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Abstract: In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied

to a general class of large-scale linear programming problems. These problems typically arise in the context of

linear programming formulations with exponentially many variables. The defining property for these formulations

is a set of linking constraints, which are either too many to be included in the formulation directly, or the full

set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence

between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows.

To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient

solution approach. We emphasize that the generated rows are structural constraints and distinguish our work

from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed

column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-

dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail

a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This

is followed by a formal discussion on the optimality of the algorithm. To illustrate our approach, the paper is

concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering

problems.

Keywords: linear programming; column generation; column-and-row generation; row-and-column generation;

pricing subproblem; multi-stage cutting stock; quadratic set covering; column-dependent-rows.

1. Introduction. Column generation is a well-known method to solve large-scale linear program-

ming (LP) problems, pioneered by Dantzig and Wolfe (1960) and Gilmore and Gomory (1961) among

others. It is frequently employed to solve the LP relaxation of mixed integer programming problems with

exponentially many variables. Some applications of column generation to integer programming prob-

lems include Desrochers et al. (1992), Desaulniers et al. (1997), Savelsbergh (1997), Barahona and Jensen

(1998), Gamache et al. (1999), Vanderbeck (1999), and Akker et al. (1999). In such large-scale LPs the

vast majority of the variables is zero at optimality, and thus the fundamental concept underlying column

generation is to initialize the LP with a small set of columns, referred to as the restricted master problem,

and then add new columns as required. This is accomplished iteratively by solving a pricing subproblem

(PSP) following each optimization of the restricted master problem. In the PSP, the reduced cost of a

column is minimized over the set of all columns, and upon solving PSP we either add a new column

to the restricted master problem with a negative reduced cost (for minimization) or prove optimality.

We refer to Desaulniers et al. (2005) and Lübbecke and Desrosiers (2005) for comprehensive surveys on
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column generation.

One of the pillars of the classical column generation framework is that the constraints in the master

problem are all known explicitly. In this case, the number of rows in the restricted master problem is fixed,

and complete dual information is supplied to the PSP from the restricted master problem, which allows

us to compute the reduced cost of a column in the subproblem accurately. While this framework has

been used successfully for solving a large number of problems over the years, it does not fit applications

in which missing columns induce new linking constraints to be added to the restricted master problem.

To motivate the discussion, consider a quadratic set covering model, where the binary variable yk is

set to 1, if column k is selected (see for example Saxena and Arora (1997); Bazaraa and Goode (1975)).

We compute the total contribution from columns k and l as ckyk + clyl + cklykyl, where ck and cl

are the individual contributions from columns k and l, respectively, and ckl captures the cross-effect of

having columns k and l simultaneously in the solution. A common linearization followed by relaxing the

integrality constraints would lead to the large-scale LP below:

minimize . . .+ ckyk + clyl + cklxkl + . . .

subject to . . .

yk + yl − xkl ≤ 1, yk − xkl ≥ 0, yl − xkl ≥ 0, (1)

0 ≤ yk, yl, xkl ≤ 1,

. . .

Note that this model contains three linking constraints for each pair of y−variables, and a large number

of y−variables in an instance would prevent us from including all rows in the restricted master problem a

priori. Thus, in this case both rows and columns need to be generated on-the-fly as required. Constraints

of type (1) not present in the current restricted master problem may lead to two issues. First, primal

feasibility may be violated with respect to the missing constraints. In order to address this issue, we

should presumably add variable xkl to the restricted master problem along with one of the variables yk

or yl. Second, the reduced costs of the variables may be computed incorrectly in the PSP because no

dual information associated with the missing constraints is passed from the restricted master problem

to the PSP. For instance, assume that yk is already a part of the restricted master problem, while yl,

xkl, and the linking constraints (1) are absent from it. In this case, the PSP for yl must anticipate the

values of the dual variables associated with the missing constraints (1); otherwise, the reduced cost of yl

is calculated incorrectly. Thus, we conclude that in order to design a column generation algorithm for

this particular linearization of the quadratic set covering problem, we need a subproblem definition that

allows us to generate several variables and their associated linking constraints simultaneously by correctly

estimating the dual values of the missing linking constraints. Later in the paper, we define precisely how

we handle both of these issues formally and also provide illustrative examples. Note that this type of

dependence between columns can be generalized if several columns interact simultaneously and would

lead to a similar problem that grows both column- and row-wise.

The discussion in the preceding paragraph points to a major difficulty in column generation if the

number of rows in the restricted master problem depends on the number of columns. We refer to such

formulations as problems with column-dependent-rows, or briefly as CDR-problems. We emphasize that

the solution of a CDR-problem is based on simultaneous column-and-row generation, and this is fun-
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damentally different than a branch-and-cut-and-price algorithm that strengthens LP relaxations in a

search tree by valid inequalities before applying column generation. We will elaborate on this impor-

tant distinction further in Section 2.2 when we position our work with respect to the existing litera-

ture and refer to Desaulniers et al. (2011) and Desrosiers and Lübbecke (2011) for the use of cutting

planes in a branch-and-price setting. Furthermore, recent studies by Frangioni and Gendron (2010) and

Sadykov and Vanderbeck (2011a,b) develop generic column-and-row generation frameworks as well. The

main differences between these works and ours are also detailed in Section 2.2.

We have two main objectives and contributions in this paper. First, we develop a generic mathematical

model for CDR-problems and argue that several important applications and formulations in the literature

are captured by this model. Second, we propose a solution methodology for our generic model. The

cornerstone of our approach is a subproblem definition that can simultaneously generate new columns as

well as new structural constraints that are no longer redundant in the presence of these new columns.

This is in marked contrast to traditional column generation, where all structural constraints are added

to the restricted master problem at the outset. We also provide two detailed examples that illustrate our

proposed modeling and solution methodology.

In the next section, we introduce our generic model, define the underlying assumptions, and motivate

it by demonstrating that the multi-stage cutting stock (MSCS) and the quadratic set covering (QSC)

problems may be formulated within this framework. After reviewing the related literature in Section 2.2,

we develop our proposed generic column-and-row generation algorithm for CDR-problems in Section 3.

This is followed by the applications of the proposed method to the MSCS and QSC problems in Section

4. An extension is discussed in Section 5. We conclude and point out potential research directions in

Section 6.

2. CDR-Problems. In this section, we first specify the canonical form of the generic mathematical

model representing the class of CDR-problems that we consider, and then, discuss the assumptions

underlying our modeling and solution framework. We next briefly describe the MSCS and QSC problems

and demonstrate that both of these problems satisfy our assumptions and may be formulated according

to this generic model. These two problems are selected for their different characteristics that help us

illustrate the different features and aspects of our proposed solution method. We mention other CDR-

problems that fit into the proposed scheme while discussing the related literature in Section 2.2. The

generic mathematical formulation of CDR-problems appears below, and we refer to it as the master

problem, following the common terminology in column generation:

(MP) minimize
∑

k∈K

ckyk+
∑

n∈N

dnxn,

subject to
∑

k∈K

Ajkyk ≥ aj , j ∈ J, (MP-y)

∑

n∈N

Bmnxn ≥bm, m ∈M, (MP-x)

∑

k∈K

Cikyk+
∑

n∈N

Dinxn ≥ ri, i ∈ I, (MP-yx)

yk ≥ 0, k ∈ K, xn ≥ 0, n ∈ N.

There may be exponentially many y− and x− variables in the formulation above, and we allow both
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types of variables to be generated in a column generation algorithm applied to solve the master problem.

We assume that the set of constraints (MP-y) and (MP-x) are known explicitly and their cardinality is

polynomially bounded in the size of the problem. On the other hand, a complete description of the set

of linking constraints (MP-yx) may not be available. If this is the case, we may have to generate all y−

and x− variables in the worst case to identify all linking constraints in a column generation algorithm.

The discussion on a robust crew pairing problem studied by Muter et al. (2010b) in Section 2.2 provides

an example for this case. Even if all linking constraints (MP-yx) are known explicitly a priori, there may

be exponentially many of them. For instance, in the QSC example introduced in the previous section

each pair of variables induces three linking constraints in the linearized formulation, and incorporating

all O(| K |2) linking constraints in the formulation directly is not a viable alternative for large | K |.

Based on the discussion in the preceding paragraph, the column-and-row generation algorithm for

solving the master problem is initialized with subsets K̄ ⊂ K and N̄ ⊂ N . The resulting model is

(SRMP) minimize
∑

k∈K̄

ckyk+
∑

n∈N̄

dnxn,

subject to
∑

k∈K̄

Ajkyk ≥ aj , j ∈ J, (SRMP-y)

∑

n∈N̄

Bmnxn ≥bm, m ∈M, (SRMP-x)

∑

k∈K̄

Cikyk+
∑

n∈N̄

Dinxn ≥ ri, i ∈ I(K̄, N̄), (SRMP-yx)

yk ≥ 0, k ∈ K̄, xn ≥ 0, n ∈ N̄ ,

where I(K̄, N̄) ⊂ I in (SRMP-yx) denotes the set of linking constraints formed by {yk|k ∈ K̄}, and

{xn|n ∈ N̄}. During the column generation phase, new variables {yk|k ∈ SK} and {xn|n ∈ SN}, where

SK ⊆ (K \ K̄) and SN ⊆ (N \ N̄), are added to the restricted master problem iteratively as required

as a result of solving different types of PSPs which we discuss in depth in Section 3. Moreover, these

new variables may appear in new linking constraints currently absent from the restricted master problem,

where the set of these new linking constraints is represented by ∆(SK , SN ) = I(K̄∪SK , N̄∪SN )\I(K̄, N̄).

Thus, the restricted master problem grows both vertically and horizontally during column generation, and

due to this special structure we refer to the restricted master problem in our column-and-row generation

algorithm as the short restricted master problem (SRMP).

Three main assumptions characterize the type of problems that fit into our generic model and that

we can tackle by our proposed solution methodology. In the next section, we argue that all of these

assumptions hold for our two illustrative CDR-problems; QSC and MSCS. Moreover, in Section 2.2 we

consider other problems from the literature for which it is trivial to check that these assumptions also

apply. The first assumption implies that the generation of the x−variables depends on the generation of

the y−variables. Moreover, each x−variable is associated with only one set of linking constraints.

Assumption 2.1 The generation of a new set of variables {yk|k ∈ SK} prompts the generation of a new

set of variables {xn|n ∈ SN (SK)}. Furthermore, a variable xn′ , n′ ∈ SN (SK), does not appear in any

linking constraints other than those indexed by ∆(SK , SN (SK)) and introduced to the SRMP along with

{yk|k ∈ SK} and {xn|n ∈ SN (SK)}.

Note that the dependence of N̄ on K̄ is designated by the index set SN (SK). In the remainder of



Muter, Birbil, and Bülbül: Linear Programs with Column-Dependent-Rows
Sabancı University, c©September 16, 2012 5

the paper, we will use the shorthand notation ∆(SK) instead of ∆(SK , SN (SK)) whenever there is no

ambiguity.

The next assumption requires the definition of a minimal variable set. A minimal variable set is a set

of y−variables that triggers the generation of a set of x−variables and the associated linking constraints

in the sense of Assumption 2.1. In the QSC formulation in Section 1, a minimal variable set given by

{yk, yl} consists of the variables yk and yl and generates a set of linking constraints of type (1) and

the variable xkl. We also note that in our subsequent discussion, we shall see that there may be several

minimal variable sets associated with a set of linking constraints. Thus, we state the following assumption

for the general case.

Assumption 2.2 A linking constraint is redundant until all variables in at least one of the minimal

variable sets associated with this linking constraint are added to the SRMP.

This assumption implies that a feasible solution of SRMP does not violate any missing linking constraint

before all variables in at least one of the associated minimal variable sets are added to the SRMP.

Assumptions 2.1 and 2.2 together define the goal of the fundamental subproblem in our proposed

column-and-row generation approach. The objective of the row-generating PSP derived in Section 3 is to

identify one or several minimal variable sets, where each minimal variable set {yk|k ∈ SK} yields a set

of variables {xn|n ∈ SN (SK)}. These two sets of variables appear in a set of linking constraints indexed

by ∆(SK) currently not present in the SRMP, and we are also required to add these constraints to the

SRMP to avoid violating the primal feasibility of the master problem (MP). Thus, for each new minimal

variable set {yk|k ∈ SK} to be introduced into the SRMP as an output of the row-generating PSP, the

index sets defining SRMP are updated as K̄ ← K̄ ∪ SK , N̄ ← N̄ ∪ SN (SK), and a new set of constraints

∆(SK) appear in the SRMP. Clearly, at least one of the currently generated y−variables must have a

negative reduced cost.

The next assumption characterizes the signs of the coefficients in the linking constraints.

Assumption 2.3 Suppose that we are given a minimal variable set {yl|l ∈ SK} that generates a set of

linking constraints ∆(SK) and a set of associated x−variables {xn|n ∈ SN (SK)}. When the set of linking

constraints ∆(SK) is first introduced into the SRMP during the column-and-row generation, then for each

k ∈ SK there exists a constraint i ∈ ∆(SK) of the form

Cikyk +
∑

n∈SN (SK)

Dinxn ≥ 0, (2)

where Cik > 0 and Din < 0 for all n ∈ SN (SK).

Assumption 2.3 ensures that a variable xn, n ∈ SN (SK), cannot assume a positive value until all variables

in at least one of the minimal variable sets that generate ∆(SK) are positive in the SRMP. In addition,

we emphasize that although we use (2) throughout this paper, our analysis is also valid when a constraint

of type (2) is given in a disaggregated form like

Cikyk +Dinxn ≥ 0, n ∈ SN (SK).

Furthermore, linking constraints of type (2) may be specified as equalities in some CDR-problems. This

case may also be handled with minor modifications to the analysis in Section 3. For ease of exposition,

we omit the equality case and refer to Muter et al. (2010a) for details.
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We further classify CDR-problems as CDR-problems with interaction and CDR-problems with no in-

teraction. This distinction between two problem types plays an important role in our analysis.

Definition 2.1 In a CDR-problem with interaction, the cardinality of any minimal variable set is larger

than one. On the other hand, if each minimal variable set is a singleton, then the corresponding problem

belongs to the class of CDR-problems with no interaction.

Differentiating between CDR-problems with and with no interaction allows us to focus on the unique

properties of these two types that affect the analysis of the row-generating PSP in Section 3. However, it

is possible to combine the tools developed in this paper to tackle CDR-problems in which some minimal

variable sets are singletons while others include more than one variable. This extension is discussed in

Section 5.

2.1 Illustrative Examples. In the one-dimensional multi-stage cutting stock (MSCS) problem,

operational restrictions impose that stock rolls are cut into finished rolls in more than one stage. (See

Haessler (1971); Ferreira et al. (1990); Zak (2002a,b).) The objective is to minimize the number of

stock rolls used for satisfying the demand for finished rolls, and appropriate cutting patterns need to be

identified for each stage in the cutting process. We restrict our attention to the two-stage cutting stock

problem similar to the study by Zak (2002b). In the first stage, a stock roll is cut into intermediate

rolls, while finished rolls are produced from these intermediate rolls in the second stage. If we ignore the

integrality restrictions, then the LP model for the MSCS problem is given by

minimize
∑

k∈K

yk, (3)

subject to
∑

n∈N

Bmnxn ≥bm, m ∈M, (4)

∑

k∈K

Cikyk+
∑

n∈N

Dinxn ≥ 0, i ∈ I, (5)

yk ≥ 0, k ∈ K, xn ≥ 0, n ∈ N, (6)

where the set of intermediate and finished rolls are denoted by I and M , respectively. The set of cutting

patterns K for the first stage constitute the columns of C. Similarly, the columns of B are formed by the

set of cutting patterns N for the second stage. The matrix D establishes the relationship between the

cutting patterns in the first and the second stages. A single non-zero entry Din = −1 in column n of D

indicates that the cutting pattern n for the second stage is cut from the intermediate roll i. Constraints (4)

ensure that the demand for finished rolls given by the vector b is satisfied, and constraints (5) impose that

the consumption of the intermediate rolls does not exceed their production. The objective is to minimize

the total number of stock rolls required. Clearly, this problem is a special case of the generic model (MP),

where A, a, d, and r are zero, and c is a vector of all ones. In general, there may be exponentially many

feasible cutting patterns in both stages, which prompts us to develop a column generation algorithm for

solving this formulation. The challenging issue is that each generated cutting pattern for the first stage,

which includes an intermediate roll currently absent from the restricted master problem, adds one more

constraint to the model. Thus, the restricted master problem grows both horizontally and vertically

and exhibits the structure of a CDR-problem. MSCS satisfies Assumption 2.1 because a cutting pattern

for the second stage based on an intermediate roll i cannot be generated unless there exists at least
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one cutting pattern for the first stage that includes this intermediate roll i. Moreover, the associated

linking constraint is redundant in this case as required by Assumption 2.2, and any cutting pattern for

the first stage that contains a currently absent intermediate roll i constitutes a minimal variable set for

the corresponding linking constraint. The last assumption does also hold because the linking constraint

corresponding to a currently absent intermediate roll is of the form (2). We conclude that MSCS belongs

to the class of CDR-problems with no interaction. Our proposed solution method will be applied to

MSCS in Section 4.1.

In the QSC problem, the objective is to cover all items j ∈ J by the sets k ∈ K at minimum total

cost. In addition to the sum of the individual costs of the sets, we also incorporate a cross-effect between

each pair of sets k, l ∈ K which results in a quadratic objective function. Bazaraa and Goode (1975) and

Saxena and Arora (1997) study this problem. QSC is formulated as

minimize y⊺Fy,

subject to Ay ≥ 1,

y ∈ {0, 1}|K|,

where A is a binary | J | × | K | matrix of set memberships, and F is a symmetric positive semidefinite

| K | × | K | cost matrix. To linearize the objective function, we add a binary variable xkl for each pair

of sets k, l ∈ K. A set of linking constraints mandates that xkl = 1 if and only if yk = yl = 1. Relaxing

the integrality restrictions leads to the following linear program:

minimize
∑

k∈K

fkkyk +
∑

(k,l)∈P,k<l

2fklxkl, (7)

subject to
∑

k∈K

Ajkyk ≥ 1, j ∈ J, (8)

yk + yl − xkl ≤ 1, (k, l) ∈ P, k < l, (9)

yk − xkl ≥ 0, (k, l) ∈ P, k < l, (10)

yl − xkl ≥ 0, (k, l) ∈ P, k < l, (11)

yk ≥ 0, k ∈ K, (12)

xkl ≥ 0, (k, l) ∈ P, k < l, (13)

where P := K × K is the set of all possible pairs, and Ajk = 1, if item j is covered by set k; and

0, otherwise. The first set of constraints is the coverage constraints and the remaining are the linking

constraints. This problem is a special case of the generic model (MP) with both B and b equal to zero,

and a is a vector of ones. The vector of cost coefficients c and d in (MP) are formed by the diagonal and

off-diagonal entries of the cost matrix F , respectively. To solve this formulation by column generation, we

select a subset of the columns from K and the associated linking constraints to form the initial SRMP. If

a new variable, say yk, enters SRMP, a set of linking constraints and x−variables for each pair (k, l) with

l ∈ K̄ are also added. We note that the variable xkl and the set of linking constraints yk + yl − xkl ≤ 1,

yk − xkl ≥ 0, and yl − xkl ≥ 0 are redundant until both of the variables yk and yl are part of the SRMP.

Thus, the minimal variable set {yk, yl} allows us to generate xkl and the constraints that relate these

three variables. We arrive at the conclusion that QSC is a CDR-problem with interaction that satisfies

both Assumptions 2.1 and 2.2 stipulated previously. Moreover, the set of linking constraints induced by
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any minimal variable set SK = {yk, yl} conforms to the characterization in Assumption 2.3 because the

constraints (10) and (11) are of the form (2). In Section 4.2, we show that our proposed solution method

for CDR-problems can handle the formulation (7)-(13).

For some problems, the linking constraints (9)-(11) may be formed by a strict subset P̄ of the set of

all possible pairs P . If in addition an explicit complete description of P̄ is not available a priori before

invoking a column generation algorithm, then we refer to these problems as QSC with restricted pairs (see

also the discussion in the paragraph immediately following the statement of problem (MP).) Typically,

in QSC problems with restricted pairs the generation of the pairs that belong to P̄ requires a call to an

oracle. One example is studied by Muter et al. (2010b) discussed in the next section.

2.2 Related Literature. The literature on the CDR-problems is somewhat limited. In this section,

we discuss the existing work in the literature and position our contributions. When it comes to the

CDR-problems mentioned in this section, it is relatively easy to check that these problems satisfy our

assumptions. Therefore, the proposed column-and-row generation algorithm indeed provides a generic

approach to solve these problems.

To the best of our knowledge, the first column-and-row generation algorithm as we consider here was

devised by Zak (2002b), who tries to solve a one-dimensional MSCS problem that was introduced in

Section 2.1. In his column-and-row generation algorithm, Zak (2002b) defines three types of PSPs. The

first PSP looks for a new first-stage cutting pattern, which only includes the intermediate rolls that

are already present in the restricted master problem. In the second PSP, the objective is to identify

new cutting patterns for the second stage based on the currently existing intermediate rolls. Both of

these PSPs are classical knapsack problems. The final PSP considers the possibility of generating both

new intermediate rolls and related cutting patterns simultaneously and results in a difficult nonlinear

integer programming problem. This subproblem is solved heuristically under a restrictive assumption

which dictates that only one new intermediate roll can be generated at each iteration. Thus, the solution

method of Zak (2002b) may terminate prematurely at a suboptimal solution which is verified by applying

our proposed solution method to an instance provided by Zak (2002a). This is discussed in Muter

(2011). A two-stage batch scheduling problem that is structurally similar to MSCS is formulated by

Wang and Tang (2010). The proposed column-and-row generation algorithm suffers from an analogous

restrictive assumption.

Avella et al. (2006) study a time-constrained routing (TCR) problem motivated by an application

that needs to schedule the visit of a tourist to a given geographical area as efficiently as possible in order

to maximize her total satisfaction. The goal is to send the tourist on one tour during each day in the

vacation period while ensuring that each attraction site is visited no more than once. This problem is

formulated as a set packing problem with side constraints and solved heuristically by a column-and-row

generation approach due to a potentially huge number of tours. The authors enumerate and store a

large number of tours before invoking their column generation algorithm. The SRMP for solving the LP

relaxation of the proposed formulation is initialized with a subset of the enumerated tours. A selected

tour must be assigned to one of the days in the vacation period. Each generated tour during the column

generation procedure introduces a set of variables and leads to a new linking constraint in the SRMP.

The authors define an optimality condition for terminating their column generation algorithm based on

the dual variables of the constraints in the current SRMP. Following each optimization of the SRMP,
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this condition is verified for each tour currently absent from the SRMP; i.e., no PSP is required. In

Muter et al. (2010a), we demonstrate that this stopping condition fails to account for the dual variables

of the missing linking constraints properly and may lead to a suboptimal LP solution at termination.

Avella et al. (2007) propose a branch-and-cut-and-price algorithm for the well-known P-median prob-

lem. In their formulation, a set of binary variables indicate the set of selected median nodes, and binary

assignment variables designate the median node assigned to each node in the network. These two types

of binary variables are linked by variable upper bound constraints. One of the main contributions of

the authors is a column-and-row generation method for solving the LP relaxation of this formulation.

The algorithm is invoked with a subset of the assignment variables and additional ones are generated

as necessary. The generation of each assignment variable leads to a single new linking constraint added

to the SRMP for primal feasibility, and the dual variable associated with this linking constraint is cal-

culated correctly a priori due to the special structure of the formulation and incorporated directly into

the reduced cost calculations. No PSP is required because all potential assignment variables are known

explicitly. Similar to the formulation in the previous work of these authors on the TCR problem, we

note that the P-median formulation investigated in Avella et al. (2007) is a special case of our generic

formulation (MP) and can be handled by our proposed solution methodology.

Muter et al. (2010b) study a robust airline crew pairing problem for managing extra flights with the

objective of hedging against a certain type of operational disruption by incorporating robustness into the

pairings generated at the planning level. In particular, they address how a set of extra flights may be

added into the flight schedule at the time of operation by modifying the pairings at hand and without

delaying or canceling the existing flights in the schedule. Essentially, this is accomplished in two different

ways. An extra flight may either be inserted into an existing pairing with ample connection time (a

type-B solution) or the schedules of a pair of pairings are partially swapped to cover an extra flight while

ensuring the feasibility of these two pairings before and after the swap (a type-A solution). In the latter

case, there is a benefit of having a pair of pairings in the solution simultaneously. However, an additional

complicating factor is that the set of type-A solutions and the associated linking constraints are not

known explicitly. This is akin to the MSCS problem, where the set of intermediate rolls is not available

a priori. Ultimately, the mathematical model proposed by Muter et al. (2010b) boils down to a QSC

problem with restricted pairs and side constraints. The model is linearized by the same approach as that

in (7)-(13) for the QSC problem. Muter et al. (2010b) devise a heuristic two-phase iterative column-and-

row generation strategy to solve the LP relaxation of their master problem. In the first phase, the number

of constraints in the SRMP is fixed and column generation is applied in a classical manner. Then, in

the second phase additional type-A solutions are identified based on the pairings generated during the

last call to the column generation with a fixed number of constraints, and the associated constraints are

added to the SRMP before the next iteration of the algorithm resumes. We note that the problem in

Muter et al. (2010b) is a CDR-problem and can be handled by the proposed methodology in this paper.

In a recent work by Feillet et al. (2010), the optimality conditions for column-and-row generation are

analyzed for two sample problems; the split delivery vehicle routing problem and the service network

design problem for an urban rapid transit system. The authors claim that there is no simple rule to

construct an optimal solution and thus, one has to define specifically how to proceed for every application

case. Our work, however, does state a generic model and characterizes the type of problems that can
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be solved by column-and-row generation including those discussed by Feillet et al. (2010). Besides, we

also propose an associated solution framework to design a column-and-row generation algorithm for

CDR-problems.

Column-and-row generation (or row-and-column generation) is a term without a widely-agreed precise

definition. Therefore, we conclude this section by distinguishing our work from others, who use the

same term in a different context. For instance, Katayama et al. (2009) consider the multi-commodity

capacitated network design problem and employ a column-and-row generation algorithm. In this case, the

rows that are added to the formulation are valid inequalities that strengthen the LP relaxation in line with

the general branch-and-cut-and-price paradigm (see Desaulniers et al. (2011); Desrosiers and Lübbecke

(2011)). This is very different than our framework for CDR-problems, in which generated rows are

structural constraints that are required for the validity of the formulation. Furthermore, as pointed

out by Frangioni and Gendron (2009) the column-and-row generation subproblems in the branch-and-

cut-and-price context are either independent from each other or generated columns introduce new cuts

with trivial separation problems. For a CDR-problem, the situation is completely different as we study

thoroughly in the next section.

In two recent related lines of studies, Frangioni and Gendron (2010) and Sadykov and Vanderbeck

(2011a,b) establish generic column-and-row generation frameworks for problems that exhibit a decom-

posable structure. The decomposition may result from a Dantzig-Wolfe reformulation (DWR) or it may

be obtained through other means, e.g., by disaggregating a general integer variable into a sum of binary

ones as in the multiple choice formulation of the multi-commodity capacitated network design problem

in Frangioni and Gendron (2009). Both the Structured Dantzig-Wolfe Decomposition (SDW) method

by Frangioni and Gendron (2010) and the Column Generation for Extended Formulations (CGEF) ap-

proach by Sadykov and Vanderbeck (2011b) are able to generate structural constraints on the fly as in

this paper. The column-and-row generation algorithm introduced in Frangioni and Gendron (2009) for

the multi-commodity capacitated network design problem is a special case of the generic frameworks

SDW and CGEF and is further studied in Frangioni and Gendron (2010) and Sadykov and Vanderbeck

(2011b). Moreover, this problem also conforms to the structure of a CDR-problem.

SDW and CGEF dualize a set of “complicating” constraints in the original formulation to set up a

Lagrangian subproblem. Both approaches require a full knowledge of the subproblem polyhedron to solve

the problem exactly. This information must either be available through a full description of the polyhe-

dron in the original space of the variables or a compact reformulation, which helps the computational

efficiency of the column-and-row generation algorithm. As long as a full description of the subproblem

is available, only the dual variables associated with the “complicating” constraints factor into the sub-

problem objectives. The dual variables associated with the constraints generated on-the-fly as well as

those associated with the constraints currently absent from the restricted master problem can therefore

be safely ignored without compromising the correctness of the proposed column-and-row generation al-

gorithms in both studies. If some of the variables with a positive value in the optimal solution of the

subproblem are missing from the current restricted master problem, then they are incorporated along

with their relevant constraints. In case the master formulation is based on an alternate reformulation

of the subproblem polyhedron, but the subproblem is solved in the original space of the variables, the

availability of a mapping that transforms a subproblem solution in the original space of the variables to a
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solution in the reformulated space is required to augment the restricted master problem with new columns

and their associated rows. We also note that when SDW and CGEF are applied to a problem amenable

to a DWR with alternate subproblem reformulations, both methods subsume the classical DWR as a

special case.

The generic mathematical model of CDR-problems is a special case of the generic formulations given

in Frangioni and Gendron (2010) and Sadykov and Vanderbeck (2011b) obtained through trivial refor-

mulations of the subproblem polyhedra. In this sense, SDW and CGEF are more general; however, their

practical relevance for solving CDR-problems is currently limited. For instance, QSC may be put into

these frameworks by dualizing the constraints (8) and setting up the subproblem with the constraints

(9)-(13). Note that the subproblem features no decomposable structure and no obvious reformulation. In

this case, one is better off solving the LP formulation (7)-(13) directly instead of solving a large subprob-

lem repeatedly. For MSCS, the main obstacle in applying SDW or CGEF is the lack of a full description

of the subproblem. We consider (4) to be the set of complicating constraints, and the subproblem con-

tains one constraint per intermediate roll i ∈ I. Clearly, enumerating the complete set of intermediate

rolls I explicitly may not be practical, and the subproblem has to be formulated with a strict subset

of the set of all constraints. If constraints are missing in the subproblem, then one needs to be able to

calculate the optimal values of the dual variables associated with the missing constraints a priori and

incorporate them into the subproblem definition to solve the problem exactly. (This is precisely what we

accomplish for CDR-problems as detailed in the next section.) Otherwise, we cannot guarantee that all

variables are priced out correctly in the subproblem. This is the main issue that prevents us from being

able to solve MSCS by a direct application of SDW or CGEF. One potential remedy here would be to

identify a reformulation that would entail a full description of the subproblem polyhedron. Perhaps a

more promising approach is to recognize that the subproblems resulting from applying SDW or CGEF

to CDR-problems are CDR-problems themselves. In other words, embedding our methodology in this

paper into the column generation schemes of SDW and CGEF - which are different than traditional

column generation based on variable pricing - for the purpose of solving the Lagrangian subproblem of a

CDR-problem may hold potential.

As a final note, we point out that the class of CDR-problems captures many interesting applications

as discussed in this section; however, CDR-problems are based on a more specific structure than those

required by SDW or CGEF. For instance, the machine scheduling example in Sadykov and Vanderbeck

(2011b) does not fulfill the requirements of Assumptions 2.1-2.3 and cannot be handled by our framework.

Our work develops a column-and-row generation algorithm to solve any LP that satisfies these three

assumptions and requires anticipating the correct values of the dual variables of the missing linking

constraints in the SRMP through a row-generating PSP. This is the focal point of the analysis in the

next section.

3. Proposed Solution Method. In this section, we develop a generic column-and-row generation

algorithm that can handle all CDR-problems presented so far, including our prototype examples QSC

and MSCS as well as those mentioned in Section 2.2. First, we discuss the rationale of the proposed

algorithm at a higher level without going into the details of the specific PSPs, and then analyze each type

of subproblem separately. We devote most of the discussion to the row-generating PSP. We conclude this

section with a proof of optimality of the proposed algorithm before the mechanics of the algorithm is
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illustrated on the MSCS and QSC problems in Section 4.

For ease of exposition, we next state the dual of (MP):

(DMP) maximize
∑

j∈J

ajuj+
∑

m∈M

bmvm+
∑

i∈I

riwi,

subject to
∑

j∈J

Ajkuj +
∑

i∈I

Cikwi ≤ ck, k ∈ K, (DMP-y)

∑

m∈M

Bmnvm+
∑

i∈I

Dinwi ≤dn, n ∈ N, (DMP-x)

uj ≥ 0, j ∈ J, vm ≥ 0,m ∈M, wi ≥ 0, i ∈ I,

where u, v, and w denote the dual variables associated with the sets of constraints (MP-y), (MP-x), and

(MP-yx), respectively.

As discussed in Section 1, the traditional column generation framework operates under the assumption

that the number of constraints in the restricted master problem stays constant throughout the algorithm

and all corresponding dual variables are known explicitly. This property is violated for CDR-problems,

where generated columns introduce new constraints into the SRMP, and we need a new set of tools to

solve these problems by column generation. In Section 1, we argued that the constraints missing in the

SRMP may lead to a premature termination, if classical column generation is applied to the SRMP of a

CDR-problem naively. To motivate our solution method and demonstrate our point formally, consider a

set of variables {yk|k ∈ SK}, currently not present in the SRMP, and assume that adding these variables

to the SRMP would also require adding a set of constraints ∆(SK). Based on (DMP-y), the reduced cost

c̄k of yk, k ∈ SK , is then given by

c̄k = ck −
∑

j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi −
∑

i∈∆(SK)

Cikwi, (14)

and ignoring the dual variables {wi|i ∈ ∆(SK)} could result in

c̄k < 0 ≤ ck −
∑

j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi. (15)

In this case, we fail to detect that yk prices out favorably. Avella et al. (2006) commit such an error as

discussed in depth by Muter et al. (2010a).

An overview of the proposed column-and-row generation algorithm is depicted in Figure 1. The y−

and x−PSPs search for new y− and x− variables, respectively, under the assumption that these variables

price out favorably with respect to the current set of rows in the SRMP. The y−PSP may also incidentally

induce new linking constraints as we explain in the next section. On the other hand, the row-generating

PSP identifies at least one y−variable with a negative reduced cost, only if a set of new linking constraints

and related x−variables are added to the SRMP. We note that not all CDR-problems give rise to all

three PSPs as we discuss separately in the context of each PSP in the sequel. Theoretically, the order of

invoking these subproblems does not matter; however, solving the row-generating PSP turns out to be

computationally the most expensive in general. Therefore, we adopt the convention illustrated in Figure

1. The algorithm commences by calling the y−PSP repeatedly as long as new y−variables are generated,

and then invokes the x−PSP in a similar manner. Finally, the row-generating PSP is called, if we can no

longer generate y− or x− variables given the current set of constraints in the SRMP. Observe that we

return to the y−PSP after solving a series of x− or row-generating PSPs because the dual variables in
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Figure 1: The flow of the proposed column-and-row-generation algorithm.

the y−PSP are modified. The proposed column-and-row generation algorithm terminates, if solving the

y−, x−, and the row-generating PSPs consecutively in a single pass does not yield a negatively priced

column (only when FLAG=0 in Figure 1). Next, we investigate each PSP in detail.

3.1 y−Pricing Subproblem. This subproblem checks the feasibility of the dual constraints

(DMP-y) using the values of the known dual variables. The objective is to determine a variable yk,

k ∈ (K \ K̄) with a negative reduced cost. The y−PSP is stated as

ζy = mink∈(K\K̄) {ck −
∑

j∈J Ajkuj −
∑

i∈I(K̄,N̄) Cikwi}, (16)

where the dual variables {uj |j ∈ J} and {wi|i ∈ I(K̄, N̄)} are obtained from the optimal solution of the

current SRMP. If ζy is nonnegative, we move to the next subproblem. Otherwise, there exists yk with

c̄k < 0, and SRMP grows by a single variable by setting K̄ ← K̄ ∪ {k}. For example, a column-and-row

generation algorithm for the problems MSCS and QSC with restricted pairs requires this PSP.

At this point we note that whenever a column yk with a negative reduced cost is generated, one or

several minimal variable sets may be coincidentally completed by the introduction of this new variable.

Consequently, it may become necessary, particularly for CDR-problems with interaction, to add the

associated sets of linking constraints as well as the x−variables to the SRMP before re-invoking the

y−PSP. For MSCS, this subproblem generates a cutting pattern for the first stage composed of the

existing intermediate rolls only. Hence, no new linking constraint can be added. However, consider the

QSC problem with restricted pairs and a pair of columns yk and yl, where (k, l) ∈ P̄ . When the y−PSP

generates yk, the associated column yl may already be present in the SRMP. This would then require
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augmenting the problem with new constraints of type (9)-(11). Ultimately, when the y−PSP is unable

to produce any more new columns, it is guaranteed that all linking constraints, which are induced by

the minimal variable sets that are currently in the SRMP, are already generated. Although the y−PSP

may yield new sets of linking constraints, we stress that it differs fundamentally from the row-generating

PSP. In the former case, new linking constraints are only a by-product of the newly generated columns.

However, the latter problem is solved with the sole purpose of identifying new linking constraints that

help us price out additional y−variables which otherwise possess nonnegative reduced costs.

3.2 x−Pricing Subproblem. This subproblem attempts to generate a new x−variable by identi-

fying a violated constraint (DMP-x) and assumes that the number of constraints in the SRMP is fixed.

Recall from our previous discussion that no new linking constraint may be induced in the SRMP without

generating new y−variables in the proposed column-and-row generation algorithm; that is, ∆(∅) = ∅ for

this PSP (see also Assumption 2.1). Thus, all dual variables that appear in this PSP are known explicitly.

The x−PSP is then simply given by

ζx = minn∈NK̄
{dn −

∑

m∈M Bmnvm −
∑

i∈I(K̄,N̄) Dinwi}, (17)

where the dual variables {vm|m ∈ M} and {wi|i ∈ I(K̄, N̄)} are retrieved from the optimal solution

of the current SRMP. In order to introduce a new variable xn into the SRMP, we require that at least

one associated minimal set of variables {yk|k ∈ SK} is already present in the model; that is, SK ⊆ K̄.

Consequently, the search for xn with a negative reduced cost in this PSP is restricted to the set NK̄ ⊆ N ,

where NK̄ is the index set of all x−variables that may be induced by the set of variables {yk|k ∈ K̄}

in the current SRMP. We update N̄ ← N̄ ∪ {n} if ζx < 0, i.e., if the x−PSP determines a variable

xn, n ∈ NK̄ that prices out favorably. Otherwise, the column-and-row generation algorithm continues

with the appropriate subproblem dictated by the flow of the algorithm in Figure 1. In the MSCS

problem, the x−PSP identifies cutting patterns for the second stage that only consume intermediate

rolls that are produced by the cutting patterns for the first stage in the current SRMP. This PSP is not

needed in a column-and-row generation algorithm for QSC-type problems because the x−variables in the

corresponding formulations are auxiliary and are only added to the SRMP along with a set of new linking

constraints induced by a set of new y−variables.

3.3 Row-Generating Pricing Subproblem. Note that before invoking the row-generating PSP,

we always ensure that no negatively priced variables exist with respect to the current set of constraints

in the SRMP (see Figure 1). Therefore, the objective of this PSP is to identify new columns that price

out favorably only after adding new linking constraints currently absent from the SRMP. The primary

challenge here is to properly account for the values of the dual variables of the missing constraints, and

thus be able to determine which linking constraints should be added to the SRMP together with a set

of variables. Demonstrating that this task can be accomplished implicitly is a fundamental contribution

of the proposed solution framework. Under the assumptions for CDR-problems stated in Section 2,

we can correctly anticipate the optimal values of the dual variables of the missing constraints without

actually introducing them into the SRMP first, and this thinking-ahead approach enables us to calculate

all reduced costs correctly in our column-and-row generation algorithm for CDR-problems. Furthermore,

recall that Assumption 2.3 stipulates that a variable xn that appears in a new linking constraint cannot

assume a positive value unless all y−variables in an associated minimal variable set are positive. Thus,
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while we generate x− and y−variables simultaneously in this PSP along with a set of linking constraints,

the ultimate goal is to generate at least one y−variable with a negative reduced cost. We formalize these

concepts later in the discussion.

In the context of the row-generating PSP, we need to distinguish between CDR-problems with and

with no interaction as specified in Definition 2.1. For CDR-problems with no interaction, a single variable

yk, k /∈ K̄, may induce one or several new linking constraints. For instance, in the MSCS problem a cutting

pattern yk, k /∈ K̄, for the first stage leads to one new linking constraint per intermediate roll that it

includes and is currently missing in the SRMP. Thus, all linking constraints that are required in the

SRMP to decrease the reduced cost of yk below zero may be directly induced by adding yk to the SRMP.

However, in CDR-problems with interaction no single variable yk induces a set of new linking constraints,

and the row-generating PSP must be capable of identifying one or several minimal variable sets, each with

a cardinality larger than one, to add to the SRMP so that yk prices out favorably in the presence of these

one or several new sets of linking constraints. To illustrate this point for QSC, assume that the reduced

cost of yk, k /∈ K̄, is positive if we only consider the minimal variable sets of the form {yk, yl}, l ∈ K̄.

However, the reduced cost of yk may turn negative if it is generated along with yl′ , l
′ /∈ K̄. In this case,

{yk, yl′} is a separate minimal variable set that introduces an additional set of linking constraints of the

form (9)-(11) into the SRMP.

Summarizing, the optimal solution of the row-generating PSP is a family Fk of index sets Sk
K , where

each element Sk
K ∈ Fk is associated with a minimal variable set {yl|l ∈ Sk

K}, and k in the superscript

of the index set Sk
K denotes that yk ∈ {yl|l ∈ Sk

K}. Consequently, Fk is an element of the power set

Pk of the set composed by the index sets of the minimal variable sets containing yk. If the reduced

cost c̄k corresponding to the optimal family Fk is negative, then SRMP grows both horizontally and

vertically with the addition of the variables {yl|l ∈ Σk}, {xn|n ∈ SN (Σk)}, and the set of linking

constraints ∆(Σk), where Σk = ∪Sk

K
∈Fk

Sk
K denotes the index set of all y−variables introduced to the

SRMP along with yk. In the following discussion, SRMP(K̄, N̄ , I(K̄, N̄)) refers to the current SRMP

formed by {yk|k ∈ K̄}, {xn|n ∈ N̄}, and the set of linking constraints I(K̄, N̄) in addition to the

structural constraints (SRMP-y)-(SRMP-x). Consequently, the outcome of the row-generating PSP is

represented as SRMP(K̄ ∪ Σk, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)). In Table 1, we summarize our notation

required for a detailed analysis of the row-generating PSP in the sequel.

A further distinction between CDR-problems with and with no interaction needs to be clarified before

we delve into the mechanics of the row-generating PSP. The oracle that solves the row-generating PSP

yields a family Fk –along with an associated index set Σk– so that c̄k < 0, if SRMP grows as specified

above. For CDR-problems with no interaction, the optimal family of index sets reduces to a singleton,

i.e., Fk = {{k}} and Σk = {k}. Furthermore, we must have k /∈ K̄; otherwise, c̄k ≥ 0 would hold because

k ∈ K̄ implies SN ({k}) ⊆ N̄ and ∆({k}) ⊆ I(K̄, N̄), and the current SRMP would have been solved to

optimality with all constraints relevant for yk. On the other hand, for CDR-problems with interaction

there may exist an l ∈ Σk with l ∈ K̄.

As explained previously, the minimal variable set {yl|l ∈ SK} introduces ∆(SK). In general, this

relationship is not one-to-one; that is, yk may appear in several sets of linking constraints, and the same

set of linking constraints may be induced by several different minimal variable sets. To illustrate in the

context of MSCS, if the intermediate rolls i, j and i, h appear in the first-stage cutting patterns k and l,
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Table 1: Notation for the analysis of the row-generating PSP.

SK the index set of a minimal variable set {yl|l ∈ SK}.

Sk
K index k denotes that yk is a member of the minimal variable set {yl|l ∈ Sk

K}.

SN (SK) the index set of the x−variables induced by {yl|l ∈ SK}.

∆(SK) the index set of the linking constraints induced by {yl|l ∈ SK}.

Pk the power set of the set composed by the index sets of the minimal

variable sets containing yk.

Fk a family of the index sets of the minimal variable sets of the form

Sk
K , i.e., Fk ∈ Pk.

Σk = ∪Sk

K
∈Fk

Sk
K .

SRMP(K̄, N̄ , I(K̄, N̄)) the current SRMP formed by {yk|k ∈ K̄}, {xn|n ∈ N̄}, and the set of

linking constraints I(K̄, N̄) in addition to (SRMP-y)-(SRMP-x).

respectively, then we have {({k}, {i}), ({k}, {j}), ({l}, {i}), ({l}, {h})}, where a pair (SK ,∆(SK)) specifies

that the minimal variable set {yl|l ∈ SK} introduces ∆(SK). Therefore, {yk} and {yl} are the minimal

variable sets for the sets of linking constraints {i, j} and {i, h}, respectively, and the linking constraint i

may be induced by both {yk} and {yl}. In contrast, for the QSC problem, each set of linking constraints

of the form (9)-(11) is introduced to the SRMP by a unique minimal variable set {yk, yl}, and we have

({k, l}, {i1, i2, i3}), where i1, i2, i3, are the indices of the associated linking constraints.

In general, adding new constraints and variables to an LP may destroy both the primal and the dual

feasibility. In our case, Assumption 2.2 guarantees that the primal feasibility is preserved. Therefore,

the goal of our analysis is to attach a correct set of values to each variable wi, i ∈ ∆(Σk), and thus be

able to calculate the reduced costs of yk and {xn|n ∈ SN (Σk)} to be inserted into the SRMP correctly.

In particular, the ensuing analysis computes the optimal values of {wi|i ∈ ∆(Σk)} without solving the

SRMP explicitly under the presence of the currently missing associated set of linking constraints ∆(Σk).

Moreover, it also guarantees that the optimal values of the dual variables {uj |j ∈ J}, {vm|m ∈ M},

and {wi|i ∈ I(K̄, N̄)} retrieved from the optimal solution of the current SRMP would remain optimal

with respect to the SRMP augmented with the set of linking constraints ∆(Σk) and {xn|SN (Σk)}. These

properties, stated formally in Corollary 3.1a-b, are key to the correctness of the proposed column-and-row

generation algorithm. Then, for any given yk, an associated Fk, and Sk
K ∈ Fk, we have

c̄k = ck −
∑

j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi −
∑

i∈∆(Σk)

Cikwi, (18)

d̄n = dn −
∑

m∈M

Bmnvm −
∑

i∈I(K̄,N̄)

Dinwi −
∑

i∈∆(Σk)

Dinwi (19)

= dn −
∑

m∈M

Bmnvm −
∑

i∈∆(Sk

K
)

Dinwi, (20)

where c̄k and d̄n are the reduced costs for yk and xn, n ∈ SN (Sk
K), respectively. The simplification of

expression (19) to (20) follows from Assumption 2.1 which states that an x−variable appears in no more

than one set of linking constraints. To reiterate, in (18)-(20) the values of the dual variables {uj |j ∈ J},

{vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)} are retrieved from the optimal solution of the current SRMP, and
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{wi|i ∈ ∆(Σk)} are unknown. Next, we introduce a series of conditions imposed on the reduced costs (20)

as well as on the unknown dual variables {wi|i ∈ ∆(Σk)} which ultimately leads to the formulation of the

row-generating PSP. In this discussion, we also present how we can obtain a valid starting basis for the

next optimization of the SRMP given that it is augmented by the variables {yl|l ∈ Σk}, {xn|n ∈ SN (Σk)},

and the set of linking constraints ∆(Σk).

Suppose that for a given Fk and a set of associated dual variables {wi|i ∈ ∆(Σk)} we have c̄k ≥ 0 and

d̄n′ < 0 for some n′ ∈ SN (Sk
K) with Sk

K ∈ Fk. Hence, {yl|l ∈ Σk}, {xn|n ∈ SN (Σk)}, and the set of linking

constraints ∆(Σk) are added to the SRMP. This implies that xn′ is eligible to enter the basis during the

next iteration of solving the SRMP. However, this basis update would only result in a degenerate simplex

iteration as the value of xn′ is forced to zero in the basis by Assumption 2.3. That is, there exists a

nonbasic variable yl, l ∈ Sk
K , such that an associated constraint (2) is introduced into the SRMP. Note

that the existence of such a nonbasic variable is guaranteed because Sk
K 6⊆ K̄. In order to avoid this type

of degeneracy, we require that d̄n ≥ 0 holds for all n ∈ SN (Sk
K) and for each Sk

K ∈ Fk while determining

the values of {wi|i ∈ ∆(Σk)}. In other words, we impose the following set of constraints:

∑

m∈M

Bmnvm +
∑

i∈∆(Sk

K
)

Dinwi ≤ dn, n ∈ SN (Sk
K), Sk

K ∈ Fk. (21)

We underline that our proposed approach goes beyond the classical LP sensitivity analysis that would

augment the basis with the surplus variables in the new linking constraints and then proceed to repair

the infeasibility in the constraints (21). This is because setting wi = 0, i ∈ Sk
K , Sk

K ∈ Fk may violate

(21). Therefore, incorporating these constraints directly into the row-generating PSP may be regarded

as a look-ahead feature. A further critical observation is that constraints (21) exhibit a block-diagonal

structure. Given the optimal solution of the current SRMP, the first term on the left hand side of (21)

is a constant for all n, and hence, we have

∑

i∈∆(Sk

K
)

Dinwi ≤ dn −
∑

m∈M

Bmnvm, n ∈ SN (Sk
K), Sk

K ∈ Fk, (22)

which exposes the block-diagonal structure. The dual variables {wi|i ∈ ∆(Sk
K)} do not factor into the

reduced costs of any x−variables, except for {xn|n ∈ SN (Sk
K)}. Thus, the task of determining the values

of {wi|i ∈ ∆(Σk)} decomposes, and this property is also exploited in our analysis. We next show that

enforcing the set of constraints (21) in the row-generating PSP does not change the minimum value of c̄k

and hence imposing (21) does not affect the correctness of the column-and-row generation procedure.

Lemma 3.1 For a given k, an associated Fk, and Sk
K ∈ Fk, imposing (21) on the set of unknown dual

variables {wi|i ∈ ∆(Sk
K)} while solving the row-generating PSP does not increase the minimum value of

c̄k.

Proof. This result stems directly from Assumption 2.3 which states that there always exists a linking

constraint i′ ∈ ∆(Sk
K) of the form (2) such that Ci′k > 0 and Di′n < 0 for all n ∈ SN (Sk

K). Coupling this

with wi ≥ 0, i ∈ ∆(Sk
K) as required by the (DMP), we conclude that increasing wi′ increases the reduced

cost d̄n given in (20) for all {xn|n ∈ SN (Sk
K)} while reducing c̄k in (18). Thus, (21) is always satisfied

for the minimum value of c̄k. �

From the discussion so far it is evident that the row-generating PSP must provide us with a variable

yk and an associated family of index sets Fk so that the reduced cost c̄k as defined in (18) is negative.
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Thus, for a given variable yk we need to select a subset Fk ∈ Pk so that c̄k is minimized. During

this optimization we must prescribe that the values determined for the unknown set of dual variables

{wi|i ∈ ∆(Sk
K)} satisfy the conditions set forth in (21) for each Sk

K ∈ Fk. These arguments prompt us

to pose the row-generating PSP as a two-stage optimization problem. In the first stage, we formulate

and solve the problem of finding the minimum reduced cost for a given yk as a subset selection problem.

For any given Fk ∈ Pk, the problem of computing the optimal values of {wi|i ∈ ∆(Σk)} decomposes

into finding the optimal values of {wi|i ∈ ∆(Sk
K)} for each Sk

K ∈ Fk. In the second stage, we pick the

y−variable with the most negative minimum reduced cost. We stop solving the row-generating PSP and

proceed according to Figure 1 if the minimum reduced cost is nonnegative for all yk, k ∈ (K \ K̄).

The only missing piece in the approach described in the preceding paragraph is computing a

valid reduced cost for yk for a given Fk without changing the reduced costs of the variables in

SRMP(K̄, N̄ , I(K̄, N̄)). This task is accomplished by showing that the optimal solution of the row-

generating PSP corresponds to an implicit construction of a basic optimal solution to SRMP(K̄, N̄ ∪

SN (Σk), I(K̄, N̄) ∪ ∆(Σk)) that allows us to correctly price out {yl|l ∈ Σk}. In particular, we prove

that the optimal values of the dual variables {uj |j ∈ J}, {vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)} in

SRMP(K̄, N̄ , I(K̄, N̄)) are identical to those in SRMP(K̄, N̄ ∪SN (Σk), I(K̄, N̄)∪∆(Σk)), and the values

set for {wi|i ∈ ∆(Σk)} in the row-generating PSP are optimal for SRMP(K̄, N̄∪SN (Σk), I(K̄, N̄)∪∆(Σk))

as stated in Corollary 3.1a-b. In addition, it turns out that we have Cilwi = 0 for a variable yl, l ∈ K̄

and for i ∈ ∆(Σk). In other words, a y−variable that currently exists in the SRMP does not appear in a

new linking constraint with a positive dual variable, and this property guarantees that the reduced costs

of {yl|l ∈ K̄} are identical with respect to the optimal dual solutions of both SRMP(K̄, N̄ , I(K̄, N̄)) and

SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)) as stated in Corollary 3.1c.

To explain the construction of an optimal basis for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪ ∆(Σk)) based

on the solution of the row-generating PSP, suppose that we are given a specific Fk. We introduce

{xn|n ∈ SN (Σk)} and a set of new linking constraints ∆(Σk) into SRMP(K̄, N̄ , I(K̄, N̄)) to obtain

SRMP(K̄, N̄ ∪SN (Σk), I(K̄, N̄)∪∆(Σk)). Warm starting the primal simplex method for this new SRMP

would require us to augment the optimal basis of SRMP(K̄, N̄ , I(K̄, N̄)) with | ∆(Σk) | new basic

variables associated with the new set of linking constraints. To ensure complementary slackness, we

determine the values of {wi|i ∈ ∆(Σk)} such that the number of linearly independent active constraints

among wi ≥ 0, i ∈ ∆(Σk) and (22) is at least | ∆(Σk) |. This restriction is directly added to the

definition of the row-generating PSP specified below. A tight constraint of the form (22) prescribes

adding the corresponding x−variable to the basis, while wi = 0 implies that the basis is extended by the

corresponding primal surplus variable. In addition, in order to ensure that Cilwi = 0 for i ∈ ∆(Σk) and

for {yl|l ∈ K̄} as discussed before, we only allow wi > 0 if constraint i ∈ ∆(Sk
K) is of the form (2) as

specified in Assumption 2.3 with Cik > 0. Clearly, such a constraint does not include a variable yl, l ∈ K̄.

The index set of constraints ∆(Sk
K) of the form (2) with Cik > 0 is represented by ∆+(S

k
K), and the

complement of this set is denoted by ∆0(S
k
K) = ∆(Sk

K)\∆+(S
k
K). Thus, we always pick a surplus variable

as basic for a constraint i ∈ ∆0(S
k
K) for all Sk

K ∈ Fk. For the other new linking constraints, we either

designate an x− or a surplus variable as basic. In Lemma 3.3, we first prove that the augmentation

prescribed by the row-generating PSP is a valid basis for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪ ∆(Σk)),

and then in Lemma 3.4, we prove that it is optimal. In particular, the values of the dual variables
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{wi|i ∈ ∆(Σk)} set as described turn out to be optimal for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)) as

formalized in Corollary 3.1b. The row-generating PSP is then stated as:

ζyx = min
k∈(K\K̄)







ck −
∑

j∈J

Ajkuj −
∑

i∈I(K̄,N̄)

Cikwi − max
Fk∈Pk





∑

Sk

K
∈Fk

αSk

K











, where (23)

αSk

K

=maximize
∑

i∈∆(Sk

K
)

Cikwi, (24a)

subject to
∑

i∈∆(Sk

K
)

Dinwi ≤ dn −
∑

m∈M

Bmnvm, n ∈ SN (Sk
K), (24b)

wi = 0, i ∈ ∆0(S
k
K), (24c)

wi ≥ 0, i ∈ ∆+(S
k
K), (24d)

|∆(Sk
K)| many linearly independent tight constraints among (24b)-(24d). (24e)

The fundamental property of this formulation is that we solve (24) independently for each Sk
K ∈ Fk

which allows us to calculate the minimum reduced cost of yk efficiently. This decomposition relies on the

block-diagonal structure previously discussed in the context of (22) and is exemplified in Section 4 when

our generic methodology is applied to the MSCS and QSC problems. A potential source of difficulty is

the constraint (24e) which mandates that the search for an optimal solution of (24) is restricted to the

set of extreme points of the polyhedron described by (24b)-(24d). Without this restriction, the problem

(24a)-(24d) is unbounded by a similar argument to that used in the proof of Lemma 3.1. Fortunately, in

many cases (24) is amenable to simple solution approaches. This is illustrated on the MSCS and QSC

problems in Section 4.

In summary, suppose that solving the row-generating PSP (23)-(24) results in c̄k = ζyx < 0 and

an associated family of index sets Fk. Then, SRMP(K̄, N̄ , I(K̄, N̄)) expands to SRMP(K̄ ∪ Σk, N̄ ∪

SN (Σk), I(K̄, N̄) ∪ ∆(Σk)) before the primal simplex method is warm started based on the basis aug-

mentation provided by the optimal solutions of (24) for Sk
K ∈ Fk. This augmentation achieves two

primary goals. First, the resulting basis is optimal for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪ ∆(Σk)), and

the optimal objective function value ζyx of the row-generating PSP is the correct reduced cost of yk

under this augmentation. Second, we can invoke the primal simplex algorithm with this initial basis for

SRMP(K̄ ∪Σk, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)) so that yk is the natural candidate to enter the basis. In

the remainder of this section, we prove these properties of the proposed basis augmentation preceding a

formal proof of the correctness of the proposed column-and-row generation approach for CDR-problems.

Let B and B be the optimal basis of SRMP(K̄, N̄ , I(K̄, N̄)) and the associated basic sequence, respec-

tively. Suppose that B is a β × β matrix, and δ :=| ∆(Σk) | denotes the number of new constraints to

be added to the SRMP. Recall that we always pick surplus variables as basic for the set of constraints

∆0(S
k
K) for all Sk

K ∈ Fk. However, for a constraint i ∈ ∆+(S
k
K) we either select the corresponding

surplus variable as basic if wi = 0 or an x−variable that appears in this constraint, if its associated dual

constraint (24b) is tight in the optimal solution of (24) for Sk
K . In other words, no more than | ∆+(S

k
K) |

of the variables {xn|n ∈ SN (Sk
K)} are designated as basic by the optimal solution of (24). We denote

the sets of new linking constraints associated with the new basic x− and surplus variables as ∆x(Σk)

and ∆s(Σk), respectively, where δx =| ∆x(Σk) |, δs =| ∆s(Σk) |, and ∆x(Σk) ⊆ ∪Sk

K
∈Fk

∆+(S
k
K). The
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resulting augmented matrix Bk is then obtained as:

Bk =



















A1 0 E1 0 0

0 B1 E2 B2 0

C1 D1 E3 0 0

0 0 0 D2 0

C2 0 0 D3 −I



















=









B F 0

0 D2 0

G D3 −I









, (25)

where the coefficients of the new basic x−variables in the currently existing constraints in the SRMP are

given by a β × δx matrix F =
(

0
B2

0

)

. The δx × δx matrix D2 and the δs × δx matrix D3 specify the

coefficients of these x−variables in the new linking constraints ∆x(Σk) and ∆s(Σk), respectively. The

final column of Bk is associated with the new basic surplus variables, where I is a δs× δs identity matrix.

The δx × β matrix
(

0 0 0

)

in the fourth row of Bk and the δs × β matrix G =
(

C2 0 0

)

are

constructed by the coefficients of the current basic variables in the new linking constraints ∆x(Σk) and

∆s(Σk), respectively. This partitioning is best explained in the context of the illustration in Figure 2 for

the QSC problem, for which B1 = E2 = B2 = 0 because the x− variables appear only in the linking

constraints. In this specific example, ζyx = c̄k < 0 and Fk = {{k, l}, {k,m}}. The variable yl is already

present in the current SRMP, and ym is to be incorporated in the SRMP along with yk. Along with

these, we introduce xkl, xkm, two sets of linking constraints of the form (9)-(11) associated with the

pairs of variables yk, yl, and yk, ym, respectively, and a set of six surplus variables associated with the

new linking constraints into the SRMP. The problem (24) designates xkl, sl1, and sl3 as basic for the

constraints yk−xkl−sl2 = 0, −yk−yl+xkl−sl1 = −1, and yl−xkl−sl3 = 0, respectively, where the first

of these constraints belongs to the set ∆+({k, l}) and the rest form the set ∆0({k, l}), respectively. Note

that sl2 may replace xkl in the augmented basis depending on the optimal solution of (24) for {k, l}. The

variables xkm, sm1, and sm3 are selected as basic for the set of linking constraints ∆({k,m}) in a similar

way. Thus, ∆x({k, l,m}) consists of the new linking constraints yk−xkl−sl2 = 0 and yk−xkm−sm2 = 0,

while the rest of the new linking constraints belong to ∆s({k, l,m}). Two crucial observations are due

based on this discussion. First, no variable in the current SRMP is present in a constraint i ∈ ∆+(S
k
K)

for any Sk
K ∈ Fk; that is, the submatrix in the first position in the fourth row of Bk is zero. Second, D2

is invertible as formalized by the next lemma. These two properties allow us to establish that Bk is a

valid basis for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)) in Lemma 3.3. For other CDR-problems with

interaction, we would need to define the sets ∆+(S
k
K) and ∆0(S

k
K) as appropriate for all Sk

K ∈ Fk, and

the structure of the submatrices C2, D2, and D3 would be different. Otherwise, the basis augmentation

carries over in exactly the same way. The only extra provision for CDR-problems with no interaction is

that C2 = 0 because Σk = {k} and k /∈ K̄.

Lemma 3.2 The δx × δx matrix D2 is invertible.

Proof. The matrix
(

D2 0
D3 −I

)

is constructed by solving (24) for each Sk
K ∈ Fk and exhibits a block-

diagonal structure as discussed before. The columns in a given block are linearly independent as prescribed

by (24e). Therefore,
(

D2 0
D3 −I

)

must be invertible, and by the uniqueness of the inverse we conclude that
(

D2 0
D3 −I

)−1
=
(

D2
−1 0

D3D2
−1 −I

)

. Thus, D2 must be invertible. �

In Figure 2, one block in
(

D2 0
D3 −I

)

is formed by the coefficients of xkl, sl1, and sl3, while xkm, sm1, and

sm3 construct the second block. The next lemma proves that Bk provides us with a basic solution for

SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)).
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SRMP (K̄, N̄ , I(K̄, N̄))

I(K̄, N̄)

M

J

sl1
sl3
sm1

sm3

xkm

xkl

B

∆x({k, l,m})

∆s({k, l,m})

Constraint Basic Variable

yl xkmxkl

0

A1 0 E1

E3D1C1

0 0

0

0

-1

1
-1

1
-1

-1
1

-10 0

0 0

sl3sl1

-1
-1

sm3sm1

-1
-1

0

0

0

−ID2 D3C2

xn, n ∈ B basic surplus varsyj, j ∈ B

0

0 0

B1 E2 B2

Figure 2: Basis augmentation for QSC, where Fk = {{k, l}, {k,m}}, and the new basic vari-

ables {xkl, sl1, sl3} and {xkm, sm1, sm3} are associated with the new linking constraints ∆({k, l}) and

∆({k,m}), respectively.

Lemma 3.3 Bk is a (β + δ)-dimensional basis for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪ ∆(Σk)), and its

inverse is obtained as:








B F 0

0 D2 0

G D3 −I









−1

=









B−1 −B−1FD2
−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 +D3D2

−1 −I









.

Proof. The matrix J =

(

B F

0 D2

)

is invertible because both B and D2 are invertible, and we

compute J−1 =

(

B−1 −B−1FD2
−1

0 D2
−1

)

. Thus, Bk =

(

J 0

K −I

)

, where K =
(

G D3

)

. Finally, we

obtain

B−1
k =

(

J 0

K −I

)−1

=

(

J−1 0

KJ−1 −I

)

=









B−1 −B−1FD2
−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 +D3D2

−1 −I









after plugging in J−1 and KJ−1 as appropriate. �

We next state one of our main results in this section and prove that Bk is in fact an optimal basis for

SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪ ∆(Σk)). We emphasize that this result does not require an optimal

solution of (24) for Sk
K ∈ Fk. It is sufficient to choose any extreme point feasible solution of (24b)-(24d)

for each Sk
K ∈ Fk while constructing Bk.

Lemma 3.4 Bk is an optimal basis for SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)).

Proof. It is sufficient to prove that Bk defines a pair of primal and dual basic feasible solutions

since complementary slackness is always satisfied by a basic solution. In the following, b represents

the right hand side coefficients of the constraints in SRMP(K̄, N̄ , I(K̄, N̄)) while cB stands for the

objective function coefficients of the variables in the optimal basic sequence B of SRMP(K̄, N̄ , I(K̄, N̄)).

Furthermore, the objective coefficients of the new basic x−variables are denoted by cx, and the right hand

sides of the new linking constraints ∆x(Σk) and ∆s(Σk) are given by the vectors rx and rs, respectively,



22 Muter, Birbil, and Bülbül: Linear Programs with Column-Dependent-Rows
Sabancı University, c©September 16, 2012

where rx = 0 by (2) in Assumption 2.3. Thus, the vector bk =
(

b
0
rs

)

defines the right hand side of

SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)).

For verifying the primal feasibility, we compute

B−1
k bk =









B−1 −B−1FD2
−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 +D3D2

−1 −I

















b

0

rs









=









B−1b

0

GB−1b− rs









≥









0

0

0









. (26)

The nonnegativity of B−1b follows from the optimality of B for SRMP(K̄, N̄ , I(K̄, N̄)). By Assumption

2.2, the optimal solution of SRMP(K̄, N̄ , I(K̄, N̄)) does not violate the linking constraints ∆s(Σk) which

are absent from SRMP(K̄, N̄ , I(K̄, N̄)). Thus, we have G(B−1b) ≥ rs, and GB−1b−rs ≥ 0 as required.

In order to check the nonnegativity of the reduced costs in SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄)∪∆(Σk)),

we first determine the values of the dual variables prescribed by Bk. That is

(

cB cx 0

)









B−1 −B−1FD2
−1 0

0 D2
−1 0

GB−1 −GB−1FD2
−1 +D3D2

−1 −I









=
(

cBB
−1 (cx − cBB

−1F)D2
−1 0

)

,

(27)

where the objective coefficients of the basic surplus variables are represented by 0. From (27), we conclude

that the values of the dual variables {uj |j ∈ J}, {vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)} are identical to

those in the optimal solution of SRMP(K̄, N̄ , I(K̄, N̄)). Moreover, we can show that the values of the

dual variables {wi|i ∈ ∆(Σk)} are precisely those assigned by the row-generating PSP. To this end, recall

that we form an invertible δ × δ submatrix
(

D2 0
D3 −I

)

consisting of columns corresponding to x− and

surplus variables based on the solutions of (24) for each Sk
K ∈ Fk. In addition, note that the objective

function coefficient of xn, n ∈ SN (SK) in the primal LP corresponding to the dual LP (24a)-(24d) is given

by dn −
∑

m∈M Bmnvm. Clearly, if xn is selected as basic in SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk))

this value is equal to the component of cx − cBB
−1F associated with xn. Thus, the values assigned to

{wi|i ∈ ∆(Σk)} in the row-generating PSP are calculated as

(

cx − cBB
−1F 0

)

(

D2 0

D3 −I

)−1

=
(

cx − cBB
−1F 0

)

(

D2
−1 0

D3D2
−1 −I

)

(28)

=
(

(cx − cBB
−1F)D2

−1 0

)

, (29)

which are identical to those computed in (27) based on Bk.

From the optimality of SRMP(K̄, N̄ , I(K̄, N̄)), cl −
∑

j∈J Ajluj −
∑

i∈I(K̄,N̄) Cilwi ≥ 0 for a variable

yl, l ∈ K̄ and dn −
∑

m∈M Bmnvm −
∑

i∈I(K̄,N̄) Dinwi ≥ 0 for a variable xn, n ∈ N̄ . Furthermore, no

variable in SRMP(K̄, N̄ , I(K̄, N̄)) is present in a linking constraint i ∈ ∆x(Σk), and wi = 0 for all

i ∈ ∆s(Σk). Thus, we conclude that c̄l = cl −
∑

j∈J Ajluj −
∑

i∈I(K̄,N̄) Cilwi −
∑

i∈∆(Σk)
Cilwi ≥ 0 for a

variable yl, l ∈ K̄ and d̄n = dn−
∑

m∈M Bmnvm−
∑

i∈I(K̄,N̄) Dinwi−
∑

i∈∆(Σk)
Dinwi ≥ 0 for a variable

xn, n ∈ N̄ in SRMP(K̄, N̄ ∪SN (Σk), I(K̄, N̄)∪∆(Σk)). For xn, n ∈ SN (Σk), d̄n = dn−
∑

m∈M Bmnvm−
∑

i∈I(K̄,N̄) Dinwi−
∑

i∈∆(Σk)
Dinwi = dn−

∑

m∈M Bmnvm−
∑

i∈∆(Sk

K
) Dinwi ≥ 0 by (24b) and because

the values of the dual variables {wi|i ∈ ∆(Σk)} employed in the row-generating PSP are optimal with

respect to SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)). Thus, we arrive at the conclusion that the values

of the dual variables calculated in (27) are dual feasible as required. �

The proof of Lemma 3.4 establishes formal arguments for some fundamental claims and propositions
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that we employed in the development of our column-and-row generation approach for CDR-problems.

These are summarized in the following corollary.

Corollary 3.1

a. The optimal values of the dual variables {uj |j ∈ J}, {vm|m ∈M}, and {wi|i ∈ I(K̄, N̄)} are identical

for SRMP(K̄, N̄ , I(K̄, N̄)) and SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)).

b. The values assigned to the dual variables {wi|i ∈ ∆(Σk)} in the row-generating PSP are optimal for

SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)). For i ∈ ∆s(Σk), we have wi = 0 at optimality.

c. The reduced costs of {yl|l ∈ K̄} and {xn|n ∈ N̄} are identical with respect to the optimal dual solutions

of SRMP(K̄, N̄ , I(K̄, N̄)) and SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk)).

d. The reduced cost c̄k computed in the row-generating PSP for any yk, k /∈ K̄ and Fk ∈ Pk is equal to

the reduced cost of yk with respect to the optimal solution of SRMP(K̄, N̄ ∪SN (Σk), I(K̄, N̄)∪∆(Σk)).

e. A variable xn, n ∈ SN (Σk) basic at the optimal solution of SRMP(K̄, N̄ ∪ SN (Σk), I(K̄, N̄) ∪∆(Σk))

is equal to zero.

We are now ready to prove that the column-and-row generation algorithm depicted in Figure 1 is an

optimal algorithm for solving (MP) for CDR-problems characterized by Assumptions 2.1-2.3.

Theorem 3.1 Given an optimal basis B for SRMP(K̄, N̄ , I(K̄, N̄)) and a set of associated optimal values

for the dual variables {uj |j ∈ J}, {vm|m ∈ M}, and {wi|i ∈ I(K̄, N̄)}, the proposed column-and-row

generation algorithm terminates with an optimal solution for the master problem (MP) if ζy ≥ 0, ζx ≥ 0,

and ζyx ≥ 0 in three consecutive calls to the y−, x−, and the row-generating PSPs, respectively.

Proof. According to the flow of the proposed column-and-row generation algorithm in Figure 1,

we invoke the row-generating PSP only after the y− and x−PSPs fail to identify negatively priced

y− and x− variables, respectively, given the optimal dual solution of SRMP(K̄, N̄ , I(K̄, N̄)). If in

addition the optimal objective value ζyx of the row-generating PSP is nonnegative given the optimal

dual solution of SRMP(K̄, N̄ , I(K̄, N̄)), then the algorithm terminates with an optimal solution to (MP)

as we prove below. On the other hand, if the row-generating PSP terminates at least once successfully

with a negatively priced new y−variable, then the optimal values of the dual variables are updated by

re-optimizing SRMP augmented with new rows and columns. Therefore, in this case we cannot claim

optimality following a subsequent unsuccessful optimization of the row-generating PSP with ζyx ≥ 0,

and we must call the y− and x−PSPs again (FLAG=1 at the termination of the row-generating PSP in

Figure 1).

Now, assume that ζy ≥ 0, ζx ≥ 0, and ζyx ≥ 0 in three consecutive calls to the y−, x−, and the

row-generating PSPs, respectively. In the sequel, we show that c̄k ≥ 0 for k ∈ K and d̄n ≥ 0 for n ∈ N

even if we introduce the currently absent set of linking constraints I \I(K̄, N̄) into the SRMP. Recall that

the linking constraints feature a block-diagonal form, where a block is defined by a set of x− and surplus

variables that only appear in this block. For each block, we can choose any extreme point of a polyhedron

similar to that defined by (24b)-(24d), designate new x− and surplus variables as basic as prescribed, and

then incorporate these linking constraints and the associated x− and surplus variables in the SRMP. The

resulting SRMP and the associated basis are denoted as SRMP(K̄,N, I) and B′, respectively. Moreover,

recall that Lemma 3.3 does not require that (24) is solved to optimality. Thus, we can develop a proof
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analogous to that of Lemma 3.4 and show that B′ is an optimal basis for SRMP(K̄,N, I). Clearly,

d̄n ≥ 0, n ∈ N and c̄l ≥ 0, l ∈ K̄ hold at the optimal solution of SRMP(K̄,N, I), and we have xn = 0 for

all N \ N̄ by a straightforward extension of Corollary 3.1e. Finally, in order to complete the proof we

need to argue that no variable yk, k ∈ K \ K̄ prices out favorably with respect to the optimal solution

of SRMP(K̄,N, I). To this end, note that all missing linking constraints ∆(Sk
K) induced by all minimal

variable sets of the form {yl|l ∈ Sk
K} are included in SRMP(K̄,N, I). The corresponding family of index

sets is clearly an element of Pk. Thus, we conclude that the reduced cost c̄k of yk is nonnegative because

0 ≤ ζyx ≤ c̄k, where ζyx denotes the minimum reduced cost of yk computed over all possible members of

Pk in the row-generating PSP in (23). �

4. Applications of The Proposed Method. In this section, the proposed solution method is

applied to our illustrative problems, MSCS and QSC.

4.1 Multi-Stage Cutting Stock Problem. We develop the subproblems for a column-and-row

generation algorithm that solves the LP relaxation of the one-dimensional MSCS problem given in (3)-(6)

with exponentially many cutting patterns both in the first and second stages. We follow the steps of the

generic framework for CDR-problems developed in Section 3.

As discussed in Section 2.1, MSCS is a CDR-problem with no interaction; that is, the cardinality of

a minimal variable set is just one. A first-stage cutting pattern represented by yk is generated by any

feasible combination of existing and new intermediate rolls. For each new intermediate roll currently

absent from the SRMP included in the pattern, a single new linking constraint is introduced into the

SRMP. Thus, Fk = {{k}}, Σk = {k}, and ∆(Σk) denotes the set of linking constraints that correspond

to the new intermediate rolls in the pattern. All three types of PSPs introduced in Section 3 are required

for the MSCS problem. In the sequel, we explain how each PSP is constructed. To this end, we first

state the dual of the LP (3)-(6):

maximize
∑

m∈M

bmvm, (30)

subject to
∑

i∈I

Cikwi ≤1, k ∈ K, (31)

∑

m∈M

Bmnvm+
∑

i∈I

Dinwi ≤0, n ∈ N, (32)

vm ≥ 0,m ∈M, wi ≥ 0, i ∈ I, (33)

where {vm|m ∈ M}, and {wi|i ∈ I} are the dual variables corresponding to the primal constraints (4)

and (5), respectively. Recall that a single non-zero entry Din = −1 in column n of D indicates that

the cutting pattern n for the second stage is cut from the intermediate roll i. This implies that for xn

associated with a cutting pattern obtained from the intermediate roll i, the inequality (32) reduces to
∑

m∈M Bmnvm ≤ wi.

In the y−PSP given below, the objective is to identify a violated constraint (31) for a first-stage cutting

pattern composed of the set of intermediate rolls I(K̄, N̄) present in the current SRMP:

maximize
∑

i∈I(K̄,N̄)

wiCi,

subject to
∑

i∈I(K̄,N̄)

ǫiCi ≤W,

Ci ∈ Z
+ ∪ {0}, i ∈ I(K̄, N̄),

(34)
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where W is the stock roll width, ǫi is the width of the intermediate roll i, and Ci is the number of times

intermediate roll i is cut from the stock roll. Clearly, the y−PSP is an integer knapsack problem that

may be solved efficiently by well-known methods in the literature. If the optimal objective function value

of (34) is larger than 1, then a new first-stage cutting pattern with a negative reduced cost is added to

the SRMP. Representing this pattern by yk, we have K̄ ← K̄ ∪ {k}.

In the x−PSP, we search for a second-stage cutting pattern with a negative reduced cost that is cut

from one of the existing intermediate rolls in the current SRMP. In other words, we determine whether

one of the dual constraints
∑

m∈M Bmnvm ≤ wi, i ∈ I(K̄, N̄), is violated:

maximize
∑

m∈M

vmBm,

subject to
∑

m∈M

πmBm ≤ ǫi,

Bm ∈ Z
+ ∪ {0},m ∈M,

(35)

where i is the index for the existing intermediate roll of width ǫi under consideration, πm is the width of

the finished roll m ∈ M , and Bm denotes the number of times finished roll m is cut from intermediate

roll i. Similar to the previous case, the x−PSP is an integer knapsack problem. If the optimal objective

function value of (35) is larger than wi, then a new second-stage cutting pattern with a negative reduced

cost is added to the SRMP. Representing this pattern by xn, we have N̄ ← N̄ ∪ {n}.

In the row-generating PSP, a first-stage cutting pattern may contain new intermediate rolls in addition

to existing ones. Following the structure of the general formulation in (23)-(24), the row-generating PSP

for MSCS is stated as:

maximize
∑

i∈I(K̄,N̄)

wiCi +
∑

i′∈I\I(K̄,N̄)

αi′ , (36a)

subject to
∑

i∈I(K̄,N̄)

ǫiCi +
∑

i′∈I\I(K̄,N̄)

ǫi′Ci′ ≤W, (36b)

Ci ∈ Z
+ ∪ {0}, i ∈ I, (36c)

where

αi′ =maximize wi′Ci′ , (37a)

subject to
∑

m∈M

πmBm ≤ ǫi′ , (37b)

min
m∈M

πm ≤ ǫi′ ≤W, (37c)

Bm ∈ Z
+ ∪ {0}, m ∈M, (37d)

∑

m∈M

vmBm ≤ wi′ , (37e)

wi′ ≥ 0, (37f)

At least one of (37e) or (37f) is tight. (37g)

Due to their potential size, we cannot explicitly generate the sets of all feasible first- and second-

stage cutting patterns. Therefore, the structural constraints (36b)-(36c) and (37b)-(37d) that define

the feasible first- and second-stage cutting patterns, respectively, are incorporated in the row-generating

PSP. The constraints (36b) and (37b) are the classical knapsack constraints for the first- and second-

stage cutting patterns, respectively, and constraint (37c) imposes natural lower and upper bounds on
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the width of a new intermediate roll. This width cannot exceed W and can be no smaller than the

width of the smallest finished roll. The constraint (37e) corresponds to (24b) and mandates that the

unknown dual variable associated with the currently absent intermediate roll i′ is larger than or equal

to the sum of the dual variables for the finished rolls that are cut from this intermediate roll. Note that

all new linking constraints in this problem are of type (2) as specified in Assumption 2.3. Therefore,

∆+({k}) = ∆({k}) and ∆0({k}) = ∅ which only requires wi′ ≥ 0 as stated in (37f). Finally, constraint

(37g) is the counterpart of (24e).

The row-generating PSP (36)-(37) itself is an integer program with exponentially many variables due to

the size of I \ I(K̄, N̄). The steps of a branch-and-price algorithm for solving the row-generating PSP are

detailed in Muter (2011). Similar to the y−PSP, if the optimal objective function value of (36) is larger

than 1, then a new first-stage cutting pattern with a negative reduced cost is identified. Representing

this pattern by yk, we have K̄ ← K̄ ∪ {k} and N̄ ← SN ({k}), where each xn, n ∈ SN ({k}) is associated

with a second-stage cutting pattern for a new intermediate roll. In addition, one new linking constraint

per new intermediate roll is incorporated in the SRMP.

4.2 Quadratic Set Covering. In this section, we develop the subproblems for a column-and-row

generation algorithm that solves the LP relaxation of the QSC problem which belongs to the class of

CDR-problems with interaction. The cardinality of each minimal variable set for this problem is two,

and three linking constraints of type (9)-(11) and one auxiliary x−variable are associated with a minimal

variable set. As described in Section 2.1, the set of all y−variables is given explicitly, and the set of all

possible pairs composed of the y−variables is denoted by P .

To solve the formulation (7)-(13) by column-and-row generation, we initialize the SRMP with a set

of columns K̄ that satisfy the covering constraints (8) in addition to the set of all linking constraints

(9)-(11) induced by {yl|l ∈ K̄}. A new variable yk is always added to the SRMP along with three

linking constraints of type (9)-(11) and a variable xkl for each pair of variables yk, yl, where l ∈ K̄.

Thus, the column-and-row generation mechanism maintains that the SRMP is constituted by {yl|l ∈ K̄},

{xn|n ∈ SN (K̄)}, and the set of all linking constraints ∆(K̄) induced by K̄ at all times during course

of the algorithm. Moreover, the x−variables are auxiliary and only appear in the linking constraints.

Therefore, for QSC we only need to solve the row-generating PSP developed below. We first state the

dual of the LP (7)-(13):

maximize
∑

j∈J

uj +
∑

(k,l)∈P,k<l

wkl,

subject to
∑

j∈J

Ajkuj +
∑

(k,l)∈P,k<l

(wkl + ϕkl) +
∑

(l,k)∈P,l<k

(wlk + ϕ′
lk) ≤ fkk, k ∈ K,

− wkl − ϕkl − ϕ′
kl ≤ 2fkl, (k, l) ∈ P, k < l,

ϕkl, ϕ
′
kl ≥ 0, wkl ≤ 0, (k, l) ∈ P, k < l,

where {uj |j ∈ J} are the dual variables corresponding to the covering constraints (8), and wkl, ϕkl, ϕ
′
kl

for (k, l) ∈ P, k < l, are the dual variables associated with the linking constraints (9)-(11), respectively.

Following the structure of the general formulation in (23)-(24), the row-generating PSP for QSC is

stated as:

ζyx = min
k∈(K\K̄)







fkk −
∑

j∈J

Ajkuj − max
Fk∈Pk





∑

{k,l}∈Fk,k<l

αkl +
∑

{l,k}∈Fk,l<k

αlk











, where (38)
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αkl =maximize wkl + ϕkl, (39a)

subject to − wkl − ϕkl − ϕ′
kl ≤ 2fkl, (39b)

wkl = ϕ′
kl = 0, (39c)

ϕkl ≥ 0, (39d)

At least one of (39b) or (39d) is tight, (39e)

αlk =maximize wlk + ϕ′
lk, (39f)

subject to − wlk − ϕlk − ϕ′
lk ≤ 2flk, (39g)

wlk = ϕlk = 0, (39h)

ϕ′
lk ≥ 0, (39i)

At least one of (39g) or (39i) is tight, (39j)

where Fk and the values of the dual variables {ϕkl|{k, l} ∈ Fk, k < l} and {ϕ′
kl|{k, l} ∈ Fk, l < k} are

to be determined. From the discussion on Figure 2 in Section 3.3, recall that only the dual variable

associated with a constraint yk − xkl ≥ 0 may assume a positive value, and the rest of the constraints in

∆({k, l}) belong to the set ∆0({k, l}). These restrictions for {k, l} ∈ Fk are imposed by the constraints

(39c)-(39d) and (39h)-(39i) for k < l and l < k, respectively. The dual feasibility of the x−variables in

the new linking constraints is mandated by the constraints (39b) and (39g), and constraints (39e) and

(39j) are the counterparts of (24e).

For {k, l} ∈ Fk, k < l, the optimal solution of (39a)-(39e) is identified below, and the case for l < k

can be derived analogously.

(i) If fkl < 0, the optimal value of ϕkl = −2fkl since ϕkl is a nonnegative variable that appears with

a negative coefficient in (39b) and with a positive coefficient in the objective (39a). In this case,

xkl is the basic variable associated with the new linking constraint yk − xkl ≥ 0. For the other

two linking constraints in ∆({k, l}), the associated surplus variables are selected as basic.

(ii) If fkl ≥ 0, the optimal value of ϕkl = 0, and all new basic variables are surplus variables.

Thus, we conclude that αkl = max(−2fkl, 0), where 2fkl is the objective function coefficient of xkl in

(7)-(13). Based on this very simple structure of the optimal solutions of (39a)-(39e) and (39f)-(39j), we

re-state the row-generating PSP for QSC:

ζyx = min
k∈K\K̄







fkk −
∑

j∈J

Ajkuj − max
Fk∈Pk







∑

{k,l}∈Fk,k<l

max(0,−2fkl) +
∑

{l,k}∈Fk,l<k

max(0,−2flk)













.

(40)

If ζyx = c̄k < 0 with an associated optimal family of index sets Fk, then SRMP grows both horizontally

and vertically with the addition of the variables {yl|l ∈ Σk}, {xn|n ∈ SN (Σk)}, and the linking constraints

∆(Σk), where Σk = ∪{k,l}∈Fk
{k, l}. Furthermore, as explained at the beginning of this section, all relevant

linking constraints associated with the variables {yl|l ∈ (Σk \{k})} are also incorporated into the SRMP.

Note that some of the variables {yl|l ∈ Σk} are already a part of the SRMP. This is generally true for

CDR-problems with interaction.

Example 4.1 Consider the following symmetric positive semidefinite cost matrix F and the cover matrix
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A:

F =















2 0 0 0

0 3 −1 −1

0 −1 2 −1

0 −1 −1 2















,A =









1 1 0 0

1 0 1 0

1 0 0 1









.

Solving the QSC instance defined by F and A by excluding the possibility of adding several y−variables

simultaneously to the SRMP would result in the following PSP:

ζyx = min
k∈K\K̄







fkk −
∑

j∈J

Ajkuj −
∑

l∈K̄,k<l

max(0,−2fkl)−
∑

l∈K̄,l<k

max(0,−2flk)







. (41)

Suppose that we form the initial SRMP with y1 only. The PSP defined in (41), which ignores the minimal

variable sets of the form {yk, yl}, l /∈ K̄ for pricing out yk, k /∈ K̄, cannot identify any new y−variable with

a negative reduced cost, and the column generation terminates with y1 = 1 and an objective function value

of 2. Taking also into account the minimal variable sets {yk, yl}, l /∈ K̄ by solving the row-generating PSP

(40) yields the optimal families of index sets F2 = {{1, 2}, {2, 3}, {2, 4}}, F3 = {{1, 3}, {2, 3}, {3, 4}}, and

F4 = {{1, 4}, {2, 4}, {3, 4}} for y2, y3, and y4, respectively. The associated reduced costs c̄2, c̄3, c̄4 < 0,

and in all cases all remaining y−variables are incorporated into the SRMP. The resulting true optimal

solution of (7)-(13) is given by y1 = 0, y2 = y3 = y4 = 1 with an objective value of 1.

5. An Extension Keeping the discussion on the CDR-problems with and with no interaction sep-

arate helped us to highlight the differences in developing the row-generating PSP for these two types of

problems in the past sections. These tools of analysis may however also be combined to tackle CDR-

problems in which some minimal variable sets are of cardinality one, while others are composed of two

or more y−variables. We aptly refer to such problems as mixed CDR-problems. To the best of our

knowledge, there is no study in the literature that deals with a mixed CDR-problem. Therefore, to

complement our discussion with such an extension, we briefly describe a fictitious mixed CDR-problem

in the subsequent part of this section.

Consider a tactical network design and vehicle routing problem defined on a directed network, where

the set of nodes is represented by K. A demand bk is associated with each node of the network, and

these demands have to be served daily by a set of routes originating and terminating at a depot, possibly

located at two different nodes of the network. We pay a fixed cost of ck for opening a depot at a node

k ∈ K, and each vehicle route incurs a cost of dn. Assume that split deliveries are allowed, where the

number of units delivered to customer k by route n is given by Bkn. The objective is to minimize the

total fixed and routing costs. No more than vk vehicles may be dispatched from a depot at node k to

return to the same location. Such routes are referred to as tours. Similarly, the number of vehicles which

originate at node k and terminate at node l cannot exceed vkl. The set of tours starting at node k is

denoted by Nk, and Nkl represents the set of routes emanating from node k and finishing at node l. The

set of all routes is given by N = (∪k∈KNk)∪(∪k,l∈K,k 6=lNkl). The variable yk, k ∈ K, takes the value one,

if a depot is located at node k, and is zero otherwise. The binary variable xn, n ∈ N , indicates whether

tour/route n is selected in the solution. Then, the LP relaxation of this problem may be formulated as

below:

minimize
∑

k∈K

ckyk+
∑

n∈N

dnxn, (42)
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subject to
∑

n∈N

Bknxn ≥bk, k ∈ K, (43)

vkyk−
∑

n∈Nk

xn ≥ 0, k ∈ K, (44)

vklyk−
∑

n∈Nkl

xn ≥ 0, k, l ∈ K, k 6= l, (45)

vklyl−
∑

n∈Nkl

xn ≥ 0, k, l ∈ K, k 6= l, (46)

0 ≤ yk ≤ 1, k ∈ K, 0 ≤ xn ≤ 1, n ∈ N. (47)

The objective (42) minimizes the total cost of opening depots and serving the customers by a set of

routes. Constraints (43) ensure that the customer demands are satisfied. The set of linking constraints

(44) prescribe that a tour associated with k ∈ K is not selected unless a depot is located at node k.

Similarly, a route from node k to node l requires that a depot is present at both nodes k and l as

described by the set of linking constraints (45)-(46).

This problem is a special case of the generic model (MP), where A, a, and r are zero, and M = K.

In general, the number of routes in the problem may grow exponentially which motivates a column

generation algorithm for solving the formulation (42)-(47). If, in addition, the number of nodes in the

network is large, then this would merit a column-and-row generation approach because including all

O(| K |2) linking constraints in the formulation (42)-(47) directly would be computationally prohibitive.

The column-and-row generation would be initialized with a small number of depots located at nodes

k ∈ K̄ and a set of associated routes so that the initial SRMP is feasible. For this problem, no y−PSP

is required because the generation of a new y−variable is only meaningful if associated x−variables and

linking constraints are introduced into the SRMP along with it. In the x−PSP, we either construct a tour

associated with a depot at a node k ∈ K̄ or a route from a depot at a node k ∈ K̄ to a depot at a node

l ∈ K̄. In the row-generating PSP for yk, {yk} is a minimal variable set of cardinality one for a single

linking constraint (44). The remaining minimal variable sets are either of the form {yk, yl} or {yl, yk},

depending on whether routes are generated from node k to node l or vice versa. That is, except for one,

all minimal variable sets in the row-generating PSP for yk are of cardinality two and induce two linking

constraints (45)-(46). In both cases, y−variables generate the associated x−variables, and the linking

constraints are redundant until all variables in the associated minimal variable set take positive values.

Thus, both Assumptions 2.1 and 2.2 are satisfied. Note that there is a one-to-one correspondence between

the minimal variable sets and the linking constraints. Moreover, the linking constraints are in the form

mandated by (2) in Assumption 2.3. We conclude that the problem at hand is a mixed CDR-problem

and is amenable to the column-and-row generation framework devised in this paper. We only need to

pay attention to set up (24) in the row-generating PSP properly depending on the cardinality of the

associated minimal variable set.

6. Conclusions and Future Research. In this paper, we presented and analyzed the first unified

framework for large-scale linear programs with column-dependent-rows. We identified a set of properties

that characterize CDR-problems and argued that this is a large class of problems. To the best of our

knowledge, all CDR-problems studied so far in the literature belong to this class. Moreover, we devised a

generic methodology for solving the LP relaxations of CDR-problems to optimality. The most important

contribution of this methodology is the row-generating PSP that allows us to generate several variables
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and their associated linking constraints simultaneously by correctly estimating the dual values of the

missing linking constraints.

The aim of this paper is not to concentrate on problem-specific algorithms but to show that a generic

methodology can be developed to solve the LP relaxations of CDR-problems. To supplement the theory,

we also apply the proposed generic approach to solve the LP relaxations of the MSCS and QSC prob-

lems. The application to MSCS leads to a row-generating PSP that itself is an integer program with

exponentially many columns and is further analyzed in Muter (2011). Moreover, QSC is considered in the

column generation context for the first time, and its unique structure helps us to generalize our approach

to the class of problems we refer to as CDR-problems with interaction. We note that many routing and

scheduling problems with interactions between individual routes or schedules may be cast as quadratic

set covering problems with restricted pairs and side constraints, and devising computationally effective

column-and-row generation algorithms for these problems is an important research question. An example

appears in Muter et al. (2010b) and illustrates that this is not a simple endeavor by any means.

An important line of work we will pursue in the future is developing computationally effective imple-

mentations of our generic methodology for specific CDR-problems. Clearly, the ultimate goal is to embed

the column-and-row generation algorithm into branch-and-price or branch-and-cut-and-price algorithms

to solve large-scale integer programming problems with column-dependent-rows. Furthermore, we are

currently working on alternate approaches based on Lagrangian relaxation and Benders decomposition

for solving the LP relaxations of CDR-problems. In addition, we plan to investigate the synergies that

may exist between our methodology and the other recent column-and-row generation frameworks SDW

and CGEF (see Section 2.2). These different paths will enable us to look at CDR-problems from different

angles and compare the computational performance of different algorithms.
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Desrosiers, J. and Lübbecke, M. E. (2011). Branch-Price-and-Cut Algorithms. In Cochran, J. J., editor,

Wiley Encyclopedia of Operations Research and Management Science (EORMS). John Wiley & Sons.

http://dx.doi.org/10.1002/9780470400531.eorms0118.

Feillet, D., Gendreau, M., Medaglia, A. L., and Walteros, J. L. (2010). A note on branch-and-cut-and-

price. Operations Research Letters, 38(5):346–353.

Ferreira, J., Neves, M., and Castro, P. (1990). A two-phase roll cutting problem. European Journal of

Operational Research, 44(2):185–196.

Frangioni, A. and Gendron, B. (2009). 0-1 reformulations of the multicommodity capacitated network

design problem. Discrete Applied Mathematics, 157(6):1229–1241.

Frangioni, A. and Gendron, B. (2010). A stabilized structured Dantzig-Wolfe decomposition method.

Technical Report CIRRELT-2010-02, CIRRELT.

Gamache, M., Soumis, F., Marquis, G., and Desrosiers, J. (1999). A column generation approach for

large-scale aircrew rostering problems. Operations Research, 47(2):247–263.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem.

Operations Research, 9(6):849–859.

Haessler, R. (1971). A heuristic programming solution to a nonlinear cutting stock problem. Management

Science, 17(12):793–802.

Katayama, N., Chen, M., and Kubo, M. (2009). A capacity scaling heuristic for the multicommodity

capacitated network design problem. Journal of Computational and Applied Mathematics, 232(1):90–

101.
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32 Muter, Birbil, and Bülbül: Linear Programs with Column-Dependent-Rows
Sabancı University, c©September 16, 2012

Muter, I., Birbil, S. I., Bulbul, K., and Sahin, G. (2010a). A note on “A LP-based heuristic for a time-

constrained routing problem”. Technical Report SU FENS 2010/0005, Sabancı University, Istanbul,

Turkey. http://research.sabanciuniv.edu/14198/.

Muter, I., Birbil, S. I., Bulbul, K., Sahin, G., Tas, D., Tuzun, D., and Yenigun, H. (2010b). Solving a

robust airline crew pairing problem with column generation. Computers & Operations Research. To

appear. http://dx.doi.org/10.1016/j.cor.2010.11.005.

Sadykov, R. and Vanderbeck, F. (2011a). Column generation for extended formulations. In Electronic

Notes in Discrete Mathematics, volume 37, pages 357–362. 6th Latin-American Algorithms, Graphs

and Optimization Symposium (LAGOS’11), Bariloche, Argentina.

Sadykov, R. and Vanderbeck, F. (2011b). Column generation for extended formulations.

Submitted for publication.

Savelsbergh, M. (1997). A branch-and-price algorithm for the generalized assignment problem. Operations

Research, 45(6):831–841.

Saxena, R. and Arora, S. (1997). A linearization technique for solving the quadratic set covering problem.

Optimization, 39(1):33–42.

Vanderbeck, F. (1999). Computational study of a column generation algorithm for bin packing and

cutting stock problems. Mathematical Programming, 86(3):565–594.

Wang, G. and Tang, L. (2010). A row-and-column generation method to a batch machine schedul-

ing problem. In Proceedings of the Ninth International Symposium on Operations Research and Its

Applications (ISORA-10), pages 301–308, Chengdu-Jiuzhaigou, China.

Zak, E. (2002a). Modeling multistage cutting stock problems. European Journal of Operational Research,

141(2):313–327.

Zak, E. (2002b). Row and column generation technique for a multistage cutting stock problem. Computers

& Operations Research, 29(9):1143–1156.

http://research.sabanciuniv.edu/14198/
http://dx.doi.org/10.1016/j.cor.2010.11.005
http://www.optimization-online.org/DB_HTML/2011/07/3093.html

