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Abstract

In many problems involving multiple image analysis, an image registration step is

required. One such problem appears in brain tumor imaging, where baseline and

follow-up image volumes from a tumor patient are often to-be compared. Nature

of the registration for a change detection problem in brain tumor growth analy-

sis is mainly rigid. Contrast enhanced T1-weighted MR images (CE-T1 MRI) are

widely used in clinical practice for monitoring brain tumors. Over this modality,

contours of the active tumor cells and whole tumor borders and margins are vi-

sually enhanced. In this thesis, a new technique to register serial CE-T1 MRI is

presented. The proposed fully-automated method is based on five anatomical land-

marks: eye balls, nose, confluence of sagittal sinus, and apex of superior sagittal

sinus. After extraction of anatomical landmarks from fixed and moving volumes, a

rigid transformation is estimated by minimizing the sum of squared distances be-

tween the landmark coordinates. Final result is refined with a surface registration,

which is based on head masks confined to the surface of the scalp, as well as to

a plane constructed from three of the extracted features. The overall registration

is not intensity based, and it depends only on the inherent anatomical structures.

Validation studies using both synthetically transformed MRI data, and real MRI

scans, which included several markers over the head of the patient were performed.



In addition, comparison studies against manual landmarks marked by a radiologist,

as well as against the results obtained from ITK mean squares and cross correlation

based methods were carried out to demonstrate the effectiveness of the proposed

method.
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KONTRASTLI-T1 MAGNETİK REZONANS GÖRÜNTÜLERİNİN ANATOMİK

REFERANS NOKTASI TABANLI ÇAKIŞTIRILMASI

ALİ DEMİR

EE, Yüksek Lisans Tezi, 2010

Tez Danışmanı: Gözde ÜNAL

Anahtar Kelimeler: çakıştırma, medikal görüntülerin çakıştırılması, MR takip

görüntülerinde değişim analizi, kontrastlı-T1 MR görüntüsü

Özet

Birden fazla görüntünün incelenmesini gerektiren analizlerde görüntülerin çakıştırılması

işlemi sıklıkla kullanılır. Beyin tümörü görüntülemede ilk çekilen görüntü ile takip

görüntülerinin karşılaştırılması, bu görüntülerin çakıştırılması ile gerçekleştirilebilir.

Beyin tümörünün zamana baglı degişimi problemindeki çakıştırma işleminin temel

yapısı geregi katı dönüşüm tabanlı çakıştırma yapılır. Rutin beyin tümörü in-

celemelerinde kontrastlı-T1 magnetik rezonans (MR) görüntüleri her zaman kul-

lanılır. Bu görüntülerde tümörün dış çeperi genellikle kontrast tutar ve parlak olarak

görülür. Bu tez çalışmasında kontrastlı-T1 MR görüntülerinin çakıştırılması için bir

yöntem önerilmiştir. Önerdigimiz yöntemde otomatik olarak 5 farklı anatomik yapı

(burun, sag ve sol göz yuvarlaklari, torkular herofili, superior sagital sinüs tepe

noktası) bölütlenir ve bu yapıların üzerinde anatomik referans noktaları belirlenir.

Referans ve takip görüntüleri üzerinde hesaplanan referans noktaları kullanılarak

katı dönüşüm tabanlı çakıştırma işlemi gerçekleştirilir. Bu aşamada referans nok-

taları arasındaki farkı en aza indiren katı dönüşüm parametreleri en küçük kareler

(least squares) yöntemi ile hesaplanabilir. Elde edilen çakıştırılmış görüntü, daha

hassas bir sonuç elde etmek için, ikincil bir yöntem ile düzeltilir. Bu yöntemde

ilk yöntemden elde edilen görüntüden ve referans görüntüsünden çıkartılan kafa

yüzeyleri 3 referans noktası ile sınırlandırılarak kullanılmıştır.



Önerdigimiz bu çakıştırma yöntemi voksel şiddetine baglı degildir ve sadece za-

mana baglı degişim göstermeyecek anatomik yapılara baglıdır. Algoritma sınama

çalışmaları sentetik dönüşüm parametleri kullanılarak oluşturulan gerçek görüntüler

ve MR takip görüntüleri üzerinde yapılarak algoritmanın performansı degerlendirilmiştir.

Ayrıca takımımızdaki radyolog doktor kontrolünde manuel referans noktaları işaretlenerek

yapılan çakıştırma yöntemi ile karşılaştırılmıştır. Önerilen yöntem kütüphanelerine

kolayca ulaşılabilen voksel şiddeti tabanlı çakıştırma yöntemleri (ITK) ile de karşılaştırılarak

sonuçlar belirtilmiştir.
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Chapter 1

Introduction

1.1 Literature Review and Motivation

Image registration refers to the problem of finding a geometric transformation, which

is optimal in a certain sense, between two or more corresponding images. Nature

of the correspondence problem describes the type of necessary geometric transfor-

mation [1]. Registration is a major problem in many medical imaging applications

such as image guided neurosurgery, surgical planning, radiotherapy planning, pa-

tient population analysis, and monitoring tumor growth.

In this thesis, we focused on the registration of serial Magnetic Resonance (MR)

images intended for the change detection problem in tumor monitoring [5, 6]. Gen-

eral methods and strategies for image registration are reviewed in [2, 3], and [4].

Registration problem for change detection in brain can be classified as a rigid body

motion of invariant brain structures. The most challenging part of the change de-

tection is to overlay invariant structures accurately. In [8], Intracranial cavity (ICC)

is used as an invariant structure to register serial images through computation of

dense point correspondences based on segmented ICC. Anatomical landmark lo-

calization on Talairach atlas and initial atlas based segmentation are also popular

approaches for registration [15, 18, 16, 17]. In [9], the outer cortical surface and

major sulcal ribbons were extracted to register brain MR images. Geometrical fea-

tures such as curves, lines, curvatures, corners, and so on, are also used extensively

in image registration problems. Davatzikos et. al. use the curves and boundaries in

regions to preregister the volumes for elastic registration [10, 11]. Klein et al. eval-

uated available volume based and surface based brain image registration techniques

[12]. Geometric landmarks make the registration procedure automatic and robust
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[13, 14, 19]. On the other hand, intensity similarity based methods [20, 21, 22] are

also widely utilized in most of the registration problems. In the review paper [5],

Duffau et al. reported that the image intensity is not a reliable measure in the

presence of growing tumors, which introduce additional challenges for registration

algorithms. Therefore, detection of invariant landmarks in serial images is expected

to perform better than an intensity similarity based optimization approach.

Registration is inherently an ill-posed problem, therefore usually no unique so-

lution is available. Often, constraints are introduced. Particularly for a deformable

registration problem, constraints on a deformation field can be defined. On the

other hand, depending on the domain and application of the problem, specific in-

tensity similarity measures or different feature-based approaches are proposed [1].

For the clinical problem of brain tumor monitoring, where anatomical features can

be extracted from the CE-T1 MRI, this thesis presents a new method where strong

anatomical features drive the registration without depending on intensity similarity

measures, which can become problematic in presence of significant tumor change

over time [5]. Another advantage of the proposed approach is that it is invariant

due to an intra-patient registration scenario, i.e. the same anatomical landmarks

can be found in the follow-up images. Following a first anatomic landmark based

registration, an extracted surface, which is constrained by the available anatomical

landmarks obtained in the first phase of the method, drives the second phase of

the registration. This is a surface registration step that propagates the solution

towards matching of the important features over a consistent part of the scalp for

a better and extensive fit over the head surface for a refinement of the final affine

transformation. Apart from its use in tumor follow-up studies, the proposed rigid

registration method can be used as a pre-processing before generic deformable reg-

istration applications, which require an initial rigid alignment phase.

1.2 Contributions

In this thesis, we have:

• Extracted five different anatomical landmarks from the head region and pro-

posed novel methods to segment and extract them.
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• Defined several geometric features of the anatomy and observed that some of

them such as CoS-plane can also be used in other applications.

• Developed an optimization method which refines the result of our anatomical

landmark-based registration method using the surface of head.

The proposed method in this thesis is published in [32] and [33].

1.3 Outline

The organization of the thesis is as follows. In Chapter 2, a background on medi-

cal image registration is given with the necessary information to follow the thesis.

In Section 3.1, the specific anatomical landmarks used in our algorithm and their

extraction is described. The proposed registration method based on anatomical

landmarks is presented in Section 3.2. The results are demonstrated in Chapter 4

with consistency tests and validation studies, followed by conclusion and discussion

in Chapter 5.
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Chapter 2

Image Registration Background

In this chapter, image registration background information required to follow the

thesis is briefly described. Mathematical formulation of image registration followed

by a classification of different methodologies used in medical image registration are

presented.

2.1 Mathematical Formulation

Mathematical formulation of image registration is derived from the intuition that

the main goal of image registration is to find an appropriate spatial transformation

so that a template, also known as moving or transformed image is similar (in the

sense of a similarity criterion to be defined) to a reference (fixed) image.

As a mathematical definition of the registration problem: given a reference image

I1(X), moving image I2(X), and a necessary transformation T (X) where X ∈ Rd is

a coordinate variable in d-dimensional Euclidean space, define a similarity measure

S(I1(X), I2(T(X))), which is optimized with respect to the transformation T .

Therefore, two main components of a registration problem involve defining (i) an

error or cost function that measures the similarity or dissimilarity between the two

images to be aligned; (ii) a coordinate transformation, which is either parametric or

non-parametric.

There are several similarity measures and some of the intensity-based and landmark-

based approaches are introduced in the forthcoming sections. Depending on the

nature of the problem, the necessary coordinate transformation might be paramet-

ric (rigid or affine) or deformable (non-parametric). Two widely used parametric

transforms are defined next.
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Rigid transformation

T (X) = QX+b, where Q ∈ Rd×d is orthogonal and det(Q) = 1, and b ∈ Rd. This

transformation only permits translation and rotation of the coordinates so that it

preserves rigidity.

Affine transformation

T (X) = AX + b, where A ∈ Rd×d is an affine matrix satisfying that det(A) > 0,

and b ∈ Rd. In addition to the rigid constraints, affine mapping allows scaling

and shearing. This type of transformation therefore is more general than a rigid

transform. Note that regarding the nature of our registration problem applied to an

initial alignment of serial MRI volumes, non-parametric transformations are out of

the scope of this thesis, and we will work only with rigid and affine transformations.

2.2 Parametric Image Registration Methods

In a parametric registration, mathematical model of mapping function has a finite

number of parameters. Image registration is achieved by finding the optimal pa-

rameters of this function for which the similarity between reference and registered

image is maximized. In this class of registration, the coordinate mapping usually

requires a few number of parameters. For the case of 3D rigid registration, the map-

ping requires 6 different parameters (3 for rotation and 3 for translation) whereas

an affine mapping requires 12 different parameters (3 for rotation, 3 for translation,

3 for scale, and 3 for shear). Estimation of these parameters is usually an ill-posed

problem and no unique solution is available. Therefore, registration is still a popular

topic, attracting attention of medical imaging community. Two main strategies are

described in forthcoming sections: (i)Landmark-based; (ii) Intensity-based registra-

tion approaches.

2.2.1 Landmark-based registration

A landmark is typically an outstanding point of an image. Retrospective (soft)

landmarks can be derived from anatomical features such as center of eye balls,

or image intensity based coordinates such as the points with maximal curvature.
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Another methodology involves positioning of fiducial (hard) landmarks. However

these landmarks are usually not comfortable for the patient and correct spatial

positioning is not always possible, and furthermore, it requires expert knowledge.

Let M(I1, j) and M(I2, j) denote the jth landmark coordinate of reference and

moving images respectively, where j = 1, ...,m, and m ∈ N denotes the number

of landmarks. Given the landmarks, registration problem is to find the necessary

transformation T : Rd −→ Rd, such that M(I1, j) = T (M(I2, j)).

After a mathematical definition of the landmark based registration problem, a

distance measure D between the landmark features of a reference and a moving

image is to be defined. A typical distance or error measure is the sum of squared

distances (SSD) between the reference coordinates and the transformed coordinates:

SLB =
m∑

j=1

‖ M(I1, j)− ϕ(M(I2, j)) ‖2
f (2.1)

where ‖ . ‖f denotes the norm of the landmark coordinate vector space.

Choosing the mapping function ϕ as linear (affine) is a popular approach to

solve this problem. In this case ϕ can be expressed as a product of a transformation

matrix A and the homogeneous coordinates in the original image. Note that in the

case of a linear transformation, dimension of matrix A is d + 1 × d + 1, where the

last column of A denotes the translation in homogeneous coordinates. In Equation

2.2, a sample mapping is shown for d = 3, where [x y z 1]T and [x
′
y
′
z
′
1]T are the

homogeneous coordinates of reference and moving images respectively.




x

y

z

1




=




a11 a12 a13 tx

a21 a22 a33 ty

a31 a32 a33 tz

0 0 0 1







x′

y′

z′

1




(2.2)

Hence, Equation 2.1 can be expressed in terms of matrices such that,

SLB =
m∑

j=1

‖ Xj −AXj
′ ‖2f (2.3)

where Xj and Xj
′

are the homogeneous coordinates of the landmarks for the

reference and the moving image respectively. This is known as a least squares
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problem, and optimal parameters can be obtained using several numerical solutions.

We will present one example numerical solution in Section 3.2.1. Other examples

can be found in [1].

2.2.2 Intensity-based registration

In this section we investigate several similarity measures to find an optimal linear

registration as well as the numerical solutions to solve for the necessary transforma-

tion.

It is difficult to choose an appropriate similarity measure for the registration

problem. Usually performances of several similarity measures are compared to

choose the best one for the problem. Differentiability of the similarity measure is

also an important issue for optimization to achieve the solution in a fast and efficient

manner. In the forthcoming sections intensity difference-based, correlation-based,

and mutual information-based similarity metrics are discussed in detail.

SSD-based registration

This approach is based on the minimization of intensity differences of reference

image I1(X) and the moving image I2(T (X)). Intensity similarity measure a.k.a.

sum of squared distances (SSD) over the image domain Ω : Rd =⇒ R is defined in

Eq.2.4

SSSD =
1

2

∫

Rd

(I1(X)− I2(T(X)))2dX (2.4)

There are variety of methods that can be used to solve these kinds of minimiza-

tion problems. Direct methods and steepest descent methods might be relatively

slow for high resolution images. On the other hand second order derivative-based

methods are usually problematic and not stable for many applications due to low

signal-to-noise ratio (SNR). Gauss-Newton method is mostly used to solve these

kinds of minimization problems.

Normalized cross correlation-based registration

Correlation is an information measure for linear independence and it can be defined

by Equation 2.5. For the registration problem the goal is to maximize correlation
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between the images R and T :

CorrR,T (Y) :=

∫

Rd

R(X)T(X−Y)dx (2.5)

Correlation can also be considered as an L2-inner product 〈., .〉 between R and T . In

practice images R and T are normalized so that they are of unit norm and normalized

correlation is the cosine of the angle between R (reference) and T (moving) images.

Using the statistics (mean µ, standard deviation σ) of the two images, correlation

coefficient is defined by:

γ(R, T ;Y) := 〈R− µ(R)

σ(R)
,
TY − µ(TY)

σ(TY)
〉L2 (2.6)

where TY(X) = T(X −Y). Hence, correlation-based similarity measure is exactly

the correlation coefficient between the reference I1(X) and registered I2(T (X)) im-

ages as in Equation 2.7.

SNCC := 〈I1(X)− µ(I1)

σ(I1)
,
I2(T (X))− µ(I2(T(X)))

σ(I2(T (X)))
〉L2 (2.7)

Mutual information-based registration

Mutual information (MI) is a measure of the entropy and it was originally defined

in the field of information theory. For the registration problem, the goal is to

maximize mutual information so that the dispersion of joint density between the

reference image and moving image is minimal. It can also be inferred that when the

mutual information is maximal, two images are maximally related, i.e. their degree

of dependence is maximized.

Mathematical definition of the (differential) entropy is given in Equation 2.8,

where, q ∈ N and ρ : Rq =⇒ R is a density of image intensities i, on Rq, with

ρ(i) ≥ 0 , and
∫
Rq ρ(i)di = 1.

H(ρ) := −
∫

Rq

ρ(i) log ρ(i)di (2.8)

Mutual information measure between two different images R and T , depends on

the entropy of joint density ρR,T and entropies of the marginal densities ρR and ρT

, and is defined as:
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SMI := H(ρR) + H(ρT )−H(ρR,T ) (2.9)

where ρR, ρT , and ρR,T denote the intensity distributions of R, T , and the joint

intensity distributions (joint histogram), respectively. Mutual information is usually

normalized, and normalization can be achieved by several approaches. One popular

approach is to divide the MI by the sum of marginal entropies such that,

SNMI :=
H(ρR) + H(ρT )−H(ρR,T )

H(ρR) + H(ρT )
:= 1− H(ρR,T )

H(ρR) + H(ρT )
. (2.10)
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Chapter 3

Anatomical Landmark Based Registration

In this chapter, we present our novel landmark extraction steps in detail with the

necessary preliminary features in Section 3.1. Proposed anatomical landmark-based

registration method is described in Section 3.2.1. At the end of this chapter surface

based refinement method is presented in Section 3.2.2. In Figure 3.1 flow chart

diagram of the algorithm is depicted.

Figure 3.1: Algorithm Flow Chart

Standard coordinate planes and their orientations relative to the human body

used in medical imaging is shown in Figure 3.2.
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Figure 3.2: Plane orientations used in medical imaging [adaptod from

Wiki:HumanAnatomy]

3.1 Extraction of Anatomical Landmarks

The first step of the proposed registration algorithm involves extraction of anatomi-

cal brain landmarks on given CE-T1 MRI volumes. Thus, a patient-specific coordi-

nate system, which can be invariably found on all human brain images, is obtained

based on a set of selected anatomical landmarks. In this thesis, we proposed to

extract and utilize nasal bone tip, center of two eyeballs, confluence of sinus, and

apex of superior sagittal sinus. The landmark selection process, i.e. determining

brain landmarks that can be reliably observed and computationally extracted, was

carried out jointly with the radiologists in the team. In Section 3.1.1, preliminary

features required to extract selected anatomical landmarks are presented followed

by extraction of each of the five landmarks on Section 3.1.2 to 3.1.5.
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Figure 3.3: a)Histogram based window-level filter (A denotes background noise level,

B denotes maximum intensity level) b)Filter output with background noise (blue).

3.1.1 Preliminary maps and features

Binary head mask

A simple binary head mask consisting of the full head including the outer skin of

the human body is constructed first. Initially, a histogram based window-level filter

is used such that minimum intensity level of the window (background noise level in

the image) is calculated from the local minimum that comes after first local maxima

of the histogram whereas the maximum intensity level of the window is located at

the intensity for which histogram count is less than 1% of local maxima that comes

after detected noise level. A typical intensity histogram froma a CE-T1MRI sice is

shown in Figure 3.3 which depicts both the background noise level and maximum

intensity level labeled with A and B, respectively.

Figure 3.4 shows images from consecutive steps of the proposed binary head mask

computation. Histogram filtered image is then used in a canny edge detection [7].

Then the canny edge map is dilated (Figure 3.4-c) so that region growing algorithm

which will be seeded from image grid boundaries does not leak into the head region.

Region growing algorithm connects the background pixels and those unreachable

pixels are marked as foreground of the binary map, and then eroded with the same

size of dilation forming final head mask (Fig.3.4-d).
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Figure 3.4: Binary head formation steps for two different axial slices: a)Original

MRI Slice, b)Canny edges, c)Dilated canny edges, d)Obtained head mask.

Anterior tip points

Anterior tip point of each axial slice is the nearest point of binary head mask to the

top most row of the slice. It is detected with a linear search in rows starting from

the top most row. If there are more than one marked pixel on a given row, then

mid point of these pixels is marked as an anterior tip point. Fig.3.5 demonstrates

sample slices with tip points marked as (+) sign.

Figure 3.5: Anterior tip points of sample slices.

Axial Tilt Problem

MRI scanner can handle acquisition in arbitrary plane orientations. The acquisition

can be performed in any orientation such as in an axial direction, parallel to AC-
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PC (anterior commissure - posterior commissure) line which refers to Talairach

coordinate system [15]. However AC-PC alignment is not always carried out, and

the acquisition orientation can be different for different acquisitions. In our clinical

partner site (Anadolu Medical Center), CE-T1 MRI is directly acquired with no

acquisition orientation adjustment. The consequence of this is an occasional axial

tilt problem which depends on the patients position in MRI head coil. Figure 3.6

illustrates the problem and shows different positioning of the patient. This problem

may introduce errors for our anatomical landmark extraction algorithms. A solution

to this problem is presented in Section 3.1.2.

Figure 3.6: Axial tilt problem in MRI volume acquisition: Normal (left), tilt up

(middle), tilt down (right).

Symmetry Line Calculation

Mid-sagittal symmetry line is defined such that it passes through the anterior tip

point and center of mass using 1st order image moments of axial binary head mask

slice. This is indeed a rough estimate of the natural symmetry of human head

(brain). Fig.3.7 depicts sample symmetry line estimates, which will then be used in

anatomical landmark extraction steps.

Specific distances and definitions

Mid-sagittal symmetry line facilitates several geometric features (see Figure 3.8 ):

p1, the point with the maximum perpendicular distance to the symmetry line, p2,

the most anterior point of eye balls, and d1 and d2 are perpendicular distances from

p1 and p2, to the symmetry line (Fig.3.8).

The ratio given in Equation 3.1 is observed to be a biometric constant with a

certain mean and variance (0.42±0.01) which was measured over 20 MRI scans.
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Figure 3.7: Sample symmetry line estimates, depicted as a red line.

Figure 3.8: Geometric features (p1, p2, d1, and d2, and the angle β)

c :=
d2

d1

(3.1)

In addition we defined an angle β between the line passing through p2 and

anterior tip point (p3), and the line passing through p2 and perpendicular to the

symmetry line.

3.1.2 Nasal Bone from Nose

Nose landmark is located using the angle β feature, which is defined in the previous

section and depicted in Figure 3.8. The value of tan β is examined for axial slices.

Figure 3.9 depicts a 3D representation of nose tip points and red-to-blue (0.0 to

1.0) color code represents value of tan β for the corresponding axial slice. Starting

from the top most axial slice, first nose tip point is detected where tan β is greater

than a certain threshold, and lower end of nose tip points is marked where the
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Figure 3.9: Nose feature a)Case 1, b)Case 2.

outermost anterior tip point is reached. In Figure 3.9 small red spheres represents

the beginning (superior) and final (inferior) points of detected nose tips. Finally, a

single nose landmark is marked at the center of detected nose tip points, which is

close to the tip of nasal bone (marked with a (+) sign in Fig.3.9).

A Solution to Axial Tilt Problem

Axial tilt problem defined in Section 3.1.1 can be resolved using the nose feature.

It is observed that the nose line connecting the upper and lower nose tip points

identifies the degree (angle) of tilt, that is, if the nose line is closer to the axial

plane than the coronal plane, or vice-versa, then there exists an axial tilt problem

(Fig.3.10). The solution to this problem can be achieved by rotation of the MRI

volume about the grid center, so that the projections of the nose line onto the coronal

plane and axial plane are equal in length.

3.1.3 Eye Balls

An eye ball is segmented using a sphere model, which is initiated at a seed point

based on the nose feature. Two seed coordinates for the left and right eye balls are

first estimated on the top most axial slice of the nose, then given d1, d2 is estimated

using the ratio c (Eq. 3.1). Using the anatomical knowledge that physical radius of

an eyeball is roughly 10 mm, the seed is initialized 10 mm away from p2 towards

the symmetry line to ensure that the seed point falls in the eye ball region. Sample

seeds are shown as yellow (+) signs in the middle column of Figure 3.11. Initialized
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Figure 3.10: Nose feature to resolve axial tilt problem. a)Tilt is downward, b)Tilt

is upward.

sphere parameters (center and radius) are evolved until convergence with ordinary

differential equations derived to maximize the difference between the mean intensity

statistics inside and outside the sphere within a band around its surface as explained

next.

Region-Based Sphere Evolutions

Given an image volume I : Ω −→ R3, the goal is to find a volumetric sphere surface

C ∈ Ω, and the mapping C = X propagates on the image domain Ω with a region-

based energy:

E(λ) =

∫

Ω

f(X , λ)dx. (3.2)

where f = fin − fout, and fin and fout are the region descriptors inside and

outside of the sphere, and λ is the set of λj ∈ {r, a, b, c} , j = 1, ..., 4, which are the

sphere parameters given in Equation 3.3, respectively, and X ∈ Ω is the coordinate

variable of the sphere. The parametric sphere C is updated by ∂C
∂t

= f(X )N, where

N denotes the unit normal to C.

The parametrization of sphere coordinates C (s, p) = X with s ∈ [0, 2π) and

p ∈ [0, π), given its radius r and translation vector t = (a, b, c)T , is given by:
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Figure 3.11: Sample axial slices from eye region and corresponding segmentation

result is below. Eye seeds are shown on the central figure with yellow (+) sign.

X (s, p) = r




cos(s) sin(p)

sin(s) sin(p)

cos(p)


 +




a

b

c


 (3.3)

Using this parametrization, the variation of the energy in Eq.3.2 w.r.t. sphere

parameters λj ∈ {r, a, b, c} , j = 1, ..., 4 yields the gradient flows:

dλj

dt
= −

∮

C
f(X ) <

∂X

∂λj
,N > dpds , (3.4)

which provides us with equations of the evolution of the 3D sphere parameters

λj, hence the update step for the eye ball sphere. We solve the ordinary differential

equations of each parameter update equation until steady state. The obtained values

of the parameters λj ∈ {r, a, b, c} define the final two spheres, one for left and one for

right eyeball, which leads to a good fit to the two eyeball anatomy. Sample eyeball

sphere results are shown in Figure 3.12.
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Figure 3.12: A sample results of sphere evolution for eye balls.

3.1.4 Confluence of Sinus

Confluence of sinus is conjunction point of the superior sagittal sinus and transverse

sinus. A distinguishing feature of the confluence of sinus is that it is located where

the superior sagittal sinus bifurcates as depicted in Fig.3.13.

Figure 3.13: Cerebral venous system (figure adapted from Osborn A. Diagnostic

neuroradiology. St. Louis: Mosby, 1994).

Confluence of sinus (CoS) detection starts by locating a seed point on the superior

sagittal sinus. As depicted in Fig.3.14, the seed point is searched on the axial slice at

eye ball centroid level and towards the posterior part of binary head mask’s center

of mass within a finite width of the mid-sagittal symmetry line with respect to a

maximum brightness criterion.
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Figure 3.14: Seed point search region over a T1-MRI slice for sinus map extraction.

After the seed is initialized over the sagittal sinus (Fig.3.14-b marked with a (+)

sign), mean µ and standard deviation σ values over a small window are calculated,

and a 3D region growing is performed with an initial downward motion and a growing

criterion of accepting pixel intensities greater than µ−σ. The result of segmentation

by region growing produces a sinus map, as visualized in Fig.3.15 with a height map

overlay.

Next, the segmented sinus map is analyzed using region moments of axial slices.

In this study, we defined the confluence of sinus at the slice, which has the max-

imum variance in the left-right direction. This is performed using a covariance

matrix formed by second order central moments of the sinus map over each slice:

[µ20, µ11; µ11, µ02]. This matrix is then decomposed into its eigenvectors and eigen-

values [λ1 λ2] where λ1 ≥ λ2, using singular value decomposition. The ratio between

the two eigenvalues (λ1

λ2
) is examined and when it exceeds a certain threshold the

slice of CoS is located (Z coordinate), and axial (X and Y) coordinates of CoS is

calculated using the average center of mass of the sinus map. Fig.3.15 depicts de-

tected CoS landmarks from two different cases where red-to-blue surface color map

represents the CoS feature (λ1

λ2
). It can be observed that the bifurcation slice is

indicated by the abrupt λ1

λ2
change also coded by the color map change into blue.

3.1.5 Apex of Superior Sagittal Sinus

For an even sampling of landmarks over the brain, a final anatomical landmark is

selected at the apex of the superior sagittal sinus. Similar to extraction of CoS,

superior sagittal sinus (SSS) surface is delineated by region growing constrained
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Figure 3.15: Sinus map and CoS are shown from two different cases. Red-to-blue

color indicates the CoS feature.

this time by an initial motion towards superior (upward) direction. A sample SSS

extracted from a CE-T1 MRI volume is shown in Fig.3.17. We define a plane

constructed from the three anatomical landmark points: CoS, and the two eye ball

centroids, as visualized in Fig.3.16. This plane, which we called CoS-Eyeballs plane,

is observed to be parallel to the AC-PC line used in Talairach coordinate system by

the radiologist in our project team. SSS feature is selected as the point on the SSS

having a maximum distance to this plane. This feature is visualized on Figure 3.17

with a red-to-blue color map on the SSS surface. For robustness, the center of a

cloud of points with distances greater than 99% of the maximum distance is marked

as the apex of superior sagittal sinus, depicted with a cross bar in Figure 3.17.

Figure 3.16: CoS-Eyeballs planes from two different viewpoints.

Finally, all five anatomical landmarks are extracted and visualized in Figure 3.18

from two different viewpoints for a sample patient CE-T1 MRI scan.
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Figure 3.17: Apex of Superior Sagittal Sinus is marked with axis bar widget. Red-

to-blue color represents SSS map.

Figure 3.18: All five extracted anatomical landmarks visualized together.

3.1.6 Dens Axis and Brain Stem

Dens axis and brain stem are two different anatomical structures, which we at-

tempted at extracting in order to define new landmarks. However, these structures

are located at inferior of the brain where signal to noise ratio (SNR) is usually low.

Moreover, there exists strong inhomogeneity artifacts on these slices. In this sec-

tion some approaches to extract these structures are demonstrated and discussed.

However, solutions are not in 3D and experimental results were not satisfactory.

Therefore, we did not utilized these two anatomical structures as landmarks in our

registration. For completeness, we report our methods in extraction of these struc-

tures below.
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Dens Axis

Dens axis is a part of the second cervical vertebra (C2) and it has a tooth-like

shape joining the C2 and first cervical vertebra (C1). It has a certain shape that

it is circular on axial slices (Figure 3.19). For this reason we worked on axial slices

where dens axis exists.

In this part we define a rectangular region of interest (ROI) with the center of

mass of the axial slice is the center of ROI (Figure 3.20). We defined a circular

shape for dens axis model and searched over the ROI with this model having the

minimum mean intensity. In Figure 3.20 a sample result is depicted.

This method has several problems. First of all there may be other similar struc-

tures with low intensities and secondly dens axis may be elliptical instead of perfect

circular shape. Inhomogeneity artefacts also affect the algorithm. Moreover our

solution requires an ROI initialization and correct axial slice must be selected man-

ually.

Figure 3.19: Sample result for dens axis
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Figure 3.20: Dens Axis

Brain Stem

Brain stem is the structure which is a part of the spinal cord and it connects the

spinal cord to the brain. This structure can be seen on the same axial slice of dens

axis. It has a circular shape on axial slice and it is surrounded by a spinal fluid

which has lower intensity values corresponding to the brain stem.

Using the same ROI that we defined for dens axis, we searched for the brain stem

using Hough transform [25] and we calculated mean intensity of circular shapes with

different radius (Figure 3.21). We see that for the brain stem, mean intensity de-

creases and standard deviation (std) increases with increasing radius. Hence, we

calculated mean/std value for brain stem. We depicted a sample result in Fig-

ure 3.22.

3.2 Registration Method

3.2.1 Anatomic Landmark-based Registration

In the specific problem of registering serial MR images, a fixed reference volume is

usually the baseline MRI volume, which is the first MRI acquisition of the patient.

The baseline MRI volume is to be rigidly aligned with a moving volume, which is
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Figure 3.21: Circular hough transform for brain stem

Figure 3.22: Sample result for brain stem

usually a follow-up MRI volume, i.e. a second MRI acquisition of the patient after

sometime has passed after the baseline scan. Typical follow-up times are on the

order of months for the brain tumor follow-up routine.

For a landmark based approach, a 3D affine transformation (T = A 3×3, t 3×1)

is estimated by minimizing the sum of squared distances between the extracted

anatomic landmark coordinates of the fixed volume and the moving volume. A ∈
GL(3), the general linear group, i.e. A is an invertible 3×3 matrix. Coordinates are

all in world coordinates and the centroid of the landmarks is chosen as the reference

point for each MR volume. Translation component t of T is directly obtained from

the difference of the centroids of the five landmarks that belong to the fixed and the
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moving volumes.

Let Xf = [xf , yf , zf ]
T be a fixed landmark coordinate, Xm = [xm, ym, zm]T be

its corresponding moving landmark coordinate, and A is the affine transformation

between the two. Then, A can be obtained as the solution of the least squares

estimation problem: A = arg min
∑n=5

i=1 ||X i
f −AX i

m||2. After taking the derivative

with respect to the unknown A , equating to zero, and re-arranging the terms yields:

N =




M 0 0

0 M 0

0 0 M


 , N a = b , (3.5)

, where 0 is a 3× 3 all zeros matrix, and

M =




∑n
i x2

m

∑n
i xmym

∑n
i xmzm

∑n
i ymxm

∑n
i y2

m

∑n
i ymzm

∑n
i zmxm

∑n
i zmym

∑n
i z2

m


 , (3.6)

and

b =
[ ∑n

i xfxm, Σxfym,
∑n

i xfzm,
∑n

i yfxm, Σyfym,
∑n

i yfzm,
∑n

i zfxm, Σzfym,
∑n

i zfzm

]T

.

(3.7)

The parameter vector a = [a11, a12, a13, a21, a22, a23, a31, a32, a33]
T of the matrix A

can be calculated as a = N −1b .

Final affine solution is projected to an orthogonal matrix space using a polar

decomposition: A = QS , where Q is the closest possible orthogonal matrix to A

in the sense of Frobenius norm, and S is a positive-definite symmetric matrix. The

factor Q can be calculated using a singular value decomposition of A = U K V T ,

where Q is then selected as Q = U V T [26]. The resulting Q is always a rotation

matrix with a positive determinant since known anatomical correspondences ensure

that no reflection can occur.

At the end of the anatomical landmark based registration described above, the

rotation matrix Q is obtained, and used as an initial value in the next phase of the

registration as explained next.

3.2.2 Refining Head Surface Registration

The result of landmark based registration is further refined for an improved and

extensive fit of the head/scalp surface of the moving image to that of the fixed
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image. The binary head masks of fixed and moving volumes confined by the CoS-

Eyeballs plane, defined in Section 3.1.5, are represented as the zero-level sets of two

signed distance functions Φf and Φm, respectively. Figure 3.23 shows two sample

constrained head surfaces visualized by VTK marching cubes algorithm [29] as the

iso-surface of the signed distance function representation.

The sum of squared differences between the two signed distance functions can

be defined as:

E(g) =

∫

Ω

[Φf (X )− Φm(g(X ))]2dX (3.8)

where Ω is the domain of the image volume, which is limited to the constrained

head region. The error functional E is minimized to estimate a rigid transform

g(X ) = R X + t . The 3D rotation R , and 3D translation t constitute the rigid

transformation parameters gi, i = 1, ..., 6, which are obtained by solving the ordinary

differential equations (ODEs):

∂gi

∂t
=

∫

Ω

[Φf (X )− Φm(g(X ))] < ∇Φm(gX ),
∂g(X )

∂gi

> dX (3.9)

where < ·, · > denotes the Euclidean inner product in R3, and ∇ denotes a gradient

operator. The ODEs in Equation 3.9 were obtained by deriving the gradient descent

equations of E in Equation 3.8, with respect to gi. We utilized the exponential

coordinate representation for the 3D rotation (e.g. see [30]). For details of rotation

derivatives with respect to exponential coordinates we refer to [31]. The initial

conditions were set to the translation vector and the rotation matrix obtained from

Section 3.2.1. At the steady-state of the ODE solutions, the final translation and

rotation parameters are obtained as the output rigid transform of the proposed

method.
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Figure 3.23: Head surface confined by CoS-Eyeballs plane: a)Case 1 b)Case 2.

28



Chapter 4

Experimental Results

The experiments were carried out over 7 follow-up MRI scans obtained from our

clinical partner hospital (Anadolu Medical Center). The study was approved by the

IRB (Internal Review Board) of the hospital for ongoing research projects 1 . The

proposed method is validated in various ways:

• Over synthetically transformed MRI scans,

• Real MRI baseline and follow-up scans,

• A manually expert marked data set,

• A data set with non-invasive fiducial landmarks attached to a patient’s head.

CE-T1 MRI volumes with 1mm slice thickness and axial resolution of 0.5mm are

acquired from a Siemens 1.5 Tesla MR system. The proposed registration method

is fully implemented in C++ environment, using Qt [27] and VTK [29] libraries for

visualization. The parameters of the algorithm are fixed over all experiments as

follows:

• The threshold of tan β is 0.40 in Section 3.1.2,

• The width of CoS seed search bounding box is 25mm,

• Window size for region growing parameter calculation is 7× 7,

• Exceeding level of λ1

λ2
is 10 in Section 3.1.4.

1This work was partially supported by Tubitak Grant No:108E126, and EU FP7 Marie Curie

Grant No: PIRG03-GA-2008-231052.
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4.1 Consistency Tests

Consistency testing method proposed by Jenkinsen et al. [24] provides a quanti-

tative synthetic validation procedure for our method. In this test, new images are

created using several pre-determined transformations with rotation and translation.

All transformed images are then registered to the reference image. If the method

is consistent, prescribed and calculated transformations should be the same. Per-

formance of the proposed method is tested with a consistency dataset containing

8 CE-T1 MRI and their artificially transformed MR volumes with a known trans-

formation matrix constructed by 5 degrees of rotation about Z axis, 5 degrees of

rotation about Y axis, and translated by [2,4,-2] mm in this case.

Registration is carried out using anatomical landmarks described in Section 3.2.1,

and followed by a surface based refinement procedure described in Section 3.2.2. In

an ideal case, prescribed and calculated transformation matrices should be identical.

In this experiment we used Jenkinson’s RMS error deviation:

ERMS =
√

1
5
r2Trace(AT A) + (t + Axc)T (t + Axc)

where A = Rprescribed − Rcalculated, t = Tprescribed − Tcalculated, xc is world center,

and r is estimated brain radius. We used CoS and SSS landmarks to estimate the

brain radius such that r = ‖XCoS −XSSS)‖/2.

The proposed method is compared to widely adopted standard rigid registration

methods based on minimization of squared intensity differences and cross corre-

lation criterion already implemented in ITK Toolkit (MeanSquaresImageToImage-

Metric and NormalizedCorrelationImageToImageMetric). Consistency dataset also

experimented with expert guided manual landmark based registration. For this

experiment experienced radiologist marked five different anatomical locations and

necessary rigid body transformation is estimated using the same method described

in Section 3.2.1. Observed errors are interpreted as mean ± standard deviation

as shown in Table 4.1. It is observed that surface based refinement stage success-

fully improves the performance of proposed anatomical landmark based registration.

Proposed method outperforms intensity based registration techniques. Our results

also indicate that manual landmark based registration might be problematic in 3D

volume registration particularly when it is hard to locate a landmark in 3D such as

brain.
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Table 4.1: Transformation error measures on consistency dataset

Registration Method Error [mm] Std. dev.

Expert Guided Manual 5.49 2.48

Landmark Based

Itk Normalized Cross Correlation 3.82 0.90

Itk Mean Squares 3.31 0.58

Anatomical Landmark Based 3.04 0.94

Anatomical Landmark Based 2.41 0.53

with Surface Refinement

Furthermore, the proposed method (including surface based refinement stage)

takes typically 90 seconds of processing time on a personal computer with 3.16

GHz processor, whereas the ITK mean squares error minimization method takes

typically 120 seconds, and ITK normalized cross correlation method takes typically

180 seconds of processing time for our datasets and manual landmarking usually

takes 6 to 10 minutes. Therefore, proposed method is more efficient in terms of

computation times.

4.2 Landmark perturbation tests

This experiment is carried out with consistency dataset and it shows the sensitivity

of the overall registration to each anatomical landmark. Each landmark’s X, Y, and

Z coordinates are perturbed with −10 mm to +10mm and anatomical landmark

based registration without surface refinement is performed with the perturbed land-

mark. The graphs in Figures 4.1 to 4.5 are formed such that x-axis is perturbation

amount and y-axis is the registration error. The Whisker-box plots show the mean

and standard deviation of the registration error for the same (mm) amount of pertur-

bation in different directions. The results indicate that the most sensitive landmarks

are eye balls, and the less sensitive landmarks are the nose and CoS. These results

also emphasize that landmark based registration error should be refined. Therefore,

our head surface based registration stage after the landmark based registration is a
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Figure 4.1: Perturbation of nose landmark.

valid refinement approach to correct possible errors in landmark extraction.

4.3 Validation Studies on T1-MRI

4.3.1 Validation Studies on a Dataset with Fiducial Land-

marks

For a validation study on a real MRI data, fish oil tablets are used as fiducial land-

marks, and 6 tablets are positioned with an unbiased sampling over the surface of

the head of a patient. Two CE-T1 MRI scans are performed: the first scan in a reg-

ular patient position, and the second scan performed after the patient head is gently

tilted about the axial axis. For both scans, fiducial landmarks are segmented and

a rigid transformation matrix is calculated using the method described in Section

3.2.1. These parameters are used as the ”ground truth” transformation parame-

ters in this experiment. Fiducial landmarks are then removed from both of the

volumes, and anatomical landmarks are automatically extracted, and registration

is performed as described in Section 3.2. The two fiducially marked volumes are

also aligned using the mutual information based registration algorithm, which we

implemented in matlab. Differences between the estimated transformation parame-

ters and the ”ground truth” parameters are reported in Table 4.2. The parameters
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Figure 4.2: Perturbation of right eye landmark.

Figure 4.3: Perturbation of left eye landmark.
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Figure 4.4: Perturbation of CoS landmark.

Figure 4.5: Perturbation of SSS landmark.
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Table 4.2: Transformation error measures for fiducial landmark data. Rotation error

is reported in the sense of Frobenius norm between the two rotation matrices.

Registration Method Rotation Error Translation Error (mm)

Landmark based 0.013 0.54

Landmark based with surface refinement 0.016 0.45

Mutual Information based 0.496 8.18

estimated by the proposed registration method were closer to the ”ground truth”

parameters than those of the mutual information based method for the fiducially

marked volumes.

4.3.2 Studies on Follow-up CE-T1 MRI

In order to show the effect of the surface registration step (Section 3.2.2) in our algo-

rithm, an intensity based measure, a normalized sum of squared intensity differences

(SSID) is utilized:

SSID =

∫

Ω

[I(X f )− I ′(T (X m))]2

[I(X f ) + I ′(T (X m))]2
dΩ (4.1)

where I is the fixed intensity image and I ′ is the registered intensity image. Follow-

up MRI scans were registered to their baseline scans and the SSID results are pre-

sented in Table 2. The results in table are obtained from 4 different region of

interests with size of 30x30x5 mm which are carefully chosen apart from brain tu-

mor especially on cerebrospinal fluid edges. For most of the registration experiments

intensity based method is gives slightly smaller SSID error rates. We observed that

the change of tumor tissue amount in follow-up MRI causes a significant change

in intensity distribution and we showed that for certain cases (Case 3: Figure 4.6)

intensity based method might be problematic.
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Table 4.3: Transformation error measures of consistency dataset

SSID of Our SSID of Itk Mean Squares

Landmark Based Reg. Error Based Reg.

Case 1 0.022380 ∓ 0.013079 0.022385 ∓ 0.016152

Case 2 0.008561 ∓ 0.006431 0.007971 ∓ 0.006405

Case 3 0.015537 ∓ 0.011956 0.018244 ∓ 0.015934

Case 4 0.012373 ∓ 0.005624 0.010563 ∓ 0.003264

Case 5 0.015914 ∓ 0.011605 0.012994 ∓ 0.009819

Case 6 0.019233 ∓ 0.016307 0.019518 ∓ 0.015773

Case 7 0.037024 ∓ 0.038771 0.035345 ∓ 0.038085

4.3.3 Validation Studies with manual expert guided regis-

tration

For comparison of our automatic landmark extraction to an expert’s manual land-

mark extraction, one radiologist in our team manually marked 6 landmarks, which

are not necessarily the computationally extracted landmarks (since for instance it

is not possible to visually mark the 3D centroid of eyeballs), in two baseline and

corresponding follow-up CE-T1 MRI volumes. Registration is performed using these

expert guided manual anatomical landmarks, and also using the proposed method

(both with and without surface refinement step). Qualitative comparison of manual

expert guided registration results indicate that manual landmark based registration

is not appropriate ground truth for comparison.

4.3.4 Qualitative Results

We show sample image registration results for qualitative evaluation of the proposed

method. Figure 4.6 and Fig.4.8 show image slices from two different patients having

tumors appearing in various locations of the brain. The follow-up scan, which

was performed several months later, was aligned with the baseline scan using the

proposed rigid registration method. In Figure 4.7 and 4.9 we overlayed the registered
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follow-up volume to reference baseline volume in a checkerboard pattern, that is,

green patches correspond to baseline image, and red patches correspond to follow-

up image regions. As can be observed in the checker board view, the proposed

method successfully registered the two CE-T1 MRI volumes, which are routinely

used in monitoring tumor progress and response to therapy. In both cases, after

treatment, the tumors regressed significantly, with reduced margins as observed in

the follow-ups.

-a -b

Figure 4.6: Qualitative evaluation of a sample case with 3 months follow-up volume

registration results: a)Baseline slice, b)Registered Follow-up slice
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Figure 4.7: Checker board view with baseline image slices (green patches) and

registered follow-up slices (red patches).
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-a -b

-a -b

Figure 4.8: Qualitative evaluation of a sample case with 6 months follow-up volume

registration results: a)Baseline slice, b)Registered Follow-up slice
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Figure 4.9: Checker board view with baseline image slices (green patches) and

registered follow-up slices (red patches).
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a new rigid registration method, which is based on orig-

inal anatomical features extracted from brain CE-T1 MRI volumes. A landmark-

based registration based on the new anatomical landmarks was refined with a head

surface-based registration, which provided an improved alignment of the head sur-

faces. One main application is the registration of follow-up MRI volumes in brain

tumor patients, where the image intensity characteristics will vary due to tumor

growth and possible different contrast characteristics depending on the scan acqui-

sition time of the CE-T1 MRI scans. The presented landmark-based registration

method, is relatively more robust against such changes, as it is not directly based

on an intensity-based optimization procedure, and is only prone to errors at the

anatomic landmark extraction stage. Various validation studies demonstrated the

performance of the proposed method to be as accurate as the state-of-the-art (e.g.

Itk Mean Squares and Normalized Correlation based registration), and more effi-

cient in terms of computation times of the algorithm, and it successfully registers

CE-T1 MRI volumes.

Future directions of our work includes:

• Improvement of the robustness of feature extraction,

• Implementation of the algorithm in a multi-resolution framework,

• Definition and extraction of new potential anatomical landmarks,

• Use of the proposed method in quantification of tumor change in serial MRI

sequences.
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Appendix A

Region based sphere evolutions

A.1 Eulerian Derivative of Equation 3.2

Eulerian Derivative of Equation 3.2 in the direction of V (Sokolowski and Zolesio

(1992)):

E ′(λ) =

∫
∂f

∂λ
(X , λ)dx−

∮

C in

f(v ·N)dλ (A.1.1)

where first term is variation of functional f(x, y, z) = (I(x, y, z) − µin)2 −
(I(x, y, z) − µout)

2, µin and µout are mean intensity of inside and outside of the

sphere. This formulation assumes that f(x, y, z) does not vary during evolutions.

Therefore, the first term vanishes. Second term represents the motion of the sphere

with respect to its parameters (λj).

A.2 Open form of Equation 3.4

∂X
∂λj can be expressed in terms of all sphere parameters (λj = (r, a, b, c)) as the

following:

∂X

∂r
=




cos(s) sin(p)

sin(s) sin(p)

cos(p)


 (A.2.2)

∂X

∂a
=




1

0

0


 (A.2.3)
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∂X

∂b
=




0

1

0


 (A.2.4)

∂X

∂c
=




0

0

1


 (A.2.5)
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