A Simple, Fast, and Effective Heuristic for the
Single-Machine Total Weighted Tardiness Problem

Halil Sen, Kerem Biilbiil

Sabanci University, Manufacturing Systems and Industrial Engineering, istanbul, Turkey
halilsen, bulbul@sabanciuniv.edu

Keywords: Preemptive relaxation, transportation problem, nested schedule.

1 Introduction

We consider the single-machine total weighted tardiness problem (TWT) where a set
of n jobs with general weights wi,...,w,, integer processing times pi, ..., p,, and integer
due dates dy,...,d, has to be scheduled non-preemptively. If C; is the completion time
of job j then T; = max (0, C; —d;) denotes the tardiness of this job. The objective is
to find a schedule Sjj, that minimizes the weighted sum of the tardiness costs of all jobs
computed as 37, w;T;. This problem is known to be unary A"P-hard. Our goal is to design
a constructive heuristic for this problem that yields excellent feasible solutions in short
computational times by exploiting the structural properties of a preemptive relaxation.

Although the initial studies on TWT were conducted more than five decades ago,
e.g., by McNaughton (1959), the topic is still challenging for ongoing research. Studies
related to this topic cover both exact algorithms and heuristics. At present, the best exact
algorithm is the SSDP algorithm of Tanaka, Fujikuma and Araki (2009); they are able to
solve up to 300-job instances in 350 seconds on average and standard benchmark instances
with 100 jobs are solved to optimality in an average of 6.42 seconds with a maximum
of 39 seconds. In the domain of heuristics, the best contender is the iterated generalized
pairwise interchange based dynasearch (GPI-DS) of Grosso, Croce and Tadei (2004). GPI-
DS identifies the optimal solutions of 100-job instances in an average of 0.11 seconds with
a maximum of 3.91 seconds.

We first develop a family of preemptive lower bounds for TWT and explore its structural
properties. Then, we show that the solution corresponding to the least tight lower bound
among those investigated features some desirable properties that can be exploited to build
excellent feasible solutions to the original non-preemptive problem in short computational
times. The aim is to develop a non-parametric, easy to implement, constructive heuristic
which is fast, efficient and can form a basis for local search heuristics. Moreover, the
structure of the preemptive relaxation allows us to obtain several non-preemptive solutions
starting from the same preemptive solution. Thus, we reckon that our approach may be
employed to form an initial solution pool for population-based metaheuristics. We present
results on standard benchmark instances from the literature.

2 Proposed Algorithm

McNaughton (1959, in Theorem 2.2) shows that preemption in the classical sense, which
allows that a job is split into any number of parts of arbitrary length and only penalizes the
tardiness of the last part of the job, results in a problem as hard as TWT. However, if we
prescribe that jobs may only be preempted at integer points in time by breaking a job j into
p; unit-jobs, and then assign a tardiness cost to the completion time of each unit-job, then
this preemptive relaxation of TWT boils down to a transportation problem (TR). The size
of TR is pseudo-polynomial because we have P = 2?21 p; unit-jobs; however, in practice

transportation problems can be solved very efficiently. Similar preemptive lower bounds
were proposed for the single-machine earliness/tardiness problem by Biilbiil, Kaminsky
and Yano (2007), Sourd and Kedad-Sidhoum (2003).

In the presentation below, a feasible solution (schedule) of the transportation problem is
denoted by Str, where an optimal solution is marked by an * in the superscript. Str(t),t =
1,..., P, represents the job processed in period ¢ and j(t1,t2) is the ordered set of all time
periods t1 <t <t so that Str(t) = j.

Definition 1. A job j is said to be preempted by job k at time t1, if there exist two time
periods t1 and ty such that 1 <t; <ty < P, Str(t1) =7, Str(t2) =k, | j(t1 +1,t2—1) |=
0, and | j(ta + 1,P) |> 1. A feasible schedule Str for TR is said to be preemptive, if it
contains at least one preempted job.

In other words, if at least one unit-job of job k appears between two successive unit-jobs
of job j, then job k is said to preempt job j. Under this definition, job k& may preempt job
7 even if these two jobs are never processed in two adjacent time slots.

p1 =4

Fig. 1. Structure of preemptions

Our solution approach relies on the idea that the second type of preemptive relaxation
of TWT as discussed above has some desirable properties. Both schedules in Fig. 1 are
preemptive but the schedule in Fig. 1(b) has a special structure which can be useful for
building non-preemptive schedules easily. In the schedule in Fig. 1(a) job 1 preempts job
2 and then gets preempted by job 2. On the contrary, in the other schedule a job does
not resume processing until the job that preempts it completes processing. Preemptive
schedules with this property are called as “nested”. To ensure that the set of optimal
solutions of TR includes at least one nested schedule, the objective function cost coefficients
in the TR problem must be set diligently.

2.1 Cost Coefficients in the Transportation Problem

When we study the structure of the preemptions in an optimal solution of TR, we
observe that a job with a higher priority may preempt jobs with lower priority. This priority
is determined by the cost coefficients of the unit-jobs in TR.

To obtain a nested structure similar to that in Fig. 1(b), we need to determine ap-
propriate objective coefficients in TR. Since preemption is related to the priority between
two jobs, we have to select the cost coefficients in such a way that, a lower priority job is
preempted by a higher priority job at most once. This property can be ensured by selecting
cost coefficients that lie on a piecewise linear convex function with a single breakpoint.

The idea underlying our proposed cost structure is intuitive. Each unit-duration portion
of a job j has a cost coefficient proportional to the ratio of the unit tardiness weight of job j
to its processing time. That is, a unit-job of job j processed during the time interval (¢t — 1, ¢]
incurs a cost of c;¢ = 7‘:—]7 max (0,¢ — d;). The proof that the optimal solution of TR with
these coefficients provides a lower bound on the optimal objective function value of TWT
is provided by Sen (2010, in Theorem 3.4). Alternate cost coeflicients were proposed by
Biilbiil et. al. (2007), Sourd and Kedad-Sidhoum (2003). While these coefficients generally
result in tighter lower bounds from TR, the set of optimal solutions may not contain any
nested solution in these cases. Details are provided by Sen (2010).

2.2 Nesting Algorithm (NA)

In this section, we present the Nesting Algorithm. Sen (2010, in Lemma 3.5) shows that
it converts any feasible schedule Str of TR into a feasible schedule St with no larger
cost. Moreover, NA constructs a nested optimal schedule S%; when applied to any optimal
schedule Sty (Sen 2010, in Theorem 3.10). A direct corollary of this result is that there
exists a nested optimal solution to TR under our cost coefficients.

di do:

JB

succ

= {1,2}

Fig. 2. Nesting algorithm

NA performs two types of tasks for each job j. First, it rearranges the current schedule
so that the unit-jobs of job j succeed all unit-jobs of the jobs with no larger due dates over
the time periods 1,...,d; (Sen 2010, in steps 3-11 of Algorithm 1). We denote this set of
jobs by JJ,.. = {k| k < j}, where we assume that the jobs are sorted and re-labeled in
non-decreasing order of their due dates in the rest of our presentation. Second, we define
Jee = {K| ;j—j > 2t U{k < %’ = o2}, and NA ensures that the unit-jobs of the
jobs in J7,.. appear following all unit-jobs of job j over the time periods d; +1,..., P
(Sen 2010, in steps 12-20 of Algorithm 1). When applied to the optimal solution in Fig.
1(a), NA takes no action for the first job. In the iteration for job 2, the unit-jobs of jobs
1 and 2 are re-arranged over the first four time periods as required (see Fig. 2(a)). In the
last iteration, the schedule is updated so that the unit-jobs of job 3 precede those of 1 and

2 from period ds + 1 onward (see Fig. 2(b)).

2.3 Non-preemptive Heuristic (NPH)

A nested schedule may be denoted by a parentheses structure, where an opening and a
closing parenthesis precede and succeed the first and last unit-jobs of a job, respectively. For
instance, the representation of the schedule in Fig. 2(b)is (1 (2 (3)2) 1). “Parenthesis
77 refers to the partial schedule marked by the first and last unit-jobs of job j.

(T e s -5 [ETEE [e - o

(a) (b)

-2|2|2|1|1|1|1‘TWT:40 2|22 1| 1|1 |l7wrT =40
(c) (d)
Fig. 3. Non-preemptive heuristic

In its basic form, when NPH detects a preempted job j, then it either schedules all
unit-jobs of job j contiguously to either precede or follow all other unit jobs in parenthesis
j. For each of these options, we sequence jobs in non-decreasing order of the completion
times of their last unit-jobs, construct a non-preemptive schedule, and compute the total
weighted tardiness. NPH continues iterating starting from the better alternative until it
eventually provides us with a non-preemptive schedule. In Fig. 3, NPH is applied to the
nested schedule in Fig. 2(b). For the preempted job 1, the two options are depicted in
Fig. 3(a)-3(b). Starting from the better preemptive schedule in Fig. 3(b), NPH forms
the two alternatives in Fig. 3(c)-3(d) for job 2 and terminates with two non-preemptive
schedules with a total weighted tardiness of 40. Clearly, NPH may be embedded into a tree
search leading to several non-preemptive solutions starting from a single nested preemptive

solution. Thus, it may be employed to form an initial population in metaheuristics.

3 Computational Results and Discussion

In order to evaluate the performance of the proposed constructive heuristic, we solved
the standard benchmark instances in the OR-Library! and the instances that were gen-
erated by Tanaka et. al. (2009)2. The algorithms were implemented in C++ using CPLEX
12.1 Concert Technology. The runs were performed on a single core of a Windows PC with
a 2.33 GHz Intel Core2 Quad CPU and 3.46 GB RAM.

For each setting of the number of jobs n, we report the average performance measures
over 125 instances in Table 1. The corresponding worst, case figures appear in parentheses.
The column “# Opt.” indicates the number of optimal solutions identified by NPH. The
number of instances with optimality gaps larger than 1% and 10% appear in the last two
columns, respectively.

Table 1. Summary of the results

n CPU time* # Opt. %Gap # %Gap
TR NA NPH NPH TR NPH >1% >10%
40" 0.5 (0.9) 0.005 (0.016) 0.001 (0.016) 54 -14 (-96) 1.20 (42) 14 5
507 0.7 (1.3) 0.009 (0.016) 0.002 (0.032) 47 -13 (-98) 0.42 (13) 9 1
1001 3 (6.3) 0.047 (0.079) 0.010 (0.188) 40 -10 (-99) 0.21(8) 4 0
150° 12 (20) 0.127 (0.188) 0.051 (0.500) 38 -8 (-91) 0.58 (56) 4 1
2001 23 (41) 0.259 (0.407) 0.143 (1.750) 34 -7(-98)0.30 (13) 4 1
250! 48 (101) 0.440 (0.656) 0.175 (2.391) 35 -6 (-95) 043 (41) 4 1
300 78 (154) 0.712 (1.047) 0.348 (4.031) 28 -6 (-91)0.58 (28) 5 3

*: In seconds. ': OR-Library. *: Tanaka et. al. (2009).

The average optimality gap of NPH is less than 1% across the board except for n = 40.
From the last two columns, we conclude that our solution approach consistently provides
excellent feasible solutions. Instances for which the performance is less than stellar are quite
few. The striking fact is that these non-preemptive solutions are obtained from relatively
poor lower bounds. One potential issue is that the CPU times increase rapidly with more
jobs and longer processing times. We revisit this issue further below.

For benchmarking purposes, we also implemented the dynasearch algorithm GPI-DS
by Grosso et. al. (2004) mentioned in Section 1. In Table 2, we report the performance
measures for GPI-DS on the same set instances as in Table 1. We did not have access
to the original code by Grosso et. al. (2004), and the results in Table 2 are based on
our own implementation and may differ slightly from those in the original paper. GPI-
DS incorporates randomness, and it was run on each instance 15 times independently. In
column “# of Tter.”, we specify the iteration limit for GPI-DS, and in the next column “#
of Opt.” we report the number of optimal solutions identified for 125 instances averaged
over 15 sets of runs. Columns 4-7 of Table 2 present statistics on the optimality gaps and
the total solution times. The average/maximum number of iterations performed and the
average/maximum time elapsed until the best solution is identified during the execution
of GPI-DS appear in the last four columns.

The results in Table 2 attest to the excellent performance of GPI-DS. Up until 150
jobs, it almost always provides an optimal solution very quickly. For larger n, the solution
quality diminishes a little, and the solution times increase rapidly. In general, we observe
that GPI-DS yields better results compared to our algorithm. However, this should not

! http://people.brunel.ac.uk/ mastjjb/jeb/info.html
2 http://turbine.kuee.kyoto-u.ac. jp/ tanaka/SiPS/SiPS.html

Table 2. Results of iterated GPI-DS

Best

of % Gap Total CPU Time* Tter. # CPU Time*
n Iter. Opt. Mean Max Mean Max Mean Max Mean Max
40T 200 125.0 0 0 0.19 0.30 2.8 177 0.003 0.20
507 450 125.0 0 0 0.74 1.08 5.2 252 0.009 0.27
100" 500 124.9 2.8E-06 0.005 4.85 7.66 143 395 0.179 5.16
150% 500 124.5 3.1E-04 0.537 14.80 23.97 31.8 487 1.225 22.31
200% 500 119.5 2.8E-02 12.698 33.12 54.53 58.6 498 5.133 49.52
250% 500 115.2 2.3E-02 40.972 62.83 99.78 78.4 499 13.286 95.99

300* 500 111.9 1.1E-03 0.157 106.49 177.30 88.9 498 25.611 167.52

*: In seconds. ': OR-Library. ¥: Tanaka et. al. (2009).

be held against our constructive algorithm for several reasons. First, observe that solving
TR amounts to 98% of our solution time on average. Therefore, the focus of our ongoing
research is on developing a scalable special-purpose algorithm for TR that exploits the
structure in the cost matrix. We reckon that the solution time of TR can be slashed to a
large extent which would render our algorithm significantly more competitive. (See Sourd
and Kedad-Sidhoum (2003) for a similar effort for the single-machine earliness/tardiness
problem.) Then, it would also be conceivable to feed our solution into GPI-DS - or into
any other iterative heuristic for that matter - as the initial feasible solution to enhance
performance. Second, our approach is very simple to implement compared to sophisticated
local search heuristics and provides very good results except in a few cases. Third, the
structural properties that we reveal for the preemptive relaxation may pave the way for
further research. In particular, we note that the parentheses structure of a nested preemp-
tive schedule corresponds to a time-based decomposition of the original instance. It may be
possible to exploit this decomposition to limit the search effort in local search heuristics.

References

Biilbiil K., P. Kaminsky and C. Yano, 2007, “Preemption in single machine earliness/tardiness
scheduling”, Journal of Scheduling, Vol. 10(4-5), pp. 271-292.

Grosso A., F. D. Croce and R. Tadei, 2004, “An enhanced dynasearch neighborhood for the single-
machine total weighted tardiness scheduling problem”, O. R. Letters, Vol. 32(1), pp. 68-72.

McNaughton R., 1959, Scheduling with deadlines and loss functions”, Management Science,
Vol. 6(1), pp- 1-12.

Sen H., 2010, A simple, fast, and effective heuristic for the single-machine total weighted tardiness
problem, Master’s thesis, Sabanci University.

Sourd F. and S. Kedad-Sidhoum, 2003, “The one-machine problem with earliness and tardiness
penalties”, Journal of Scheduling, Vol. 6(6), pp. 533-549.

Tanaka S., S. Fujikuma and M. Araki, 2009, “An exact algorithm for single-machine scheduling
without machine idle time”, Journal of Scheduling, Vol. 12(6), pp. 575-593.

