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Abstract

The space A (D) of all analytic functions in a complete n-circular do-
main D in Cn; n � 2; is considered with a natural Fréchet topology.
Some su¢ cient conditions for the isomorphism of such spaces are ob-
tained in terms of certain subtle geometric characteristic of domains D.
This investigation complements essentially the second author�s result [8]
on necessary geometric conditions of such isomorphisms.

1 Introduction

By A (D) we denote the Fréchet space of all analytic functions in a domain
D 2 Cn with the natural topology of the uniform convergence on compact
subsets of D:We study the isomorphic classi�cation of the spaces A (D) with D
from the class Rn of all complete logarithmically convex n-circular (Reinhardt)
domains in Cn; n � 2 (see also, [1, 7, 8, 10]). We represent the system of
monomials zk := zk11 � � � � � zknn , k = (k1; : : : ; kn) 2 Zn+; which forms an absolute
basis in each space A (D) ; D 2 Rn, as a sequence

ei (z) := z
k(i); i 2 N; (1)

so that jk (i)j := k1 (i)+: : :+kn (i) does not decrease. The characteristic function

of a domain D 2 Rn: hD (�) := sup
�

nP
�=1
�� ln jz� j : z = (z�) 2 D

�
, de�ned on

the simplex � :=
�
� = (��) 2 Rn+ :

nP
k=1

�k = 1

�
, is convex (hence continuous)

on the convex set � (D) := f� 2 � : hD (�) <1g. It turns out that invariant
properties of spaces A (D) depend essentially on the topological behavior of the
set � (D), for example, A (D) is not isomorphic to A (G) if � (D) is relatively
open in � but � (G) 6= � is closed. In what follows we restrict ourselves to the
class Rn

o of domains D for which � (D) is relatively open in �; � (D) 6= � (if
� (D) = �, then A (D) ' A (Un) [1, 7]). In order to investigate the isomorphic
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classi�cation for this class it is convenient to introduce the following geometric
characteristic of those domains:

g (�) := gD (�) :=

�
n! mes�

mes� (D)

�1=n
��1 (�) ; 0 < � � 1; (2)

where � (t) :=
mes f� 2 � (D) : hD (�) � tg

mes � (D)
; t � t0 := min

�2�(D)
fhD (�)g and

mes is the Lebesgue measure on �.
Using this characteristic, the following necessary condition for the isomor-

phism of spaces from the class Ano := fA (D) : D 2 Rn
og was obtained in [8].

Proposition 1 Given domains D; eD 2 Rn
o and A (D) ' A

� eD� ; then
9c : 1

c
gD (c�) � g eD (�) � cgD

��
c

�
; 0 < � � 1

c
:

As a corollary, it was proved in [8] that there is a continuum of pairwise
nonisomorphic spaces in Ano . Here we represent, in terms of the same charac-
teristic (2), some su¢ cient conditions for the isomorphism of those spaces. A
distinction must be made between two types of domains from Ano , described by
one of the conditions:

(a) mes (�r � (D)) = 0; (b) mes (�r � (D)) > 0: (3)

It turns out that the spaces A (D) and A
� eD� are not isomorphic for domains

of di¤erent type (see, Proposition 5 and Remark 6).

Theorem 2 Suppose D; eD 2 Rn
0 , g (�) := gD (�) ; eg (�) := g eD (�) and � : [0; q]

! [0; 1], 0 < q < 1; is the continuous increasing function, which is continuously
di¤erentiable on (0; q] and satis�es the di¤erential equation

�0(�) =

�eg (� (�))
g (�)

�n
; 0 < � � q; (4)

with the initial condition � (0) = 0. If there is a constant L > 0 such that

1

L
� �0(�) � L; 0 < � � q; (5)

and both domains are of the same type (3) , then A (D) is isomorphic to

A
� eD�; moreover, there is an isomorphism T : A (D) ! A

� eD� such that
Tei = ti e�(i); i 2 N; where ei is the monomial basis (1), ti a scalar sequence
and � : N! N a bijection.

This theorem will be an immediate consequence of some more general re-
sult about the isomorphic classi�cation on a certain class of Köthe spaces (see,
Theorem 7 below).
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2 Modeled Köthe spaces

Köthe space K (A) de�ned by a Köthe matrix A = (ai;p)i;p2N (see, e.g., [4]) is

the Fréchet space of all sequences x = (�i)i2N such that jxjp :=
1P
i=1

j�ij ai;p <1

for all p 2 N; equipped with the topology generated by these seminorms. An
operator T : K (A) �! K

� eA� is called quasidiagonal (with respect to the
canonical bases ei := (�i;j)

1
j=1 ; i 2 N) if Tei = tie�(i); where (ti) is a scalar

sequence, � : N! N; if T is an isomorphism we say that the spaces K (A) and

K
� eA� are quasidiagonally isomorphic. Given (ai) 2 !+ (where !+ is the set

of all positive scalar sequences) and � = (�i) ; �i � 1, the space

F (�; a) := K

�
exp

�
min

�
p; �i �

1

p

�
ai

��
; (6)

is called power Köthe space of second type (in contrast to those spaces of �rst
type [8, 9]); it is Montel if and only if ai ! +1.
A. Grothendieck considered ([3], II,p.122) the important special classes of

Köthe spaces:
E� (a) := K (exp (�pai)) ; (7)

where a = (ai)i2N 2 !+; �p " �; -1 < � � +1. We will call them power Köthe
spaces of �nite type (if � < 1) or in�nite type (if � < 1) (centers of Riesz
scales in [5] or power series spaces in [6]).
The space (6) is quasidiagonally isomorphic to (i) the space (7) of �nite type

if �i is bounded, (ii) the space (7) of in�nite type if �i!1. Otherwise the space
(6) is called mixed power Köthe space of second type; it is essentially mixed if
it is not isomorphic quasidiagonally to a Cartesian product E0 (b)� E1 (c).

Proposition 3 ([9]; Lemma 2:3) : Let (ti) be a scalar sequence and � : N !
N a bijection. Then the rule Tei = tie�(i); i 2 N; de�nes a quasidiagonal
isomorphism from a Montel space F (�; a) onto a space F

�e�;ea� if and only if
the following assertions are valid: (a) ai � ea�(i) , i.e. ai=c � ea�(i) � cai; i 2 N;
with some constant c > 1; (b) �� � ln jtij

ai
� �; i 2 N; with some constant

� > 0; (c) for any subsequence I � N; such that �i ! l 2 [1;1], e��(i) ! el 2
[1;1],

ea�(i)
ai

!  as i!1; i 2 I;either l = el =1 or both of l and el are �nite
and lim

ln jtij
ai

= l � el.
The following fact (see, e.g., [9], Proposition 3.3) will be useful later.

Proposition 4 Let ma (t) := jfk : ak � tgj, mb (t) := jfk : bk � tgj be the
counting functions of non-decreasing positive sequences a = (ai) and b = (bi).
If ma (t) � mb (Ct) ; t > 0; with some constant C; then bk � Cak; k 2 N:
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With an eye to spaces from the class Ano we deal with the following quite
narrow subclass of power Köthe spaces of the second type dealing only with
"thickly distributed" sequences �: �(n) ('; g) := F

�
(g (' (i))) ;

�
i1=n

��
;where

g : (0; 1] ! R+ is a continuous function such that lim
�!0

g (�) = 1 and ' : N

! (0; 1] is a function with equidistributed values, that is

lim
t!1

jfi � t : c < ' (i) � dgj
t

= d� c; 0 � c < d � 1: (8)

Given D 2 Rn
o we divide the sequence k (i) into two parts: the subsequence

l (i) = k (ji) covering the set
�
k 2 Zn+ :

k

jkj 2 � (D)
�
and the complementary

subsequence m (i). By Lemma 2 from [8], certain asymptotics for the counting
functions of the sequences jk (i)j ; jl (i)j ; jm (i)j hold; from them, using Proposi-
tion 4, one can derive the asymptotics:

jk (i)j � (n! i)1=n ; jl (i)j �
�
n! mes�

mes� (D)
i

�1=n
; jm (i)j � i1=d; i!1; (9)

where d� 1 = dim (�r � (D)). De�ne the function ' = 'D : N ! (0; 1] by the
formula

' (i) := � (hD (� (i))) ; i 2 N; (10)

where � (i) :=
l (i)

jl (i)j ; i 2 N. To prove that ' is a function with equidistributed

values we use the asymptotics (� !1):���i : jl (i)j � � ; ��1 (d) � hD (� (i)) � ��1 (c)	�� � (d� c) mes� (D) �n
n! mes�

;

which follows from [8], Lemma 2. Then, taking into account (9), (10) and

putting t =
mes� (D) �n

n! mes�
, we arrive at (8).

A space A (D) 2 Ano is represented as a direct sum of two closed basis
subspaces L (D) := span

�
zl(i) : i 2 N

	
and M (D) := span

�
zm(i) : i 2 N

	
.

Due to the asymptotics (9) for jm (i)j, the space M (D) is isomorphic to
the space E1

�
i1=d

�
. On the other hand, since by Proposition 3 F (�; ca) =

F (c�; a) ; c > 0; we obtain that the space L (D) is isomorphic to the space
�(n) ('; g) with ' and g de�ned in (10) and (2). Since the space E1

�
i1=d

�
is contained in �(n) ('; g) as a basic subspace if d < n (what is the same, if
mes (�r � (D)) = 0) we obtain the following statement.

Proposition 5 Suppose D 2 Rn
o and '; g are de�ned in (10), (2) . Then A (D)

' �(n) ('; g) if mes (�r � (D)) = 0 and A (D) ' �(n) ('; g) � E1
��
i
1
n

��
,

otherwise:

Remark 6 The spaces �(n) ('; g)�E1
��
i
1
n

��
and �(n) ('; eg) are not quasi-

diagonally isomorphic for any functions g; eg, because the second space contains
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no basic subspace isomorphic to E1
��
i
1
n

��
. In fact, these spaces are not

isomorphic ([2]), but the proof of this fact is not the aim of the present paper.

Proposition 5 reduces Theorem 2 to the following more general result which
will be proved in section 4.

Theorem 7 Suppose g (�) ; eg (�) are two continuous functions on (0; 1] tending
to 1 as � ! 0; '; e' are mappings from N onto (0; 1] with equidistributed
values and � : [0; q] ! [0; 1], 0 < q < 1; is the continuous increasing function,
which satis�es the di¤erential equation (4) with the initial condition � (0) =
0. If the condition (5) holds, then the spaces �(n) ('; g) and �(n) (e'; eg) are
quasidiagonally isomorphic.

3 Main Lemma

Lemma 8 Let �, � be two functions from N to (0; 1] with equidistributed val-
ues. Let � : [0; 1] ! [0; 1] be an increasing continuous function, continuously
di¤erentiable on (0; 1]; such that � (0) = 0; � (1) = 1: Suppose that the condition
(5) is ful�lled with q = 1. Then there exists a bijection � : N ! N, satisfying

the conditions: (i) i � � (i) ; (ii ) � (� (ik))! � (a),
ik
� (ik)

! �
0
(a) for each

a 2 (0; 1] and any subsequence (ik) such that � (ik)! a :

Proof. First we set �(s)� :=
�

2s
; �(s)� := �

�
�
(s)
�

�
; � = 0; 2s; s 2 Z+. By (5) we

have
1

L
� d(s)� :=

�(s)� � �(s)��1
�
(s)
� � �(s)��1

� L; � = 1; 2s; s 2 N: (11)

Take any sequence "s # 0 with "1 � 1=6. Since the functions � and � are
equidistributed, for each s 2 N we �nd Ts such that for t � Ts; � = 1; 2s; s 2 N;
the counting functions n(s)� (t) :=

���ni � t : �(s)��1 < � (i) � �(s)� o���, m
(s)
� (t) :=���ni � t : �(s)��1 < � (i) � �(s)� o��� satisfy the estimates

t (1� "s)
�
�
(s)
� � �(s)��1

�
� n(s)� (t) � t (1 + "s)

�
�
(s)
� � �(s)��1

�
;

t (1� "s)
�
�(s)� � �(s)��1

�
� m(s)

� (t) � t (1 + "s)
�
�(s)� � �(s)��1

� (12)

Now introduce the setsN (s)
� =

n
i 2 N : �(s)��1 < � (i) � �

(s)
� ; as < i � as+1

o
, � =

1; 2s�1, s 2 Z+, where the sequence as is chosen so that

a0 = 0; 2LTs � as �
"s as+1
8L2

; s 2 N; (13)

and the setsM (s)
� =

n
i 2 N : �(s)��1 < � (i) � �

(s)
� ; b

(s)
�(�) < i � b

(s+1)
�

o
, � = 1; 2s�1,

s 2 Z+ where � (�) is equal to the integral part of
� + 1

2
and the parameters
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b
(0)
1 = 0; b

(s)
� ; � = 1; 2s�1, s 2 N; are chosen so that���N (s)

�

��� = ���M (s)
�

��� =: K (�; s) ; � = 1; 2s�1; s 2 Z+: (14)

Represent the sets N (s)
� , M (s)

� in the form of increasing �nite sequences: i(�;s)k

and j
(�;s)
k with k = 1;K (�; s) and construct the bijection � : N ! N by the

rule �
�
i
(�;s)
k

�
:= j

(�;s)
k , k = 1;K (�; s), � = 1; 2s�1, s 2 Z+. Let us show that

this is the desired mapping. Using (13), (14), (12), (11), one can easily check
by induction that

b(s)� � as
2L
; � = 1; 2s�1; s 2 N: (15)

Let us check the conditions (i); (ii). Setting rs :=
1 + "s
1� 2"s

; and applying (14),

(12), we obtain the inequalities

as

rs�1d
(s�1)
�(�)

� b(s)� � rs�1as

d
(s�1)
�(�)

; � = 1; 2s�1; s 2 N: (16)

The counting functions for the �nite sequences i(�;s)k and j
(�;s)
k ; k = 1;K (�; s)

can be written in the following form

p
(s)
� (t) = max

n
0;min

n
n
(s)
� (t)� n(s)� (as) ;K (�; s)

oo
q
(s)
� (t) = max

n
0;min

n
m
(s)
� (t)�m(s)

�

�
b
(s)
�(�)

�
;K (�; s)

oo (17)

Due to (17), (12), (16), we obtain, for as < t � as+1, the estimates

p
(s)
� (t) � ((1 + "s) t� (1� "s) as)

�
�
(s)
� � �(s)��1

�
�

0@ (1 + "s) t
d
(s)
�

�
(1� "s) b(s)�(�)d

(s�1)
�(�)

rs�1d
(s)
�

1A��(s)� � �(s)��1
�

� m
(s)
�

 
h
(s)
� t

d
(s)
�

!
�m(s)

�

�
b
(s)
�(�)

�
= q

(s)
�

 
h
(s)
� t

d
(s)
�

!
;

(18)

where

h(s)� =
(1 + "s) rs�1 + 2L

���(1� "s) d(s�1)�(�) � (1 + "s) rs�1d(s)�
���

(1� "s) rs�1d(s)�
: (19)

Analogously, we obtain the estimate:

q(s)� (t) � p(s)�
�
g(s)� d(s)� t

�
; (20)

with

g(s)� =
(1 + "s) rs�1d

(s�1)
�(�) d

(s)
� + 2L

���(1� "s) d(s)� � (1 + "s) rs�1d(s�1)�(�)

���
(1� "s) rs�1d(s�1)�(�)

: (21)
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By Lemma 4 and (18), (20) we have

i
(�;s)
k

g
(s)
�

� d(s)� j
(�;s)
k � h(s)� i

(�;s)
k (22)

for k = 1;K (�; s); � = 1; 2s�1; s 2 N. Taking into account (11), the de�nitions
of the numbers h(s)� and g(s)� and (22), we obtain that there is a constant M
independent of � and s such that p(s)� (t) � q(s)� (Mt), q(s)� (t) � p(s)� (Mt), t >
0:Thus, the mapping � : N ! N is constructed so that the condition (i) is
ful�lled.
It remains to check the condition (ii). Take any subsequence (in) such that

� (in) ! a 2 (0; 1]: For every n we �nd s = s (n) ; � = � (n) and k = k (n)

such that in = i
(�(n);s(n))
k(n) 2 N (s(n))

�(n) :Then �
(s(n))
�(n)�1 < � (in) � �

(s(n))
�(n) and �(s(n))�(n)

! a:By the construction, � (in) 2 M (s(n))
�(n) ; therefore �

(s(n))
�(n)�1 < � (� (in)) �

�
(s(n))
�(n) : Hence, by smoothness of �, we have

lim
n!1

� (� (in)) = � (a) ; lim
n!1

d
(s(n))
�(n) = lim

n!1
d
(s(n)�1)
&(�(n)) = �0 (a) : (23)

Then, taking into account (19), (21), (23), we conclude that lim
n!1

h
(s(n))
�(n) =

lim
n!1

g
(s(n))
�(n) = 1:Combining this with (22), (23), we obtain that i(�(n);s(n))k(n) �

�0 (a) j
(�(n);s(n))
k(n) : Hence the condition (ii) is also proved. The proof is complete.

4 Proof of Theorem 7

Lemma 9 Let ', e' be two functions from N to (0; 1] with equidistributed values
and g : (0; 1] ! R+ a decreasing continuous function such that g (�) ! +1 as

� ! 0: Then �(n) ('; g) = F
�
g (' (i)) ;

�
i
1
n

��
is quasidiagonally isomorphic to

�(n) (e'; g) = F �g (e' (i)) ;�i 1n�� :
Proof. Assume that the mapping � in Lemma 8 is the identity. Then the
bijection � : N ! N; constructed there, satis�es the condition i � � (i) and
for any subsequence ik such that ' (ik) ! � 6= 0 the conditions e' (� (ik)) ! �
and ik � � (ik) hold. Then, by Proposition 3, the operator T : �(n) ('; g) !
�(n) (e'; g) de�ned by Tei = e�(i); i 2 N; is a required isomorphism.
Proof of Theorem 7. By Lemma 9, we assume that e' = '. Let us in-
troduce the functions G (�) :=

R �
0

d�
(g(�))n ,

eG (�) := R �
0

d�
(eg(�))n and choose

q 2 (0; 1) so that G (q) < eG (1). Then eq := eG�1 (G (q)) < 1 and the function
� := eG�1 � G : [0; q] �! [0; eq] is continuous on [0; q], continuously di¤eren-
tiable on (0; q] and satis�es the equation (4) and the condition � (0) = 0. We
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extend the function � to a bijection of the interval [0; 1] onto itself preserving
continuous di¤erentiability and denote this mapping by the same symbol �.
The constructed mapping meets the conditions of Lemma 8, hence there is a
bijection � : N ! N satisfying the conditions (i), (ii) of this lemma. Applying
Proposition 3, one can easily check that a required isomorphism can be realized
as the quasidiagonal operator de�ned by Tei := e�(i) for 0 < ' (i) � q; and by
Tei :=

�
exp

�
g (' (i)) i1=n � eg (' (� (i)))� (� (i))1=n � e�(i) for the rest of i�s.
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