
AN ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM FOR FRAME RATE

UP-CONVERSION AND ITS HARDWARE DESIGN

by

MERT ÇETİN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University

August 2009

AN ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM FOR FRAME RATE

UP-CONVERSION AND ITS HARDWARE DESIGN

APPROVED BY

Yard. Doç. Dr. İlker HAMZAOĞLU ………………………..

(Thesis Supervisor)

Yard. Doç. Dr. Hakan ERDOĞAN ………………………..

Yard. Doç Dr. Ahmet ONAT ………………………..

Doç. Dr. Meriç ÖZCAN ………………………..

Doç. Dr. Erkay SAVAŞ ………………………..

DATE OF APPROVAL: ………………………..

© Mert Çetin 2009

All Rights Reserved

IV

AN ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM FOR FRAME RATE

UP-CONVERSION AND ITS HARDWARE DESIGN

Mert ÇETİN

EE, MS Thesis, 2009

Thesis Supervisor: Assist. Prof. Dr. İlker HAMZAOĞLU

Keywords: Frame rate up conversion, true motion estimation, adaptive motion

estimation, hardware architecture.

Abstract

With the advancement in video and display technologies, recently flat panel High

Definition Television (HDTV) displays with 100 Hz, 120 Hz and most recently 240 Hz
picture rates are introduced. However, video materials are captured and broadcast in
different temporal resolutions ranging from 24 Hz to 60 Hz. In order to display these
video formats correctly on high picture rate displays, new frames should be generated
and inserted into the original video sequence to increase its frame rate. Therefore,
Frame Rate Up-Conversion (FRUC) has become a necessity. Motion Compensated
FRUC algorithms provide better quality results than non-motion compensated FRUC
algorithms. Motion Estimation (ME) is the process of finding motion vectors which
describe the motion of the objects between adjacent frames and is the most
computationally intensive part of motion compensated FRUC algorithms. For FRUC
applications, it is important to find the motion vectors that represent real motions of the
objects which is called true ME. In this thesis, an Adaptive True Motion Estimation
(ATME) algorithm is proposed. ATME algorithm produces similar quality results with
less number of calculations or better quality results with similar number of calculations
compared to 3-D Recursive Search true ME algorithm by adaptively using optimized
sets of candidate search locations and several redundancy removal techniques. In
addition, 3 different complexity hardware architectures for ATME are proposed. The
proposed hardware use efficient data re-use schemes for the non-regular data flow of
ATME algorithm. 2 of these hardware architectures are implemented on Xilinx Virtex-4
FPGA and are capable of processing ~158 and ~168 720p HD frames per second
respectively.

V

GÖRÜNTÜ HIZI ARTIRIMI İÇİN UYARLANIR GERÇEK HAREKET TAHMİNİ

ALGORİTMASI VE DONANIM TASARIMI

Mert ÇETİN

EE, Yüksek Lisans Tezi, 2009

Tez Danışmanı: Yard. Doç. Dr. İlker HAMZAOĞLU

Anahtar Kelimeler: Görüntü hızı artırımı, gerçek hareket tahmini, uyarlanır hareket

tahmini, donanım tasarımı.

ÖZET

Video ve ekran teknolojilerindeki ilerlemeler sayesinde, yakın zamanlarda 100

Hz, 120 Hz, ve en yeni olarak da 240 Hz görüntü hızlarına sahip düz ekran Yüksek
Çözünürlüklü Televizyon (YÇT) ekranları piyasaya çıkarıldı. Fakat video görüntüleri
24 Hz'den 60 Hz'e değişen farklı zamansal çözünürlüklerde kaydedilmekte ve
yayınlanmaktadır. Bu farklı video biçimlerini yüksek görüntü hızlı ekranlarda doğru bir
şekilde görüntülemek için, yeni kareler yaratılmalı ve görüntü hızını artırabilmek için
video diziminin içine eklenmelidir. Bu yüzden Görüntü Hızı Artırımı (GHA) bir ihtiyaç
olmuştur. Hareket Destekli GHA algoritmaları, hareket desteği olmayan GHA
algoritmalarına oranla daha yüksek kaliteli sonuçlar vermektedir. Hareket Tahmini
(HT), nesnelerin ardışık kareler boyunca hareketlerini tanımlayan hareket vektörlerini
bulma işlemidir ve de Hareket Destekli GHA algoritmalarının işlemsel olarak en yoğun
kısmını oluşturur. GHA uygulamaları için önemli olan nesnelerin gerçek hareketlerini
ifade eden hareket vektörlerinin bulunabilmesidir. Buna Gerçek HT denir. Bu tezde
Uyarlanır Gerçek Hareket Tahmini (UGHT) algoritması önerilmektedir. UGHT
algoritması kullanıldığında, en uygun hale getirilmiş aday arama konumları
kümelerinden ve de birtakım artıklık azaltıcı tekniklerden uyarlanır bir şekilde
yararlanılıp, 3-D Recursive Search Gerçek HT algoritmasıyla karşılaştırıldığında daha
az işlem yapılarak benzer kalitede sonuçlar veya da benzer sayıda işlem yapılarak daha
yüksek kalitede sonuçlar elde edilmektedir. Ek olarak, UGHT için değişik karmaşıklığa
sahip 3 farklı donanım mimarisi önerilmektedir. Önerilen donanımlarda UGHT
algoritmasının düzenli olmayan veri akışı için verilerin verimli yeniden kullanımı için
yöntemler uygulanmaktadır. Bu tasarımlardan 2'si Xilinx Virtex-4 FPGA üzerinde
gerçeklenmiş ve de saniyede sırasıyla yaklaşık olarak 158 ve 168 720p YÇ çerçeve
işleyebilmektedirler.

VI

Acknowledgements

First and foremost I would like to thank my advisor Dr. İlker Hamzaoğlu for his

invaluable guidance and support throughout my study. He made me realize that

everything is possible with hard work and discipline. He has been a great mentor to me

and I feel privileged to be his student.

I am sincerely grateful to my thesis committee members, Dr. Hakan Erdoğan, Dr.

Dr. Ahmet Onat, Dr. Meriç Özcan, and Dr. Erkay Savaş, for their invaluable feedback.

I would like to thank to all members of System-on-Chip Design and Testing Lab,

Yusuf Adıbelli, Çağlar Kalaycıoğlu, Murat Can Kıral, Kadir Akın, Aydın Aysu and

Onur Can Ulusel who have been greatly supportive during my study. I also would like

to thank Sibel Karadağ and Tolga Eren who were always there for me and provided me

with endless motivation.

I would also like to express my deepest gratitude for my beloved family who

always believed in me, and always tried their best to make things easier for me.

Finally I would like to acknowledge Sabancı University and TÜBİTAK for

supporting me throughout my graduate education.

VII

TABLE OF CONTENTS

Abstract ... IV

ÖZET ... V

Acknowledgements ... VI

TABLE OF CONTENTS ... VII

LIST OF FIGURES .. IX

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS .. XII

1 INTRODUCTION ... 1

2 MOTION COMPENSATED FRAME RATE UP-CONVERSION 5

 2.1 Motion Estimation ... 5

 2.2 True Motion Estimation ... 8

 2.3 Intermediate FRUC Steps .. 10

 2.3.1 Motion Vector Smoothing .. 11

 2.3.2 Bilateral Motion Estimation ... 13

 2.4 Motion Compensated Interpolation ... 14

 2.4.1 Motion Compensated Field Averaging .. 15

 2.4.2 Static Median Filtering ... 15

 2.4.3 Dynamic Median Filtering ... 15

 2.4.4 Two-Mode Interpolation .. 16

 2.4.5 Overlapped Block Motion Compensation .. 17

 2.5 Evaluation Methods and Metrics ... 19

3 ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM AND MOTION

COMPENSATED FRAME RATE UP-CONVERSION SOFTWARE 22

 3.1 Adaptive True Motion Estimation Algorithm .. 22

 3.2 Motion Compensated Frame Rate Up-Conversion Software 26

 3.3 Performance Results .. 32

VIII

4 ADAPTIVE TRUE MOTION ESTIMATION HARDWARE DESIGN 48

 4.1 Basic ATME Hardware .. 48

 4.1.1 Operation of Basic ATME Hardware ... 50

 4.1.2 Implementation Results of Basic ATME Hardware 51

 4.2 ATME Hardware with Update Window .. 52

 4.2.1 Implementation Results of ATME Hardware with Update Window . 54

 4.3 ATME Hardware with Search Window ... 56

5 CONCLUSION AND FUTURE WORK .. 65

Bibliography ... 67

IX

LIST OF FIGURES

Figure 1.1 : An Example FRUC System .. 1

Figure 1.2 : Effect of Picture Repetition. ... 2

Figure 2.1 : Motion Trajectory ... 5

Figure 2.2 : Motion Vector in BM Algorithms .. 6

Figure 2.3 : Full Search ME ... 7

Figure 2.4 : 3-Step Search Pattern .. 8

Figure 2.5 : Candidate Search Locations Set for 3DRS 10

Figure 2.6 : Motion Vector Smoothing .. 11

Figure 2.7 : 3x3 Smoothing Window ... 12

Figure 2.8 : Example Application of Motion Vector Smoothing 12

Figure 2.9 : Hole and Overlapping Regions ... 13

Figure 2.10 : Bilateral Motion Estimation ... 14

Figure 2.11 : Bilateral ME as a Refinement Step ... 14

Figure 2.12 : Overlapping Regions in OBMC ... 18

Figure 2.13 : Generation of Even Numbered Frames .. 20

Figure 2.14 : Comparison of Even Numbered Frames ... 21

Figure 3.1 : Candidate Vector Sets ... 23

Figure 3.2 : Resizing of Frames ... 26

Figure 3.3 : Configuration File ... 28

Figure 3.4 : Motion Vector Visualization .. 31

Figure 3.5 : PSNR/SAD Count for Vector Threshold Selection 35

Figure 3.6 : Average PSNR/SAD Count for Vector Threshold Selection 35

X

Figure 3.7 : Full Search Subjective Quality Assessment 41

Figure 3.8 : 3DRS Subjective Quality Assessment .. 42

Figure 3.9 : ATME Subjective Quality Assessment .. 42

Figure 3.10 : Subjective Assessment of MCI Algorithms – MC-FAVG 45

Figure 3.11 : Subjective Assessment of MCI Algorithms – Static Med. Filter ... 45

Figure 3.12 : Subjective Assessment of MCI Algorithms – Dynamic Med.
Filter ... 46

Figure 3.13 : Subjective Assessment of MCI Algorithms – Two Mode
Interpolation .. 46

Figure 3.14 : Subjective Assessment of MCI Algorithms – Non-Motion
Compensated Interpolation ... 47

Figure 4.1 : Block Diagram of Basic ATME Hardware 49

Figure 4.2 : Block Diagram of ATME Hardware with UW 53

Figure 4.3 : Operation of Horizontal and Vertical Multiplexers in UW 55

Figure 4.4 : Replacement in UW .. 57

Figure 4.5 : Operation of Horizontal and Vertical Multiplexers in ATME
Hardware with SW ... 58

Figure 4.6 : Block Diagram of ATME Hardware with SW 60

Figure 4.7 : Diagonal Placement in SW ... 62

Figure 4.8 : Address Rotation for SW .. 63

XI

LIST OF TABLES

Table 3.1 : Pseudo-code for ATME .. 24

Table 3.2 : Number of 106 SAD Calculations Done by ME Algorithms 33

Table 3.3 : Comparison of Modified 3DRS Algorithms Using Optimized Sets of

Candidate Locations along with Full Search and Non-Motion Compensated

Interpolation Results .. 34

Table 3.4 : Performance of the First Stage of ATME Algorithm 37

Table 3.5 : Multi-pass Redundancy Removal Performance 38

Table 3.6 : Performance of the ATME Algorithm .. 39

Table 3.7 : PSNR and Computational Complexity Comparison of ATME with

Reference Algorithms .. 40

Table 3.8 : PSNR (dB) Results of MCI Algorithms for “Foreman CIF”

Sequence .. 43

Table 3.9 : PSNR (dB) Results of MCI Algorithms for “NewMobCal 720p”

Sequence .. 43

Table 3.10: PSNR (dB) Results of MCI Algorithms for “SthlmPan 720p”

Sequence .. 43

Table 3.11: PSNR (dB) Results of MCI Algorithms for “ParkJoy 1080p”

Sequence .. 44

Table 3.12: PSNR (dB) Results of MCI Algorithms for “InToTree 1080p”

Sequence .. 44

Table 4.1 : Number of Pixels Read from Off-Chip SRAM 54

Table 4.2 : Number of Pixels Read from Off-Chip SRAM by ATME Hardware 59

Table 4.3 : Locations of the SW Pixels in Block RAMs 61

XII

LIST OF ABBREVIATIONS

2MI : Two-Mode Interpolation

3DRS : 3-D Recursive Search

ATME : Adaptive True Motion Estimation

Bi-ME : Bilateral Motion Estimation

BM : Block Matching

CB : Current Block

CF : Current Frame

DMF : Dynamic Median Filter

FRUC : Frame Rate Up-Conversion

FS : Full Search

HD : High Definition

LFSR : Linear Feedback Shift Register

MC-FAVG : Motion Compensated Field Averaging

MC-FRUC : Motion Compensated Frame Rate Up-Conversion

MCI : Motion Compensated Interpolation

ME : Motion Estimation

MSE : Mean Squared Error

MV : Motion Vector

PB : Previous Block

PE : Processing Element

PF : Previous Frame

SAD : Sum of Absolute Differences

SD : Standard Definition

SMF : Static Median Filter

SW : Search Window

PSNR : Peak Signal-to-Noise Ratio

UW : Update Window

VMF : Vector Median Filter

1

Chapter 1

INTRODUCTION

The advancements in VLSI technology enabled the production of many

multimedia products which introduced many video formats with different spatial and

temporal resolutions. These formats include two main Standard Definition (SD) TV

broadcast formats (50 Hz and 60 Hz with 625 and 525 lines respectively), and High

Definition TV (HDTV) formats (720p and 1080i). The movie materials are recorded at

24, 25 or 30 frames per second. On the other hand, the advancement in display

technologies enabled the production of large flat panel High Definition Television

(HDTV) and PC displays with up to 100, 120 and most recently 240 Hz non-interlaced

picture rates.

In order to display these formats correctly on high picture rate panels, new frames

should be generated and inserted into the original sequence to increase its frame rate.

Therefore, Frame Rate Up-Conversion (FRUC) has become a necessity [1]. An example

FRUC scheme in which the frame rate of the input video sequence is multiplied by 4 is

shown in Figure 1.1.

Figure 1.1: An Example FRUC System

2

The existing FRUC algorithms are mainly classified into two types [2]. First class

of algorithms does not take motion of the objects into account, like frame repetition [3]

or linear interpolation [4]. These algorithms are easy to implement without any

significant computational cost, however at high spatial and temporal resolutions, these

algorithms produce visual artifacts [5] like motion judder (if the difference between

input and output frame rate is below 30 Hz) and motion blur (for higher differences).

Figure 1.2 [1] shows the effect of these two situations.

In Figure 1.2(a) the original sequence is shown, where the linear motion of an

object is illustrated as a straight line for 3 frames. In Figure 1.2(b), the case where the

motion of the object is recorded by a 24 frames per second (fps) camera and displayed

on a 60 Hz display is shown. When picture repetition is applied, some frames will be

displayed two times and some will be displayed three times. This is called a 2-3 pull

down [6]. In this case the viewer will experience an irregular or jerky motion which is

called motion judder. On the other hand, in Figure 1.2(c), the case where a 50 Hz video

is displayed on a 100 Hz display using picture repetition is shown. In this case, the

viewer will experience a smooth motion, as the difference between input and output

frame rates is higher than 30 Hz. However, the object will be perceived in both

positions moving in parallel simultaneously, which will result in a double or blurred

object. This is called motion blur.

 (a) (b) (c)
Figure 1.2: Effect of Picture Repetition (a) Original sequence (b) Picture repetition

from 24 Hz to 60 Hz (c) Picture repetition from 50 Hz to 100 Hz.

Second class of FRUC algorithms takes the motion of objects into account to

reduce these artifacts and construct higher quality interpolated frames [2]. These Motion

Compensated Frame Rate Up-Conversion (MC-FRUC) algorithms consist of two main

stages, Motion Estimation (ME) and motion compensated interpolation (MCI). In ME, a

3

Motion Vector (MV) is calculated between successive frames, and in the MCI step this

MV data from the previous step is used to generate a new frame to be inserted between

the initial two successive frames, thus doubling the frame rate. This operation can be

repeated to further increase the frame rate. In addition to the two main steps, there may

be intermediate steps to improve the quality of the interpolated video output. These

intermediate steps generally involve refinement of the MV field by various algorithms

like Motion Vector Smoothing and Bilateral ME Refinement.

Among several ME algorithms, Block Matching (BM) is the most preferred

method, which divides the frames of video sequences into NxN pixel blocks and tries to

find the best matching block according to a cost function from previous frames inside a

given search range. The most common cost function is Sum of Absolute Differences

(SAD), because of its low computational cost.

There are various BM algorithms proposed in the literature. Full Search (FS)

algorithm has the best performance as it exhaustively searches every location in the

given search range [1]. However, its computational complexity is very high, especially

for HD videos. On the other hand, many fast block matching algorithms are available

[7-10], which have much less computational complexity while producing acceptable

quality results. When motion vectors are generated for FRUC applications, it is

important that the vectors represent real motions of the objects [1]. This is called the

true motion. Although, these algorithms find the best SAD match which is sufficient for

video compression, this does not guarantee that those vectors represent the true motion

of the object. Therefore, generally, these algorithms perform poorly when used in frame

rate up-conversion applications.

There are several ME algorithms [11-15] which aim to extract the true motion

information between the frames of video sequences. These algorithms depend on two

assumptions. The objects are larger than blocks so that surrounding neighbors of a block

should have similar motions, and motions are continuous and spread through a duration

of time so that blocks in successive frames of a video sequence should have similar

motions. A recursive search algorithm takes advantage of these assumptions, and for the

current block evaluates the motion vectors of spatial and temporal neighboring blocks

instead of doing an exhaustive or static patterned search. 3-D Recursive Search (3DRS)

[11] is one of the best implementations of these assumptions, and produces a smooth

and accurate motion vector field suitable for MC-FRUC applications.

4

In this thesis, an adaptive true motion estimation algorithm (ATME) based on

3DRS is proposed. The candidate locations set of the 3DRS algorithm is optimized

using a multi-objective genetic algorithm optimization [16], in order to produce high

quality results with low computational costs. The optimized search location candidates

are then integrated into an adaptive recursive search algorithm, which applies

appropriate sets of search candidates, according to the smoothness and quality of the

previous vector field. In addition, several computational complexity reduction and

redundancy removal techniques are used for reducing the number of SAD calculations

in single and multiple passes of the algorithm. One of these techniques also implicitly

results in increasing smoothness of the motion vector field. Simulation results show that

ATME algorithm generates similar quality results with lower computational costs or

higher quality results with same computational costs compared to the 3DRS algorithm.

In addition, 3 different complexity hardware architectures for ATME are

proposed. The first architecture is a basic implementation of ATME algorithm and is

able to process ~158 720p HD frames per second. The second architecture uses an on-

chip memory for efficient data re-use of pixel data for MVs that are close in value

reducing the number of accesses to the off-chip SRAM which is costly both in terms of

latency and power consumption. This architecture processes ~168 720p HD frames per

second. Finally, a more complex architecture for use with large number of candidate

search locations and large size video frames is proposed. This architecture uses a large

on-chip search window memory for implementing a highly efficient data re-use scheme.

The pixels are placed diagonally [17] in this search window memory to enable single

cycle access to a row or column at any location inside the search window.

The rest of the thesis is organized as follows. In Chapter 2, ME algorithms, MCI

algorithms, and several refinement steps used in MC-FRUC systems are explained in

detail. In addition, video quality evaluation methods and metrics are presented. In

Chapter 3, the ATME algorithm and its performance evaluation is presented. In

addition, the software developed for implementation and testing of FRUC algorithms is

explained. In Chapter 4, hardware implementations for ATME are presented in detail.

Finally, Chapter 5 concludes this thesis.

5

Chapter 2

MOTION COMPENSATED FRAME RATE UP-CONVERSION

2.1 Motion Estimation

Motion estimation is the process of determining motion vectors that describe the

transformation from one video frame to another, usually between adjacent frames in a

video sequence. In Figure 2.1, a motion vector (MV) is shown as the motion trajectory

which is the line that connects identical parts in adjacent frames. The estimation of these

MVs is a difficult problem as the motion is in three dimensions but the images are a

projection of the 3D scene onto a 2D plane. The MVs may relate to the whole image

such as global motion, zooming or panning, or specific parts such as rectangular blocks,

arbitrary shaped objects or even a pixel [1].

Figure 2.1: Motion Trajectory

6

Figure 2.2: Motion Vector in BM Algorithms

Pixel based ME methods [18] involve significant calculations which makes them

hard to implement both in software and hardware. Object based motion estimation [19]

is an emerging method. But, the initial requirement of object based ME, the object

segmentation, is a computationally demanding task. The block based motion estimation

is the most preferred method in the literature and also in the industry due to its easy

implementation and high quality results. The block based ME methods use Block

Matching (BM) Algorithms, which divide the frames of video sequences into NxN pixel

blocks and try to find the best matching block according to a cost function from

previous frames inside a given search range. An example MV found by a BM algorithm

is shown in Figure 2.2. The most common cost function is Sum of Absolute Differences

(SAD) shown in Equation (2.1), because of its low computational complexity. The

pixels inside a block 𝐵𝐵(�⃗�𝑋) are assumed to have the same MV, which is assigned to

𝐵𝐵��⃗�𝑋� by BM algorithms.

 𝑆𝑆𝑆𝑆𝑆𝑆��⃗�𝑣, �⃗�𝑋,𝑛𝑛� = ∑ |𝐹𝐹(�⃗�𝑥,𝑛𝑛) − 𝐹𝐹(�⃗�𝑥 − �⃗�𝑣,𝑛𝑛 − 1)|𝑥𝑥∈𝐵𝐵(𝑋𝑋�⃗) (2.1)

Full Search (FS) algorithm is based on computing SADs at all possible locations

in a given search window. It takes a block 𝐵𝐵(�⃗�𝑋) in the current frame n, whose top left

pixel is at position �⃗�𝑋 and compares it to every block in the previous frame, n-1, inside a

pre-defined search area 𝑆𝑆𝑆𝑆(�⃗�𝑋) which is also centered at �⃗�𝑋. The motion trajectory

connecting the best matching block (with the minimum SAD) in the previous frame

with the current block 𝐵𝐵(�⃗�𝑋) is assigned as the Motion Vector V of 𝐵𝐵(�⃗�𝑋). This process is

illustrated in Figure 2.3 [1]. The definition of full search is given in Equations (2.2) and

7

(2.3), where C denotes the candidate motion vectors pointing to possible search

locations inside the search area SA, N and M denotes width and height of SA

respectively, V denotes the selected MV.

 𝑆𝑆𝑆𝑆�����⃗ = �𝐶𝐶�(𝑋𝑋𝑥𝑥 − 𝑁𝑁) ≤ 𝐶𝐶𝑥𝑥 ≤ (𝑋𝑋𝑥𝑥 + 𝑁𝑁), �𝑋𝑋𝑦𝑦 − 𝑀𝑀� ≤ 𝐶𝐶𝑦𝑦 ≤ �𝑋𝑋𝑦𝑦 + 𝑀𝑀�� (2.2)

 𝑉𝑉�⃗ = 𝑎𝑎𝑎𝑎𝑎𝑎min𝑣𝑣�⃗ ∈𝑆𝑆𝑆𝑆�����⃗ �𝑆𝑆𝑆𝑆𝑆𝑆(�⃗�𝑣, �⃗�𝑋,𝑛𝑛)� (2.3)

FS guarantees finding the minimum SAD value inside a given search range.

However, it is not designed to extract the true motion of the objects between frames and

it is computationally expensive as it exhaustively evaluates every possible MV

candidate.

Figure 2.3: Full Search ME

The high computational complexity of the FS algorithm created the need for fast

ME methods which try to achieve similar quality results with less computational

complexity. There are many proposed fast ME methods [7-10] in the literature. For

example, N-step search methods initially apply coarse search patterns, and continue

8

with finer patterns starting with the location found in the previous step. 3-step search

pattern [7] is illustrated in Figure 2.4 [1].

Figure 2.4: 3-Step Search Pattern

2.2 True Motion Estimation

The physical three-dimensional motion projected onto two-dimensional space is

referred to as true motion. The ability to track true motion by observing changes in

luminance intensity is critical to many video applications such as FRUC [20]. Different

from the other motion estimation algorithms like FS, a true motion estimation algorithm

should also take other measures into account like spatio-temporal consistency of the

MV field around objects. This is based on two assumptions. Objects are larger than

blocks so that MV field around a block should be smooth and objects have inertia, i.e.

object motions are spread through time to several frames. Therefore, motions of the

objects can also be tracked by analyzing previous frames.

9

There are several true motion estimation algorithms in the literature [11-15] that

check the spatio-temporal consistency around blocks to obtain the true motion of the

object containing that block. Three Dimensional Recursive Search (3DRS) [11] is one

of the best implementations of these two assumptions. Instead of evaluating all possible

candidate locations in a search window, 3-D recursive search algorithm uses spatial and

temporal predictions to select only a few candidate vectors from the 3-D neighborhood

(spatial and temporal neighbors) of the current block, thus reducing computational

complexity of ME which is the most computationally expensive part of MC-FRUC and

also resulting in a smooth and accurate true MV field.

There are two problems with the first assumption in 3DRS. First, because of the

processing order of the blocks (starting from top-left block and ending with the bottom-

right block), not all of the spatial neighboring blocks of the current block (CB) are

available, e.g. the blocks to the right of the CB and the blocks that are below the CB.

This problem is solved with the second assumption. Since the motion of the object

continues over several frames, instead of the motion vectors of the spatial neighboring

blocks that are not yet calculated the motion vectors of the corresponding temporal

neighboring blocks are used.

Second, all vectors are zero or undefined at initialization. Therefore, the motion

vector of the object cannot be found in any of the neighboring blocks in the first frame.

This problem is solved by adding random update vectors from a pre-defined set of noise

vectors, filling the MV field with not accurate but possible motion data. In [21], it is

proposed to use the candidate set shown in Equation (2.4) and illustrated in Figure 2.5.

Squares marked as S are vectors taken from spatial neighbors and square marked as T is

the vector taken from the previous frame. CB denotes the current block.

10

Figure 2.5: Candidate Search Locations Set for 3DRS

 𝐶𝐶𝑆𝑆3𝑆𝑆𝐷𝐷𝑆𝑆(�⃗�𝑋,𝑛𝑛) =

⎩
⎪
⎨

⎪
⎧𝑉𝑉�⃗ ��⃗�𝑋 + �−1

−1� ,𝑛𝑛� + 𝑈𝑈1����⃗ (�⃗�𝑋,𝑛𝑛)

𝑉𝑉�⃗ ��⃗�𝑋 + � 1
−1� ,𝑛𝑛� + 𝑈𝑈2����⃗ (�⃗�𝑋,𝑛𝑛)

𝑉𝑉�⃗ ��⃗�𝑋 + �0
2� ,𝑛𝑛 − 1� ⎭

⎪
⎬

⎪
⎫

 (2.4)

where the update vectors 𝑈𝑈1����⃗ (�⃗�𝑋,𝑛𝑛) and 𝑈𝑈2����⃗ (�⃗�𝑋,𝑛𝑛) are randomly selected from the

following update set:

 𝑈𝑈𝑖𝑖��⃗�𝑋,𝑛𝑛� =

⎩
⎨

⎧ 0⃗
��0

1
� , � 0

−1
� , �1

0
�� , �−1

0
� ,

��0
2
� , � 0

−2
� , �3

0
�� , �−3

0
�⎭
⎬

⎫
 (2.5)

2.3 Intermediate FRUC Steps

In addition to the two main FRUC steps, additional steps such as motion vector

smoothing or bilateral motion estimation can be performed before MCI to improve the

quality of the estimated motion vectors by refining them to obtain a smoother and more

accurate MV field.

11

2.3.1 Motion Vector Smoothing

Motion fields are usually smooth functions except at object boundaries. However,

there are cases where even true motion estimation may produce unreliable motion

vectors. Therefore, outliers can occur as shown in Figure 2.6 (b). These outliers should

be eliminated for FRUC applications.

 (a) (b) (c)

Figure 2.6: Motion Vector Smoothing (a) Smooth region (b) Outlier MV

(c) Object boundary

There are many approaches for motion vector smoothing. One of them is Vector

Median Filtering (VMF) [22] which eliminates outliers while preserving boundaries

between different objects.

Let, 𝑀𝑀𝑉𝑉𝐹𝐹 = {𝑚𝑚𝑣𝑣1,𝑚𝑚𝑣𝑣2, … ,𝑚𝑚𝑣𝑣𝑁𝑁} be the set of MVs inside the smoothing

window. Then the median vector 𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛 is defined as the element in the set, which

satisfies the inequality,

�

𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛 ∈ 𝑀𝑀𝑉𝑉𝐹𝐹

�‖𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛 − 𝑚𝑚𝑣𝑣𝑖𝑖‖𝑝𝑝 ≤��𝑚𝑚𝑣𝑣𝑗𝑗 − 𝑚𝑚𝑣𝑣𝑖𝑖�𝑝𝑝 , 𝑗𝑗 = 1,2, … ,𝑁𝑁
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

�

(2.6)

where the norm ‖ ∙ ‖𝑝𝑝 defines the metric used to convert a vector to a scalar value. For

the norm operation generally the L1 norm (p = 1) is used since it has low computational

complexity and it is an effective method for checking vector similarity [10]. L1 norm is

defined as,

12

‖𝒙𝒙‖1 = �|𝑥𝑥𝑖𝑖 |
𝑛𝑛

𝑖𝑖=1

(2.7)

where 𝑥𝑥𝑖𝑖 is the ith component of the vector �⃗�𝑥.

The size of the smoothing window is selected as 3x3 in practical applications. The

block currently being processed is placed in the center of the window, and the 8

surrounding neighbors are used in the filtering process, making a total of 9 vectors in

each window as shown in Figure 2.7.

Figure 2.7: 3x3 Smoothing Window

An example application of motion vector smoothing is shown in Figure 2.8. The

outliers in the boundary region cannot be processed because of the unavailability of

some of the neighboring MVs.

Figure 2.8: Example Application of Motion Vector Smoothing

13

2.3.2 Bilateral Motion Estimation

One of the potential problems with BM algorithms for FRUC is the possible hole

and overlapped areas in the interpolated frames. Since a new frame is generated by

interpolation between previous frame (PF) and current frame (CF) based on motion

vectors (MV) and these vectors are obtained by ME which assumes that objects move

along the motion trajectory, holes and overlapped areas may be produced in the

interpolated frames due to no motion trajectory passing through and multiple motion

trajectories passing through, respectively [23]. This degrades the quality of generated

frames as shown in Figure 2.9. This problem can be solved by median filtering

overlapped pixels [24], using spatial interpolation methods for holes [25], or prediction

methods by analyzing MV fields for covered and uncovered regions [23][26]. However,

these methods have high computational complexity and give unsatisfactory results,

especially in cases of non-static backgrounds and camera motions. To overcome this

problem more efficiently, Bilateral Motion Estimation (Bi-ME) methods are proposed

[27]-[30], which construct a MV field from the viewpoint of the to-be-interpolated

frame, and therefore do not produce any overlapped areas or holes during interpolation.

Figure 2.9: (a) Hole and Overlapping Regions (b) Frame Generated by Bilateral

ME

In other ME algorithms, an NxN size block from CF, CB, is kept stationary and a

match for this CB is searched inside a search window in PF. In Bi-ME, an imaginary

frame is assumed to exist which will be the intermediate frame after it is interpolated,

and ME is performed from the viewpoint of this frame. Therefore, the block inside the

to-be-interpolated frame is kept stationary and a match for this block is tried to be found

both in CF and PF at symmetric locations to each other. The trajectory connecting two

symmetric blocks in CF and PF always passes through the stationary block inside the

14

to-be-interpolated frame. When the best match is found, the trajectory between two

symmetric blocks is assigned as the MV to the block that will be interpolated. The Bi-

ME process is shown in Figure 2.10.

Figure 2.10: Bilateral Motion Estimation

Bi-ME, when used exclusively as the ME step, does not yield acceptable results

for MC-FRUC applications due to its lack of true motion estimation capability. It is

proposed in [27] that Bi-ME can be used as a refinement step to a ME algorithm as

shown in Figure 2.11.

Motion
Estimation Refinement MCI

Initial
MV Field

Bilateral
MV Field

Interpolated
Frame

Previous
Frame

Current
Frame

Figure 2.11: Bilateral ME as a Refinement Step

2.4 Motion Compensated Interpolation

The last step of a MC-FRUC system is the Motion Compensated Interpolation

(MCI) step, which interpolates the pixel data of the intermediate frame using the motion

vectors generated by the ME step between the previous and current frames. A robust

MCI algorithm is as important as a robust ME algorithm. Even if the ME cannot

15

accurately estimate the true motion of the object like in the cases of covering and

uncovering of different objects, MCI algorithm may detect these cases and be able to

generate a high quality video output.

2.4.1 Motion Compensated Field Averaging

Motion Compensated Field Averaging (MC-FAVG) [1] is the most basic MCI

method. MC-FAVG algorithm combines two adjacent frames linearly, with each block

in the PF is shifted towards the CF according to the value of its MV, and similarly each

block in the CF is shifted towards PF along its motion trajectory. The algorithm is

shown in Equation (2.8)

𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼) =
1
2
�𝐹𝐹��⃗�𝑥 − 𝛼𝛼𝑉𝑉�⃗ ,𝑛𝑛� + 𝐹𝐹��⃗�𝑥 + (1 − 𝛼𝛼)𝑉𝑉�⃗ ,𝑛𝑛 + 1�� ; 0 ≤ 𝛼𝛼 ≤ 1

(2.8)

where 𝐹𝐹(�⃗�𝑥,𝑛𝑛) denotes the intensity value of the pixel at location �⃗�𝑥 in frame n, α denotes

the up-conversion ratio (0.5 for doubling the frame rate), and 𝑉𝑉�⃗ is the MV associated

with that pixel.

2.4.2 Static Median Filtering

In some cases when a wrong MV is assigned to stationary objects like text areas,

MC-FAVG produces blocking artifacts. This problem can be solved by Static Median

Filter (SMF) algorithm [1]. In SMF, two inputs of a median filter is fed with two pixel

values, one from the PF and one from the CF, both from the same location of the current

pixel to be interpolated. The third input is connected to the output of the MC-FAVG

algorithm. With this scheme, in cases of stationary fields, values of the two stationary

pixels will be similar. This would result in the selection of one of those pixels. On the

other hand, when there is a temporal discontinuity, values of the stationary pixels will

be apart, therefore the MC-FAVG result will be used. The SMF algorithm is shown in

Equation (2.9).

 𝐹𝐹𝑠𝑠𝑚𝑚𝑠𝑠 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐹𝐹(�⃗�𝑥,𝑛𝑛),𝐹𝐹(�⃗�𝑥,𝑛𝑛 + 1),𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼)} (2.9)

2.4.3 Dynamic Median Filtering

Dynamic Median Filter (DMF) [1] also uses a 3-point median filter scheme.

However, in DMF, two inputs of the filter is fed with motion compensated pixel values

16

from previous and current frames each taken from respective locations that the MV of

the to-be-interpolated pixel points to. The third input is the non-motion compensated

average of two pixels taken from the same location of the to-be-interpolated pixel both

from CF and PF. The DMF is shown in Equation (2.10).

𝐹𝐹𝑚𝑚𝑚𝑚𝑠𝑠 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹��⃗�𝑥 − 𝛼𝛼𝑉𝑉�⃗ ,𝑛𝑛�,𝐹𝐹��⃗�𝑥 + (1 − 𝛼𝛼)𝑉𝑉�⃗ ,𝑛𝑛 + 1�,
1
2

(𝐹𝐹(�⃗�𝑥,𝑛𝑛) + 𝐹𝐹(�⃗�𝑥,𝑛𝑛 + 1)�

(2.10)

In cases where the motion vector is accurate, the compensated pixels will have

about the same values, and therefore the median filter will select either of them. But if

the motion vector is unreliable, then it is likely that values of the compensated pixels

will be apart from each other, therefore the uncompensated input will be selected.

2.4.4 Two-Mode Interpolation

Two-Mode Interpolation (2MI) [1] algorithm aims at a relatively better

interpolation at a reduced operation count. This algorithm is based on occlusion

detection to have information about whether there is a covering or an uncovering

situation in the frame or not. This detection is done by analyzing the MV field seeking

significant discontinuities between neighboring vectors. When a discontinuity is found,

it is assumed that borders of objects are reached, therefore MVs of those blocks are less

reliable and MCI should be done with more caution. On the other hand, when the MV

field is smooth, a simpler MCI algorithm like MC-FAVG is sufficient. For the occlusion

detection, the difference between the MV values of the left and right blocks and the

difference between the MV values of the top and bottom blocks are checked. If any of

them is higher than a pre-defined threshold value, an occlusion is assumed to be found

and the MCI is handled by DMF. Otherwise, MC-FAVG is used for that block. 2MI is

shown in Equation (2.11).

𝐹𝐹(�⃗�𝑥,𝑛𝑛 + 𝛼𝛼)

= �
𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹�𝑥𝑥�⃗ − 𝛼𝛼𝑉𝑉��⃗ , 𝑛𝑛�,𝐹𝐹�𝑥𝑥�⃗ + (1 − 𝛼𝛼)𝑉𝑉��⃗ , 𝑛𝑛 + 1�,

1
2

(𝐹𝐹(𝑥𝑥�⃗ , 𝑛𝑛) + 𝐹𝐹(𝑥𝑥�⃗ , 𝑛𝑛 + 1)� , 𝑜𝑜𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛

1
2
�𝐹𝐹��⃗�𝑥 − 𝛼𝛼𝑉𝑉�⃗ ,𝑛𝑛� + 𝐹𝐹(1 − 𝛼𝛼)𝑉𝑉�⃗ ,𝑛𝑛 + 1)� , 𝑜𝑜𝑜𝑜ℎ𝑚𝑚𝑎𝑎𝑒𝑒𝑖𝑖𝑠𝑠𝑚𝑚

 �

(2.11)

17

This adaptation yields a generally improved output compared to each method

individually. The operation count is reduced roughly 30% compared with that of the

dynamic median filter, since dynamic median filtering is needed for a relative small

portion of pixels in the image (on average less than %10). [1]

2.4.5 Overlapped Block Motion Compensation

The block based ME uses the assumption that all the pixels in a block have the

same motion as there exists a single motion vector for each block. However, different

parts of objects that move in different directions can be in the same block or MV field

generated by the ME step may not represent the correct motion of the objects due to ME

errors. In these cases, conventional block based interpolation may produce blocking

artifacts or block boundary discontinuities that reduce the quality of the video both in

subjective and objective metrics.

Overlapped Block Motion Compensation [31] is developed in order to avoid these

blocking artifacts and increase the quality of the resulting frame in MC-FRUC. It is also

used in video compression standards such as H.263 [32]. The main idea of OBMC is

based on determining the motion of each pixel in a block by considering the motion

vector of the block itself as well as the motion vectors of its neighboring blocks.

A simple OBMC technique is implemented in [27]. It employs OBMC during the

interpolation stage by enlarging every NxN block in the to-be-interpolated frame to

(N+2w) x (N+2w) block which form overlapped areas of width w in every block as

shown in Figure 2.12. The purpose of this operation is having a smooth transition

between adjacent blocks. The pixels at the corners of an NxN block are located in the

overlapped area of the 4 neighboring blocks. The intensities of these pixels are

calculated by averaging the intensity values generated by the motion vectors of each

respective block. The intensities of the pixels that are located at the side boundaries of

the interpolated block are calculated by averaging the intensity values generated by the

motion vectors of the interpolated block and the adjacent block. The remaining

interpolation is done by only using the motion vector of the to-be-interpolated block.

For example, in Figure 2.12, OBMC is not applied to the pixels in R1 regions as

these pixels belong to a single block. The pixels that are located in R2 regions should be

interpolated by taking motion vectors of both adjacent blocks into account, as these

pixels belong to both blocks. The pixels in R3 region are in the overlapped area of 4

18

neighboring blocks, therefore the interpolations of these pixels are performed by using 4

different motion vectors.

Figure 2.12: Overlapping Regions in OBMC

The interpolation of the block B is defined in Equations (2.12), (2.13) and (2.14)

where the neighboring blocks are Ni= 1, 2… 8, 𝑉𝑉�⃗ (�⃗�𝑥) refers to the motion vector of the

block B at position �⃗�𝑥 and 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥,𝑉𝑉�⃗ (𝐵𝐵)) denote the motion compensated field averaging

for pixel at �⃗�𝑥 using motion vector V of block B.

1. For R1:
 𝐹𝐹(�⃗�𝑥) = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥 ∈ 𝐷𝐷1,𝑉𝑉�⃗ (𝐵𝐵)) (2.12)

2. For R2:

𝐹𝐹(�⃗�𝑥) =
1
2
�𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥 ∈ 𝐷𝐷2,𝑉𝑉�⃗ (𝐵𝐵)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥 ∈ 𝐷𝐷2,𝑉𝑉�⃗ (𝑁𝑁𝑖𝑖))�

where Ni ∈{N2, N4, N5, N7}. (2.13)

3. For R3:

𝐹𝐹(�⃗�𝑥) =
1
4
�𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥 ∈ 𝐷𝐷3,𝑉𝑉�⃗ (𝐵𝐵)�+ 𝑆𝑆𝑘𝑘� , 𝑘𝑘 = 1,2,3,4

(2.14)

where Sk is the sum of the MC-FAVG results for the neighboring blocks

overlapped with B in R3 and defined by:

19

𝑆𝑆1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁1)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁2)� + 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁4)�

𝑆𝑆2 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁2)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁3)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁5)�

𝑆𝑆3 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁4)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁6)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁7)�

𝑆𝑆4 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁5)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁7)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁8)�

(2.15)

 The quality of the generated frame can further be improved by giving weights to

pixels of neighboring blocks according to their spatial distance from the current block

[28], favoring the CB’s pixels inside that block, giving 50% weight to both blocks at the

edge of two blocks, and decreasing the weight while moving away from the CB. The

quality of the generated frame can also be improved by assigning weights to the

neighboring blocks according to the reliability of their motion vectors, i.e. the

smoothness of the MV field around the CB [29].

2.5 Evaluation Methods and Metrics

In this thesis, the performances of FRUC algorithms are evaluated as follows.

Every even numbered frame is omitted from the sequence and ME is employed between

odd frames. Then, MCI step is applied using these MVs to re-synthesize the even

numbered frames as shown in Figure 2.13. After all even numbered frames are

generated, the original even numbered frames and interpolated even numbered frames

are compared as shown in Figure 2.14. The comparison is done using Mean Squared

Error (MSE) metric by calculating the differences of each pixel at the same locations in

the original and interpolated frames and summing the squares of these values as shown

in Equation (2.16). After all MSEs for all even numbered frames are found, the

corresponding Peak Signal-to-Noise (PSNR) ratios are found as shown in Equation

(2.17).

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑁𝑁𝑀𝑀

� �(𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝑂𝑂(𝑖𝑖, 𝑗𝑗))2
𝑀𝑀−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

(2.16)

20

where N and M denote the image height and width respectively, I is the interpolated

frame and O is the original frame.

𝑃𝑃𝑆𝑆𝑁𝑁𝐷𝐷 = 10. 𝑜𝑜𝑜𝑜𝑎𝑎10 �
𝑀𝑀𝑆𝑆𝑋𝑋2

𝑀𝑀𝑆𝑆𝑀𝑀
� = 20. 𝑜𝑜𝑜𝑜𝑎𝑎10 �

𝑀𝑀𝑆𝑆𝑋𝑋
√𝑀𝑀𝑆𝑆𝑀𝑀

�

(2.17)

where MAX is the maximum possible error between two pixels. If pixel intensities are

represented by 8 bits, then MAX is 255.

PSNR is a widely used evaluation metric for the quality of video sequences.

PSNR is accepted as a good objective measure of quality. However, the perceived

quality of the video is not always directly related to its objective quality. A viewer can

identify a sequence as a low quality sequence because of its unpleasing artifacts around

object edges even though every other pixel would have been interpolated perfectly thus

having a very high PSNR value. On the other hand, a video can have a low PSNR value

like in a case of blurring but that blurring could be unnoticeable by the viewer

especially in scenes where objects move in high velocities. Therefore, when evaluating

the performances of FRUC algorithms, subjective quality assessments should also be

made along with objective quality assessments.

Figure 2.13: Generation of Even Numbered Frames

21

Figure 2.14: Comparison of Even Numbered Frames

22

Chapter 3

ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM AND MOTION
COMPENSATED FRAME RATE UP-CONVERSION SOFTWARE

3.1 Adaptive True Motion Estimation Algorithm

In this thesis, Adaptive True Motion Estimation Algorithm (ATME) is developed

based on 3DRS. It is observed by analyzing the MV fields generated by 3DRS that the

two main assumptions of recursive true motion algorithms are indeed correct, the

objects are bigger than blocks and motions of the objects are continuous. Therefore, the

candidate locations that will be evaluated by 3DRS for the current block will be close in

value or even the same in many cases. In addition, multiple passes of 3DRS are

observed to improve the smoothness of the MV field at each pass hence improving

visual quality. The probability of being selected again as the best matching candidate

for a block is quite high for a MV which was selected as the best matching candidate for

that block in the first pass of the algorithm. Based on these facts, in order to reduce the

computation cost of 3DRS, ATME algorithm avoids the evaluations of the same and

similar MV candidates by applying computational complexity reduction and

redundancy removal techniques. In addition, when the SAD value of the best match is

decided not sufficient to be selected, ATME algorithm evaluates additional locations to

improve the quality of the MV field. Using these techniques, it obtains similar quality

results by less number of computations or better quality results by similar number of

computations compared to 3DRS.

To obtain an optimal candidate set for the proposed ATME algorithm, a multi-

objective genetic algorithm [16] is applied to all of the candidate locations, located

(±5,±5) blocks around the current block. Populations in this genetic algorithm have 25

individuals, each representing a candidate set containing a minimum of one search

23

location to a maximum of 20 search locations. Objectives of this test are defined as

maximizing the PSNR of the up-converted video sequences using the candidate sets of

best-individuals in the population, and at the same time minimizing the total number of

SAD calculations, which converges to the optimal set of candidates producing high

quality results with small amount of work. This algorithm is run on a set of 10 video

sequences1

 having various spatial resolutions from QCIF to HD for 100 generations,

and the candidate sets which are on the pareto-front of the resulting population are

noted down. It is observed that neighboring blocks which are closer to the current block

are better candidates, whereas in cases where candidate sets contain small number of

search locations, convergence is obtained faster by selecting candidates from opposite

directions of the current block, as proposed in [33].

 (a) (b) (c)

Figure 3.1: Candidate Vector Sets (a) 3DRS candidate set proposed in [21], (b)
ATME minimal candidate set, (c) ATME extended candidate set shown in gray.
The extended candidate set also contains no-motion vector, not shown in the
figure.

The ATME algorithm uses two different sets of search locations which are applied

adaptively based on several run-time checks. The minimal search location set consists

of a small number of search locations to be used in the first two steps of the algorithm,

and the extended search location set consists of more locations including the 0�⃗ vector

which represents zero motion, to be used in the third step when the smaller set does

produce sufficient results. The minimal and extended search location sets, proposed in

this thesis based on the multi-objective genetic algorithm optimization, are shown in

1 The video sequences used for this experiment are: Foreman(QCIF), Flower(SIF), Football(SIF),

Mobile(CIF), CrowdRun(720p), NewMobCal(720p), ParkRun(720p), SthlmPan(720p), InToTree(720p),
OldTownCross(720p).

24

Equations (3.1) and (3.2), and Figure 3.1(b) and Figure 3.1(c), respectively. The zero

motion vector 0�⃗ is not shown in Figure 3.1(c).

 𝐶𝐶𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 (�⃗�𝑋,𝑛𝑛) =

⎩
⎪
⎨

⎪
⎧ 𝑉𝑉�⃗ ��⃗�𝑋 + �−1

0 � ,𝑛𝑛� ,

𝑉𝑉�⃗ ��⃗�𝑋 + � 0
−1� ,𝑛𝑛� ,

𝑉𝑉�⃗ ��⃗�𝑋 + �2
1� ,𝑛𝑛 − 1�⎭

⎪
⎬

⎪
⎫

 (3.1)

 𝐶𝐶𝑆𝑆𝑚𝑚𝑥𝑥𝑜𝑜 (�⃗�𝑋,𝑛𝑛) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 0�⃗

𝑉𝑉�⃗ ��⃗�𝑋,𝑛𝑛 − 1�,

𝑉𝑉�⃗ ��⃗�𝑋 + �1
0� ,𝑛𝑛 − 1� ,

𝑉𝑉�⃗ ��⃗�𝑋 + �0
1� ,𝑛𝑛 − 1� ,

𝑉𝑉�⃗ ��⃗�𝑋 + �−2
1 � ,𝑛𝑛 − 1�⎭

⎪
⎪
⎬

⎪
⎪
⎫

 (3.2)

Table 3.1: Pseudo-code for ATME

The pseudo-code for ATME algorithm is given in Table 3.1. The ATME

algorithm first checks whether the vectors in the minimal search location set are

consistent with the motion of the current block, i.e. belonging to the same object and

representing similar motions. This is done by taking the L1 Norm of these 3 vectors. If

the norm is below a predefined threshold value (Vth), this means that the motion

associated with surrounding blocks is likely to be same as the motion of the current

block. Therefore, the median of this minimal set is assigned to the current block without

further SAD calculation. However, because of the recursive behavior of vector

for each search location 𝐿𝐿𝑚𝑚������⃗ in minimal set CSmin
 candidatesmin[0 to Nm] = MV of the block at (𝐵𝐵�⃗ + 𝐿𝐿𝑚𝑚������⃗)
if all L1 Norms between candidates <= Vth
 vector0 = median of all candidates
 vector1 = vector0 + random update vector
 calculate SADs for vector0 and vector1

assign MV producing bestSAD to block B
else
 add random update vector to last candidatemin
 calculate SADs between all candidatesmin and B
 if bestSAD > SADth
 for each search location 𝐿𝐿𝑚𝑚����⃗ in extended set CSext
 candiatesext[0 to Ne] = MV of the block at (𝐵𝐵�⃗ + 𝐿𝐿𝑚𝑚����⃗)
 add random update vector to last candidateext
 calculate SADs between all candidatesext and B

 assign MV producing bestSAD to block B

25

selection, without an additional update vector, this scheme may converge to an

invariable vector field. Therefore, the median vector and its random update vector

added version are evaluated based on the SAD criterion, and the vector with the

minimum SAD is selected and assigned to the current block. This step reduces the

number of SAD calculations in a spatio-temporally smooth video sequence without a

significant PSNR loss and at the same time smoothes the vector field because of the

median operation, which is used as a separate step in many FRUC algorithms. As a

result of this motion vector field smoothing at a reduced cost, increased PSNR values

are observed in some cases, while none of the cases resulted in significant PSNR losses.

 If the L1 Norm of the minimal search location set is not below the threshold Vth,

this means that there are inconsistent MVs around the current block, and therefore all 3

MVs in the minimal candidate set are searched individually. If the minimum SAD

resulting from this step is below a predetermined SAD threshold, SADth, then the

motion represented by the minimum SAD producing MV is assigned to the current

block. However, if the minimum SAD obtained by evaluating the minimal search

locations set is not below SADth, then the motion vector representing the motion of the

current block is probably not available in that candidate set, and therefore additional

search locations should be evaluated. In this case, extended search locations set

consisting of 5 new search locations is introduced and SAD calculation is done for the

MVs of the neighboring blocks at these new search locations. If the minimum of these

SAD values are smaller than the result of the minimal search location set, then that

motion vector is assigned to the current block, otherwise the result of the minimal set is

used.

Since the recursive true ME algorithms depend on the evaluation of some MVs at

spatial and temporal neighboring locations, convergence of the MV field can be

obtained by applying the true ME algorithm to the same frame more than one time. This

multiple pass technique increases the quality of the FRUC by generating a smoother

MV field, i.e. representing the true motion of the objects more correctly [34]. After each

pass of ME, some of the incorrect vectors will converge to better vectors, whereas most

of the time, they will keep their values from the previous pass. Therefore, if the SAD

values of the vectors are kept between each pass of the algorithm, instead of

redundantly calculating the same SAD value, the SAD value from the previous iteration

can be used. This redundancy removal technique is used in ATME algorithm. It resulted

in significant reduction in computation amount while producing exactly same results.

26

3.2 Motion Compensated Frame Rate Up-Conversion Software

There was a need for a robust, fast, flexible and easily modifiable software for the

implementation and testing of FRUC algorithms. Therefore, in this thesis, a FRUC

software environment is implemented using C. The backbone of the software consists of

a loop which reads image data from YUV files stored locally on the hard disk. For

memory efficiency, instead of reading all frames of the video sequence into memory,

one frame at a time is read and stored in two static arrays, one for the previous frame

(PF) and one for the current frame (CF). In addition, instead of reading two frames in

one iteration, the pointer to the CF at the previous iteration is set to be the PF at the

current iteration and the new frame is read to the location of the PF at the previous

iteration and its pointer is set to be the CF at the current iteration. This double buffering

technique significantly increases the performance of the software.

Inside the main loop, before any calculation, the PF is resized by mirroring pixel

data at all of the four edges to provide valid data for MVs pointing out of frame bounds

of the image. The resize amount is set by a user defined parameter. Figure 3.2(a) shows

an example resize scheme where an 8x6 pixel image is resized with resize amount set to

3. The numbers inside cells denote the pixel positions in the original frame. Figure

3.2(b) shows the first frame in the ForemanCIF sequence with resize amount set to 32.

(a) (b)

Figure 3.2: Resizing of Frames (a) 8x6 frame with resize amount = 3 (b) First

frame of ForemanCIF sequence with resize amount = 32

27

Another important parameter in the software is, replace switch. It is defined to

control the main behavior of the software whether to replace all even numbered frames

for testing purposes or to perform a full FRUC to double the frame rate. After all

pointers are set, ME, MCI and other steps if scheduled are applied to the image data. All

of the ME and MCI operations are defined by individual C functions passing relevant

data from one another. The functions that will be used are selected by user-defined

parameters. This is a very efficient and flexible implementation as the user could easily

change the order of operations or define additional operations without actually having to

worry about the underlying data transfer as long as same set of data structures are used.

Instead of hard-coding all user defined parameters before each run of the

software, a dynamic text parser is implemented so that the software can be run with

many different configurations without rebuilding the whole project again. This parser

reads all of the parameters from a configuration file which can be manually edited by a

regular text editor. New parameters can easily be added by adding a few lines to the

parser code. The parameters inside the configuration file includes, video frame size

(QCIF, CIF, SIF, 4CIF, 720p HD, and 1080p HD), frame count, block size, frame resize

amount, search window size, refinement window size, all of the input and output file

names, operational switches like replace or early termination, the ME and MCI

algorithms to be used, number of ME passes for recursive algorithms. In addition,

parameters for individual algorithms like search candidate locations for 3DRS or ATME

are defined in this configuration file. The screen shot of an example configuration file is

shown in Figure 3.3.

During ME, MVs for each block are kept in a dynamic array for recursive usage at

next ME iteration and they are also written into a text file for external use like MV

visualization. During MCI, each pixel is interpolated using the MV of the block it

belongs to and the resulting intensity value is written as a pixel value of the intermediate

frame.

After the completion of the main loop, i.e. all frames are processed, and the output

video is generated, the comparison begins. If the replace switch is set to true, the

software compares the original even numbered frames with the interpolated even

numbered frames by calculating MSE and then PSNR values. The PSNR value and the

total number of calls to SADCalculate function, SAD Count, are written to a log file. If

the replace switch is set to false, only SAD Count is written to log file.

28

This software is a robust and flexible environment for implementing and testing

FRUC algorithms. It is used by two senior graduation projects [35-36] which developed

and implemented their own ME and MCI algorithms using this software.

Figure 3.3: Configuration File

29

In the current version of the software the following algorithms have been implemented.

ME Algorithms:

Search window size is parameterized.

Full Search

The number of search candidates, their locations and update location are parameterized.

The user can also select whether to fill the initial MV field by random update vectors or

apply a Full Search between the first two frames.

3DRS

In a senior graduation project [35], we collaboratively proposed a new adaptive

bilateral motion estimation algorithm to be used as a refinement step to improve the

quality of the MVs found by true motion estimation algorithms. By employing a spiral

search pattern [37] and by adaptively assigning weight coefficients to candidate search

locations, the proposed algorithm refines the motion vector field between successive

frames which results in a better interpolation of the intermediate frame. As a result of

this search scheme, by favoring the candidate search locations near the center where the

initial MVs point to, true motion property of the motion vector field is conserved. In this

software, Bi-ME can be both used as a standalone ME step or as a refinement step after

a true ME algorithm. Both regular FS and spiral search patterns are implemented. The

Bilateral Search Window size and the threshold values used for adaptivity are

parameterized.

Bi-ME

The proposed Adaptive True Motion Algorithm is implemented. The vector threshold

and SAD threshold values are parameterized. In addition, minimal set and extended set

search location counts and their locations are configurable.

ATME

30

MCI Algorithms:

MC-FAVG is implemented as in Equation (2.8). When 3DRS is selected as the ME

algorithm and the update switch is set to false, all of the MVs for the first frame will be

set to zero and they will not be updated in the following frames. Therefore, in this case,

MC-FAVG will function as non-motion compensated field averaging, i.e. linear

interpolation.

Motion Compensated Field Averaging

SMF is implemented as in Equation (2.9).

Static Median Filter

DMF is implemented as in Equation (2.10).

Dynamic Median Filter

2MI is implemented as in Equation (2.11). An occlusion detection function checks

whether the difference between MVs of surrounding blocks are greater than a

parameterized occlusion threshold value. If occlusion is detected then DMF is called,

else MC-FAVG is called.

Two-Mode Interpolation

Basic OBMC and sinusoidal OBMC algorithms are implemented with parameterized

window overlap amounts. In addition, weighted coefficient OBMC algorithm (WC-

OBMC) which is developed in collaboration with a senior graduation project [36] is

implemented. This algorithm assigns weights to motion vectors of neighboring blocks.

This results in higher quality video output than the other two OBMC algorithms.

OBMC

31

Utilities:

The video sequences used for evaluating all of these algorithms are taken from

video quality expert ftp sites such as university archives and video quality experts group

[38]. However, especially the HD video sequences are distributed in several different

color spaces and formats (AVI, YUV2, ABEKAS), some of them have leading and

trailing empty frames, and some of them are divided into image files which contain only

one frame. Therefore, using MATLAB and C, these video sequences are all processed

and converted to 4:0:0 and 4:2:2 YUV formats.

In addition, several utilities are developed using MATLAB. One of them, playyuv,

using Image Processing Toolbox, can read many different YUV formats, convert them

back to RGB, which the computer screens can display, and open them inside a media

player interface as a playable video. Another utility is plotMV, which can parse the MV

file generated by the FRUC software, generate a block grid, and plot each MV

according to their direction and magnitude on this grid as shown in Figure 3.4. It then

generates images for every frame pair showing the flow of MVs, and combines them to

a playable video. This motion vector visualization tool is useful for testing ME

algorithms, as erroneous MVs can be easily seen when they are visualized. The

performances of different ME algorithms can also be compared by analyzing the flow of

MVs from one frame pair to another.

Figure 3.4: Motion Vector Visualization

32

3.3 Performance Results

Several video sequences with different resolutions are used for evaluating the

performance of the ATME algorithm. One 176x144 pixel resolution (QCIF) video

sequence, one 352x288 pixel resolution (CIF) video sequence, one 352x240 pixel

resolution (SIF) video sequence, five 1280x720 pixel resolution (720p) video sequences

and three 1920x1080 pixel resolution (1080p) video sequences are used. All video

sequences are composed of 8-bit luminance (Y) data.

First 100 frames of each video sequence are used, therefore, 49 even numbered

frames are synthesized by applying ME and MCI algorithms to the odd numbered

frames, and the 100th frame is taken from the original video sequence. For ME, 16x16

pixel block size is used. For the last 8 pixels of 1080p video sequences, which do not fit

into the 16x16 pixel block grid, non-motion compensated frame interpolation, i.e. linear

interpolation, is used. For all other cases, Motion Compensated Field Averaging is used

as it is the most basic MCI method using motion estimation. The random update vector

selections are done by using a 231-1 pseudo-random number sequence.

SAD calculation is the most computationally demanding part of ME algorithms.

In order to calculate the SAD value for one search location, three arithmetic operations

(one subtraction, one absolute value calculation and one addition) have to be performed

for each pixel in a block. Therefore, the number of SAD calculations is a good metric

for determining the computational complexity of a ME algorithm.

The number of SAD calculations done and the resulting PSNR value for different

video sequences processed by the original 3DRS algorithm (3 candidates with 2 update

vectors added) [21], 3DRS algorithm using minimal search location set (3 candidates

with one update vector added), 3DRS algorithm using all search locations in both

minimal and extended set including 0�⃗ (8 candidates with 2 update vectors added), and

Full Search (FS) algorithm are shown in Tables 3.2 and 3.3. Search window size used

for FS is (±64,±64) pixels for 720p and 1080p sequences, and (±32,±32) pixels for the

other sequences. Non-motion-compensated pixel averaging results are given as

reference. Since only the re-synthesized frames are compared with the original frames,

the PSNR and SAD count values are calculated for 49 frames.

As it can be seen from Tables 3.2 and 3.3, minimal candidate set performs better

than the original candidate set with the same number of SAD calculations and full set

33

gives higher PSNR results compared to other two sets with the cost of doing more SAD

calculations in a single pass. In addition, multiple passes of each set clearly improves

the FRUC results. However, generally two or three passes produce highest

improvements, while the benefit of multi passes diminishes after more than three

passes.

3 Candidate Sets

(3DRS Original and Minimal Sets)
8 Candidate Set
(3DRS Full Set)

FS

No. of Passes 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 1 Pass 2 Pass 3 Pass N/A

QCIF 0.01 0.03 0.04 0.06 0.07 0.04 0.08 0.12 19.87
CIF 0.06 0.12 0.17 0.23 0.29 0.15 0.31 0.46 79.48
SIF 0.05 0.10 0.14 0.19 0.24 0.13 0.26 0.39 66.23

720p 0.52 1.05 1.58 2.11 2.64 1.38 2.79 4.20 2890
1080p 1.16 2.34 3.52 4.70 5.89 3.09 6.24 9.39 6455

Table 3.2: Number of 106 SAD Calculations Done by ME Algorithms

In the first stage of the ATME algorithm, an adaptive decision is made based on

whether L1 Norms of candidate MVs are above or below a predetermined threshold

value, Vth. Since MVs have 1 pixel resolution, the Vth metric is defined in pixels. In

order to determine the threshold value, 5 different values for Vth (0, 1, 2, 3, 4 pixels) are

tested using only the first stage of the ATME algorithm on 4 different video sequences.2

SAD Count value is normalized by 10*log10 to be comparable to PSNR. Figure 3.5

shows PSNR/SAD Count efficiency versus Vth. The average PSNR/SAD Count

efficiency versus Vth, based on the results from Figure 3.5, is shown in Figure 3.6. As it

can be seen from these Figures, the maximum efficiency is obtained when Vth is 2

pixels.

2 The sequences used in this experiment are: ParkJoy(720p), NewMobCal(720p), Foreman(CIF),

SthlmPan(720p).

34

 3DRS Original Set 3DRS Minimal Set 3DRS Full Set FS Ref

No. of Passes 1 Pass 2 Pass 3 Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 1 Pass 2 Pass 3 Pass N/A N/A

ForemanQCIF 32.29 32.79 33.17 33.09 33.50 33.82 33.62 33.76 33.75 34.27 34.51 32.70 32.36
ForemanCIF 30.50 31.28 31.61 31.92 32.44 32.61 32.56 32.60 32.02 32.88 33.08 31.62 29.86
FootballSIF 20.35 20.73 20.81 20.63 20.89 21.02 21.14 21.10 21.16 21.48 21.65 21.32 19.89
ParkJoy720p 22.58 24.31 24.80 24.23 25.81 25.86 26.08 26.09 25.11 25.93 26.21 25.63 20.11

NewMobCal720p 31.84 32.62 33.01 33.70 34.08 34.06 34.09 34.07 33.69 34.11 34.11 32.58 29.76
SthlmPan720p 33.11 33.96 34.22 33.98 34.83 34.90 34.89 34.89 34.10 35.03 35.06 30.40 23.96
InToTree720p 34.71 34.97 35.11 35.60 35.78 35.79 35.82 35.81 35.82 36.02 36.03 31.16 31.87

CrowdRun720p 25.75 26.26 26.43 26.94 27.26 27.30 27.30 27.31 27.41 28.01 28.18 26.43 24.51
ParkJoy1080p 23.32 24.53 25.08 24.13 25.26 26.01 26.16 26.22 24.70 25.63 26.02 25.39 20.15

InToTree1080p 33.92 34.11 34.17 34.40 34.51 34.51 34.51 34.51 34.50 34.61 34.62 31.52 30.97
CrowdRun1080p 26.32 26.98 27.21 27.19 27.75 27.87 27.89 27.91 27.64 28.31 28.50 26.33 24.24

Table 3.3: Comparison of Modified 3DRS Algorithms Using Optimized Sets of Candidate Locations along with Full Search
and Non-Motion Compensated Interpolation Results

Table cells show PSNR values in dB.

35

Figure 3.5: PSNR/SAD Count for Vector Threshold Selection

Figure 3.6: Average PSNR/SAD Count for Vector Threshold Selection

Tables 3.4 and 3.5 present the impact of the redundancy removal and

computational complexity reduction techniques used in ATME algorithm. Table 3.4

shows the impact of the redundancy removal and computational complexity reduction in

only the first stage of ATME algorithm. In this test, extended set of candidates and the

redundancy removal technique for multiple passes of the algorithm are not used. Two

different candidate sets are used, the minimal set which contains 3 candidates and the

full set which contains the minimal set and the extended set including zero-motion

vector 0�⃗ . As it can be seen from Table 3.4, when Vth is 0, ATME algorithm produces

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 1 2 3 4

N
or

m
al

iz
ed

 P
SN

R/
SA

D
 C

ou
nt

Vth (pixels)

ParkJoy

NewMobCal

Foreman

SthlmPan

0.563

0.564

0.565

0.566

0.567

0.568

0.569

0.57

0.571

0 1 2 3 4

A
ve

ra
ge

 P
SN

R/
SA

D
 C

ou
nt

Vth (pixels)

36

exactly the same PSNR results compared to reference algorithms in which redundancy

removal technique is not used, and the number of SAD calculations is reduced up to

20% and 38% for minimal and full sets respectively for a single pass. When 3 passes are

done, the number of SAD calculations is reduced up to 25% and 43% for the minimal

and full sets respectively.

When Vth is 2 pixels, the number of SAD calculations is further reduced (up to

31%) with 0.7 dB PSNR loss in one case and with 0.2 dB PSNR loss on average for the

minimum candidate set. For the full candidate set case, median filtering larger number

of candidates to a single candidate results in up to 61% reduction of SAD calculations

with 0.9 dB PSNR loss in one case and with 0.3 dB PSNR loss on average for a single

pass of the algorithm. When three passes are done, the number of SAD calculations is

reduced up to 64% with up to 0.5 dB PSNR loss and 0.2 dB PSNR loss on average. In

addition, when Vth is set to a non-zero value, in some cases such as SthlmPan video

sequence, the implicit motion vector smoothing behavior of the median filter in ATME

improves the quality of the output video.

In Table 3.5, the impact of the redundancy removal technique for multiple passes

of the ATME algorithm is presented. For this test, SADth parameter is set to 2500 which

produces high quality results with low amount of computation. In order to determine the

impact of only the multi-pass redundancy removal technique, the Vth parameter is set to

a negative value so that all candidate vectors are evaluated. Two different cases with 3

and 5 passes of ATME algorithm are compared. Columns labeled “Red.” show the

number of SAD calculations when redundancy removal technique is not used. Columns

labeled “Rem.” show the number of SAD calculations when redundancy removal

technique is used. Columns labeled “%” show the reduction percentage. As it can be

seen from Table 3.5, the multi-pass redundancy removal technique reduces the number

of SAD calculations by 25% on average in 3 passes case and 30% on average in 5

passes case.

37

No. of Passes 1 3 1 3

Algorithm 3DRS
Min

ATME
2 Stage / Min

3DRS
Min

ATME
2 Stage / Min

3DRS
Full

ATME
2 Stage / Full

3DRS
Full

ATME
2 Stage / Full

Vth N/A 0 2 N/A 0 2 N/A 0 2 N/A 0 2

ForemanQCIF 33.09
0.01

33.09
0.01

33.08
0.01

33.82
0.04

33.82
0.04

33.85
0.03

33.75
0.04

33.75
0.03

33.63
0.03

34.51
0.12

34.41
0.11

34.39
0.08

ForemanCIF 31.92
0.06

31.92
0.06

31.77
0.05

32.61
0.17

32.61
0.16

32.50
0.15

32.02
0.15

32.02
0.15

31.97
0.13

33.08
0.46

33.02
0.42

32.94
0.35

FootballSIF 20.63
0.05

20.63
0.04

20.57
0.04

21.02
0.14

21.02
0.13

20.92
0.12

21.16
0.13

21.16
0.11

21.02
0.10

21.65
0.39

21.65
0.33

21.64
0.29

ParkJoy720p 24.23
0.52

24.23
0.50

24.08
0.44

25.86
1.58

25.93
1.44

25.83
1.25

25.11
1.38

25.11
1.32

24.74
1.09

26.21
4.20

25.94
3.63

25.68
2.74

NewMobCal720p 33.70
0.52

33.70
0.42

32.93
0.36

34.06
1.58

34.06
1.19

33.52
1.08

33.69
1.38

33.69
0.87

32.72
0.54

34.11
4.20

34.11
2.42

33.63
1.52

SthlmPan720p 33.98
0.52

33.98
0.43

34.02
0.39

34.90
1.58

34.90
1.29

34.88
1.18

34.10
1.38

34.10
0.97

34.21
0.70

35.06
4.20

35.09
3.00

35.10
2.12

InToTree720p 35.60
0.52

35.60
0.48

35.41
0.40

35.79
1.58

35.79
1.43

35.62
1.21

35.82
1.38

35.82
1.18

35.49
0.71

36.03
4.20

36.03
3.43

35.86
2.11

CrowdRun720p 26.94
0.52

26.94
0.50

26.61
0.42

27.30
1.58

27.30
1.43

26.91
1.26

27.41
1.38

27.41
1.30

27.07
1.02

28.18
4.20

28.21
3.63

27.96
2.94

ParkJoy1080p 24.13
1.16

24.13
1.14

24.25
1.04

26.01
3.52

26.01
3.27

25.96
2.90

24.70
3.09

24.70
3.01

24.46
2.66

26.02
9.39

25.92
8.36

25.80
6.69

InToTree1080p 34.40
1.16

34.40
1.10

34.29
0.92

34.51
3.52

34.51
3.23

34.44
2.76

34.50
3.09

34.50
2.79

34.34
1.82

34.62
9.39

34.62
7.99

34.54
5.19

CrowdRun1080p 27.19
1.16

27.19
1.13

27.10
1.01

27.87
3.52

27.87
3.26

27.77
2.98

27.64
3.09

27.64
2.96

27.50
2.60

28.50
9.39

28.51
8.26

28.43
7.31

Table 3.4: Performance of the First Stage of ATME Algorithm
In each table cell, upper value is the PSNR value in dB and the lower value is the number of SAD calculations scaled by 106.

38

No. of Passes 3 Pass 5 Pass
 Red. Rem. % Red. Rem. %

ForemanQCIF 54 40 26% 90 61 32%
ForemanCIF 208 161 23% 345 249 28%
FootballSIF 274 211 23% 455 333 27%
ParkJoy720p 2656 1951 27% 4385 2969 32%

NewMobCal720p 1810 1087 40% 3021 1573 48%
SthlmPan720p 1620 1103 32% 2707 1669 38%
InToTree720p 1607 1222 24% 2684 1907 29%

CrowdRun720p 2759 2076 25% 4588 3239 29%
ParkJoy1080p 5755 4381 24% 9454 6701 29%

InToTree1080p 3561 2792 22% 5947 4384 26%
CrowdRun1080p 5768 4489 22% 9558 7022 27%

 Table 3.5: Multi-pass Redundancy Removal Performance
The values inside the cells of Red. and Rem. columns are the number of SAD

calculations scaled by 103.

Table 3.6 shows the PSNR obtained and the number of SAD calculations done by

the ATME algorithm with vector threshold values Vth=0 and Vth=2. For all the

experiments, SADth value is set to 2500. In each table cell, upper value shows the PSNR

obtained and lower value shows the number of SAD calculations done for that video

sequence. For Vth=0, ATME algorithm generates higher quality results with same

computational costs or similar quality results with lower computational costs compared

to 3DRS minimal set. For Vth = 2 pixels, the median filtering in first stage of the ATME

algorithm results in fewer SAD calculations while producing similar quality results.

Moreover, in some cases such as SthlmPan video sequence, the implicit motion vector

smoothing resulting from the median filtering produces higher PSNR results. The

number of SAD calculations can further be decreased by using higher Vth values.

39

 Vth = 0 Vth = 2
No. of Passes 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass

ForemanQCIF 33.73
0.02

34.28
0.03

34.39
0.04

34.39
0.05

34.24
0.06

33.40
0.01

34.00
0.02

34.18
0.03

34.17
0.04

34.09
0.05

ForemanCIF 32.11
0.07

32.73
0.11

33.00
0.16

33.03
0.20

33.03
0.24

31.95
0.06

32.46
0.10

32.76
0.15

32.99
0.18

32.97
0.22

FootballSIF 21.20
0.09

21.50
0.15

21.67
0.20

21.77
0.26

21.83
0.32

20.90
0.07

21.39
0.13

21.63
0.19

21.64
0.24

21.72
0.30

ParkJoy720p 25.10
0.86

25.96
1.32

26.21
1.76

26.32
2.20

26.31
2.64

24.90
0.65

25.60
1.01

26.06
1.35

26.21
1.68

26.25
2.01

NewMobCal720p 33.66
0.45

34.09
0.67

34.10
0.89

34.10
1.10

34.08
1.32

32.97
0.37

33.50
0.57

33.59
0.77

33.66
0.95

33.72
1.15

SthlmPan720p 34.10
0.44

34.98
0.71

35.05
0.99

35.04
1.26

35.05
1.54

34.14
0.40

35.03
0.65

35.05
0.89

35.00
1.14

35.05
1.38

InToTree720p 35.71
0.49

35.89
0.83

35.90
1.17

35.90
1.51

35.90
1.84

35.41
0.40

35.66
0.70

35.72
0.98

35.68
1.27

35.73
1.56

CrowdRun720p 27.40
0.87

27.98
1.42

28.13
1.97

28.21
2.51

28.26
3.06

26.90
0.66

27.49
1.11

27.60
1.56

27.70
1.99

27.78
2.43

ParkJoy1080p 24.69
1.95

25.57
3.07

26.02
4.11

26.08
5.16

26.35
6.19

24.64
1.64

25.21
2.54

25.87
3.34

26.18
4.15

26.26
4.95

InToTree1080p 34.44
1.11

34.56
1.91

34.56
2.70

34.57
3.49

34.57
4.27

34.32
0.93

34.46
1.62

34.48
2.30

34.49
2.97

34.50
3.64

CrowdRun1080p 27.67
1.88

28.28
3.12

28.46
4.34

28.56
5.55

28.60
6.77

27.44
1.59

28.12
2.70

28.29
3.77

28.38
4.83

28.45
5.88

Table 3.6: Performance of the ATME Algorithm

In each table cell, upper value is the PSNR value in dB and the lower value is the number of SAD calculations scaled by 106.

40

PSNR and computational complexity comparison of two typical configurations of

ATME algorithm, where Vth is set to 0 and 2, SADth is set to 2500 and 3 passes are done,

with reference algorithms is shown in Table 3.7. The positive values in PSNR columns

show the PSNR improvement by ATME algorithm. The positive values in “Red%”

columns show the percentage reduction of SAD calculations by ATME algorithm. It can

be seen from this table that ATME algorithm reduces the number of SAD calculations

up to 82% with up to 0.59 dB PSNR loss. There are several cases where the number of

SAD calculations is reduced more than 70% with less than 0.02 dB PSNR loss. In

several cases, ATME algorithm produces higher PSNR results than reference algorithms

while at the same time reducing the number of SAD calculations up to 58%. Therefore,

ATME algorithm produces high quality video sequences with significantly lower

computational cost.

Vth = 0 / Min Vth = 0 / Full Vth = 2 / Min Vth = 2 / Full

PSNR Red.% PSNR Red.% PSNR Red.% PSNR Red.%
ForemanQCIF 0.57 9% -0.11 66% 0.35 22% -0.33 71%
ForemanCIF 0.39 8% -0.08 65% 0.15 16% -0.31 69%
FootballSIF 0.65 -42% 0.02 47% 0.61 -29% -0.02 52%
ParkJoy720p 0.35 -12% 0.00 58% 0.26 14% -0.09 68%

NewMobCal720p 0.04 44% -0.01 79% -0.49 51% -0.54 82%
SthlmPan720p 0.15 37% -0.01 77% 0.14 43% -0.02 79%
InToTree720p 0.11 26% -0.13 72% -0.08 38% -0.32 77%

CrowdRun720p 0.82 -25% -0.05 53% 0.28 2% -0.59 63%
ParkJoy1080p 0.00 -17% 0.00 56% -0.15 5% -0.15 64%

InToTree1080p 0.05 23% -0.06 71% -0.03 35% -0.15 76%
CrowdRun1080p 0.59 -23% -0.04 54% 0.42 -7% -0.21 60%

Table 3.7: PSNR and Computational Complexity Comparison of ATME with

Reference Algorithms

Although PSNR is a good metric for objective quality, the perceived quality of a

video is not always same with its objective quality. Therefore, for evaluating the

performance of FRUC algorithms, subjective quality assessments should also be made

along with objective quality assessments. The same frame taken from the Foreman CIF

sequences generated by Full Search, 3DRS as proposed in [21] and ATME with Vth=2

and SADth=2500 is shown in Figures 3.7, 3.8 and 3.9, respectively. MC-FAVG is used

as the MCI algorithm in these three cases.

41

Figure 3.7: Full Search Subjective Quality Assessment

In Figure 3.7, it is clearly seen that even though FS finds the best matching SAD

for each block, these MVs may not represent the true motions of the objects these

blocks belong to. MV fields generated by FS are not smooth, therefore the possibility of

blocking artifacts is high. On the other hand, when a true ME algorithm such as 3DRS

is used, the resulting MV field is smoother, and therefore the blocking artifacts are not

very likely. However, there may still be blocking artifacts when ME fails to find the true

motion associated with each block. In Figure 3.8, these errors can be seen on the mouth,

on the right side of the neck, on the top side of the helmet and on the text “Siemens”.

These errors decrease both objective and subjective qualities of the generated video.

Figure 3.9 shows that ATME algorithm performs better than 3DRS. As it can be seen

from this figure, the blocking artifacts are eliminated by correct estimation of true

motion vectors.

42

Figure 3.8: 3DRS Subjective Quality Assessment

Figure 3.9: ATME Subjective Quality Assessment

More complex MCI algorithms can eliminate unpleasing artifacts and therefore

improve the visual quality of the video sequence generated by FRUC. In Tables 3.8-

3.12, the performances of 3DRS algorithm as proposed in [21], ATME algorithm and

Full Search algorithm with 3 more complex MCI algorithms for 5 video sequences are

presented.3

3 The sequences used in this experiment are: Foreman(CIF), NewMobCal(720p), SthlmPan(720p),

ParkJoy(1080p), InToTree(1080p).

 MC-FAVG and non-motion compensated pixel averaging results are also

given as references. As it can be seen from these tables, more complex MCI algorithms

43

increases the objective quality of FRUC results when a non-true ME algorithm such as

FS is used. On the other hand, these MCI algorithms do not always increase the

objective quality of FRUC results when a true ME algorithm is used.

 3DRS ATME FS
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A
MC-FAVG 30.50 31.61 31.95 32.76 31.62
Sta. Med. 31.45 32.07 31.87 32.39 32.39
Dyn. Med. 30.96 31.69 31.56 32.22 32.16
Two-Mode 30.79 31.68 31.86 32.62 32.44
Non-MC 29.86

Table 3.8: PSNR (dB) Results of MCI Algorithms for “Foreman CIF” Sequence

 3DRS ATME FS
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A
MC-FAVG 31.84 33.01 32.97 33.59 32.58
Sta. Med. 31.72 32.02 31.91 32.03 32.24
Dyn. Med. 31.78 32.34 32.24 32.49 32.36
Two-Mode 31.96 32.99 33.05 33.55 33.32
Non-MC 29.76

Table 3.9: PSNR (dB) Results of MCI Algorithms for “NewMobCal 720p”
Sequence

 3DRS ATME FS
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A
MC-FAVG 33.11 34.22 34.14 35.05 30.40
Sta. Med. 27.35 27.49 27.45 27.56 27.18
Dyn. Med. 31.39 32.09 32.96 33.38 31.00
Two-Mode 32.92 34.02 34.08 34.97 31.61
Non-MC 23.96

Table 3.10: PSNR (dB) Results of MCI Algorithms for “SthlmPan 720p” Sequence

44

 3DRS ATME FS
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A
MC-FAVG 23.32 25.08 24.64 25.87 25.39
Sta. Med. 22.03 22.53 22.25 22.64 22.61
Dyn. Med. 22.92 24.15 23.79 24.79 24.75
Two-Mode 23.25 24.96 24.59 25.83 25.62
Non-MC 20.15

Table 3.11: PSNR (dB) Results of MCI Algorithms for “ParkJoy 1080p” Sequence

 3DRS ATME FS
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A
MC-FAVG 33.92 34.17 35.43 35.71 31.52
Sta. Med. 33.00 33.11 33.17 33.24 33.04
Dyn. Med. 33.55 33.75 33.85 33.99 32.36
Two-Mode 33.95 34.20 34.41 34.57 32.52
Non-MC 30.97

Table 3.12: PSNR (dB) Results of MCI Algorithms for “InToTree 1080p”
Sequence

The same frame taken from Foreman CIF sequences which are processed by

ATME algorithm (Vth=2, SADth=2500) and interpolated by 4 different MCI algorithms

are shown in Figures 3.10-3.13. The MCI algorithms used are MC-FAVG, Static

Median Filtering, Dynamic Median Filtering, and Two Mode Interpolation (occlusion

threshold = 2 pixels) respectively. In Figure 3.14, the same frame interpolated by non-

motion compensated pixel averaging method is given as reference. It can be seen from

these figures that blocking artifacts resulting from ME errors are removed by complex

MCI algorithms. For example, errors in the stationary parts on the left side of the neck

in Figure 3.10 are removed by Static Median Filter. Similarly, errors in the moving parts

above the mouth are removed by Dynamic Median Filter. Two Mode Interpolation

algorithm, by adaptively switching between Dynamic Median Filter and MC-FAVG,

obtains a smoother image.

45

Figure 3.10: Subjective Assessment of MCI Algorithms - MC-FAVG

Figure 3.11: Subjective Assessment of MCI Algorithms – Static Med. Filter

46

Figure 3.12: Subjective Assessment of MCI Algorithms – Dynamic Med. Filter

Figure 3.13: Subjective Assessment of MCI Algorithms – Two Mode Interpolation

47

Figure 3.14: Subjective Assessment of MCI Algorithms – Non-Motion

Compensated Interpolation

48

Chapter 4

ADAPTIVE TRUE MOTION ESTIMATION HARDWARE DESIGN

Three different complexity hardware architectures for implementing the ATME

algorithm are proposed. In all three hardware, memory elements, MV and position

values are designed to process 1080p HD frames and control signals are parameterized

for processing smaller size frames.

4.1 Basic ATME Hardware

The block diagram of the first hardware, the Basic ATME hardware, is shown in

Figure 4.1. The architecture consists of 6 modules and 3 on-chip memories. The Current

Block contains 256x8 bits and holds the CB of size 16x16 pixels. It feeds this data to

Processing Elements (PE) inside the PE Array module and is loaded when the

processing for the next current block starts. The Search Block also contains 256x8 bits

and holds the PB of size 16x16 pixels. It also feeds this data to PE Array and is loaded

for each search location. MV Array holds the MVs for each block in a single frame. MV

Array sends the candidate MVs for the CB to the Address Generator module. MV Array

has two additional ports for address and data which enables external access to MV data.

49

Figure 4.1: Block Diagram of Basic ATME Hardware

PE Array is the largest module and it contains 256 Processing Elements which are

responsible for SAD calculation between two 16x16 pixel blocks. Each PE is composed

of a comparator, two 2x1 multiplexers and an 8-bit subtractor. Each PE is responsible

for calculating the SAD value between two pixels, one from the CB and one from the

PB. The comparator determines which of the two pixels are greater in value. Based on

the result of this comparison, two multiplexers connected to the inputs of the subtractor

selects the proper pixels, the larger one to the first input and the smaller one to the

second input. This ensures that the resulting value will always be positive so that the

absolute difference between those two pixels is taken. This operation is done in one

clock cycle, therefore 256 PEs calculate the absolute differences between the 256 pixels

in CB and PB in one cycle. The outputs of PEs are connected to an adder tree to find the

sum of absolute difference between two blocks. The adder tree has three pipeline stages

for faster operation. Even though the SAD calculation for a single block takes 3 clock

cycles, after the first SAD calculation the throughput is 1 SAD calculation per clock

cycle. Therefore, the SAD calculation for 3 MVs takes 5 cycles.

MV Selector module compares the SAD values of the MV candidates for CB and

selects the MV which gives the lowest SAD value. If the SAD of the selected MV is

larger than a certain parameterized threshold value (SADth), it asserts a signal for using

50

the extended search candidates set. After the final MV is selected, it is written to the

location of the CB in the MV Array. LFSR module contains a 15 bit linear feedback

shift register which generates a pseudo-random number sequence. For each block

evaluation, it outputs random update vectors selected from a lookup table by taking the

modulus of the LFSR value. Median Filter module finds the median of three MVs and

checks whether the pair-wise L1 norms of these three vectors are under Vth or not.

Address Generator module generates read and write addresses for Search Block.

In addition, depending on the results of vector threshold and SAD threshold techniques,

it selects which MV will be evaluated next and adds random update vectors when

necessary. Controller module keeps track of state, the position of current block and

other control signals necessary for correct operation of the other modules.

4.1.1 Operation of Basic ATME Hardware

The operation of ATME hardware begins with the start signal. Controller keeps

the count and location of the CB. It provides the current position signal to MV Array

which is used as the write address of the MV selected for the CB. The processing of the

first frame is a special case, where MV Array is initially empty. Therefore, for each

block in the first frame a random update vector taken from LFSR is written to the

corresponding address in the MV Array. LFSR is a 15 bit linear feedback shift register

with a 2 tap primitive polynomial where 14th and 15th bits of the shift register are

XNORed. This LFSR produces a pseudo-random number sequence from 0 to 32766. In

the software implementation, the random update vector set contained 25 elements.

However, for modulus values other than the powers of 2, modulus operation requires a

division. Therefore, in order to simplify the modulus hardware, 7 more update vectors

are added to the random update vector set making a total of 32 elements.

When MV Array is filled with random vectors after the processing of the first

frame, frameend signal is asserted by Controller module. Then, processing of the next

frame starts. First, Current Block is filled with current block pixels in 32 cycles (8

pixels per cycle). After CB is filled, the control is handed to the Address Generator

module. First, it gets 3 MVs that will be evaluated for the CB from MV Array and sends

them to Median Filter module. Median Filter calculates the median of these 3 MVs and

sends it to Address Generator. Median Filter also calculates the pair-wise L1 Norms of

these MVs and sends a signal, underth, if all of them are under the vector threshold, Vth.

Address Generator then calculates the starting address of the Search Block pixels in off-

51

chip SRAM, reads the search block pixels and stores them to Search Block. After SB is

filled with search block pixels in 32 cycles, SBFilled flag is set. Then currentMV is set

to the median MV and the SAD for the median MV is calculated. The next state

depends on the value of underth signal. If underth is 1, an update vector is added to the

median MV and assigned as currentMV. On the other hand, if underth is 0, an update

vector is added to the second MV and assigned as currentMV. Address Generator reads

the corresponding search block pixels from off-chip SRAM and stores them to Search

Block. After SB is filled, SBFilled flag is set and the SAD for the current MV is

calculated. If underth is 0, the SAD for the third MV is also calculated. After the SAD

values for the MVs are calculated, Address Generator informs MV Selector and waits

for the blockend signal.

MV Selector stores all the MVs processed for the CB and their SAD values. For

each CB, either two or three MVs are processed. After all the MVs are processed for the

CB, depending on the value of the counter, MV Selector compares the SAD values of

these two or three MVs and outputs the MV with the minimum SAD. The minimum

SAD value is compared with the SADth parameter. If the minimum SAD is higher than

the predetermined SAD threshold, then goextended signal is asserted. If this signal is

asserted, the SAD values for the MVs in the extended candidate set are calculated. After

the SAD values for all MVs are calculated, the MV with the minimum SAD is written

to current position address of MV Array.

MV Array is composed of 8 dual-port Block RAMs. The first port is used for

writing and reading MVs inside the ATME hardware. The second port is configured as

read only and provides MV data outside the ATME hardware. After the MV for the CB

is written, blockend signal is asserted and Controller starts processing the next block.

After all blocks in a frame are processed, frameend signal is asserted and Controller

starts processing the next frame.

4.1.2 Implementation Results of Basic ATME Hardware

The basic ATME hardware architecture is implemented in Verilog HDL. Since

the total number of cycles needed for processing a frame is not deterministic, in order to

find an average value, 10 frames from NewMobCal720p video sequence are processed

to double the frame rate. This operation took ~3807000 cycles, therefore on average a

frame is processed in ~380700 cycles.

52

The Verilog RTL code of the basic ATME hardware is synthesized to a

4vlx200ff1513 Xilinx Virtex-4 FPGA with speed grade -11 using Mentor Graphics

Precision RTL tool. The resulting netlist is placed and routed to the same FPGA using

Xilinx ISE tool. The hardware implementation is verified with post place and route

simulation using Mentor Graphics Modelsim tool. The hardware uses 13425 4-input

LUTs, 5327 Flip-Flops, 8 dual-port Block RAMs, and consumes 8% of the Slices. It

works at 59.86 MHz and is capable of processing ~158 720p HD frames per second

doubling the frame rate to ~316 fps which satisfies the real-time requirements.

4.2 ATME Hardware with Update Window

The block diagram of the ATME hardware with Update Window (UW) is shown

in Figure 4.2. The 22x22 pixel UW is constructed by enlarging the 16x16 pixel Search

Block by 3 pixels in each direction in order to implement an efficient data re-use

scheme. UW is implemented as a 22 22x1 pixel distributed memory block. There are

two reasons for using an UW of size 22x22. First, since true motion estimation creates

smooth MV fields around objects, the MVs that will be evaluated for a block are

expected to be similar. Second, a random update vector is always added to one of the

MVs in the ATME algorithm. Since the random update vector set consists of vectors in

[-3,+3] pixels range, the updated MV will always be inside the UW of the MV that is

updated. Therefore, before processing a CB, the UW is filled with pixels centered on the

location pointed by the median of the three vectors in the minimal set. If pair-wise L1

Norms of these three vectors are less than Vth, their median MV will be evaluated along

with its updated version, in which case all required pixels will be inside the UW. On the

other hand, if any L1 Norm is larger than Vth, the pixels required for second and third

MVs in the set will probably be inside the UW. Address Generator fills the UW with

proper pixels based on the current MV, and checks whether the pixels required for the

next MV is inside the UW or not. If all the pixels are inside the UW, the SAD

calculation for that MV is done. However, if any pixel required for the SAD calculation

of that MV is not inside the UW, the SAD calculation is done after the entire UW is

refilled with the required pixels for that MV.

53

Current Block
PE Array

MV Selector

MV Array

Controller

Update
Window

Address
Generator

LFSRMedian Filter

Selected
MV

SAD

256
px

256
px

Address

Control

Motion Vectors

Update
Random MVs

Read
Address

Data
Request

Image Data

Address IN MV Out

MV Wait & goextended

Figure 4.2: Block Diagram of ATME Hardware with UW

In order to select the 16x16 pixel PB from the 22x22 pixel UW, horizontal and

vertical multiplexers are used. These multiplexers can select any 16x16 pixel block

inside the UW and sent it to the PE Array as the PB for SAD calculation. This selection

is implemented in two steps. First, a 7x16 multiplexer, the horizontal multiplexer,

selects the 16 columns of the UW which contain the columns of PB. Then, a 7x16

multiplexer, the vertical multiplexer, selects the 16 rows of the output of the horizontal

multiplexer. The select signals for horizontal and vertical multiplexers are sent by the

Address Generator. The resulting 16x16 pixel PB is sent to the PE Array.

The operation of UW is illustrated in Figure 4.3. This figure shows the case where

the UW is centered by the MV (1,1). Therefore, the center of UW, i.e. the 16x16 block

starting from the 4th row and 4th column of UW, contains the PB that is located (1,1)

away from the CB. The (-2,+1) random update vector is added to that MV, therefore the

next MV that will be evaluated is (-1,+2) and the PB pointed by this MV is inside the

UW. Since the columns of the 16x16 PB are located in 2nd column to 17th column of

UW, the select signal for the horizontal multiplexer sent by the Address Generator is 1.

Since, the rows of the 16x16 PB are located in 5th row to 20th row of UW, the select

signal for the vertical multiplexer sent by the Address Generator is 4.

54

To show the advantage of using the UW, the number of pixels read from off-chip

SRAM by Basic ATME Hardware and ATME Hardware with Update Window are

shown in Table 4.1. The column labeled “Re-Use” show the data re-use percentage. The

ATME configuration is Vth = 2 pixels, SADth = 2500, and a single pass is done. As it

can be seen from this table, other than 2 very static video sequences (SthlmPan and

InToTree), the number of pixels read from off-chip SRAM is reduced. This increases

the performance and reduces the power consumption of the ATME hardware.

Sequence Basic (103) w/ UW (103) Re-Use
ForemanCIF 24998 24262 3%
ParkJoy720p 234890 227041 3%

NewMobCal720p 185530 173865 6%
SthlmPan720p 198571 200823 -1%
InToTree720p 204040 220666 -8%

CrowdRun720p 246847 205649 17%
ParkJoy1080p 561073 541651 3%

InToTree1080p 464933 524882 -13%
CrowdRun1080p 603929 543362 10%

Table 4.1: Number of Pixels Read from Off-Chip SRAM

4.2.1 Implementation Results of ATME Hardware with Update Window

The ATME hardware with Update Window is implemented in Verilog HDL.

NewMobCal720p video sequence is processed for 10 frames to double the frame rate.

This operation took ~3740000 cycles, therefore on average a frame is processed in

~374000 cycles. The Verilog RTL code of the ATME hardware with Update Window is

also synthesized to a 4vlx200ff1513 Xilinx Virtex-4 FPGA with speed grade -11 using

Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the

same FPGA using Xilinx ISE tool. The hardware implementation is verified with post

place and route simulation using Mentor Graphics Modelsim tool. The hardware uses

33773 4-input LUTs, 7442 Flip-Flops, 8 dual-port Block RAMs, and consumes 21% of

the Slices. It works at 62.63 MHz and is capable of processing ~168 720p HD frames

per second doubling the frame rate to ~336 fps which satisfies the real-time

requirements.

55

Figure 4.3: Operation of Horizontal and Vertical Multiplexers in UW

56

4.3 ATME Hardware with Search Window

In ATME Hardware with Update Window, the pixels in the 22x22 pixel UW are

re-used only when UW contains all the pixels in the block pointed by the current MV. If

any pixel in this block is not in the UW, then the entire 22x22 pixel UW is re-filled.

However, if most of the pixels in this block are inside the UW, instead of refilling the

entire UW, only the missing pixels can be loaded into UW. If the number of rows and

columns that should be loaded into UW is more than 22, it is inefficient to load them

into UW one at a time. However, if the number of rows and columns that should be

loaded into UW is less than 22, then by loading them one at a time and re-using the rest

of the pixels already in the UW, the number of accesses to off-chip SRAM can be

reduced, performance can be increased and power consumption can be reduced.

Therefore, ATME Hardware with Search Window implements this data re-use

technique. When this data re-use technique is used, the existing pixels in the rows or

columns of the UW are replaced with the new pixels. In this case, the addressing

scheme for the UW is rotated so that this replacement is not visible to the rest of the

hardware in terms of read and write addresses.

The process of replacement in UW for the case where UW is centered on location

(4,3) and the next MV that will be evaluated is (8,8) is shown in Figure 4.4. In this case,

in order for the UW to include the PB, two rows and one column should be replaced in

the UW. After the replacement in the UW, proper select signals are sent to the

horizontal and vertical multiplexers. In this hardware, 22x16 horizontal and vertical

multiplexers are used in order to be able select any 16x16 pixel PB. For the case shown

in Figure 4.4, the select signal for the horizontal multiplexer is 7, and the select signal

for the vertical multiplexer is 8. This selection process is shown in Figure 4.5.

57

Figure 4.4: Replacement in UW

58

Figure 4.5: Operation of Horizontal and Vertical Multiplexers in ATME Hardware with SW

59

The number of pixels read from off-chip SRAM by three ATME hardware for

different video sequences are shown in Table 4.2. As it can be seen from this table, this

technique significantly reduces the number of off-chip SRAM accesses.

Sequence Basic (103) w/ UW (103) Re-Use w/ SW (103) Re-Use
ForemanCIF 24998 24262 3% 20733 17%
ParkJoy720p 234890 227041 3% 202666 14%

NewMobCal720p 185530 173865 6% 171547 8%
SthlmPan720p 198571 200823 -1% 181274 9%
InToTree720p 204040 220666 -8% 195317 4%

CrowdRun720p 246847 205649 17% 180435 27%
ParkJoy1080p 561073 541651 3% 470774 16%

InToTree1080p 464933 524882 -13% 465308 0%
CrowdRun1080p 603929 543362 10% 436811 28%

Table 4.2: Number of Pixels Read from Off-Chip SRAM by ATME Hardware

The block diagram of ATME Hardware with Search Window is shown in Figure

4.6. Video frames are stored in the off-chip SRAM in row-major or column-major

order. Therefore, in order to be able to access proper pixels consecutively from rows

and columns of a frame in each cycle, an on-chip Search Window memory implemented

with dual-port Block RAMs is used in this hardware. SW size can be multiples of 22. In

this hardware, SW contains 88x88 8-bit pixels, centered on the position of CB. These

pixels are distributed into 22 dual-port Block RAMs. This requires limiting MV values

to a range of [-36,+36] pixels. The necessary checks for this MV limitation are

implemented in the Address Generator module.

60

Figure 4.6: Block Diagram of ATME Hardware with SW

The pixels are placed diagonally in the SW as shown in Figure 4.7 [17]. The

numbers in each cell indicate the Block RAM containing the corresponding pixel in

SW. Each Block RAM is configured as dual-port, one port is used for writing and the

other port is used for reading. Block RAMs in Xilinx FPGAs can be configured with

different port widths. In this hardware implementation, the write port is configured as

32 bits and the read port is configured as 8 bits. Therefore, 4 pixels can be written into

and 1 pixel can be read from each Block RAM in each cycle. A limited number of,

generally 64, bits can be read from off-chip SRAM in each cycle. Therefore, only 8

pixels can be written into SW in one cycle and each column of SW is filled in 11 cycles.

The placement of pixels in Block RAMs is shown in Table 4.3. The two numbers

inside each cell indicate the row and column of the SW the corresponding pixel belongs

to. The first 22 pixels in a column of SW are stored in a different Block RAM. After 22

pixels starting from the top left pixel of SW is written into 22 Block RAMs, the 23rd

pixel is written into the next location of first Block RAM. Therefore, consecutive four

locations in a Block RAM contain four pixels from the same column of SW.

61

Address BRAM1 BRAM2 … BRAM11 BRAM12 … BRAM21 BRAM22
0 (1, 1) (2,1) … (11,1) (12,1) … (21,1) (22,1)
1 (23,1) (24,1) … (33,1) (34,1) … (43,1) (44,1)
2 (45,1) (46,1) … (55,1) (56,1) … (65,1) (66, 1)
3 (67,1) (68,1) … (77,1) (78,1) … (87,1) (88,1)
4 (22,2) (1,2) … (10,2) (11,2) … (20,2) (21,2)
5 (44,2) (23,2) … (32,2) (33,2) … (42,2) (43,2)

…

…

…

…

…

…

…

170 (47,43) (48,43) … (57,43) (58,43) … (45,43) (46,43)
171 (69,43) (70,43) … (79,43) (80,43) … (67,43) (68,43)
172 (2,44) (3,44) … (12,44) (13,44) … (22,44) (1,44)
173 (24,44) (25,44) … (34,44) (35,44) … (44,44) (23,44)

…

…

…

…

…

…

…

346 (47,87) (48,87) … (57,87) (58,87) … (45,87) (46,87)
347 (69,87) (70,87) … (79,87) (80,87) … (67,87) (68,87)
348 (2,88) (3,88) … (12,88) (13,88) … (22,88) (1,88)
349 (24,88) (25,88) … (34,88) (35,88) … (44,88) (23,88)
350 (46,88) (47,88) … (56,88) (57,88) … (66,88) (45,88)
351 (68,88) (69,88) … (78,88) (79,88) … (88,88) (67,88)

Table 4.3: Locations of the SW Pixels in Block RAMs

After the MV for CB is found, SW for the next CB should be loaded. The

proposed hardware refills the entire SW only for the first CB in each block row of the

input frame. Since the SW for CB and SW for the next CB have a 72x88 pixels overlap,

instead of reading entire 88x88 pixels of the SW from off-chip SRAM for the next CB,

the proposed hardware reads 16 non-overlapping columns from the off-chip SRAM and

writes them to the leftmost 16 columns in SW. This data re-use scheme requires rotating

read addresses for the SW for each new CB. This address rotation is handled by the

Address Generator.

The address rotation between the first CB and the next CB in a frame is illustrated

in Figure 4.8. In this figure, the numbers over the columns and the numbers to the left of

the rows show the actual positions of the columns and rows inside the video frame

respectively. The symbols inside the cells show the Block RAMs containing the

corresponding pixels. As it can be seen from Figure 4.8(a), for the next CB, 16 new SW

columns (89 to 104) are needed and SW columns 1 to 16 are not needed. Therefore, the

new 16 columns are written to first 16 columns of the SW as shown in Figure 4.8(b).

62

Because of address rotation, other modules in the hardware perceive the SW as shown

in Figure 4.8(c).

Figure 4.7: Diagonal Placement in SW

63

(a)

(b) (c)

Figure 4.8: Address Rotation for SW (a) Overlapping pixels in SWs (b) Actual
placement of pixels (c) Perceived placement of pixels.

In ATME algorithm, the access pattern for the SW depends on the values of the

MVs that are evaluated. For example, if the MVs that will be evaluated for the CB are

(1,0), (0,1) and (2,2), then PB is first accessed from the location one column right to

CB. The PB is next accessed from one row below CB, and finally PB is accessed from

two rows and two columns away from CB. Diagonal placement of pixels inside SW

allows accessing any 22 pixel row or column in the SW in one cycle.

64

Address Generator calculates the starting addresses of the pixels that will be sent

to the UW and reads them from 22 Block RAMs. Because of the SW address rotation,

the starting address calculations are quite complex. For example, when the first pixel of

the UW is read from the 15th Block RAM, next 7 pixels in the column should be read

the same address of 16th to 22nd Block RAMs. However, the next 13 pixels in the

column should be read from the next address of 1st to 14th Block RAMs. Since a Block

RAM has 4 pixels from the same column, the addresses of the pixels in the following

columns are calculated by adding 4 to the address of the pixel on the same row of the

previous column.

In ATME Hardware with SW, large number of read accesses to off-chip SRAM is

done in order to fill the on-chip SW memory. The number of pixels read from SRAM

when the SW size is 66x66 pixels and frame size is 1080p HD is �(66𝑥𝑥66𝑥𝑥1) +

(16𝑥𝑥66𝑥𝑥119)�𝑥𝑥67 = 𝟖𝟖,𝟕𝟕𝟕𝟕𝟕𝟕,𝟑𝟑𝟑𝟑𝟑𝟑 pixels per frame. For 100 frames (98 frames

processed) 8,711,340 𝑥𝑥 98 = 𝟖𝟖𝟖𝟖𝟑𝟑,𝟕𝟕𝟕𝟕𝟕𝟕,𝟑𝟑𝟑𝟑𝟑𝟑 pixels. The reason for 98 frames being

processed is that MVs for the first frame pair are assigned randomly and the 100th frame

is taken from the original video sequence, therefore SW is not filled in those two cases.

Similarly, the number of pixels read from SRAM when the SW size is 88x88 pixels and

frame size is 1080p HD is �(88𝑥𝑥88𝑥𝑥1) + (16𝑥𝑥88𝑥𝑥119)�𝑥𝑥67 = 𝟕𝟕𝟕𝟕,𝟕𝟕𝟑𝟑𝟑𝟑,𝟖𝟖𝟑𝟑𝟑𝟑 pixels

per frame. For 100 frames (98 frames processed) 11,744,832 𝑥𝑥 98 = 𝟕𝟕,𝟕𝟕𝟖𝟖𝟑𝟑,𝟗𝟗𝟗𝟗𝟑𝟑,𝟖𝟖𝟑𝟑𝟓𝟓

pixels.

Therefore, using an on-chip SW memory for the ATME algorithm with a

candidate set with small number of locations is not efficient. However, when a

candidate set with large number of locations is used to obtain higher quality videos,

using an on-chip SW memory becomes efficient especially for large frame sizes. For

example, when ParkJoy1080p sequence is processed for 100 frames by an ATME

algorithm with a candidate set with 14 locations and Vth = 2, the number of pixels

accessed is 895,458,168. And, when InToTree1080p sequence is processed by the

same ATME algorithm, the number of pixels accessed is 934,038,534. If a 66x66 pixel

size SW is used, the number of accesses to off-chip SRAM is reduced for both

examples.

The ATME Hardware with SW is implemented in Verilog HDL. However, the

Verilog RTL code is not mapped to an FPGA.

65

Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, adaptive true motion estimation (ATME) algorithm based on 3-D

Recursive Search algorithm is proposed for frame rate up-conversion. By using multi-

objective genetic algorithm, an optimized set of candidate locations are obtained. The

experimental results show that this optimized set improves the results of the 3-D

Recursive Search algorithm up to 2 dB. In addition, an extended set of candidates is

proposed to be used in cases where the results of the first set of candidates are

unsatisfactory.

Several computational complexity reduction and redundancy removal techniques

are used in ATME algorithm to reduce the number of SAD calculations. The first

technique avoids the evaluations of the same MV candidates. The next technique avoids

the evaluations of the similar MV candidates. The similarity of the MVs is determined

by comparing their pair-wise distances to a predefined threshold value. When the

threshold is set to zero, the same quality results are obtained with a 20% reduction in

SAD calculations for a 3 candidate set and 38% reduction for an 8 candidate set. This

reduction is further increased when multiple passes of the algorithm are done. When the

threshold is set to a non-zero value, the number of SAD calculations is reduced up to

64% with an average PSNR loss of 0.2 dB.

A redundancy removal technique for multiple passes is used in the ATME

algorithm. The probability of evaluating the MV, which is selected as the best matching

candidate for a block in the first pass of the algorithm, in the next pass is quite high.

Therefore, this technique stores the best SAD value obtained in the previous pass for

each block and uses them in the next pass in order to avoid redundant SAD calculations.

This multi-pass redundancy removal technique reduces the number of SAD calculations

by 25% on average in 3 passes and 30% on average in 5 passes.

66

The experimental results show that the ATME algorithm produces higher PSNR

results than reference algorithms while at the same time reducing SAD calculations up

to 58%. Furthermore, ATME algorithm reduces SAD calculations up to 82% with up to

0.59 dB PSNR loss. There are several cases where there is more than 70% reduction in

SAD calculations with less than 0.02 dB PSNR loss. Therefore, ATME algorithm

produces high quality video sequences with significantly lower computational cost.

In addition, in this thesis, three efficient hardware architectures for ATME

algorithm are proposed. The first hardware is a basic implementation of ATME

algorithm. Off-chip SRAM accesses are costly both in terms of latency and power

consumption. Therefore, the second hardware implements a data re-use scheme using a

22x22 pixel Update Window by exploiting the smoothness property of true motion

vector fields. The third hardware uses a technique for loading the Update Window with

only the pixels missing in the UW. An on-chip Search Window memory is used to

efficiently implement this technique. The pixels are diagonally placed into 22 dual-port

Block RAMs of the SW in order to provide single cycle access to any 22 pixel row or

column inside the SW.

All three ATME hardware architectures are implemented in Verilog HDL.

However, only two of them are mapped to Xilinx Virtex-4 FPGA. Basic ATME

Hardware consumes 8 Block RAMs and 8% of the Slices in that FPGA. It works at

59.86 MHz and is capable of processing ~158 720p HD frames per second, which is

sufficient for real-time processing. ATME Hardware with Update Window consumes 8

Block RAMs and uses 21% of the Slices in the same FPGA. It works at 62.63 MHz and

is capable of processing ~168 720p HD frames per second.

As future work, the third ATME hardware can be mapped to an FPGA. The

redundancy removal technique for multiple passes can be implemented and integrated

into the ATME hardware. A complete FRUC system can be built by designing and

implementing an MCI hardware and integrating it to the ATME hardware.

67

BIBLIOGRAPHY

[1] G. de Haan, Video Processing for Multimedia Systems. Univ. Press Eindhoven,
ISBN 90-9014015-8, 2001.

[2] O. A. Ojo and G. de Haan, “Robust Motion-Compensated Video Upconversion,”
IEEE Trans. Consum. Electron., vol. 43, no. 4, pp. 1045-1056, Nov. 1997.

[3] M. Tekalp, Digital video processing. Englewood Cliffs, NJ: Prentice Hall, 1995.

[4] N. Netravali and J. D. Robbins, “Motion-adaptive interopolation of television
frames,” Proc. Picture Coding Symp., Jun. 1981, p. 115.

[5] K. A. Bugwadia, E. D. Petajan, and N. N. Puri, “Progressive-Scan Rate Up-
Conversion of 24/30 Source Materials for HDTV,” IEEE Trans. Consum. Electron., vol.
42, no.3, pp. 312-321, Aug. 1996.

[6] K. A. Bugwadia, E. D. Petajan, N. N. Puri, “Progressive-Scan Rate Up-
Conversion of 24/30 Hz Source Materials for HDTV,” IEEE Trans. Consum. Electron.,
vol. 42, no. 3, pp. 312-321, Aug. 1996.

[7] T. Koga, K.Iinuma, and T. Ishiguro, “Motion compensated interframe coding for
video conferencing,” Proc. NTC, pp. G5.3.1-G5.3.5, New Orleans, USA, Dec. 1981.

[8] A. Puri, H. M. Hang, and D. L. Schilling, “An efficient block matching algorithm
for motion compensated coding,” Proc. IEEE ICASSP, pp. 1063-1066, Apr. 1987.

[9] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm for block
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no.4, pp. 438–
442, Aug. 1994.

[10] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no.3, pp. 313–317, Jun.
1996.

[11] G. de Haan, P. W. A. C. Biezen, H. Huijgen, and O. A. Ojo, “True-motion
estimation with 3-D recursive search block matching,” IEEE Trans. Circuits Syst. Video
Technol., vol. 3, no. 5, pp. 368-379, Oct. 1993.

[12] F. Dufaux and F. Moscheni, “Motion Estimation Techniques for Digital TV: A
Review and a New Contribution,” Proceedings of the IEEE, vol. 83, no. 6, pp. 858–876,
1995.

[13] M. T. Orchard, “Predictive Motion-Field Segmentation for Image Sequence
Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 1, pp. 54–70, 1993.

[14] V. Seferidis and M. Ghanbari, “Generalized Block-Matching Motion Estimation
Using Quad-Tree Structured Spatial Decomposition,” IEEE Proc.-Vis. Image Signal
Process, vol. 141, no. 6, pp. 446–452, 1994.

68

[15] Y-K. Chen and S.Y. Kung, “Rate optimization by true motion estimation,” Proc.
of IEEE Workshop on Multimedia Signal Processing, June 1997, pp. 187-194.

[16] K. Deb, Multi-objective optimization using evolutionary algorithm. John Wiley &
Sons, ISBN 0-471-87339-X, 2001.

[17] T. Chen, Y. Chen, S. Tsai, S. Chien, and L. Chen, “Fast Algorithm and
Architecture Design of Low Power Integer Motion Estimation for H.264/AVC,” IEEE
Trans. Circuits Syst. Video Technol., vol. 17, no. 5, May 2007.

[18] A. Netravalli and J. Robbins, “Motion compensated television coding,” Bell
Systems Technical Journal, no. 3, 1979, pp. 629-668.

[19] J.C. Greiner, R. Sethuraman, J. van Meerbergen, and G. de Haan, “A cost-
effective implementaion of object-based motion estimation,” IEEE Workshop on Signal
Processing Systems, 2003.

[20] S.-C. Tai, Y.-R. Chen, Z.-B. Huang, C.-C. Wang, “A Multi-Pass True Motion
Estimation Scheme With Motion Vector Propagation for Frame Rate Up-Conversion
Applications”, IEEE/OSA J. Disp. Technol., Vol. 4, No. 2, pp. 188-197, June 2008

[21] G. de Haan, “Progress in motion estimation for consumer video format
conversion,” IEEE Trans. Consum. Electron., vol. 46, no. 3, pp. 449-459, Aug. 2000.

[22] J. Astola, P. Haavisto and Y. Neuvo, “Vector median filters,” Proc. IEEE, vol. 78,
pp. 678-689, Apr. 1990.

[23] B.-W. Jeon, G.-I. Lee, S.-H. Lee, and R.-H. Park, “Coarse-to-fine frame
interpolation for frame rate up-conversion using pyramid structure,” IEEE Trans.
Consum. Electron., vol. 49, no.3, pp. 499-508, Aug. 2003.

[24] T.Y. Kuo and C.-C.J. Kuo, “Motion-compensated interpolation for low-bit-rate
video quality enhancement,” Proc. SPIE Visual Communications and Image
Processing, vol. 3460, pp. 277-288, July 1998.

[25] A. Kaup and T. Aach, “Efficient prediction of uncovered background in
interframe coding using spatial extrapolation,” Proc. ICASSP., vol. 5, pp, 501-504,
1994.

[26] R. J. Schutten and G. D. Haan, “Real-time 2–3 pull-down elimination applying
motion estimation/compensation in a programmable device,” IEEE Trans.
Consum.Electron., vol. 44, no. 3, pp. 501–504, Aug. 1998.

[27] B-T. Choi, S-H. Lee, and S-J. Ko, “New frame rate up-conversion using bi-
directional motion estimation,” IEEE Trans. Consum. Electron., vol. 46, no.3, pp. 603-
609, Aug. 2000.

[28] B-D. Choi, J-W. Han, C-S. Kim, and S-J. Ko, “Motion-compensated frame
interpolation using bilateral motion estimation and adaptive overlapped block motion
compensation,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 4, pp. 407-416,
Apr. 2007.

69

[29] S-J. Kang, K-R. Cho, and Y. H. Kim, “Motion compensated frame rate up-
conversion using extended bilateral motion estimation,” IEEE Trans. Consum.
Electron., vol. 53, no.4, pp. 1759-1767, Nov. 2007.

[30] S-J. Kang, D-G. Yoo, S-K. Lee, and Y. H. Kim, “Multiframe-based bilateral
motion estimation with emphasis on stationary caption processing for frame rate up-
conversion,” IEEE Trans. Consum. Electron., vol. 54, no.4, pp. 1830-1838, Nov. 2008.

[31] M. Orchard and G. Sullivan, “Overlapped block motion compensation: An
estimation-theoretic approach,” IEEE Trans. Image Processing, Vol. 3, May 1994, pp.
693–699.

[32] ITU-T, Draft ITU-T Recommendation H.263, “Video Coding for Low Bit Rate
Communication,” 1997.

[33] Beric, G. de Haan, R. Sethuraman, and J. van Meerbergen, “An efficient picture-
rate up-converter,” Journal of VLSI Signal Processing, vol. 41, pp. 49-63, 2005.

[34] S.-C. Tai, Y.-R. Chen, Z.-B. Huang, and C.-C. Wang, “A multi-pass true motion
estimation scheme with motion vector propagation for frame rate up-conversion
applications,” IEEE J. Display Technol., vol. 4, no. 2, Jun. 2008.

[35] Burak Erbağcı and Özgür Karakaya, “Bilateral Motion Estimation Algorithm and
Hardware Design”, BS Graduation Project Final Report, Sabancı University, Jun. 2009.

[36] Zafer Tevfik Özcan and Çağla Çakır, “Overlapped Block Motion Compensation
Software and Hardware Design”, BS Graduation Project Final Report, Sabancı
University, Jun. 2009.

[37] R. W. Hall, “Efficient spiral search in bounded spaces,” IEEE Trans. Pattern
Anal. Mach. Intell. vol. PAMI-4, no. 2, pp. 208-215, Mar 1982.

[38] Video Quality Experts Group Benchmark Videos, ftp://vqeg.its.bldrdoc.gov/

	AN ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM FOR FRAME RATE UP-CONVERSION AND ITS HARDWARE DESIGN
	AN ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM FOR FRAME RATE UP-CONVERSION AND ITS HARDWARE DESIGN
	AN ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM FOR FRAME RATE UP-CONVERSION AND ITS HARDWARE DESIGN
	GÖRÜNTÜ HIZI ARTIRIMI İÇİN UYARLANIR GERÇEK HAREKET TAHMİNİ ALGORİTMASI VE DONANIM TASARIMI
	Acknowledgements
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Chapter 1
	INTRODUCTION

	Chapter 2
	MOTION compensated Frame Rate Up-Conversion
	2.1 Motion Estimation
	2.2 True Motion Estimation
	2.3 Intermediate FRUC Steps
	2.3.1 Motion Vector Smoothing
	2.3.2 Bilateral Motion Estimation

	2.4 Motion Compensated Interpolation
	2.4.1 Motion Compensated Field Averaging
	2.4.2 Static Median Filtering
	2.4.3 Dynamic Median Filtering
	2.4.4 Two-Mode Interpolation
	2.4.5 Overlapped Block Motion Compensation

	2.5 Evaluation Methods and Metrics

	Chapter 3
	adaptıve true motıon estımatıon algorıthm and motıon compensated frame rate up-conversıon SOFTWARE
	3.1 Adaptive True Motion Estimation Algorithm
	3.2 Motion Compensated Frame Rate Up-Conversion Software
	3.3 Performance Results

	Chapter 4
	adaptıve true motıon estımatıon HARDWARE desıgn
	4.1 Basic ATME Hardware
	4.1.1 Operation of Basic ATME Hardware
	4.1.2 Implementation Results of Basic ATME Hardware

	4.2 ATME Hardware with Update Window
	4.2.1 Implementation Results of ATME Hardware with Update Window

	4.3 ATME Hardware with Search Window

	Chapter 5
	Conclusion and future work
	Bibliography

