainx,trainy,testx,testy)

cartmain(trainx,trainy,testx,testy)
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