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Abstract 

 

 
With the advancement in video and display technologies, recently flat panel High 

Definition Television (HDTV) displays with 100 Hz, 120 Hz and most recently 240 Hz 
picture rates are introduced. However, video materials are captured and broadcast in 
different temporal resolutions ranging from 24 Hz to 60 Hz. In order to display these 
video formats correctly on high picture rate displays, new frames should be generated 
and inserted into the original video sequence to increase its frame rate. Therefore, 
Frame Rate Up-Conversion (FRUC) has become a necessity. Motion Compensated 
FRUC algorithms provide better quality results than non-motion compensated FRUC 
algorithms. Motion Estimation (ME) is the process of finding motion vectors which 
describe the motion of the objects between adjacent frames and is the most 
computationally intensive part of motion compensated FRUC algorithms. For FRUC 
applications, it is important to find the motion vectors that represent real motions of the 
objects which is called true ME. In this thesis, an Adaptive True Motion Estimation 
(ATME) algorithm is proposed. ATME algorithm produces similar quality results with 
less number of calculations or better quality results with similar number of calculations 
compared to 3-D Recursive Search true ME algorithm by adaptively using optimized 
sets of candidate search locations and several redundancy removal techniques. In 
addition, 3 different complexity hardware architectures for ATME are proposed. The 
proposed hardware use efficient data re-use schemes for the non-regular data flow of 
ATME algorithm. 2 of these hardware architectures are implemented on Xilinx Virtex-4 
FPGA and are capable of processing ~158 and ~168 720p HD frames per second 
respectively. 
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ÖZET 

 

 
Video ve ekran teknolojilerindeki ilerlemeler sayesinde, yakın zamanlarda 100 

Hz, 120 Hz, ve en yeni olarak da 240 Hz görüntü hızlarına sahip düz ekran Yüksek 
Çözünürlüklü Televizyon (YÇT) ekranları piyasaya çıkarıldı. Fakat video görüntüleri 
24 Hz'den 60 Hz'e değişen farklı zamansal çözünürlüklerde kaydedilmekte ve 
yayınlanmaktadır. Bu farklı video biçimlerini yüksek görüntü hızlı ekranlarda doğru bir 
şekilde görüntülemek için, yeni kareler yaratılmalı ve görüntü hızını artırabilmek için 
video diziminin içine eklenmelidir. Bu yüzden Görüntü Hızı Artırımı (GHA) bir ihtiyaç 
olmuştur. Hareket Destekli GHA algoritmaları, hareket desteği olmayan GHA 
algoritmalarına oranla daha yüksek kaliteli sonuçlar vermektedir. Hareket Tahmini 
(HT), nesnelerin ardışık kareler boyunca hareketlerini tanımlayan hareket vektörlerini 
bulma işlemidir ve de Hareket Destekli GHA algoritmalarının işlemsel olarak en yoğun 
kısmını oluşturur. GHA uygulamaları için önemli olan nesnelerin gerçek hareketlerini 
ifade eden hareket vektörlerinin bulunabilmesidir. Buna Gerçek HT denir. Bu tezde 
Uyarlanır Gerçek Hareket Tahmini (UGHT) algoritması önerilmektedir. UGHT 
algoritması kullanıldığında, en uygun hale getirilmiş aday arama konumları 
kümelerinden ve de birtakım artıklık azaltıcı tekniklerden uyarlanır bir şekilde 
yararlanılıp, 3-D Recursive Search Gerçek HT algoritmasıyla karşılaştırıldığında daha 
az işlem yapılarak benzer kalitede sonuçlar veya da benzer sayıda işlem yapılarak daha 
yüksek kalitede sonuçlar elde edilmektedir. Ek olarak, UGHT için değişik karmaşıklığa 
sahip 3 farklı donanım mimarisi önerilmektedir. Önerilen donanımlarda UGHT 
algoritmasının düzenli olmayan veri akışı için verilerin verimli yeniden kullanımı için 
yöntemler uygulanmaktadır. Bu tasarımlardan 2'si Xilinx Virtex-4 FPGA üzerinde 
gerçeklenmiş ve de saniyede sırasıyla yaklaşık olarak 158 ve 168 720p YÇ çerçeve 
işleyebilmektedirler. 
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Chapter 1 

INTRODUCTION 

The advancements in VLSI technology enabled the production of many 

multimedia products which introduced many video formats with different spatial and 

temporal resolutions. These formats include two main Standard Definition (SD) TV 

broadcast formats (50 Hz and 60 Hz with 625 and 525 lines respectively), and High 

Definition TV (HDTV) formats (720p and 1080i). The movie materials are recorded at 

24, 25 or 30 frames per second. On the other hand, the advancement in display 

technologies enabled the production of large flat panel High Definition Television 

(HDTV) and PC displays with up to 100, 120 and most recently 240 Hz non-interlaced 

picture rates. 

In order to display these formats correctly on high picture rate panels, new frames 

should be generated and inserted into the original sequence to increase its frame rate. 

Therefore, Frame Rate Up-Conversion (FRUC) has become a necessity [1]. An example 

FRUC scheme in which the frame rate of the input video sequence is multiplied by 4 is 

shown in Figure 1.1. 

 
Figure 1.1: An Example FRUC System 
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The existing FRUC algorithms are mainly classified into two types [2]. First class 

of algorithms does not take motion of the objects into account, like frame repetition [3] 

or linear interpolation [4]. These algorithms are easy to implement without any 

significant computational cost, however at high spatial and temporal resolutions, these 

algorithms produce visual artifacts [5] like motion judder (if the difference between 

input and output frame rate is below 30 Hz) and motion blur (for higher differences). 

Figure 1.2 [1] shows the effect of these two situations. 

In Figure 1.2(a) the original sequence is shown, where the linear motion of an 

object is illustrated as a straight line for 3 frames.  In Figure 1.2(b), the case where the 

motion of the object is recorded by a 24 frames per second (fps) camera and displayed 

on a 60 Hz display is shown. When picture repetition is applied, some frames will be 

displayed two times and some will be displayed three times. This is called a 2-3 pull 

down [6]. In this case the viewer will experience an irregular or jerky motion which is 

called motion judder. On the other hand, in Figure 1.2(c), the case where a 50 Hz video 

is displayed on a 100 Hz display using picture repetition is shown. In this case, the 

viewer will experience a smooth motion, as the difference between input and output 

frame rates is higher than 30 Hz. However, the object will be perceived in both 

positions moving in parallel simultaneously, which will result in a double or blurred 

object. This is called motion blur. 

 

 
 (a) (b) (c) 
Figure 1.2: Effect of Picture Repetition (a) Original sequence (b) Picture repetition 

from 24 Hz to 60 Hz (c) Picture repetition from 50 Hz to 100 Hz. 
 

 

Second class of FRUC algorithms takes the motion of objects into account to 

reduce these artifacts and construct higher quality interpolated frames [2]. These Motion 

Compensated Frame Rate Up-Conversion (MC-FRUC) algorithms consist of two main 

stages, Motion Estimation (ME) and motion compensated interpolation (MCI). In ME, a 
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Motion Vector (MV) is calculated between successive frames, and in the MCI step this 

MV data from the previous step is used to generate a new frame to be inserted between 

the initial two successive frames, thus doubling the frame rate. This operation can be 

repeated to further increase the frame rate. In addition to the two main steps, there may 

be intermediate steps to improve the quality of the interpolated video output. These 

intermediate steps generally involve refinement of the MV field by various algorithms 

like Motion Vector Smoothing and Bilateral ME Refinement. 

Among several ME algorithms, Block Matching (BM) is the most preferred 

method, which divides the frames of video sequences into NxN pixel blocks and tries to 

find the best matching block according to a cost function from previous frames inside a 

given search range. The most common cost function is Sum of Absolute Differences 

(SAD), because of its low computational cost. 

There are various BM algorithms proposed in the literature. Full Search (FS) 

algorithm has the best performance as it exhaustively searches every location in the 

given search range [1]. However, its computational complexity is very high, especially 

for HD videos. On the other hand, many fast block matching algorithms are available 

[7-10], which have much less computational complexity while producing acceptable 

quality results. When motion vectors are generated for FRUC applications, it is 

important that the vectors represent real motions of the objects [1]. This is called the 

true motion. Although, these algorithms find the best SAD match which is sufficient for 

video compression, this does not guarantee that those vectors represent the true motion 

of the object. Therefore, generally, these algorithms perform poorly when used in frame 

rate up-conversion applications. 

There are several ME algorithms [11-15] which aim to extract the true motion 

information between the frames of video sequences. These algorithms depend on two 

assumptions. The objects are larger than blocks so that surrounding neighbors of a block 

should have similar motions, and motions are continuous and spread through a duration 

of time so that blocks in successive frames of a video sequence should have similar 

motions. A recursive search algorithm takes advantage of these assumptions, and for the 

current block evaluates the motion vectors of spatial and temporal neighboring blocks 

instead of doing an exhaustive or static patterned search. 3-D Recursive Search (3DRS) 

[11] is one of the best implementations of these assumptions, and produces a smooth 

and accurate motion vector field suitable for MC-FRUC applications. 
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In this thesis, an adaptive true motion estimation algorithm (ATME) based on 

3DRS is proposed. The candidate locations set of the 3DRS algorithm is optimized 

using a multi-objective genetic algorithm optimization [16], in order to produce high 

quality results with low computational costs. The optimized search location candidates 

are then integrated into an adaptive recursive search algorithm, which applies 

appropriate sets of search candidates, according to the smoothness and quality of the 

previous vector field. In addition, several computational complexity reduction and 

redundancy removal techniques are used for reducing the number of SAD calculations 

in single and multiple passes of the algorithm. One of these techniques also implicitly 

results in increasing smoothness of the motion vector field. Simulation results show that 

ATME algorithm generates similar quality results with lower computational costs or 

higher quality results with same computational costs compared to the 3DRS algorithm. 

In addition, 3 different complexity hardware architectures for ATME are 

proposed. The first architecture is a basic implementation of ATME algorithm and is 

able to process ~158 720p HD frames per second. The second architecture uses an on-

chip memory for efficient data re-use of pixel data for MVs that are close in value 

reducing the number of accesses to the off-chip SRAM which is costly both in terms of 

latency and power consumption. This architecture processes ~168 720p HD frames per 

second. Finally, a more complex architecture for use with large number of candidate 

search locations and large size video frames is proposed. This architecture uses a large 

on-chip search window memory for implementing a highly efficient data re-use scheme. 

The pixels are placed diagonally [17] in this search window memory to enable single 

cycle access to a row or column at any location inside the search window. 

The rest of the thesis is organized as follows. In Chapter 2, ME algorithms, MCI 

algorithms, and several refinement steps used in MC-FRUC systems are explained in 

detail. In addition, video quality evaluation methods and metrics are presented. In 

Chapter 3, the ATME algorithm and its performance evaluation is presented. In 

addition, the software developed for implementation and testing of FRUC algorithms is 

explained. In Chapter 4, hardware implementations for ATME are presented in detail. 

Finally, Chapter 5 concludes this thesis. 
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Chapter 2 

MOTION COMPENSATED FRAME RATE UP-CONVERSION 

2.1 Motion Estimation 

Motion estimation is the process of determining motion vectors that describe the 

transformation from one video frame to another, usually between adjacent frames in a 

video sequence. In Figure 2.1, a motion vector (MV) is shown as the motion trajectory 

which is the line that connects identical parts in adjacent frames. The estimation of these 

MVs is a difficult problem as the motion is in three dimensions but the images are a 

projection of the 3D scene onto a 2D plane. The MVs may relate to the whole image 

such as global motion, zooming or panning, or specific parts such as rectangular blocks, 

arbitrary shaped objects or even a pixel [1]. 

 
Figure 2.1: Motion Trajectory 
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Figure 2.2: Motion Vector in BM Algorithms 

 
Pixel based ME methods [18] involve significant calculations which makes them 

hard to implement both in software and hardware. Object based motion estimation [19] 

is an emerging method. But, the initial requirement of object based ME, the object 

segmentation, is a computationally demanding task. The block based motion estimation 

is the most preferred method in the literature and also in the industry due to its easy 

implementation and high quality results. The block based ME methods use Block 

Matching (BM) Algorithms, which divide the frames of video sequences into NxN pixel 

blocks and try to find the best matching block according to a cost function from 

previous frames inside a given search range. An example MV found by a BM algorithm 

is shown in Figure 2.2. The most common cost function is Sum of Absolute Differences 

(SAD) shown in Equation (2.1), because of its low computational complexity. The 

pixels inside a block 𝐵𝐵(�⃗�𝑋) are assumed to have the same MV, which is assigned to 

𝐵𝐵��⃗�𝑋� by BM algorithms. 

 

 𝑆𝑆𝑆𝑆𝑆𝑆��⃗�𝑣, �⃗�𝑋,𝑛𝑛� = ∑ |𝐹𝐹(�⃗�𝑥,𝑛𝑛) −  𝐹𝐹(�⃗�𝑥 − �⃗�𝑣,𝑛𝑛 − 1)|𝑥𝑥∈𝐵𝐵(𝑋𝑋�⃗ )  (2.1) 

 

Full Search (FS) algorithm is based on computing SADs at all possible locations 

in a given search window. It takes a block 𝐵𝐵(�⃗�𝑋) in the current frame n, whose top left 

pixel is at position �⃗�𝑋 and compares it to every block in the previous frame, n-1, inside a 

pre-defined search area 𝑆𝑆𝑆𝑆(�⃗�𝑋) which is also centered at �⃗�𝑋. The motion trajectory 

connecting the best matching block (with the minimum SAD) in the previous frame 

with the current block 𝐵𝐵(�⃗�𝑋) is assigned as the Motion Vector V of 𝐵𝐵(�⃗�𝑋). This process is 

illustrated in Figure 2.3 [1]. The definition of full search is given in Equations (2.2) and 
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(2.3), where C denotes the candidate motion vectors pointing to possible search 

locations inside the search area SA, N and M denotes width and height of SA 

respectively, V denotes the selected MV. 

 

 𝑆𝑆𝑆𝑆�����⃗ = �𝐶𝐶�(𝑋𝑋𝑥𝑥 − 𝑁𝑁) ≤ 𝐶𝐶𝑥𝑥 ≤ (𝑋𝑋𝑥𝑥 + 𝑁𝑁), �𝑋𝑋𝑦𝑦 − 𝑀𝑀� ≤ 𝐶𝐶𝑦𝑦 ≤ �𝑋𝑋𝑦𝑦 + 𝑀𝑀�� (2.2) 

 𝑉𝑉�⃗ = 𝑎𝑎𝑎𝑎𝑎𝑎min𝑣𝑣�⃗ ∈𝑆𝑆𝑆𝑆�����⃗ �𝑆𝑆𝑆𝑆𝑆𝑆(�⃗�𝑣, �⃗�𝑋,𝑛𝑛)� (2.3) 

 

FS guarantees finding the minimum SAD value inside a given search range. 

However, it is not designed to extract the true motion of the objects between frames and 

it is computationally expensive as it exhaustively evaluates every possible MV 

candidate. 

 

 
Figure 2.3: Full Search ME 

 

The high computational complexity of the FS algorithm created the need for fast 

ME methods which try to achieve similar quality results with less computational 

complexity. There are many proposed fast ME methods [7-10] in the literature. For 

example, N-step search methods initially apply coarse search patterns, and continue 
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with finer patterns starting with the location found in the previous step. 3-step search 

pattern [7] is illustrated in Figure 2.4 [1]. 

 

Figure 2.4: 3-Step Search Pattern 
 

2.2 True Motion Estimation 

The physical three-dimensional motion projected onto two-dimensional space is 

referred to as true motion. The ability to track true motion by observing changes in 

luminance intensity is critical to many video applications such as FRUC [20]. Different 

from the other motion estimation algorithms like FS, a true motion estimation algorithm 

should also take other measures into account like spatio-temporal consistency of the 

MV field around objects. This is based on two assumptions. Objects are larger than 

blocks so that MV field around a block should be smooth and objects have inertia, i.e. 

object motions are spread through time to several frames. Therefore, motions of the 

objects can also be tracked by analyzing previous frames.  
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There are several true motion estimation algorithms in the literature [11-15] that 

check the spatio-temporal consistency around blocks to obtain the true motion of the 

object containing that block. Three Dimensional Recursive Search (3DRS) [11] is one 

of the best implementations of these two assumptions. Instead of evaluating all possible 

candidate locations in a search window, 3-D recursive search algorithm uses spatial and 

temporal predictions to select only a few candidate vectors from the 3-D neighborhood 

(spatial and temporal neighbors) of the current block, thus reducing computational 

complexity of ME which is the most computationally expensive part of MC-FRUC and 

also resulting in a smooth and accurate true MV field.  

There are two problems with the first assumption in 3DRS. First, because of the 

processing order of the blocks (starting from top-left block and ending with the bottom-

right block), not all of the spatial neighboring blocks of the current block (CB) are 

available, e.g. the blocks to the right of the CB and the blocks that are below the CB. 

This problem is solved with the second assumption. Since the motion of the object 

continues over several frames, instead of the motion vectors of the spatial neighboring 

blocks that are not yet calculated the motion vectors of the corresponding temporal 

neighboring blocks are used. 

Second, all vectors are zero or undefined at initialization. Therefore, the motion 

vector of the object cannot be found in any of the neighboring blocks in the first frame. 

This problem is solved by adding random update vectors from a pre-defined set of noise 

vectors, filling the MV field with not accurate but possible motion data. In [21], it is 

proposed to use the candidate set shown in Equation (2.4) and illustrated in Figure 2.5. 

Squares marked as S are vectors taken from spatial neighbors and square marked as T is 

the vector taken from the previous frame. CB denotes the current block. 

 

 

 



10 
 

 
Figure 2.5: Candidate Search Locations Set for 3DRS 

 

 𝐶𝐶𝑆𝑆3𝑆𝑆𝐷𝐷𝑆𝑆(�⃗�𝑋,𝑛𝑛) =

⎩
⎪
⎨

⎪
⎧𝑉𝑉�⃗ ��⃗�𝑋 + �−1

−1� ,𝑛𝑛� + 𝑈𝑈1����⃗ (�⃗�𝑋,𝑛𝑛)

𝑉𝑉�⃗ ��⃗�𝑋 + � 1
−1� ,𝑛𝑛� + 𝑈𝑈2����⃗ (�⃗�𝑋,𝑛𝑛)

𝑉𝑉�⃗ ��⃗�𝑋 + �0
2� ,𝑛𝑛 − 1� ⎭

⎪
⎬

⎪
⎫

 (2.4) 

where the update vectors 𝑈𝑈1����⃗ (�⃗�𝑋,𝑛𝑛) and 𝑈𝑈2����⃗ (�⃗�𝑋,𝑛𝑛) are randomly selected from the 

following update set: 

 𝑈𝑈𝑖𝑖��⃗�𝑋,𝑛𝑛� =

⎩
⎨

⎧ 0⃗
��0

1
� , � 0

−1
� , �1

0
�� , �−1

0
� ,

��0
2
� , � 0

−2
� , �3

0
�� , �−3

0
�⎭
⎬

⎫
 (2.5) 

 

2.3 Intermediate FRUC Steps 

In addition to the two main FRUC steps, additional steps such as motion vector 

smoothing or bilateral motion estimation can be performed before MCI to improve the 

quality of the estimated motion vectors by refining them to obtain a smoother and more 

accurate MV field. 
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2.3.1 Motion Vector Smoothing 

Motion fields are usually smooth functions except at object boundaries. However, 

there are cases where even true motion estimation may produce unreliable motion 

vectors. Therefore, outliers can occur as shown in Figure 2.6 (b). These outliers should 

be eliminated for FRUC applications. 

 
 (a) (b) (c) 

 
Figure 2.6: Motion Vector Smoothing (a) Smooth region (b) Outlier MV 

(c) Object boundary 
 

There are many approaches for motion vector smoothing. One of them is Vector 

Median Filtering (VMF) [22] which eliminates outliers while preserving boundaries 

between different objects. 

Let, 𝑀𝑀𝑉𝑉𝐹𝐹 = {𝑚𝑚𝑣𝑣1,𝑚𝑚𝑣𝑣2, … ,𝑚𝑚𝑣𝑣𝑁𝑁} be the set of MVs inside the smoothing 

window. Then the median vector 𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛 is defined as the element in the set, which 

satisfies the inequality, 

�

𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛 ∈ 𝑀𝑀𝑉𝑉𝐹𝐹

�‖𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛 − 𝑚𝑚𝑣𝑣𝑖𝑖‖𝑝𝑝 ≤��𝑚𝑚𝑣𝑣𝑗𝑗 − 𝑚𝑚𝑣𝑣𝑖𝑖�𝑝𝑝               , 𝑗𝑗 = 1,2, … ,𝑁𝑁
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

� 

(2.6) 

where the norm ‖ ∙ ‖𝑝𝑝  defines the metric used to convert a vector to a scalar value. For 

the norm operation generally the L1 norm (p = 1) is used since it has low computational 

complexity and it is an effective method for checking vector similarity [10]. L1 norm is 

defined as, 
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‖𝒙𝒙‖1 = �|𝑥𝑥𝑖𝑖 |
𝑛𝑛

𝑖𝑖=1

 

(2.7) 

where 𝑥𝑥𝑖𝑖  is the ith component of the vector �⃗�𝑥. 

 

The size of the smoothing window is selected as 3x3 in practical applications. The 

block currently being processed is placed in the center of the window, and the 8 

surrounding neighbors are used in the filtering process, making a total of 9 vectors in 

each window as shown in Figure 2.7. 

 
Figure 2.7: 3x3 Smoothing Window 

 

An example application of motion vector smoothing is shown in Figure 2.8. The 

outliers in the boundary region cannot be processed because of the unavailability of 

some of the neighboring MVs. 

 

 

                  
Figure 2.8: Example Application of Motion Vector Smoothing 
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2.3.2 Bilateral Motion Estimation 

One of the potential problems with BM algorithms for FRUC is the possible hole 

and overlapped areas in the interpolated frames. Since a new frame is generated by 

interpolation between previous frame (PF) and current frame (CF) based on motion 

vectors (MV) and these vectors are obtained by ME which assumes that objects move 

along the motion trajectory, holes and overlapped areas may be produced in the 

interpolated frames due to no motion trajectory passing through and multiple motion 

trajectories passing through, respectively [23]. This degrades the quality of generated 

frames as shown in Figure 2.9. This problem can be solved by median filtering 

overlapped pixels [24], using spatial interpolation methods for holes [25], or prediction 

methods by analyzing MV fields for covered and uncovered regions [23][26]. However, 

these methods have high computational complexity and give unsatisfactory results, 

especially in cases of non-static backgrounds and camera motions. To overcome this 

problem more efficiently, Bilateral Motion Estimation (Bi-ME) methods are proposed 

[27]-[30], which construct a MV field from the viewpoint of the to-be-interpolated 

frame, and therefore do not produce any overlapped areas or holes during interpolation. 

 
Figure 2.9: (a) Hole and Overlapping Regions (b) Frame Generated by Bilateral 

ME 
 

In other ME algorithms, an NxN size block from CF, CB, is kept stationary and a 

match for this CB is searched inside a search window in PF. In Bi-ME, an imaginary 

frame is assumed to exist which will be the intermediate frame after it is interpolated, 

and ME is performed from the viewpoint of this frame. Therefore, the block inside the 

to-be-interpolated frame is kept stationary and a match for this block is tried to be found 

both in CF and PF at symmetric locations to each other. The trajectory connecting two 

symmetric blocks in CF and PF always passes through the stationary block inside the 
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to-be-interpolated frame. When the best match is found, the trajectory between two 

symmetric blocks is assigned as the MV to the block that will be interpolated. The Bi-

ME process is shown in Figure 2.10.  

 
Figure 2.10: Bilateral Motion Estimation 

 

Bi-ME, when used exclusively as the ME step, does not yield acceptable results 

for MC-FRUC applications due to its lack of true motion estimation capability. It is 

proposed in [27] that Bi-ME can be used as a refinement step to a ME algorithm as 

shown in Figure 2.11.  

 

Motion 
Estimation Refinement MCI

Initial
MV Field

Bilateral
MV Field

Interpolated
Frame

Previous
Frame

Current
Frame

 
Figure 2.11: Bilateral ME as a Refinement Step 

2.4 Motion Compensated Interpolation 

The last step of a MC-FRUC system is the Motion Compensated Interpolation 

(MCI) step, which interpolates the pixel data of the intermediate frame using the motion 

vectors generated by the ME step between the previous and current frames. A robust 

MCI algorithm is as important as a robust ME algorithm. Even if the ME cannot 
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accurately estimate the true motion of the object like in the cases of covering and 

uncovering of different objects, MCI algorithm may detect these cases and be able to 

generate a high quality video output. 

 

2.4.1 Motion Compensated Field Averaging 

Motion Compensated Field Averaging (MC-FAVG) [1] is the most basic MCI 

method. MC-FAVG algorithm combines two adjacent frames linearly, with each block 

in the PF is shifted towards the CF according to the value of its MV, and similarly each 

block in the CF is shifted towards PF along its motion trajectory. The algorithm is 

shown in Equation (2.8) 

𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼) =
1
2
�𝐹𝐹��⃗�𝑥 − 𝛼𝛼𝑉𝑉�⃗ ,𝑛𝑛� + 𝐹𝐹��⃗�𝑥 + (1 − 𝛼𝛼)𝑉𝑉�⃗ ,𝑛𝑛 + 1�� ;        0 ≤ 𝛼𝛼 ≤ 1 

(2.8) 

where 𝐹𝐹(�⃗�𝑥,𝑛𝑛) denotes the intensity value of the pixel at location �⃗�𝑥 in frame n, α denotes 

the up-conversion ratio (0.5 for doubling the frame rate), and 𝑉𝑉�⃗  is the MV associated 

with that pixel. 

 

2.4.2 Static Median Filtering 

In some cases when a wrong MV is assigned to stationary objects like text areas, 

MC-FAVG produces blocking artifacts. This problem can be solved by Static Median 

Filter (SMF) algorithm [1]. In SMF, two inputs of a median filter is fed with two pixel 

values, one from the PF and one from the CF, both from the same location of the current 

pixel to be interpolated. The third input is connected to the output of the MC-FAVG 

algorithm. With this scheme, in cases of stationary fields, values of the two stationary 

pixels will be similar. This would result in the selection of one of those pixels. On the 

other hand, when there is a temporal discontinuity, values of the stationary pixels will 

be apart, therefore the MC-FAVG result will be used. The SMF algorithm is shown in 

Equation (2.9). 

 

 𝐹𝐹𝑠𝑠𝑚𝑚𝑠𝑠 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐹𝐹(�⃗�𝑥,𝑛𝑛),𝐹𝐹(�⃗�𝑥,𝑛𝑛 + 1),𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼)} (2.9) 

 

2.4.3 Dynamic Median Filtering 

Dynamic Median Filter (DMF) [1] also uses a 3-point median filter scheme. 

However, in DMF, two inputs of the filter is fed with motion compensated pixel values 
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from previous and current frames each taken from respective locations that the MV of 

the to-be-interpolated pixel points to. The third input is the non-motion compensated 

average of two pixels taken from the same location of the to-be-interpolated pixel both 

from CF and PF. The DMF is shown in Equation (2.10). 

 

𝐹𝐹𝑚𝑚𝑚𝑚𝑠𝑠 (�⃗�𝑥,𝑛𝑛 + 𝛼𝛼) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹��⃗�𝑥 − 𝛼𝛼𝑉𝑉�⃗ ,𝑛𝑛�,𝐹𝐹��⃗�𝑥 + (1 − 𝛼𝛼)𝑉𝑉�⃗ ,𝑛𝑛 + 1�,
1
2

(𝐹𝐹(�⃗�𝑥,𝑛𝑛) + 𝐹𝐹(�⃗�𝑥,𝑛𝑛 + 1)� 

(2.10) 

 

In cases where the motion vector is accurate, the compensated pixels will have 

about the same values, and therefore the median filter will select either of them. But if 

the motion vector is unreliable, then it is likely that values of the compensated pixels 

will be apart from each other, therefore the uncompensated input will be selected.  

 

2.4.4 Two-Mode Interpolation 

Two-Mode Interpolation (2MI) [1] algorithm aims at a relatively better 

interpolation at a reduced operation count. This algorithm is based on occlusion 

detection to have information about whether there is a covering or an uncovering 

situation in the frame or not. This detection is done by analyzing the MV field seeking 

significant discontinuities between neighboring vectors. When a discontinuity is found, 

it is assumed that borders of objects are reached, therefore MVs of those blocks are less 

reliable and MCI should be done with more caution. On the other hand, when the MV 

field is smooth, a simpler MCI algorithm like MC-FAVG is sufficient. For the occlusion 

detection, the difference between the MV values of the left and right blocks and the 

difference between the MV values of the top and bottom blocks are checked. If any of 

them is higher than a pre-defined threshold value, an occlusion is assumed to be found 

and the MCI is handled by DMF. Otherwise, MC-FAVG is used for that block. 2MI is 

shown in Equation (2.11). 

 

𝐹𝐹(�⃗�𝑥,𝑛𝑛 + 𝛼𝛼)

= �
𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹�𝑥𝑥�⃗ − 𝛼𝛼𝑉𝑉��⃗ , 𝑛𝑛�,𝐹𝐹�𝑥𝑥�⃗ + (1 − 𝛼𝛼)𝑉𝑉��⃗ , 𝑛𝑛 + 1�,

1
2

(𝐹𝐹(𝑥𝑥�⃗ , 𝑛𝑛) + 𝐹𝐹(𝑥𝑥�⃗ , 𝑛𝑛 + 1)� , 𝑜𝑜𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛

1
2
�𝐹𝐹��⃗�𝑥 − 𝛼𝛼𝑉𝑉�⃗ ,𝑛𝑛� + 𝐹𝐹(1 − 𝛼𝛼)𝑉𝑉�⃗ ,𝑛𝑛 + 1)�                                                     , 𝑜𝑜𝑜𝑜ℎ𝑚𝑚𝑎𝑎𝑒𝑒𝑖𝑖𝑠𝑠𝑚𝑚

  � 

(2.11) 
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This adaptation yields a generally improved output compared to each method 

individually. The operation count is reduced roughly 30% compared with that of the 

dynamic median filter, since dynamic median filtering is needed for a relative small 

portion of pixels in the image (on average less than %10). [1] 

 

2.4.5 Overlapped Block Motion Compensation 

The block based ME uses the assumption that all the pixels in a block have the 

same motion as there exists a single motion vector for each block. However, different 

parts of objects that move in different directions can be in the same block or MV field 

generated by the ME step may not represent the correct motion of the objects due to ME 

errors. In these cases, conventional block based interpolation may produce blocking 

artifacts or block boundary discontinuities that reduce the quality of the video both in 

subjective and objective metrics.  

Overlapped Block Motion Compensation [31] is developed in order to avoid these 

blocking artifacts and increase the quality of the resulting frame in MC-FRUC. It is also 

used in video compression standards such as H.263 [32]. The main idea of OBMC is 

based on determining the motion of each pixel in a block by considering the motion 

vector of the block itself as well as the motion vectors of its neighboring blocks.  

A simple OBMC technique is implemented in [27]. It employs OBMC during the 

interpolation stage by enlarging every NxN block in the to-be-interpolated frame to 

(N+2w) x (N+2w) block which form overlapped areas of width w in every block as 

shown in Figure 2.12. The purpose of this operation is having a smooth transition 

between adjacent blocks. The pixels at the corners of an NxN block are located in the 

overlapped area of the 4 neighboring blocks. The intensities of these pixels are 

calculated by averaging the intensity values generated by the motion vectors of each 

respective block. The intensities of the pixels that are located at the side boundaries of 

the interpolated block are calculated by averaging the intensity values generated by the 

motion vectors of the interpolated block and the adjacent block. The remaining 

interpolation is done by only using the motion vector of the to-be-interpolated block. 

For example, in Figure 2.12, OBMC is not applied to the pixels in R1 regions as 

these pixels belong to a single block. The pixels that are located in R2 regions should be 

interpolated by taking motion vectors of both adjacent blocks into account, as these 

pixels belong to both blocks. The pixels in R3 region are in the overlapped area of 4 
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neighboring blocks, therefore the interpolations of these pixels are performed by using 4 

different motion vectors. 

 

 

Figure 2.12: Overlapping Regions in OBMC 
 

The interpolation of the block B is defined in Equations (2.12), (2.13) and (2.14) 

where the neighboring blocks are Ni= 1, 2… 8, 𝑉𝑉�⃗ (�⃗�𝑥) refers to the motion vector of the 

block B at position �⃗�𝑥 and 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥,𝑉𝑉�⃗ (𝐵𝐵)) denote the motion compensated field averaging 

for pixel at �⃗�𝑥 using motion vector V of block B. 

 

1. For R1: 
 𝐹𝐹(�⃗�𝑥) = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥 ∈ 𝐷𝐷1,𝑉𝑉�⃗ (𝐵𝐵)) (2.12) 

2. For R2:
 
 

𝐹𝐹(�⃗�𝑥) =
1
2
�𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥 ∈ 𝐷𝐷2,𝑉𝑉�⃗ (𝐵𝐵)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 (�⃗�𝑥 ∈ 𝐷𝐷2,𝑉𝑉�⃗ (𝑁𝑁𝑖𝑖))� 

where Ni ∈{N2, N4, N5, N7}. (2.13) 

 

3. For R3: 

𝐹𝐹(�⃗�𝑥) =
1
4
�𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥 ∈ 𝐷𝐷3,𝑉𝑉�⃗ (𝐵𝐵)�+ 𝑆𝑆𝑘𝑘� , 𝑘𝑘 = 1,2,3,4 

(2.14) 

where Sk is the sum of the MC-FAVG results for the neighboring blocks 

overlapped with B in R3 and defined by: 
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𝑆𝑆1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁1)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁2)� + 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁4)� 

𝑆𝑆2 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁2)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁3)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁5)� 

𝑆𝑆3 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁4)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁6)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁7)� 

𝑆𝑆4 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁5)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁7)�+ 𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎 ��⃗�𝑥,𝑉𝑉�⃗ (𝑁𝑁8)� 

(2.15) 

 

 The quality of the generated frame can further be improved by giving weights to 

pixels of neighboring blocks according to their spatial distance from the current block 

[28], favoring the CB’s pixels inside that block, giving 50% weight to both blocks at the 

edge of two blocks, and decreasing the weight while moving away from the CB. The 

quality of the generated frame can also be improved by assigning weights to the 

neighboring blocks according to the reliability of their motion vectors, i.e. the 

smoothness of the MV field around the CB [29]. 

2.5 Evaluation Methods and Metrics 

In this thesis, the performances of FRUC algorithms are evaluated as follows. 

Every even numbered frame is omitted from the sequence and ME is employed between 

odd frames. Then, MCI step is applied using these MVs to re-synthesize the even 

numbered frames as shown in Figure 2.13. After all even numbered frames are 

generated, the original even numbered frames and interpolated even numbered frames 

are compared as shown in Figure 2.14. The comparison is done using Mean Squared 

Error (MSE) metric by calculating the differences of each pixel at the same locations in 

the original and interpolated frames and summing the squares of these values as shown 

in Equation (2.16). After all MSEs for all even numbered frames are found, the 

corresponding Peak Signal-to-Noise (PSNR) ratios are found as shown in Equation 

(2.17).  

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑁𝑁𝑀𝑀

� �(𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝑂𝑂(𝑖𝑖, 𝑗𝑗))2
𝑀𝑀−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

 

(2.16) 
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where N and M denote the image height and width respectively, I is the interpolated 

frame and O is the original frame. 

𝑃𝑃𝑆𝑆𝑁𝑁𝐷𝐷 = 10. 𝑜𝑜𝑜𝑜𝑎𝑎10 �
𝑀𝑀𝑆𝑆𝑋𝑋2

𝑀𝑀𝑆𝑆𝑀𝑀
� = 20. 𝑜𝑜𝑜𝑜𝑎𝑎10 �

𝑀𝑀𝑆𝑆𝑋𝑋
√𝑀𝑀𝑆𝑆𝑀𝑀

� 

(2.17) 

where MAX is the maximum possible error between two pixels. If pixel intensities are 

represented by 8 bits, then MAX is 255. 

PSNR is a widely used evaluation metric for the quality of video sequences. 

PSNR is accepted as a good objective measure of quality. However, the perceived 

quality of the video is not always directly related to its objective quality. A viewer can 

identify a sequence as a low quality sequence because of its unpleasing artifacts around 

object edges even though every other pixel would have been interpolated perfectly thus 

having a very high PSNR value. On the other hand, a video can have a low PSNR value 

like in a case of blurring but that blurring could be unnoticeable by the viewer 

especially in scenes where objects move in high velocities. Therefore, when evaluating 

the performances of FRUC algorithms, subjective quality assessments should also be 

made along with objective quality assessments. 

 

 

 
Figure 2.13: Generation of Even Numbered Frames 
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Figure 2.14: Comparison of Even Numbered Frames 

 



22 
 

Chapter 3 

ADAPTIVE TRUE MOTION ESTIMATION ALGORITHM AND MOTION 
COMPENSATED FRAME RATE UP-CONVERSION SOFTWARE 

3.1 Adaptive True Motion Estimation Algorithm 

In this thesis, Adaptive True Motion Estimation Algorithm (ATME) is developed 

based on 3DRS. It is observed by analyzing the MV fields generated by 3DRS that the 

two main assumptions of recursive true motion algorithms are indeed correct, the 

objects are bigger than blocks and motions of the objects are continuous. Therefore, the 

candidate locations that will be evaluated by 3DRS for the current block will be close in 

value or even the same in many cases. In addition, multiple passes of 3DRS are 

observed to improve the smoothness of the MV field at each pass hence improving 

visual quality. The probability of being selected again as the best matching candidate 

for a block is quite high for a MV which was selected as the best matching candidate for 

that block in the first pass of the algorithm. Based on these facts, in order to reduce the 

computation cost of 3DRS, ATME algorithm avoids the evaluations of the same and 

similar MV candidates by applying computational complexity reduction and 

redundancy removal techniques. In addition, when the SAD value of the best match is 

decided not sufficient to be selected, ATME algorithm evaluates additional locations to 

improve the quality of the MV field. Using these techniques, it obtains similar quality 

results by less number of computations or better quality results by similar number of 

computations compared to 3DRS. 

To obtain an optimal candidate set for the proposed ATME algorithm, a multi-

objective genetic algorithm [16] is applied to all of the candidate locations, located 

(±5,±5) blocks around the current block. Populations in this genetic algorithm have 25 

individuals, each representing a candidate set containing a minimum of one search 
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location to a maximum of 20 search locations. Objectives of this test are defined as 

maximizing the PSNR of the up-converted video sequences using the candidate sets of 

best-individuals in the population, and at the same time minimizing the total number of 

SAD calculations, which converges to the optimal set of candidates producing high 

quality results with small amount of work. This algorithm is run on a set of 10 video 

sequences1

 

 having various spatial resolutions from QCIF to HD for 100 generations, 

and the candidate sets which are on the pareto-front of the resulting population are 

noted down. It is observed that neighboring blocks which are closer to the current block 

are better candidates, whereas in cases where candidate sets contain small number of 

search locations, convergence is obtained faster by selecting candidates from opposite 

directions of the current block, as proposed in [33]. 

 (a) (b) (c) 
 

Figure 3.1:  Candidate Vector Sets (a) 3DRS candidate set proposed in [21], (b) 
ATME minimal candidate set, (c) ATME extended candidate set shown in gray. 
The extended candidate set also contains no-motion vector, not shown in the 
figure.  

 

The ATME algorithm uses two different sets of search locations which are applied 

adaptively based on several run-time checks. The minimal search location set consists 

of a small number of search locations to be used in the first two steps of the algorithm, 

and the extended search location set consists of more locations including the 0�⃗  vector 

which represents zero motion, to be used in the third step when the smaller set does 

produce sufficient results. The minimal and extended search location sets, proposed in 

this thesis based on the multi-objective genetic algorithm optimization, are shown in 

                                                 
1 The video sequences used for this experiment are: Foreman(QCIF), Flower(SIF), Football(SIF), 

Mobile(CIF), CrowdRun(720p), NewMobCal(720p), ParkRun(720p), SthlmPan(720p), InToTree(720p), 
OldTownCross(720p). 
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Equations (3.1) and (3.2), and Figure 3.1(b) and Figure 3.1(c), respectively. The zero 

motion vector 0�⃗  is not shown in Figure 3.1(c). 

 

 𝐶𝐶𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 (�⃗�𝑋,𝑛𝑛) =

⎩
⎪
⎨

⎪
⎧ 𝑉𝑉�⃗ ��⃗�𝑋 + �−1

0 � ,𝑛𝑛� ,

𝑉𝑉�⃗ ��⃗�𝑋 + � 0
−1� ,𝑛𝑛� ,

𝑉𝑉�⃗ ��⃗�𝑋 + �2
1� ,𝑛𝑛 − 1�⎭

⎪
⎬

⎪
⎫

 (3.1) 

 

 𝐶𝐶𝑆𝑆𝑚𝑚𝑥𝑥𝑜𝑜 (�⃗�𝑋,𝑛𝑛) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 0�⃗

𝑉𝑉�⃗ ��⃗�𝑋,𝑛𝑛 − 1�,

𝑉𝑉�⃗ ��⃗�𝑋 + �1
0� ,𝑛𝑛 − 1� ,

𝑉𝑉�⃗ ��⃗�𝑋 + �0
1� ,𝑛𝑛 − 1� ,

𝑉𝑉�⃗ ��⃗�𝑋 + �−2
1 � ,𝑛𝑛 − 1�⎭

⎪
⎪
⎬

⎪
⎪
⎫

 (3.2) 

 

 
Table 3.1: Pseudo-code for ATME 

 

The pseudo-code for ATME algorithm is given in Table 3.1. The ATME 

algorithm first checks whether the vectors in the minimal search location set are 

consistent with the motion of the current block, i.e. belonging to the same object and 

representing similar motions. This is done by taking the L1 Norm of these 3 vectors. If 

the norm is below a predefined threshold value (Vth), this means that the motion 

associated with surrounding blocks is likely to be same as the motion of the current 

block. Therefore, the median of this minimal set is assigned to the current block without 

further SAD calculation. However, because of the recursive behavior of vector 

for each search location 𝐿𝐿𝑚𝑚������⃗  in minimal set CSmin 
 candidatesmin[0 to Nm] = MV of the block at (𝐵𝐵�⃗  + 𝐿𝐿𝑚𝑚������⃗ ) 
if all L1 Norms between candidates <= Vth 
 vector0 = median of all candidates 
 vector1 = vector0 + random update vector 
 calculate SADs for vector0 and vector1  

assign MV producing bestSAD to block B 
else 
 add random update vector to last candidatemin 
 calculate SADs between all candidatesmin and B 
 if bestSAD > SADth 
  for each search location 𝐿𝐿𝑚𝑚����⃗  in extended set CSext 
   candiatesext[0 to Ne] = MV of the block at (𝐵𝐵�⃗  + 𝐿𝐿𝑚𝑚����⃗ ) 
  add random update vector to last candidateext 
  calculate SADs between all candidatesext and B 

  assign MV producing bestSAD to block B 
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selection, without an additional update vector, this scheme may converge to an 

invariable vector field. Therefore, the median vector and its random update vector 

added version are evaluated based on the SAD criterion, and the vector with the 

minimum SAD is selected and assigned to the current block. This step reduces the 

number of SAD calculations in a spatio-temporally smooth video sequence without a 

significant PSNR loss and at the same time smoothes the vector field because of the 

median operation, which is used as a separate step in many FRUC algorithms. As a 

result of this motion vector field smoothing at a reduced cost, increased PSNR values 

are observed in some cases, while none of the cases resulted in significant PSNR losses.  

 If the L1 Norm of the minimal search location set is not below the threshold Vth, 

this means that there are inconsistent MVs around the current block, and therefore all 3 

MVs in the minimal candidate set are searched individually. If the minimum SAD 

resulting from this step is below a predetermined SAD threshold, SADth, then the 

motion represented by the minimum SAD producing MV is assigned to the current 

block. However, if the minimum SAD obtained by evaluating the minimal search 

locations set is not below SADth, then the motion vector representing the motion of the 

current block is probably not available in that candidate set, and therefore additional 

search locations should be evaluated. In this case, extended search locations set 

consisting of 5 new search locations is introduced and SAD calculation is done for the 

MVs of the neighboring blocks at these new search locations. If the minimum of these 

SAD values are smaller than the result of the minimal search location set, then that 

motion vector is assigned to the current block, otherwise the result of the minimal set is 

used. 

Since the recursive true ME algorithms depend on the evaluation of some MVs at 

spatial and temporal neighboring locations, convergence of the MV field can be 

obtained by applying the true ME algorithm to the same frame more than one time. This 

multiple pass technique increases the quality of the FRUC by generating a smoother 

MV field, i.e. representing the true motion of the objects more correctly [34]. After each 

pass of ME, some of the incorrect vectors will converge to better vectors, whereas most 

of the time, they will keep their values from the previous pass. Therefore, if the SAD 

values of the vectors are kept between each pass of the algorithm, instead of 

redundantly calculating the same SAD value, the SAD value from the previous iteration 

can be used. This redundancy removal technique is used in ATME algorithm. It resulted 

in significant reduction in computation amount while producing exactly same results. 
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3.2 Motion Compensated Frame Rate Up-Conversion Software 

There was a need for a robust, fast, flexible and easily modifiable software for the 

implementation and testing of FRUC algorithms. Therefore, in this thesis, a FRUC 

software environment is implemented using C. The backbone of the software consists of 

a loop which reads image data from YUV files stored locally on the hard disk. For 

memory efficiency, instead of reading all frames of the video sequence into memory, 

one frame at a time is read and stored in two static arrays, one for the previous frame 

(PF) and one for the current frame (CF). In addition, instead of reading two frames in 

one iteration, the pointer to the CF at the previous iteration is set to be the PF at the 

current iteration and the new frame is read to the location of the PF at the previous 

iteration and its pointer is set to be the CF at the current iteration. This double buffering 

technique significantly increases the performance of the software. 

Inside the main loop, before any calculation, the PF is resized by mirroring pixel 

data at all of the four edges to provide valid data for MVs pointing out of frame bounds 

of the image. The resize amount is set by a user defined parameter. Figure 3.2(a) shows 

an example resize scheme where an 8x6 pixel image is resized with resize amount set to 

3. The numbers inside cells denote the pixel positions in the original frame. Figure 

3.2(b) shows the first frame in the ForemanCIF sequence with resize amount set to 32. 

 

 
(a)        (b) 

 
Figure 3.2: Resizing of Frames (a) 8x6 frame with resize amount = 3 (b) First 

frame of ForemanCIF sequence with resize amount = 32 
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Another important parameter in the software is, replace switch. It is defined to 

control the main behavior of the software whether to replace all even numbered frames 

for testing purposes or to perform a full FRUC to double the frame rate. After all 

pointers are set, ME, MCI and other steps if scheduled are applied to the image data. All 

of the ME and MCI operations are defined by individual C functions passing relevant 

data from one another. The functions that will be used are selected by user-defined 

parameters. This is a very efficient and flexible implementation as the user could easily 

change the order of operations or define additional operations without actually having to 

worry about the underlying data transfer as long as same set of data structures are used. 

Instead of hard-coding all user defined parameters before each run of the 

software, a dynamic text parser is implemented so that the software can be run with 

many different configurations without rebuilding the whole project again. This parser 

reads all of the parameters from a configuration file which can be manually edited by a 

regular text editor. New parameters can easily be added by adding a few lines to the 

parser code. The parameters inside the configuration file includes, video frame size 

(QCIF, CIF, SIF, 4CIF, 720p HD, and 1080p HD), frame count, block size, frame resize 

amount, search window size, refinement window size, all of the input and output file 

names, operational switches like replace or early termination, the ME and MCI 

algorithms to be used, number of ME passes for recursive algorithms. In addition, 

parameters for individual algorithms like search candidate locations for 3DRS or ATME 

are defined in this configuration file. The screen shot of an example configuration file is 

shown in Figure 3.3.  

During ME, MVs for each block are kept in a dynamic array for recursive usage at 

next ME iteration and they are also written into a text file for external use like MV 

visualization. During MCI, each pixel is interpolated using the MV of the block it 

belongs to and the resulting intensity value is written as a pixel value of the intermediate 

frame.  

After the completion of the main loop, i.e. all frames are processed, and the output 

video is generated, the comparison begins. If the replace switch is set to true, the 

software compares the original even numbered frames with the interpolated even 

numbered frames by calculating MSE and then PSNR values. The PSNR value and the 

total number of calls to SADCalculate function, SAD Count, are written to a log file. If 

the replace switch is set to false, only SAD Count is written to log file. 
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This software is a robust and flexible environment for implementing and testing 

FRUC algorithms. It is used by two senior graduation projects [35-36] which developed 

and implemented their own ME and MCI algorithms using this software. 

 

 

 
Figure 3.3: Configuration File 
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In the current version of the software the following algorithms have been implemented. 

 

ME Algorithms: 

Search window size is parameterized. 

Full Search 

 

The number of search candidates, their locations and update location are parameterized. 

The user can also select whether to fill the initial MV field by random update vectors or 

apply a Full Search between the first two frames. 

3DRS 

 

In a senior graduation project [35], we collaboratively proposed a new adaptive 

bilateral motion estimation algorithm to be used as a refinement step to improve the 

quality of the MVs found by true motion estimation algorithms. By employing a spiral 

search pattern [37] and by adaptively assigning weight coefficients to candidate search 

locations, the proposed algorithm refines the motion vector field between successive 

frames which results in a better interpolation of the intermediate frame. As a result of 

this search scheme, by favoring the candidate search locations near the center where the 

initial MVs point to, true motion property of the motion vector field is conserved. In this 

software, Bi-ME can be both used as a standalone ME step or as a refinement step after 

a true ME algorithm. Both regular FS and spiral search patterns are implemented. The 

Bilateral Search Window size and the threshold values used for adaptivity are 

parameterized. 

Bi-ME 

 

The proposed Adaptive True Motion Algorithm is implemented. The vector threshold 

and SAD threshold values are parameterized. In addition, minimal set and extended set 

search location counts and their locations are configurable. 

ATME 
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MCI Algorithms: 

 

MC-FAVG is implemented as in Equation (2.8). When 3DRS is selected as the ME 

algorithm and the update switch is set to false, all of the MVs for the first frame will be 

set to zero and they will not be updated in the following frames. Therefore, in this case, 

MC-FAVG will function as non-motion compensated field averaging, i.e. linear 

interpolation. 

Motion Compensated Field Averaging 

 

SMF is implemented as in Equation (2.9). 

Static Median Filter 

 

DMF is implemented as in Equation (2.10). 

Dynamic Median Filter 

 

2MI is implemented as in Equation (2.11). An occlusion detection function checks 

whether the difference between MVs of surrounding blocks are greater than a 

parameterized occlusion threshold value. If occlusion is detected then DMF is called, 

else MC-FAVG is called. 

Two-Mode Interpolation 

 

Basic OBMC and sinusoidal OBMC algorithms are implemented with parameterized 

window overlap amounts. In addition, weighted coefficient OBMC algorithm (WC-

OBMC) which is developed in collaboration with a senior graduation project [36] is 

implemented. This algorithm assigns weights to motion vectors of neighboring blocks. 

This results in higher quality video output than the other two OBMC algorithms.  

OBMC 

 

 

 

 

 

 

 



31 
 

Utilities: 

The video sequences used for evaluating all of these algorithms are taken from 

video quality expert ftp sites such as university archives and video quality experts group 

[38]. However, especially the HD video sequences are distributed in several different 

color spaces and formats (AVI, YUV2, ABEKAS), some of them have leading and 

trailing empty frames, and some of them are divided into image files which contain only 

one frame. Therefore, using MATLAB and C, these video sequences are all processed 

and converted to 4:0:0 and 4:2:2 YUV formats.  

In addition, several utilities are developed using MATLAB. One of them, playyuv, 

using Image Processing Toolbox, can read many different YUV formats, convert them 

back to RGB, which the computer screens can display, and open them inside a media 

player interface as a playable video. Another utility is plotMV, which can parse the MV 

file generated by the FRUC software, generate a block grid, and plot each MV 

according to their direction and magnitude on this grid as shown in Figure 3.4. It then 

generates images for every frame pair showing the flow of MVs, and combines them to 

a playable video. This motion vector visualization tool is useful for testing ME 

algorithms, as erroneous MVs can be easily seen when they are visualized. The 

performances of different ME algorithms can also be compared by analyzing the flow of 

MVs from one frame pair to another. 

 

 
Figure 3.4: Motion Vector Visualization 
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3.3 Performance Results 

Several video sequences with different resolutions are used for evaluating the 

performance of the ATME algorithm. One 176x144 pixel resolution (QCIF) video 

sequence, one 352x288 pixel resolution (CIF) video sequence, one 352x240 pixel 

resolution (SIF) video sequence, five 1280x720 pixel resolution (720p) video sequences 

and three 1920x1080 pixel resolution (1080p) video sequences are used. All video 

sequences are composed of 8-bit luminance (Y) data.  

First 100 frames of each video sequence are used, therefore, 49 even numbered 

frames are synthesized by applying ME and MCI algorithms to the odd numbered 

frames, and the 100th frame is taken from the original video sequence. For ME, 16x16 

pixel block size is used. For the last 8 pixels of 1080p video sequences, which do not fit 

into the 16x16 pixel block grid, non-motion compensated frame interpolation, i.e. linear 

interpolation, is used. For all other cases, Motion Compensated Field Averaging is used 

as it is the most basic MCI method using motion estimation. The random update vector 

selections are done by using a 231-1 pseudo-random number sequence. 

SAD calculation is the most computationally demanding part of ME algorithms. 

In order to calculate the SAD value for one search location, three arithmetic operations 

(one subtraction, one absolute value calculation and one addition) have to be performed 

for each pixel in a block. Therefore, the number of SAD calculations is a good metric 

for determining the computational complexity of a ME algorithm. 

The number of SAD calculations done and the resulting PSNR value for different 

video sequences processed by the original 3DRS algorithm (3 candidates with 2 update 

vectors added) [21], 3DRS algorithm using minimal search location set (3 candidates 

with one update vector added), 3DRS algorithm using all search locations in both 

minimal and extended set including 0�⃗  (8 candidates with 2 update vectors added), and 

Full Search (FS) algorithm are shown in Tables 3.2 and 3.3. Search window size used 

for FS is (±64,±64) pixels for 720p and 1080p sequences, and (±32,±32) pixels for the 

other sequences. Non-motion-compensated pixel averaging results are given as 

reference. Since only the re-synthesized frames are compared with the original frames, 

the PSNR and SAD count values are calculated for 49 frames.  

As it can be seen from Tables 3.2 and 3.3, minimal candidate set performs better 

than the original candidate set with the same number of SAD calculations and full set 
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gives higher PSNR results compared to other two sets with the cost of doing more SAD 

calculations in a single pass. In addition, multiple passes of each set clearly improves 

the FRUC results. However, generally two or three passes produce highest 

improvements, while the benefit of multi passes diminishes after more than three 

passes. 

 

 
3 Candidate Sets 

(3DRS Original and Minimal Sets) 
8 Candidate Set 
(3DRS Full Set) 

FS 

No. of Passes 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 1 Pass 2 Pass 3 Pass N/A 

QCIF 0.01 0.03 0.04 0.06 0.07 0.04 0.08 0.12 19.87 
CIF 0.06 0.12 0.17 0.23 0.29 0.15 0.31 0.46 79.48 
SIF 0.05 0.10 0.14 0.19 0.24 0.13 0.26 0.39 66.23 

720p 0.52 1.05 1.58 2.11 2.64 1.38 2.79 4.20 2890 
1080p 1.16 2.34 3.52 4.70 5.89 3.09 6.24 9.39 6455 

  

Table 3.2: Number of 106 SAD Calculations Done by ME Algorithms 
 

In the first stage of the ATME algorithm, an adaptive decision is made based on 

whether L1 Norms of candidate MVs are above or below a predetermined threshold 

value, Vth. Since MVs have 1 pixel resolution, the Vth metric is defined in pixels. In 

order to determine the threshold value, 5 different values for Vth (0, 1, 2, 3, 4 pixels) are 

tested using only the first stage of the ATME algorithm on 4 different video sequences.2

 

 

SAD Count value is normalized by 10*log10 to be comparable to PSNR. Figure 3.5 

shows PSNR/SAD Count efficiency versus Vth. The average PSNR/SAD Count 

efficiency versus Vth, based on the results from Figure 3.5, is shown in Figure 3.6. As it 

can be seen from these Figures, the maximum efficiency is obtained when Vth is 2 

pixels.  

 

                                                 
2 The sequences used in this experiment are: ParkJoy(720p), NewMobCal(720p), Foreman(CIF), 

SthlmPan(720p). 
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 3DRS Original Set 3DRS Minimal Set 3DRS Full Set FS Ref 

No. of Passes 1 Pass 2 Pass 3 Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 1 Pass 2 Pass 3 Pass N/A N/A 

ForemanQCIF 32.29 32.79 33.17 33.09 33.50 33.82 33.62 33.76 33.75 34.27 34.51 32.70 32.36 
ForemanCIF 30.50 31.28 31.61 31.92 32.44 32.61 32.56 32.60 32.02 32.88 33.08 31.62 29.86 
FootballSIF 20.35 20.73 20.81 20.63 20.89 21.02 21.14 21.10 21.16 21.48 21.65 21.32 19.89 
ParkJoy720p 22.58 24.31 24.80 24.23 25.81 25.86 26.08 26.09 25.11 25.93 26.21 25.63 20.11 

NewMobCal720p 31.84 32.62 33.01 33.70 34.08 34.06 34.09 34.07 33.69 34.11 34.11 32.58 29.76 
SthlmPan720p 33.11 33.96 34.22 33.98 34.83 34.90 34.89 34.89 34.10 35.03 35.06 30.40 23.96 
InToTree720p 34.71 34.97 35.11 35.60 35.78 35.79 35.82 35.81 35.82 36.02 36.03 31.16 31.87 

CrowdRun720p 25.75 26.26 26.43 26.94 27.26 27.30 27.30 27.31 27.41 28.01 28.18 26.43 24.51 
ParkJoy1080p 23.32 24.53 25.08 24.13 25.26 26.01 26.16 26.22 24.70 25.63 26.02 25.39 20.15 

InToTree1080p 33.92 34.11 34.17 34.40 34.51 34.51 34.51 34.51 34.50 34.61 34.62 31.52 30.97 
CrowdRun1080p 26.32 26.98 27.21 27.19 27.75 27.87 27.89 27.91 27.64 28.31 28.50 26.33 24.24 

 

Table 3.3: Comparison of Modified 3DRS Algorithms Using Optimized Sets of Candidate Locations along with Full Search 
and Non-Motion Compensated Interpolation Results 

Table cells show PSNR values in dB. 
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Figure 3.5: PSNR/SAD Count for Vector Threshold Selection 

 

 
Figure 3.6: Average PSNR/SAD Count for Vector Threshold Selection 

 

Tables 3.4 and 3.5 present the impact of the redundancy removal and 

computational complexity reduction techniques used in ATME algorithm. Table 3.4 

shows the impact of the redundancy removal and computational complexity reduction in 

only the first stage of ATME algorithm. In this test, extended set of candidates and the 

redundancy removal technique for multiple passes of the algorithm are not used. Two 

different candidate sets are used, the minimal set which contains 3 candidates and the 

full set which contains the minimal set and the extended set including zero-motion 

vector 0�⃗ . As it can be seen from Table 3.4, when Vth is 0, ATME algorithm produces 
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exactly the same PSNR results compared to reference algorithms in which redundancy 

removal technique is not used, and the number of SAD calculations is reduced up to 

20% and 38% for minimal and full sets respectively for a single pass. When 3 passes are 

done, the number of SAD calculations is reduced up to 25% and 43% for the minimal 

and full sets respectively. 

When Vth is 2 pixels, the number of SAD calculations is further reduced (up to 

31%) with 0.7 dB PSNR loss in one case and with 0.2 dB PSNR loss on average for the 

minimum candidate set. For the full candidate set case, median filtering larger number 

of candidates to a single candidate results in up to 61% reduction of SAD calculations 

with 0.9 dB PSNR loss in one case and with 0.3 dB PSNR loss on average for a single 

pass of the algorithm. When three passes are done, the number of SAD calculations is 

reduced up to 64% with up to 0.5 dB PSNR loss and 0.2 dB PSNR loss on average. In 

addition, when Vth is set to a non-zero value, in some cases such as SthlmPan video 

sequence, the implicit motion vector smoothing behavior of the median filter in ATME 

improves the quality of the output video. 

In Table 3.5, the impact of the redundancy removal technique for multiple passes 

of the ATME algorithm is presented. For this test, SADth parameter is set to 2500 which 

produces high quality results with low amount of computation. In order to determine the 

impact of only the multi-pass redundancy removal technique, the Vth parameter is set to 

a negative value so that all candidate vectors are evaluated. Two different cases with 3 

and 5 passes of ATME algorithm are compared. Columns labeled “Red.” show the 

number of SAD calculations when redundancy removal technique is not used. Columns 

labeled “Rem.” show the number of SAD calculations when redundancy removal 

technique is used. Columns labeled “%” show the reduction percentage. As it can be 

seen from Table 3.5, the multi-pass redundancy removal technique reduces the number 

of SAD calculations by 25% on average in 3 passes case and 30% on average in 5 

passes case.  
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No. of Passes 1 3 1 3 

Algorithm 3DRS
Min 

ATME 
2 Stage / Min 

3DRS
Min 

ATME 
2 Stage / Min 

3DRS 
Full 

ATME 
2 Stage / Full 

3DRS 
Full 

ATME 
2 Stage / Full 

Vth N/A 0 2 N/A 0 2 N/A 0 2 N/A 0 2 

ForemanQCIF 33.09 
0.01 

33.09 
0.01 

33.08 
0.01 

33.82 
0.04 

33.82 
0.04 

33.85 
0.03 

33.75 
0.04 

33.75 
0.03 

33.63 
0.03 

34.51 
0.12 

34.41 
0.11 

34.39 
0.08 

ForemanCIF 31.92 
0.06 

31.92 
0.06 

31.77 
0.05 

32.61 
0.17 

32.61 
0.16 

32.50 
0.15 

32.02 
0.15 

32.02 
0.15 

31.97 
0.13 

33.08 
0.46 

33.02 
0.42 

32.94 
0.35 

FootballSIF 20.63 
0.05 

20.63 
0.04 

20.57 
0.04 

21.02 
0.14 

21.02 
0.13 

20.92 
0.12 

21.16 
0.13 

21.16 
0.11 

21.02 
0.10 

21.65 
0.39 

21.65 
0.33 

21.64 
0.29 

ParkJoy720p 24.23 
0.52 

24.23 
0.50 

24.08 
0.44 

25.86 
1.58 

25.93 
1.44 

25.83 
1.25 

25.11 
1.38 

25.11 
1.32 

24.74 
1.09 

26.21 
4.20 

25.94 
3.63 

25.68 
2.74 

NewMobCal720p 33.70 
0.52 

33.70 
0.42 

32.93 
0.36 

34.06 
1.58 

34.06 
1.19 

33.52 
1.08 

33.69 
1.38 

33.69 
0.87 

32.72 
0.54 

34.11 
4.20 

34.11 
2.42 

33.63 
1.52 

SthlmPan720p 33.98 
0.52 

33.98 
0.43 

34.02 
0.39 

34.90 
1.58 

34.90 
1.29 

34.88 
1.18 

34.10 
1.38 

34.10 
0.97 

34.21 
0.70 

35.06 
4.20 

35.09 
3.00 

35.10 
2.12 

InToTree720p 35.60 
0.52 

35.60 
0.48 

35.41 
0.40 

35.79 
1.58 

35.79 
1.43 

35.62 
1.21 

35.82 
1.38 

35.82 
1.18 

35.49 
0.71 

36.03 
4.20 

36.03 
3.43 

35.86 
2.11 

CrowdRun720p 26.94 
0.52 

26.94 
0.50 

26.61 
0.42 

27.30 
1.58 

27.30 
1.43 

26.91 
1.26 

27.41 
1.38 

27.41 
1.30 

27.07 
1.02 

28.18 
4.20 

28.21 
3.63 

27.96 
2.94 

ParkJoy1080p 24.13 
1.16 

24.13 
1.14 

24.25 
1.04 

26.01 
3.52 

26.01 
3.27 

25.96 
2.90 

24.70 
3.09 

24.70 
3.01 

24.46 
2.66 

26.02 
9.39 

25.92 
8.36 

25.80 
6.69 

InToTree1080p 34.40 
1.16 

34.40 
1.10 

34.29 
0.92 

34.51 
3.52 

34.51 
3.23 

34.44 
2.76 

34.50 
3.09 

34.50 
2.79 

34.34 
1.82 

34.62 
9.39 

34.62 
7.99 

34.54 
5.19 

CrowdRun1080p 27.19 
1.16 

27.19 
1.13 

27.10 
1.01 

27.87 
3.52 

27.87 
3.26 

27.77 
2.98 

27.64 
3.09 

27.64 
2.96 

27.50 
2.60 

28.50 
9.39 

28.51 
8.26 

28.43 
7.31 

 

Table 3.4: Performance of the First Stage of ATME Algorithm 
In each table cell, upper value is the PSNR value in dB and the lower value is the number of SAD calculations scaled by 106.
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No. of Passes 3 Pass 5 Pass 
 Red. Rem. % Red. Rem. % 

ForemanQCIF 54 40 26% 90 61 32% 
ForemanCIF 208 161 23% 345 249 28% 
FootballSIF 274 211 23% 455 333 27% 
ParkJoy720p 2656 1951 27% 4385 2969 32% 

NewMobCal720p 1810 1087 40% 3021 1573 48% 
SthlmPan720p 1620 1103 32% 2707 1669 38% 
InToTree720p 1607 1222 24% 2684 1907 29% 

CrowdRun720p 2759 2076 25% 4588 3239 29% 
ParkJoy1080p 5755 4381 24% 9454 6701 29% 

InToTree1080p 3561 2792 22% 5947 4384 26% 
CrowdRun1080p 5768 4489 22% 9558 7022 27% 

 

 Table 3.5: Multi-pass Redundancy Removal Performance  
The values inside the cells of Red. and Rem. columns are the number of SAD 

calculations scaled by 103. 
 

Table 3.6 shows the PSNR obtained and the number of SAD calculations done by 

the ATME algorithm with vector threshold values Vth=0 and Vth=2. For all the 

experiments, SADth value is set to 2500. In each table cell, upper value shows the PSNR 

obtained and lower value shows the number of SAD calculations done for that video 

sequence. For Vth=0, ATME algorithm generates higher quality results with same 

computational costs or similar quality results with lower computational costs compared 

to 3DRS minimal set. For Vth = 2 pixels, the median filtering in first stage of the ATME 

algorithm results in fewer SAD calculations while producing similar quality results. 

Moreover, in some cases such as SthlmPan video sequence, the implicit motion vector 

smoothing resulting from the median filtering produces higher PSNR results. The 

number of SAD calculations can further be decreased by using higher Vth values. 
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 Vth = 0 Vth = 2 
No. of Passes 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 

ForemanQCIF 33.73 
0.02 

34.28 
0.03 

34.39 
0.04 

34.39 
0.05 

34.24 
0.06 

33.40 
0.01 

34.00 
0.02 

34.18 
0.03 

34.17 
0.04 

34.09 
0.05 

ForemanCIF 32.11 
0.07 

32.73 
0.11 

33.00 
0.16 

33.03 
0.20 

33.03 
0.24 

31.95 
0.06 

32.46 
0.10 

32.76 
0.15 

32.99 
0.18 

32.97 
0.22 

FootballSIF 21.20 
0.09 

21.50 
0.15 

21.67 
0.20 

21.77 
0.26 

21.83 
0.32 

20.90 
0.07 

21.39 
0.13 

21.63 
0.19 

21.64 
0.24 

21.72 
0.30 

ParkJoy720p 25.10 
0.86 

25.96 
1.32 

26.21 
1.76 

26.32 
2.20 

26.31 
2.64 

24.90 
0.65 

25.60 
1.01 

26.06 
1.35 

26.21 
1.68 

26.25 
2.01 

NewMobCal720p 33.66 
0.45 

34.09 
0.67 

34.10 
0.89 

34.10 
1.10 

34.08 
1.32 

32.97 
0.37 

33.50 
0.57 

33.59 
0.77 

33.66 
0.95 

33.72 
1.15 

SthlmPan720p 34.10 
0.44 

34.98 
0.71 

35.05 
0.99 

35.04 
1.26 

35.05 
1.54 

34.14 
0.40 

35.03 
0.65 

35.05 
0.89 

35.00 
1.14 

35.05 
1.38 

InToTree720p 35.71 
0.49 

35.89 
0.83 

35.90 
1.17 

35.90 
1.51 

35.90 
1.84 

35.41 
0.40 

35.66 
0.70 

35.72 
0.98 

35.68 
1.27 

35.73 
1.56 

CrowdRun720p 27.40 
0.87 

27.98 
1.42 

28.13 
1.97 

28.21 
2.51 

28.26 
3.06 

26.90 
0.66 

27.49 
1.11 

27.60 
1.56 

27.70 
1.99 

27.78 
2.43 

ParkJoy1080p 24.69 
1.95 

25.57 
3.07 

26.02 
4.11 

26.08 
5.16 

26.35 
6.19 

24.64 
1.64 

25.21 
2.54 

25.87 
3.34 

26.18 
4.15 

26.26 
4.95 

InToTree1080p 34.44 
1.11 

34.56 
1.91 

34.56 
2.70 

34.57 
3.49 

34.57 
4.27 

34.32 
0.93 

34.46 
1.62 

34.48 
2.30 

34.49 
2.97 

34.50 
3.64 

CrowdRun1080p 27.67 
1.88 

28.28 
3.12 

28.46 
4.34 

28.56 
5.55 

28.60 
6.77 

27.44 
1.59 

28.12 
2.70 

28.29 
3.77 

28.38 
4.83 

28.45 
5.88 

 
Table 3.6: Performance of the ATME Algorithm 

In each table cell, upper value is the PSNR value in dB and the lower value is the number of SAD calculations scaled by 106. 
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PSNR and computational complexity comparison of two typical configurations of 

ATME algorithm, where Vth is set to 0 and 2, SADth is set to 2500 and 3 passes are done, 

with reference algorithms is shown in Table 3.7. The positive values in PSNR columns 

show the PSNR improvement by ATME algorithm. The positive values in “Red%” 

columns show the percentage reduction of SAD calculations by ATME algorithm. It can 

be seen from this table that ATME algorithm reduces the number of SAD calculations 

up to 82% with up to 0.59 dB PSNR loss. There are several cases where the number of 

SAD calculations is reduced more than 70% with less than 0.02 dB PSNR loss. In 

several cases, ATME algorithm produces higher PSNR results than reference algorithms 

while at the same time reducing the number of SAD calculations up to 58%. Therefore, 

ATME algorithm produces high quality video sequences with significantly lower 

computational cost. 

 

 
Vth = 0 / Min Vth = 0 / Full Vth = 2 / Min Vth = 2 / Full 

PSNR Red.% PSNR Red.% PSNR Red.% PSNR Red.% 
ForemanQCIF 0.57 9% -0.11 66% 0.35 22% -0.33 71% 
ForemanCIF 0.39 8% -0.08 65% 0.15 16% -0.31 69% 
FootballSIF 0.65 -42% 0.02 47% 0.61 -29% -0.02 52% 
ParkJoy720p 0.35 -12% 0.00 58% 0.26 14% -0.09 68% 

NewMobCal720p 0.04 44% -0.01 79% -0.49 51% -0.54 82% 
SthlmPan720p 0.15 37% -0.01 77% 0.14 43% -0.02 79% 
InToTree720p 0.11 26% -0.13 72% -0.08 38% -0.32 77% 

CrowdRun720p 0.82 -25% -0.05 53% 0.28 2% -0.59 63% 
ParkJoy1080p 0.00 -17% 0.00 56% -0.15 5% -0.15 64% 

InToTree1080p 0.05 23% -0.06 71% -0.03 35% -0.15 76% 
CrowdRun1080p 0.59 -23% -0.04 54% 0.42 -7% -0.21 60% 

 
Table 3.7: PSNR and Computational Complexity Comparison of ATME with 

Reference Algorithms 
 

Although PSNR is a good metric for objective quality, the perceived quality of a 

video is not always same with its objective quality. Therefore, for evaluating the 

performance of FRUC algorithms, subjective quality assessments should also be made 

along with objective quality assessments. The same frame taken from the Foreman CIF 

sequences generated by Full Search, 3DRS as proposed in [21] and ATME with Vth=2 

and SADth=2500 is shown in Figures 3.7, 3.8 and 3.9, respectively. MC-FAVG is used 

as the MCI algorithm in these three cases. 
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Figure 3.7: Full Search Subjective Quality Assessment 

 

In Figure 3.7, it is clearly seen that even though FS finds the best matching SAD 

for each block, these MVs may not represent the true motions of the objects these 

blocks belong to. MV fields generated by FS are not smooth, therefore the possibility of 

blocking artifacts is high. On the other hand, when a true ME algorithm such as 3DRS 

is used, the resulting MV field is smoother, and therefore the blocking artifacts are not 

very likely. However, there may still be blocking artifacts when ME fails to find the true 

motion associated with each block. In Figure 3.8, these errors can be seen on the mouth, 

on the right side of the neck, on the top side of the helmet and on the text “Siemens”. 

These errors decrease both objective and subjective qualities of the generated video. 

Figure 3.9 shows that ATME algorithm performs better than 3DRS. As it can be seen 

from this figure, the blocking artifacts are eliminated by correct estimation of true 

motion vectors. 
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Figure 3.8: 3DRS Subjective Quality Assessment 

 

 

 
Figure 3.9: ATME Subjective Quality Assessment 

 

More complex MCI algorithms can eliminate unpleasing artifacts and therefore 

improve the visual quality of the video sequence generated by FRUC. In Tables 3.8-

3.12, the performances of 3DRS algorithm as proposed in [21], ATME algorithm and 

Full Search algorithm with 3 more complex MCI algorithms for 5 video sequences are 

presented.3

                                                 
3 The sequences used in this experiment are: Foreman(CIF), NewMobCal(720p), SthlmPan(720p), 

ParkJoy(1080p), InToTree(1080p). 

 MC-FAVG and non-motion compensated pixel averaging results are also 

given as references. As it can be seen from these tables, more complex MCI algorithms 
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increases the objective quality of FRUC results when a non-true ME algorithm such as 

FS is used. On the other hand, these MCI algorithms do not always increase the 

objective quality of FRUC results when a true ME algorithm is used.  

 

 

 3DRS ATME FS 
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A 
MC-FAVG 30.50 31.61 31.95 32.76 31.62 
Sta. Med. 31.45 32.07 31.87 32.39 32.39 
Dyn. Med. 30.96 31.69 31.56 32.22 32.16 
Two-Mode 30.79 31.68 31.86 32.62 32.44 
Non-MC 29.86 

 

Table 3.8: PSNR (dB) Results of MCI Algorithms for “Foreman CIF” Sequence  
 

 

 3DRS ATME FS 
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A 
MC-FAVG 31.84 33.01 32.97 33.59 32.58 
Sta. Med. 31.72 32.02 31.91 32.03 32.24 
Dyn. Med. 31.78 32.34 32.24 32.49 32.36 
Two-Mode 31.96 32.99 33.05 33.55 33.32 
Non-MC 29.76 

 

Table 3.9: PSNR (dB) Results of MCI Algorithms for “NewMobCal 720p” 
Sequence  

 

 

 3DRS ATME FS 
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A 
MC-FAVG 33.11 34.22 34.14 35.05 30.40 
Sta. Med. 27.35 27.49 27.45 27.56 27.18 
Dyn. Med. 31.39 32.09 32.96 33.38 31.00 
Two-Mode 32.92 34.02 34.08 34.97 31.61 
Non-MC 23.96 

 

Table 3.10: PSNR (dB) Results of MCI Algorithms for “SthlmPan 720p” Sequence  
 

 

 



44 
 

 

 3DRS ATME FS 
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A 
MC-FAVG 23.32 25.08 24.64 25.87 25.39 
Sta. Med. 22.03 22.53 22.25 22.64 22.61 
Dyn. Med. 22.92 24.15 23.79 24.79 24.75 
Two-Mode 23.25 24.96 24.59 25.83 25.62 
Non-MC 20.15 

 

Table 3.11: PSNR (dB) Results of MCI Algorithms for “ParkJoy 1080p” Sequence  
 

 

 3DRS ATME FS 
MCI Algo. 1 pass 3 pass 1 pass 3 pass N/A 
MC-FAVG 33.92 34.17 35.43 35.71 31.52 
Sta. Med. 33.00 33.11 33.17 33.24 33.04 
Dyn. Med. 33.55 33.75 33.85 33.99 32.36 
Two-Mode 33.95 34.20 34.41 34.57 32.52 
Non-MC 30.97 

 

Table 3.12: PSNR (dB) Results of MCI Algorithms for “InToTree 1080p” 
Sequence  

 

The same frame taken from Foreman CIF sequences which are processed by 

ATME algorithm (Vth=2, SADth=2500) and interpolated by 4 different MCI algorithms 

are shown in Figures 3.10-3.13. The MCI algorithms used are MC-FAVG, Static 

Median Filtering, Dynamic Median Filtering, and Two Mode Interpolation (occlusion 

threshold = 2 pixels) respectively. In Figure 3.14, the same frame interpolated by non-

motion compensated pixel averaging method is given as reference. It can be seen from 

these figures that blocking artifacts resulting from ME errors are removed by complex 

MCI algorithms. For example, errors in the stationary parts on the left side of the neck 

in Figure 3.10 are removed by Static Median Filter. Similarly, errors in the moving parts 

above the mouth are removed by Dynamic Median Filter. Two Mode Interpolation 

algorithm, by adaptively switching between Dynamic Median Filter and MC-FAVG, 

obtains a smoother image. 
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Figure 3.10: Subjective Assessment of MCI Algorithms - MC-FAVG 

 

 

 

 
Figure 3.11: Subjective Assessment of MCI Algorithms – Static Med. Filter 
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Figure 3.12: Subjective Assessment of MCI Algorithms – Dynamic Med. Filter 

 

 

 

 

 
Figure 3.13: Subjective Assessment of MCI Algorithms – Two Mode Interpolation 
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Figure 3.14: Subjective Assessment of MCI Algorithms – Non-Motion 

Compensated Interpolation 
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Chapter 4 

ADAPTIVE TRUE MOTION ESTIMATION HARDWARE DESIGN 

Three different complexity hardware architectures for implementing the ATME 

algorithm are proposed. In all three hardware, memory elements, MV and position 

values are designed to process 1080p HD frames and control signals are parameterized 

for processing smaller size frames.  

4.1 Basic ATME Hardware 

The block diagram of the first hardware, the Basic ATME hardware, is shown in 

Figure 4.1. The architecture consists of 6 modules and 3 on-chip memories. The Current 

Block contains 256x8 bits and holds the CB of size 16x16 pixels. It feeds this data to 

Processing Elements (PE) inside the PE Array module and is loaded when the 

processing for the next current block starts. The Search Block also contains 256x8 bits 

and holds the PB of size 16x16 pixels. It also feeds this data to PE Array and is loaded 

for each search location. MV Array holds the MVs for each block in a single frame. MV 

Array sends the candidate MVs for the CB to the Address Generator module. MV Array 

has two additional ports for address and data which enables external access to MV data.  
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Figure 4.1: Block Diagram of Basic ATME Hardware 

 

PE Array is the largest module and it contains 256 Processing Elements which are 

responsible for SAD calculation between two 16x16 pixel blocks. Each PE is composed 

of a comparator, two 2x1 multiplexers and an 8-bit subtractor. Each PE is responsible 

for calculating the SAD value between two pixels, one from the CB and one from the 

PB. The comparator determines which of the two pixels are greater in value. Based on 

the result of this comparison, two multiplexers connected to the inputs of the subtractor 

selects the proper pixels, the larger one to the first input and the smaller one to the 

second input. This ensures that the resulting value will always be positive so that the 

absolute difference between those two pixels is taken. This operation is done in one 

clock cycle, therefore 256 PEs calculate the absolute differences between the 256 pixels 

in CB and PB in one cycle. The outputs of PEs are connected to an adder tree to find the 

sum of absolute difference between two blocks. The adder tree has three pipeline stages 

for faster operation. Even though the SAD calculation for a single block takes 3 clock 

cycles, after the first SAD calculation the throughput is 1 SAD calculation per clock 

cycle. Therefore, the SAD calculation for 3 MVs takes 5 cycles. 

MV Selector module compares the SAD values of the MV candidates for CB and 

selects the MV which gives the lowest SAD value. If the SAD of the selected MV is 

larger than a certain parameterized threshold value (SADth), it asserts a signal for using 
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the extended search candidates set. After the final MV is selected, it is written to the 

location of the CB in the MV Array. LFSR module contains a 15 bit linear feedback 

shift register which generates a pseudo-random number sequence. For each block 

evaluation, it outputs random update vectors selected from a lookup table by taking the 

modulus of the LFSR value. Median Filter module finds the median of three MVs and 

checks whether the pair-wise L1 norms of these three vectors are under Vth or not. 

Address Generator module generates read and write addresses for Search Block. 

In addition, depending on the results of vector threshold and SAD threshold techniques, 

it selects which MV will be evaluated next and adds random update vectors when 

necessary. Controller module keeps track of state, the position of current block and 

other control signals necessary for correct operation of the other modules. 

 

4.1.1 Operation of Basic ATME Hardware 

The operation of ATME hardware begins with the start signal. Controller keeps 

the count and location of the CB. It provides the current position signal to MV Array 

which is used as the write address of the MV selected for the CB. The processing of the 

first frame is a special case, where MV Array is initially empty. Therefore, for each 

block in the first frame a random update vector taken from LFSR is written to the 

corresponding address in the MV Array. LFSR is a 15 bit linear feedback shift register 

with a 2 tap primitive polynomial where 14th and 15th bits of the shift register are 

XNORed. This LFSR produces a pseudo-random number sequence from 0 to 32766. In 

the software implementation, the random update vector set contained 25 elements. 

However, for modulus values other than the powers of 2, modulus operation requires a 

division. Therefore, in order to simplify the modulus hardware, 7 more update vectors 

are added to the random update vector set making a total of 32 elements. 

When MV Array is filled with random vectors after the processing of the first 

frame, frameend signal is asserted by Controller module. Then, processing of the next 

frame starts. First, Current Block is filled with current block pixels in 32 cycles (8 

pixels per cycle). After CB is filled, the control is handed to the Address Generator 

module. First, it gets 3 MVs that will be evaluated for the CB from MV Array and sends 

them to Median Filter module. Median Filter calculates the median of these 3 MVs and 

sends it to Address Generator. Median Filter also calculates the pair-wise L1 Norms of 

these MVs and sends a signal, underth, if all of them are under the vector threshold, Vth. 

Address Generator then calculates the starting address of the Search Block pixels in off-
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chip SRAM, reads the search block pixels and stores them to Search Block. After SB is 

filled with search block pixels in 32 cycles, SBFilled flag is set. Then currentMV is set 

to the median MV and the SAD for the median MV is calculated. The next state 

depends on the value of underth signal. If underth is 1, an update vector is added to the 

median MV and assigned as currentMV. On the other hand, if underth is 0, an update 

vector is added to the second MV and assigned as currentMV. Address Generator reads 

the corresponding search block pixels from off-chip SRAM and stores them to Search 

Block. After SB is filled, SBFilled flag is set and the SAD for the current MV is 

calculated. If underth is 0, the SAD for the third MV is also calculated. After the SAD 

values for the MVs are calculated, Address Generator informs MV Selector and waits 

for the blockend signal. 

MV Selector stores all the MVs processed for the CB and their SAD values. For 

each CB, either two or three MVs are processed. After all the MVs are processed for the 

CB, depending on the value of the counter, MV Selector compares the SAD values of 

these two or three MVs and outputs the MV with the minimum SAD. The minimum 

SAD value is compared with the SADth parameter. If the minimum SAD is higher than 

the predetermined SAD threshold, then goextended signal is asserted. If this signal is 

asserted, the SAD values for the MVs in the extended candidate set are calculated. After 

the SAD values for all MVs are calculated, the MV with the minimum SAD is written 

to current position address of MV Array.  

MV Array is composed of 8 dual-port Block RAMs. The first port is used for 

writing and reading MVs inside the ATME hardware. The second port is configured as 

read only and provides MV data outside the ATME hardware. After the MV for the CB 

is written, blockend signal is asserted and Controller starts processing the next block. 

After all blocks in a frame are processed, frameend signal is asserted and Controller 

starts processing the next frame. 

 

4.1.2 Implementation Results of Basic ATME Hardware 

The basic ATME hardware architecture is implemented in Verilog HDL. Since 

the total number of cycles needed for processing a frame is not deterministic, in order to 

find an average value, 10 frames from NewMobCal720p video sequence are processed 

to double the frame rate. This operation took ~3807000 cycles, therefore on average a 

frame is processed in ~380700 cycles.  
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The Verilog RTL code of the basic ATME hardware is synthesized to a 

4vlx200ff1513 Xilinx Virtex-4 FPGA with speed grade -11 using Mentor Graphics 

Precision RTL tool. The resulting netlist is placed and routed to the same FPGA using 

Xilinx ISE tool. The hardware implementation is verified with post place and route 

simulation using Mentor Graphics Modelsim tool. The hardware uses 13425 4-input 

LUTs, 5327 Flip-Flops, 8 dual-port Block RAMs, and consumes 8% of the Slices. It 

works at 59.86 MHz and is capable of processing ~158 720p HD frames per second 

doubling the frame rate to ~316 fps which satisfies the real-time requirements. 

4.2 ATME Hardware with Update Window 

The block diagram of the ATME hardware with Update Window (UW) is shown 

in Figure 4.2. The 22x22 pixel UW is constructed by enlarging the 16x16 pixel Search 

Block by 3 pixels in each direction in order to implement an efficient data re-use 

scheme. UW is implemented as a 22 22x1 pixel distributed memory block. There are 

two reasons for using an UW of size 22x22. First, since true motion estimation creates 

smooth MV fields around objects, the MVs that will be evaluated for a block are 

expected to be similar. Second, a random update vector is always added to one of the 

MVs in the ATME algorithm. Since the random update vector set consists of vectors in    

[-3,+3] pixels range, the updated MV will always be inside the UW of the MV that is 

updated. Therefore, before processing a CB, the UW is filled with pixels centered on the 

location pointed by the median of the three vectors in the minimal set. If pair-wise L1 

Norms of these three vectors are less than Vth, their median MV will be evaluated along 

with its updated version, in which case all required pixels will be inside the UW. On the 

other hand, if any L1 Norm is larger than Vth, the pixels required for second and third 

MVs in the set will probably be inside the UW. Address Generator fills the UW with 

proper pixels based on the current MV, and checks whether the pixels required for the 

next MV is inside the UW or not. If all the pixels are inside the UW, the SAD 

calculation for that MV is done. However, if any pixel required for the SAD calculation 

of that MV is not inside the UW, the SAD calculation is done after the entire UW is 

refilled with the required pixels for that MV.     
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Figure 4.2: Block Diagram of ATME Hardware with UW 
 

In order to select the 16x16 pixel PB from the 22x22 pixel UW, horizontal and 

vertical multiplexers are used. These multiplexers can select any 16x16 pixel block 

inside the UW and sent it to the PE Array as the PB for SAD calculation. This selection 

is implemented in two steps. First, a 7x16 multiplexer, the horizontal multiplexer, 

selects the 16 columns of the UW which contain the columns of PB. Then, a 7x16 

multiplexer, the vertical multiplexer, selects the 16 rows of the output of the horizontal 

multiplexer. The select signals for horizontal and vertical multiplexers are sent by the 

Address Generator. The resulting 16x16 pixel PB is sent to the PE Array. 

The operation of UW is illustrated in Figure 4.3. This figure shows the case where 

the UW is centered by the MV (1,1). Therefore, the center of UW, i.e. the 16x16 block 

starting from the 4th row and 4th column of UW, contains the PB that is located (1,1) 

away from the CB. The (-2,+1) random update vector is added to that MV, therefore the 

next MV that will be evaluated is (-1,+2) and the PB pointed by this MV is inside the 

UW. Since the columns of the 16x16 PB are located in 2nd column to 17th column of 

UW, the select signal for the horizontal multiplexer sent by the Address Generator is 1. 

Since, the rows of the 16x16 PB are located in 5th row to 20th row of UW, the select 

signal for the vertical multiplexer sent by the Address Generator is 4. 
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To show the advantage of using the UW, the number of pixels read from off-chip 

SRAM by Basic ATME Hardware and ATME Hardware with Update Window are 

shown in Table 4.1. The column labeled “Re-Use” show the data re-use percentage. The 

ATME configuration is Vth = 2 pixels, SADth = 2500, and a single pass is done. As it 

can be seen from this table, other than 2 very static video sequences (SthlmPan and 

InToTree), the number of pixels read from off-chip SRAM is reduced. This increases 

the performance and reduces the power consumption of the ATME hardware. 

 

Sequence Basic (103) w/ UW (103) Re-Use 
ForemanCIF 24998 24262 3% 
ParkJoy720p 234890 227041 3% 

NewMobCal720p 185530 173865 6% 
SthlmPan720p 198571 200823 -1% 
InToTree720p 204040 220666 -8% 

CrowdRun720p 246847 205649 17% 
ParkJoy1080p 561073 541651 3% 

InToTree1080p 464933 524882 -13% 
CrowdRun1080p 603929 543362 10% 

 
Table 4.1: Number of Pixels Read from Off-Chip SRAM 

 
  

4.2.1 Implementation Results of ATME Hardware with Update Window 

The ATME hardware with Update Window is implemented in Verilog HDL. 

NewMobCal720p video sequence is processed for 10 frames to double the frame rate. 

This operation took ~3740000 cycles, therefore on average a frame is processed in 

~374000 cycles. The Verilog RTL code of the ATME hardware with Update Window is 

also synthesized to a 4vlx200ff1513 Xilinx Virtex-4 FPGA with speed grade -11 using 

Mentor Graphics Precision RTL tool. The resulting netlist is placed and routed to the 

same FPGA using Xilinx ISE tool. The hardware implementation is verified with post 

place and route simulation using Mentor Graphics Modelsim tool. The hardware uses 

33773 4-input LUTs, 7442 Flip-Flops, 8 dual-port Block RAMs, and consumes 21% of 

the Slices. It works at 62.63 MHz and is capable of processing ~168 720p HD frames 

per second doubling the frame rate to ~336 fps which satisfies the real-time 

requirements. 
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Figure 4.3: Operation of Horizontal and Vertical Multiplexers in UW 
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4.3 ATME Hardware with Search Window 

In ATME Hardware with Update Window, the pixels in the 22x22 pixel UW are 

re-used only when UW contains all the pixels in the block pointed by the current MV. If 

any pixel in this block is not in the UW, then the entire 22x22 pixel UW is re-filled. 

However, if most of the pixels in this block are inside the UW, instead of refilling the 

entire UW, only the missing pixels can be loaded into UW. If the number of rows and 

columns that should be loaded into UW is more than 22, it is inefficient to load them 

into UW one at a time. However, if the number of rows and columns that should be 

loaded into UW is less than 22, then by loading them one at a time and re-using the rest 

of the pixels already in the UW, the number of accesses to off-chip SRAM can be 

reduced, performance can be increased and power consumption can be reduced.  

Therefore, ATME Hardware with Search Window implements this data re-use 

technique. When this data re-use technique is used, the existing pixels in the rows or 

columns of the UW are replaced with the new pixels. In this case, the addressing 

scheme for the UW is rotated so that this replacement is not visible to the rest of the 

hardware in terms of read and write addresses. 

The process of replacement in UW for the case where UW is centered on location 

(4,3) and the next MV that will be evaluated is (8,8) is shown in Figure 4.4. In this case, 

in order for the UW to include the PB, two rows and one column should be replaced in 

the UW. After the replacement in the UW, proper select signals are sent to the 

horizontal and vertical multiplexers. In this hardware, 22x16 horizontal and vertical 

multiplexers are used in order to be able select any 16x16 pixel PB. For the case shown 

in Figure 4.4, the select signal for the horizontal multiplexer is 7, and the select signal 

for the vertical multiplexer is 8. This selection process is shown in Figure 4.5. 
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Figure 4.4: Replacement in UW 
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Figure 4.5: Operation of Horizontal and Vertical Multiplexers in ATME Hardware with SW
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The number of pixels read from off-chip SRAM by three ATME hardware for 

different video sequences are shown in Table 4.2. As it can be seen from this table, this 

technique significantly reduces the number of off-chip SRAM accesses. 

 

Sequence Basic (103) w/ UW (103) Re-Use w/ SW (103) Re-Use 
ForemanCIF 24998 24262 3% 20733 17% 
ParkJoy720p 234890 227041 3% 202666 14% 

NewMobCal720p 185530 173865 6% 171547 8% 
SthlmPan720p 198571 200823 -1% 181274 9% 
InToTree720p 204040 220666 -8% 195317 4% 

CrowdRun720p 246847 205649 17% 180435 27% 
ParkJoy1080p 561073 541651 3% 470774 16% 

InToTree1080p 464933 524882 -13% 465308 0% 
CrowdRun1080p 603929 543362 10% 436811 28% 

 
Table 4.2: Number of Pixels Read from Off-Chip SRAM by ATME Hardware 

 

 

The block diagram of ATME Hardware with Search Window is shown in Figure 

4.6. Video frames are stored in the off-chip SRAM in row-major or column-major 

order. Therefore, in order to be able to access proper pixels consecutively from rows 

and columns of a frame in each cycle, an on-chip Search Window memory implemented 

with dual-port Block RAMs is used in this hardware. SW size can be multiples of 22. In 

this hardware, SW contains 88x88 8-bit pixels, centered on the position of CB. These 

pixels are distributed into 22 dual-port Block RAMs. This requires limiting MV values 

to a range of [-36,+36] pixels. The necessary checks for this MV limitation are 

implemented in the Address Generator module. 
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Figure 4.6: Block Diagram of ATME Hardware with SW 

 

The pixels are placed diagonally in the SW as shown in Figure 4.7 [17]. The 

numbers in each cell indicate the Block RAM containing the corresponding pixel in 

SW. Each Block RAM is configured as dual-port, one port is used for writing and the 

other port is used for reading. Block RAMs in Xilinx FPGAs can be configured with 

different port widths. In this hardware implementation, the write port is configured as 

32 bits and the read port is configured as 8 bits. Therefore, 4 pixels can be written into 

and 1 pixel can be read from each Block RAM in each cycle. A limited number of, 

generally 64, bits can be read from off-chip SRAM in each cycle. Therefore, only 8 

pixels can be written into SW in one cycle and each column of SW is filled in 11 cycles.  

The placement of pixels in Block RAMs is shown in Table 4.3. The two numbers 

inside each cell indicate the row and column of the SW the corresponding pixel belongs 

to. The first 22 pixels in a column of SW are stored in a different Block RAM. After 22 

pixels starting from the top left pixel of SW is written into 22 Block RAMs, the 23rd 

pixel is written into the next location of first Block RAM. Therefore, consecutive four 

locations in a Block RAM contain four pixels from the same column of SW. 
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Address BRAM1 BRAM2 … BRAM11 BRAM12 … BRAM21 BRAM22 
0 ( 1, 1 ) ( 2,1 ) … (11,1 ) (12,1 ) … (21,1 ) (22,1 ) 
1 (23,1 ) (24,1 ) … (33,1 ) (34,1 ) … (43,1 ) (44,1 ) 
2 (45,1 ) (46,1 ) … (55,1 ) (56,1 ) … (65,1 ) (66, 1) 
3 (67,1 ) (68,1 ) … (77,1 ) (78,1 ) … (87,1 ) (88,1 ) 
4 (22,2 ) ( 1,2 ) … (10,2 ) (11,2 ) … (20,2 ) (21,2 ) 
5 (44,2 ) (23,2 ) … (32,2 ) (33,2 ) … (42,2 ) (43,2 ) 

…
 

…
 

…
  

…
 

…
  

…
 

…
 

170 (47,43) (48,43) … (57,43) (58,43) … (45,43) (46,43) 
171 (69,43) (70,43) … (79,43) (80,43) … (67,43) (68,43) 
172 ( 2,44) ( 3,44) … (12,44) (13,44) … (22,44) ( 1,44) 
173 (24,44) (25,44) … (34,44) (35,44) … (44,44) (23,44) 

…
 

…
 

…
  

…
 

…
  

…
 

…
 

346 (47,87) (48,87) … (57,87) (58,87) … (45,87) (46,87) 
347 (69,87) (70,87) … (79,87) (80,87) … (67,87) (68,87) 
348 ( 2,88) ( 3,88) … (12,88) (13,88) … (22,88) ( 1,88) 
349 (24,88) (25,88) … (34,88) (35,88) … (44,88) (23,88) 
350 (46,88) (47,88) … (56,88) (57,88) … (66,88) (45,88) 
351 (68,88) (69,88) … (78,88) (79,88) … (88,88) (67,88) 

 
Table 4.3: Locations of the SW Pixels in Block RAMs 

 

After the MV for CB is found, SW for the next CB should be loaded. The 

proposed hardware refills the entire SW only for the first CB in each block row of the 

input frame. Since the SW for CB and SW for the next CB have a 72x88 pixels overlap, 

instead of reading entire 88x88 pixels of the SW from off-chip SRAM for the next CB, 

the proposed hardware reads 16 non-overlapping columns from the off-chip SRAM and 

writes them to the leftmost 16 columns in SW. This data re-use scheme requires rotating 

read addresses for the SW for each new CB. This address rotation is handled by the 

Address Generator.  

The address rotation between the first CB and the next CB in a frame is illustrated 

in Figure 4.8. In this figure, the numbers over the columns and the numbers to the left of 

the rows show the actual positions of the columns and rows inside the video frame 

respectively. The symbols inside the cells show the Block RAMs containing the 

corresponding pixels. As it can be seen from Figure 4.8(a), for the next CB, 16 new SW 

columns (89 to 104) are needed and SW columns 1 to 16 are not needed. Therefore, the 

new 16 columns are written to first 16 columns of the SW as shown in Figure 4.8(b). 



62 
 

Because of address rotation, other modules in the hardware perceive the SW as shown 

in Figure 4.8(c). 

 

 
Figure 4.7: Diagonal Placement in SW 

 

 

 



63 
 

 
(a) 

     
(b)        (c) 

Figure 4.8: Address Rotation for SW (a) Overlapping pixels in SWs (b) Actual 
placement of pixels (c) Perceived placement of pixels. 

 

In ATME algorithm, the access pattern for the SW depends on the values of the 

MVs that are evaluated. For example, if the MVs that will be evaluated for the CB are 

(1,0), (0,1) and (2,2), then PB is first accessed from the location one column right to 

CB. The PB is next accessed from one row below CB, and finally PB is accessed from 

two rows and two columns away from CB. Diagonal placement of pixels inside SW 

allows accessing any 22 pixel row or column in the SW in one cycle. 
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Address Generator calculates the starting addresses of the pixels that will be sent 

to the UW and reads them from 22 Block RAMs. Because of the SW address rotation, 

the starting address calculations are quite complex. For example, when the first pixel of 

the UW is read from the 15th Block RAM, next 7 pixels in the column should be read 

the same address of 16th to 22nd Block RAMs. However, the next 13 pixels in the 

column should be read from the next address of 1st to 14th Block RAMs. Since a Block 

RAM has 4 pixels from the same column, the addresses of the pixels in the following 

columns are calculated by adding 4 to the address of the pixel on the same row of the 

previous column.  

In ATME Hardware with SW, large number of read accesses to off-chip SRAM is 

done in order to fill the on-chip SW memory. The number of pixels read from SRAM 

when the SW size is 66x66 pixels and frame size is 1080p HD is �(66𝑥𝑥66𝑥𝑥1) +

(16𝑥𝑥66𝑥𝑥119)�𝑥𝑥67 = 𝟖𝟖,𝟕𝟕𝟕𝟕𝟕𝟕,𝟑𝟑𝟑𝟑𝟑𝟑 pixels per frame. For 100 frames (98 frames 

processed) 8,711,340 𝑥𝑥 98 = 𝟖𝟖𝟖𝟖𝟑𝟑,𝟕𝟕𝟕𝟕𝟕𝟕,𝟑𝟑𝟑𝟑𝟑𝟑 pixels. The reason for 98 frames being 

processed is that MVs for the first frame pair are assigned randomly and the 100th frame 

is taken from the original video sequence, therefore SW is not filled in those two cases. 

Similarly, the number of pixels read from SRAM when the SW size is 88x88 pixels and 

frame size is 1080p HD is �(88𝑥𝑥88𝑥𝑥1) + (16𝑥𝑥88𝑥𝑥119)�𝑥𝑥67 = 𝟕𝟕𝟕𝟕,𝟕𝟕𝟑𝟑𝟑𝟑,𝟖𝟖𝟑𝟑𝟑𝟑 pixels 

per frame. For 100 frames (98 frames processed) 11,744,832 𝑥𝑥 98 = 𝟕𝟕,𝟕𝟕𝟖𝟖𝟑𝟑,𝟗𝟗𝟗𝟗𝟑𝟑,𝟖𝟖𝟑𝟑𝟓𝟓 

pixels. 

Therefore, using an on-chip SW memory for the ATME algorithm with a 

candidate set with small number of locations is not efficient. However, when a 

candidate set with large number of locations is used to obtain higher quality videos, 

using an on-chip SW memory becomes efficient especially for large frame sizes. For 

example, when ParkJoy1080p sequence is processed for 100 frames by an ATME 

algorithm with a candidate set with 14 locations and Vth = 2, the number of pixels 

accessed is 895,458,168. And, when InToTree1080p sequence is processed by the 

same ATME algorithm, the number of pixels accessed is 934,038,534. If a 66x66 pixel 

size SW is used, the number of accesses to off-chip SRAM is reduced for both 

examples.  

The ATME Hardware with SW is implemented in Verilog HDL. However, the 

Verilog RTL code is not mapped to an FPGA. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

In this thesis, adaptive true motion estimation (ATME) algorithm based on 3-D 

Recursive Search algorithm is proposed for frame rate up-conversion. By using multi-

objective genetic algorithm, an optimized set of candidate locations are obtained. The 

experimental results show that this optimized set improves the results of the 3-D 

Recursive Search algorithm up to 2 dB. In addition, an extended set of candidates is 

proposed to be used in cases where the results of the first set of candidates are 

unsatisfactory. 

Several computational complexity reduction and redundancy removal techniques 

are used in ATME algorithm to reduce the number of SAD calculations. The first 

technique avoids the evaluations of the same MV candidates. The next technique avoids 

the evaluations of the similar MV candidates. The similarity of the MVs is determined 

by comparing their pair-wise distances to a predefined threshold value. When the 

threshold is set to zero, the same quality results are obtained with a 20% reduction in 

SAD calculations for a 3 candidate set and 38% reduction for an 8 candidate set. This 

reduction is further increased when multiple passes of the algorithm are done. When the 

threshold is set to a non-zero value, the number of SAD calculations is reduced up to 

64% with an average PSNR loss of 0.2 dB.  

A redundancy removal technique for multiple passes is used in the ATME 

algorithm. The probability of evaluating the MV, which is selected as the best matching 

candidate for a block in the first pass of the algorithm, in the next pass is quite high. 

Therefore, this technique stores the best SAD value obtained in the previous pass for 

each block and uses them in the next pass in order to avoid redundant SAD calculations. 

This multi-pass redundancy removal technique reduces the number of SAD calculations 

by 25% on average in 3 passes and 30% on average in 5 passes. 
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The experimental results show that the ATME algorithm produces higher PSNR 

results than reference algorithms while at the same time reducing SAD calculations up 

to 58%. Furthermore, ATME algorithm reduces SAD calculations up to 82% with up to 

0.59 dB PSNR loss. There are several cases where there is more than 70% reduction in 

SAD calculations with less than 0.02 dB PSNR loss. Therefore, ATME algorithm 

produces high quality video sequences with significantly lower computational cost.  

In addition, in this thesis, three efficient hardware architectures for ATME 

algorithm are proposed. The first hardware is a basic implementation of ATME 

algorithm. Off-chip SRAM accesses are costly both in terms of latency and power 

consumption. Therefore, the second hardware implements a data re-use scheme using a 

22x22 pixel Update Window by exploiting the smoothness property of true motion 

vector fields. The third hardware uses a technique for loading the Update Window with 

only the pixels missing in the UW. An on-chip Search Window memory is used to 

efficiently implement this technique. The pixels are diagonally placed into 22 dual-port 

Block RAMs of the SW in order to provide single cycle access to any 22 pixel row or 

column inside the SW.  

All three ATME hardware architectures are implemented in Verilog HDL. 

However, only two of them are mapped to Xilinx Virtex-4 FPGA. Basic ATME 

Hardware consumes 8 Block RAMs and 8% of the Slices in that FPGA. It works at 

59.86 MHz and is capable of processing ~158 720p HD frames per second, which is 

sufficient for real-time processing. ATME Hardware with Update Window consumes 8 

Block RAMs and uses 21% of the Slices in the same FPGA. It works at 62.63 MHz and 

is capable of processing ~168 720p HD frames per second. 

As future work, the third ATME hardware can be mapped to an FPGA. The 

redundancy removal technique for multiple passes can be implemented and integrated 

into the ATME hardware. A complete FRUC system can be built by designing and 

implementing an MCI hardware and integrating it to the ATME hardware.  
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