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Abstract 

Ionized impurities have nearly always been neglected in discussing the limit of 

functionality of ferroelectric thin films. One would certainly expect that the thickness 

limit for functionality would be altered in the presence of ionized impurities but how this 

would occur remains unclear. In this article, we analyze the domain structures as well as 

the phase transition temperatures in films with depletion charges for various film 

thicknesses. Due to the inhomogeneity created by depletion charges, saw-tooth like 

domain structures develop spanning the entire film thickness that are possible in films 

with depletion charges having perfect electrode screening, i. e., ideal electrodes if the 

film is above a critical thickness. On the other hand, the phase transition of the ultrathin 

structures with dead layers is always into the multidomain state during cooling from the 

paraelectric state regardless of the presence of depletion charges. Transition temperature 

in films with dead layers does not depend nearly at all on the depletion charge density 

unless it is very high (>1026 ionized impurities/m3). Relatively thick films (>8 nm in this 

work) with dead layers that have very high depletion charge densities have transition 

temperatures very similar to those with the same charge density but with ideal electrodes, 

making us conclude that thick films with high depletion charge densities will hardly feel 

the dead layer effects. The results are provided for (001) BaTiO3 films grown on (001) 

SrTiO3 substrates with pseudomorphic top and bottom metallic electrodes. 
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1. Introduction 

 

The intrinsic limit of ferroelectricity in thin films has been a topic of extensive 

discussions in many reports. A strained, planarly confined thin ferroelectric (FE) 

structure exhibits dramatic changes in the dipole configurations commensurate with 

strong deviations from bulk states. One fact is that the formation of defects such as ionic 

vacancies, interstitials and dislocation networks are inevitable owing to both the process 

conditions and the developing strains in the film on misfitting substrates during 

fabrication. The defect fields and their impact on the physical properties of FEs both in 

bulk and film form have been the focus of numerous studies including dedicated book 

chapters [1-14]. It has been well understood that the vacancy or impurity type point 

defects lead to a depletion zone upon formation of the metal-film contact during 

electroding. The motivation to study such material systems has been to understand the 

limit of existence of ferroelectricity as a function of thickness and electrode-interface 

conditions, particularly focusing on depolarizing field effects [15-25]. A recent study, for 

example, based on a first principles approach reports that a possible asymmetry in the 

material type for the top-bottom film-electrode contacts could compete with the 

depolarizing effects through an internal bias field and reduce the critical thickness of a 

switchable ferroelectric polarization’s existence to about two unit cells [26]. Besides 

applications in nano scale memory devices, field effect transistors and tunable layers in 

integrated circuits [4, 24, 27], these materials have also become a test-bed in the past few 

decades for studying phase transitions and critical behavior in the solid state probably 

only second to magnetic materials.  
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Fabrication of these systems in capacitor geometries naturally results in the 

equilibriation of the chemical potential at the metal-ferroelectric interfaces in ferroelectric 

films that often have impurity states and the formation of a charged region on the film 

side is nearly inevitable. This has been mostly analyzed experimentally in addition to a 

few theroetical studies [11, 29-31]  including attempts in artifically graded structures 

[32]. As will be shown, the depletion charge itself acts as a source of inhomogeneity and 

the situation is not very different from introducing compositional gradients to the system. 

Recently, several works have been devoted to especially understand the evolution of 

these charges under limited lattice diffusivities but how such phenomena will be 

impacted by size effects remain an important aspect to be understood [33, 34]. 

Furthermore, it is well known that charged defects such as impurities and vacancies will 

be quite immobile at temperatures near room temperature (RT) and might get populated 

at interfaces and defect sites probably only after several thousands of applied field cycles 

[7, 35].  

In a real ultrathin ferroelectric film, due to the very short distances at which 

potential drops occur, it becomes very crucial to elaborate the interaction between 

depletion charges and the consequences of the extent of screening at the film-electrode 

interface. As the film thickness, when at the order of a few tens of nm or less, can be 

comparable or smaller than the depletion zone width in a ferroelectric in contact with 

electrodes that has typical densities of impurities, the entire ultrathin film can be said to 

be depleted and that the ionized impurities are nearly homogeneously distributed. 

Depletion widths of around 30 nm and ionized impurity densities of around 1025-27/m3 has 
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been reported by Pintilie et al. using interfacial capacitance measurements for 

PbZr0.2Ti0.8O3 films [35, 36].  

The attempts to clarify the depletion charge effects have mostly been confined to 

very simple charge distributions as analysis of realistic distributions, even when depletion 

charge density is homogeneous, via analytical approaches can become a formidable 

problem. Only a few studies exist that try to analyze the effects of continuous depletion 

charge distributions on the observable properties in relatively thick films [7, 38-40] but 

these studies have considered the single domain states. The possibility that, due to the 

inhomogeneous nature of the system owing to depletion charges, the transition could be 

into multidomain states even in structures with ideal electrodes would make a prominent 

difference in the calculated transition temperatures, which is one of the main emphasis 

given in this paper. The way in which phase transition characteristics would be altered is 

discussed rigorously by Bratkovsky and Levanyuk [29] in the absence of dead layers. 

Reduction in the critical temperature commensurate with smaller coercivities in the 

ferroelectric state was demonstrated along with a qualitative discussion on the possibility 

of domain formation. One could easily foresee that the conclusions withdrawn for 

systems with ideal electrodes will have to be modified, for instance, for systems that have 

imperfect film-electrode interfaces, namely real electrodes. This latter statement is indeed 

a very important one when discussing experimental results on ferroelectric stability in the 

light of electrostatic considerations. 

 In this article, we address the question as to whether or not depletion charge 

effects could compete and overwhelm dead layer effects due to conditions at the film-

electrode interfaces. To probe the competing energies, we use the Landau-Ginzburg-
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Devonshire (LGD) formalism for ferroelectric materials coupled with the interface 

conditions and presence of depletion charges. Firstly, films of various thickness with 

perfect film-electrode interfaces, namely ideal electrodes, but with depletion charges are 

analyzed. A saw-tooth type domain structure forms in relatively thick films due to the 

inhomogeneous internal field. At the transition temperature, thick films with ideal 

electrodes but high depletion charge density always exhibit the saw-tooth domains. The 

period of this domain structure grows with increasing film thickness. Following this 

analysis, we introduce thin dead layers at the film-electrode interfaces to find out the 

possible alterations to the domain configurations and sensitivity of the domains to 

thickness effects. We found out that the domain period in a film having dead layers are 

altered upon introduction of a homogeneous depletion charge density to the system. At 

high depletion charge densities, domains with a saw-tooth type structure regardless of the 

presence of the dead layers. We also show that the transition temperatures are 

significantly lowered in relatively thick films with high depletion charge densities and 

dead layers while this lowering is minimal in the thinner films and remain nearly 

unchanged with respect to charge-free films with dead layers. This behavior is a direct 

consequence of the dead layer effects dominating at low thicknesses while thicker films 

are under a heavier influence of depletion charges. Our results reveal the magnitudes of 

changes that can be expected in the transition temperatures for films with depletion 

charges considering especially the transition into multidomain states.  
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2. Theory and Methodology 

 

In this section we give the governing equations and boundary conditions used to 

obtain field and temperature dependent characteristics of the ferroelectric thin film 

capacitors. The schematics of the geometries considered is given in Figure 1. A two 

dimensional grid is constructed that has 200n x kn cells where k (200) is the number of 

cells along the film thickness (width) and each cell, n, has a dimension of 0.4 nm, nearly 

the lattice parameters of well known pseudocubic perovskites such as BT to imitate the 

order of lengths at which P can vary in the system compared to real systems. Polarization 

is obtained by solving the equations of state derived from the LGD free energy for all P 

in our system for an epitaxial monodomain (001) BaTiO3 ferroelectric film on a (001) 

SrTiO3 cubic substrate along with the Maxwell equation for dielectric displacement 

employing a finite difference discretization. The strain states of the films determine the 

stable P components. We partition the thin film capacitor system along the thickness axis, 

z, as follows: 

 w=1 when -h/2 ≤ z ≤ +h/2 

w=0 when -h/2-d < z < -h/2 and +h/2 < z < d+h/2,    (1) 

where w is a step-wise function defining the interface between the dead layer and the 

ferroelectric and d is the dead layer thickness (taken as 1 unit cell thick, ~0.4 nm in this 

work), |h| is the thickness of the ferroelectric layer. The electrode-dead layer interfaces 

are at -h/2-d and d+h/2 respectively. Note that 0=d  indicates the absence of a dead 

layer, i. e., a perfect film-electrode contact interface. The equations of state for the system 
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to define the relation between the fields in the layers and the P components as well as rεεεε  

of the dead layers using the definition of w in Eqn. 1 are, 
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where Pi (i=1,2,3) are the components of P in the ferroelectric state, m

3
α , m

13
α , m

33
α , m

1αααα , 

m

11αααα , m

12αααα  are the renormalized dielectric stiffness coefficients, modified by the misfit 

strain and the two-dimensional clamping of the film, while 111αααα , 112αααα , 123αααα  are the 

dielectric stiffness coefficients in the bulk [41], Gij are the gradient energy coefficients. 

For the sake of convenience, we shall assume that the gradient energy coefficient is 

isotropic, and thus GGGGGGG ====== 212311133133 . G= 3x10-10 and is 

proportional to )/( 0
2

CTC εεεεδδδδ  with δ being a distance at the order of a unit-cell, CT  the 

Curie point, 0ε the permittivity of free space and C the Curie constant. We also neglect 

the gradients in P2 along y within the two dimensional limit. F
E3 , FE1  and d

E3 ,
dE1  are 

the fields along  z- and x-axis in the ferroelectric layer and the dead layer respectively. 

The equality between the field and the dielectric displacement in the dead layer (w=0) 

reads 
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d

r ED 303 εεεεεεεε=  and d

r ED 101 εεεεεεεε=    (3)   

and for w=1 (ferroelectric layer),  

3303 PED
F
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F

b += εεεεεεεε   (4) 

The dead layer, when present, is assumed to be a high-k dielectric whose dielectric 

constant, rε , is 20 to exemplify its effects and bε  is the background dielectric constant of 

the ferroelectric (taken as 7 in this work). The electric fields in both the ferroelectric layer 

and the dead layer are computed from the gradients of the electrostatic potential from 
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in the dead layers with Fφφφφ and dφφφφ being the electrostatic potential in the ferroelectric and 

the dead layer respectively. The electrostatic potential in each layer can be found at each 

point as function of P and the dielectric constant of the dead layer using the Maxwell 

relation in the absence of free charges 0=⋅∇ D  and ρ=⋅∇ D  when depletion charges 

due to ionized impurities are present. ρρρρ  is the volumetric charge density (0 when no 

impurities are present).  Thus one has   
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for the dead layer. We assume that each impurity contributing to ρρρρ  has only one positive 

unit charge (the charge of one electron) in all cases. The depletion charge density in this 

work is assumed to be constant throughout the film volume, which is indeed realistic 

enough for thicknesses at the order of a few tens of nanometers (See Refs. 30, 36-37). 

The boundary conditions we employed for P1,3 are 

0

2
,

2

1
1 =





+

+−−= d
h

d
h

z
dz

dP
P λλλλ , 0

2
,

2
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3 =





+

+−−= d
h

d
h

z
dz

dP
P λλλλ  (9)  

at the top and bottom electrode-film interface of the ferroelectric where the extrapolation 

length, λ , is taken as infinite. Periodic boundary conditions are used along the x-axis, i. 

e., 

),()0,( 33 LxzPxzP === , ),()0,( 11 LxzPxzP ===  (10) 

We apply Dirichlet boundary conditions to solve P in the thin film capacitors. At the dead 

layer-electrode interfaces, -h/2-d and h/2+d (d=0 corresponds to ideal electrodes), 0=φφφφ  

correspond to total charge compensation at the film-electrode interface while periodic 

boundaries are adopted along x. Figure 1 shows the geometry adopted. Note that the 

entire “capacitor system” is neutral as the charges from ionized impurities, whose density 

is ρ, accumulate on the electrodes.  

Equations of state (Eqns. 2a-2b) along with the equations of electrostatics in 

(Eqns. 7-8) using relations given in Eqns. 3-6 are solved simultaneously for P 

components employing a Gauss-Seidel iterative scheme subject to boundary conditions 

mentioned above in Eqns. 9 and 10. The simulations always start with small fluctuations 

of z and x components of P around zero that later on develop into the domain structure 

depending on dead layer and film thickness. We limit ourselves to 10000 iterations 
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converging to a difference of about 10-8 between consecutive iterative P solution steps 

when ferroelectricity exists. Owing to the compressive in-plane misfit in (001) BaTiO3 on 

(001) SrTiO3 (about 2.5 %), only P3 is the spontaneous polarization that, in addition 

when depletion charge exists, also contain the built-in polarization, Pb. Thus, from here 

onwards the ferroelectric part of P3 will be denoted as Pf and the built-in part as Pb. Note 

that when ρ=0, there is only one solution and it is P3= Pf. 

 

3. Results and Discussion 

3.1 Room temperature domain structures when d=0 (Ideal electrodes) 

 

 We start discussing our results for three different film thicknesses, 12 nm, 16 and 

20 nm with perfect film-electrode interfaces obtained at room temperature (RT). 

Structures with depletion charge at the max density limit considered in our work (2x1026 

ionized impurities/m3) that are thinner than 10 nm thickness are nearly always found to 

exist in an imprinted single domain state and is not of interest here. The reason for this 

outcome is discussed in the proceeding paragraphs. The films without any depletion 

charge also exist in a homogeneous monodomain state and are not discussed here again 

for brevity. In general throughout this work, we chose to study two different depletion 

charge densities that reflect moderate-high and very high impurity densities reported for 

such structures. Depletion charge densities as high as 1025-27 ionized impurities/m3 were 

reported 31 and we remain around these (5x1025 ionized impurities /m3 for the moderate-

high limit and 2x1026 for the high limit) values in our simulations.  
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 Figure 2 displays the domain structures that form in films of various thicknesses 

that have a fixed volumetric depletion charge density corresponding to 2x1026 ionized 

impurties/m3. Upon finding that low densities of depletion charge yield only a 

unidirectional Pf in thin films, we focus on the densities that do trigger domains in thick 

structures (>10 nm). As a comparison for example, the 8 nm thick film with the 

aforementioned depletion charge density (2x1026 ionized impurties/m3) does not undergo 

a domain stabilization owing to the “insufficient extent of inhomogeneity”, meaning it is 

not thick enough for the built-in field to render a highly inhomogeneous structure. By 

inhomogeneous, we mean here the dependence of the local transition temperature on the 

built-in electric field at that location. Extremely high densities of depletion charge (>1027 

ionized impurities/m3) could perhaps stabilize domains in films with ideal electrodes but 

is out of the main scope of our study.  

In Figure 2, we give the total polarization along with the ferroelectric polarization 

and the latter is obtained by subtracting Pb from P3 for 12 nm, 16 nm and 20 nm films. 

The Pb is found by running our calculations above the Curie point as it is nearly 

temperature insensitive and is the only solution corresponding satisfying Eqns. 2, 7-8. At 

2x1026 ionized impurities/m3, a saw-tooth type domain pattern develops at RT whose 

period is a function of thickness. Relatively lower depletion charge densities (<1026 

ionized impurities/m3) do not tend to stabilize domains and result in a uniaxial Pf whose 

amplitude is less in one half of the film than in the other half concomitant with the 

internal field distribution. Therefore, the formation of domains in thicker films is due to 

the highly inhomogeneous nature of the built-in field renormalizing the linear term in P3 

in Eqn. 2a. Thus, the amplitude of the variation in the local transition temperature 
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naturally becomes more profound towards the film boundaries with increasing thickness 

for a given constant charge density. Hence thicker structures are forced to undergo 

domain stabilization to minimize the depolarizing fields emanating from the 

inhomogeneous depletion charge field. The domain period in such a high inhomogeneous 

system becomes a function of position, somewhat similar to what has been reported for 

discrete graded structures [42]. The situation described that applies to our analysis is also 

schematically depicted in Figure 3 for clarity. 

 Those results reveal that the domain structures forming due to the depletion 

charge induced fields in systems with ideal electrodes is quite different from what occurs 

when dead layers are present. For instance, in the latter, ferroelectric polarization 

amplitude attains a maximum in the middle section of the film while saw-tooth type 

domains have the maximum amplitude of the ferroelectric polarization wave near the 

electrode interfaces.  

 

3.2. Room temperature domain structures when d=1 (Dead layers present) 

 

 In the presence of dead layers (d=1 unit cell) and depletion charge, a competition 

between the two formations, each of which is a source of inhomogeneity, takes place. A 

set of structures at RT for three different thicknesses and two depletion charge densities 

are provided in Figure 4. The left hand side gives the domain structure in the absence of 

depletion charge while the right hand side is when depletion charge is present. 

Subtracting the Pb at each site from P3, we again get the Pf as we did in the previous 

subsection. Amongst the analyzed structures, relatively moderate density of depletion 
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charge (5x1025 ionized impurities/m3 in this work) slightly alters the domain wall angles 

with respect to the film normal along with a period change as will be discussed next. A 

charge density of 2x1026 stabilizes the saw-tooth domain structure that has the prominent 

maxima in the Pf profile at the domain tips, similar to the case when d=0. Such a 

formation indicates that thick films with high depletion charge densities are under 

“weaker influence” of the dead layers. Another effective way to enable the comparison of 

the domain periods in films with and without depletion charge for a given thickness 

would be to plot and discuss the wave vector k of domains (k=2π/λ where λ is domain 

period) as a function of thickness as we do in the proceeding paragraphs. 

Before discussing the probable changes in domain period when depletion charges 

are present in thin films, we give the results for the domain wave vector, k, we obtained 

both in our simulations and using the approach presented in Ref. 43 to validate the trends 

of our simulations for charge-free films in Figure 5a. A summary of the approach in Ref. 

43 in a modified form (See also Ref. 44) is given in the Appendix for convenience. 

Arising from the numerical nature of the simulation study and the finiteness of the system 

investigated (despite periodic boundary conditions along the film plane), we do not get a 

smooth and gradual change in the domain period hence in k. Still, there is an excellent 

agreement with the results obtained using the methodology in the Appendix. Note the 

approach in the Appendix adopted from Refs. 43 and 44 analyzes the phase transition 

point considering linear equation of state. We find that the domain period does not nearly 

change at all with further cooling upon the transition from the paraelectric to the 

multidomain FE state and transforms from a sinusoidal pattern to a square-like one, 

making it feasible to compare k values at and below the transition. In other words, even 
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when our simulation temperatures are not the same as the temperatures at which the k 

values were found using the approaches in Refs. 43 and 44, the k’s in both their study and 

our simulations are directly comparable.  

 To visualize the impact of depletion charge on the domain structures in films with 

dead layers, we now discuss behavior of the wave vector, k of the Pf wave plotted as a 

function of film thickness for ionized impurity densities of 5x1025 and 2x1026 /m3. Our 

results for films at RT without and with depletion charge are in Figure 5b. The presence 

of electrical domains in films with depletion charge have persisted for the entire thickness 

range of interest in our study. The depletion charge density was kept constant at 5x1025 

ionized impurities/m3 for the sake of demonstration. Domain period for films thinner than 

12 nm with 5x1025 ionized impurities/m3 is smaller than the charge-free film, while 

2x1026 ionized impurities/m3 follows more or less the charge-free film but with slightly 

larger k values. The general trend of the increase in k values for films thinner than 12 nm 

in our work might be perceived as an indication that the depletion charge amplifies the 

depolarizing field for a given set of material parameters (domain wall energy, fixed dead 

layer thickness and dielectric constant and etc.). But this trend changes with increasing 

film thickness for the films having 5x1025 ionized impurities/m3 with respect to the 

charge-free case. Around 15 nm, a crossover occurs after which the thicker films with 

5x1025 ionized impurities/m3 carrier density develop a coarser domain structure. Here, 

from the data of our simulations, we can see that the domain period is altered in a way the 

depolarizing field appears to be amplified, leading to a finer domain period hence a larger 

k. Still, we cannot arrive at general conclusions for the entire thickness regime we 

considered as thicker films (>16 nm) with moderate-high depletion charge density has a 
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distinctly different domain period. Despite the thought that any formation giving rise to 

or amplifying depolarizing fields will reduce the transition temperature, comparing the k 

values for a given thickness does not lead us to conclude so. To analyze the effect of 

depletion charge effects on the transition temperature, we carry out cooling runs in our 

simulations, extract and discuss the transition temperatures in the next section.  

 

3.3. Phase transition temperatures 

 

 The paraelectric-ferroelectric transition temperatures for films with depletion 

charge is expected to be lowered in the presence of depletion charges, dead layers or 

when both coexist. Film thickness importantly comes into play in all of the cases above. 

Here we emphasize the situation when dead layers and depletion charges are both present 

but also run a case where the films at a thickness range of 3.2 nm to 24 nm have ideal 

electrodes for comparison. For reference, we first computed the transition temperature as 

a function of film thickness for a fixed dead layer thickness (d=1) and dielectric constant 

(εr=20) and our results are in Figure 6a along with the results we obtained using the 

method prescribed in the Appendix. We find the transition temperatures by tracking 

<|P3|> in our simulations. The transition temperatures computed from the numerical 

solution of Eqn. 16a in the Appendix has a very good match with the simulation results 

presented in this work, again confirming the validity of the prescribed method in Section 

2. It must be borne in mind that the approach of Ref. 43 excludes gradient of P3 (total 

polarization) along the thickness of the film, which we do include in our study. This can 

be the possible cause of the slight deviation between the two results at small thicknesses. 
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As expected, decreasing film thickness results in a reduction of the transition temperature 

with domain period subsequently becoming comparable or larger than the film thickness. 

Note that we do not go down to very low temperatures where ultrathin films (<3.2 nm in 

this work) might be in a single domain state upon transition from the paraelectric phase 

and that this takes place at quite low temperatures.  

Computing the phase transition temperatures in films with dead layers but now 

with two different depletion charge densities, we note that films with a charge density of 

5x1025 ionized impurities/m3 have nearly the same transition temperature compared to the 

charge free ones for a given thickness (See Figure 6b). Note that a homogeneous charge 

distribution does not lead to any net bias fields between the electrodes and no smearing of 

the transition exists, meaning the transition temperature is sharp. We then carried out the 

cooling runs for films having a depletion charge density of 2x1026 ionized impurities/m3 

both in the presence and absence of dead layers to detect the transition. As mentioned 

previously, tracking <|P3|> and comparing it with <P3> allows us to detect the phase 

transition if it is into a multidomain state. These films with 2x1026 ionized impurities/m3 

and dead layers have a similar trend with the charge-free films at small thickness but then 

the transition temperature is significantly reduced for thicker films. Moreover, the 

transition temperatures in thicker films with and without dead layers are nearly the same. 

This scenario is certainly different for thinner films (<12 nm) and it is seen that the dead 

layers entirely dominate the transition characteristics (Compare the curves for the films 

having 2x1026 ionized impurities/m3 with and without dead layers in Figure 6b). This is 

solely due to the “degree of induced inhomogeneity” in the thicker films where the built-

in electric field due to depletion charges induce a strong gradient of the transition 
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temperature via normalization of m

3αααα in Eqn. 2, causing a larger amplitude variation of Pf, 

possibly overriding dead layer effects. Therefore, we provide quantitative evidence that 

the thicker films will be under a stronger influence of the depletion charge effects 

compared to thinner ones. One must remember here, however, that we discuss the case of 

rather high densities of depletion charge. For moderate-to-low densities (<1025 ionized 

impurities/m3 in this work), the above discussion on transition temperatures merely 

converges to discussion of dead layer effects on the transition temperature as a function 

of film thickness.  

 

4. Conclusions 

 

 We have analyzed the phase transition characteristics of ferroelectric thin films 

with and without depletion charge considering ideal electrodes and film-electrode 

interface with dead layers. Using the non-linear Landau-Ginzburg-Devonshire equation 

of state, simulations were carried out for films with different thicknesses at different 

temperatures to find the domain periodicities and transition temperatures as a function of 

depletion charge density at various thicknesses. The approach adopted from Ref. 43 and 

44 has been used as a guide to check the validity of our simulation results. (001)BaTiO3 

grown on (001)SrTiO3 with pseudomorphic electrodes was used as an example system. 

Films with high depletion charges split into saw-tooth type domains even when ideal 

electrodes are present. This happens when the film is above a critical thickness, below 

which a single domain, imprinted state is stabilized. Increase in film thickness naturally 

creates larger variations in the electric field, hence in local transition temperatures, due to 
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a constant density of depletion charge and a saw-tooth type domain structure is favored 

even in films with ideal electrodes to minimize the depolarizing fields. Presence of dead 

layers, when depletion charge densities are not very high (<1026 ionized impurities/m3), 

determine the transition temperature both for thin (<10 nm) and thick films (>10 nm). At 

charge densities not very high, domain periods are slightly altered subsequent with tilted 

domain walls with respect to domain configurations in charge-free films. Although high 

charge densities in films with dead layers stabilize saw-tooth type domains regardless of 

the presence of the dead layers, the fact that very thin films (<10 nm) exist in a fine 

period multidomain state as opposed to what happens in films with ideal electrodes 

reveals the domination of the dead layer effects in thin films. While transition 

temperatures of ultrathin films having depletion charge are set by the dead layers, high 

depletion charge densities (2x1026 ionized impurities/m3 in this work) dominate over 

dead layer effects in thicker films. This can be judged by comparing the very similar 

results for these films with and without dead layers, i. e., the relatively thicker films with 

high depletion charge densities and dead layers have identical transition temperatures as 

those with same depletion charge density but ideal electrodes.  
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Appendix 

 

The system analyzed in Ref. 43 is already given in Figure 1. The approach in Ref. 

43 is based on finding the point of loss of stability of the paraelectric phase for a 

ferroelectric slab with dead layers. While the system in Ref. 43 is treated in one half of 

the film with dead layers as being vacuum and the film being very thick compared to the 

dead layers, this approach was generalized in Ref. 44 and we follow this general 

approach by full treatment of the film with high-k dead layers. Going back to the system 

in Figure 1, for a given dead layer thickness d  (1 BaTiO3 unit cell thick, ~0.4 nm, in this 

work) the boundary conditions of the system can be written as: 

2/@0 LzDD
z

d

z

F ±==−     (A1) 

where PED F

z

z

F += 0ε  and d

z

d

z

z

d ED 0εεεεεεεε=  are the dielectric displacements in the FE and 

dead layers respectively with 0ε being the permittivity of vacuum in SI units, d

zεεεε  is the 

dielectric constant of the dead layer, P is ferroelectric polarization in the FE along the 

film thickness. The boundary conditions for the potential are as follows 

2/@ LzdF ±== φφφφφφφφ       (A2a) 

dLzd +== 2/@0φφφφ      (A2b) 

dLzd −−== 2/@0φφφφ      (A2c) 

where dF ,φφφφ  are the potentials in the FE and the dead layer respectively. The electric fields 

in the layers can then be found from the gradient of the potentials. From Eqn. A1, one 

gets 

2/@000 Lz
dz

d
P

dz

d dP

z

F ==++−
φφφφ

εεεεεεεε
φφφφ

εεεε    (A3) 
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where L is the FE film thickness (See Figure 1). In the absence of free charges 0=divD  

both in the FE and the dead layers. Writing these conditions in terms of the potential and 

polarization in the FE film, we get: 

z

P

xz

FF

∂
∂

=
∂

∂
+

∂

∂
⊥

0
2

2

2

2 1

ε
φ

ε
φ

   (A4)  

where ⊥ε  is the dielectric constant of the FE along the plane of the film (Calculated as 

approximately 40 from the simulations and this value is used) and 

 

          0
2

2

2

2

0 =








∂

∂
+

∂

∂
⊥
xz

dPdP

z

φφφφ
εεεε

φφφφ
εεεεεεεε    (A5)  

for the dead layer. For convenience, it is assumed that the dead layer is isotropic and 

dd

z ⊥= εεεεεεεε  with d

⊥εεεε  being the dielectric constant of the dead layer along the film plane. The 

linear equation of state of the FE that is obtained by minimization of the Landau-

Ginzburg free energy with its lowest order terms is: 

dzx

P
gAP Fφ∂−=
∂

∂
−

2

2

     (A6) 

where the gradient of P along z has been neglected as mentioned above, 

MCTTA C +−= 0/)( εεεε where T is temperature, TC is the transition temperature in bulk 

form, C is the Curie constant, M represents any contribution of strain in the case of a FE 

on a substrate (See the modified coefficient of the lowest order term in P in the free 

energy in Ref. 36), g is the gradient energy coefficient. Note that the energy due to 

gradients along z is much less than the gradients of P along x, allowing one to safely 

neglect gradients along z. To solve the polarization and the potential using the differential 

equations above together with the equation of state in the FE, one can use the Fourier 
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transform to express the polarization and the potentials in the layers in terms of 

harmonics: 

∑=
k

ikx

kePP , ∑=
k

ikxk

FF eφφφφφφφφ , ∑=
k

ikxk

dd eφφφφφφφφ   (A7) 

where kP , k

Fφ  and k

dφφφφ  are the z-amplitudes of each harmonic in k. Inserting these Fourier 

transforms for a given k into Eqn.s A4, A5 and A6, we get: 

02

2

2

=+ k

F

k

F q
dz

d
φ

φ
     (A8) 

02

2

2

=− k

d

k

d k
dz

d
φφφφ

φφφφ
      (A9) 

where 2/122
0 )( gkAkq += ⊥εε . The solutions of Eqn.s A8 and A9 that satisfy the 

boundary conditions given in Eqn. A2 are: 

qzBqzAk

F sincos +=φ    (A10) 

)(cosh)(sinh LzkDdLzkC
k

d −+−−=φφφφ   (A11) 

where A, B, C and the D are the amplitudes in the general solution and 

 

1

2
0

1
1

−

⊥ 












−

+
=

gkA
kq

ε
ε    (A12) 

Using the BCs given in Eqn.s A1 and A2c, we get two equations with two unknowns, B 

and C from Eqn.s A11 and A12: 

0
2

cosh
2

cos
)(2

cos
2

0

=−−








+
+

kd
kC

qL

gkA

qqL
qB

d

zεεεεεεεε
 (A13a) 

0
2

sinh
2

sin =−−
kd

C
qL

B    (A13b) 
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For a non-trivial solution to exist, the determinants of the coefficients in Eqn.s A14a and 

A14b has to be zero, giving us, 

0
2

sin
2

cosh
2

cos
)(2

cos
2

sinh
2

0

=











−+









+
+

qLkd
k

qL

gkA

qqL
q

kd
B

d

zεεεεεεεε
 (A14) 

meaning that 

0
2

sin
2

cosh
2

cos
)(2

cos
2

sinh
2

0

=−+








+
+

qLkd
k

qL

gkA

qqL
q

kd d

zεεεεεεεε
 (A15) 

After some algebra on Eqn. A16, one gets 

2
tanh

2
tan

kdqL
d

z

k

εεεε

εεεεεεεε ⊥
=    (A16a) 

where 









+

+
= 1

)(

1
2

0 gkA
k ε
ε    (A16b) 

which was previously obtained by the authors of Ref. 43 through a similar route. Their 

approach is somewhat repeated here for tractability of results in our paper. We solve Eqn. 

A16a using a numerical approach and seek the k value that yields the highest transition 

temperature from the paraelectric state into the ferroelectric state for a given d (1 unit cell 

thick in this work). We do not carry out the calculations in the single domain state regime 

which correspond to thicknesses smaller than 3 nm and is outside the scope of our 

analysis. Also note that the described method is applied fort he validation of the 

simulation results and do not reflect any depletion charge related effects, which are 

seperately given only by the numerical simulation presented in this paper. 
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Figure Captions 

 

 
Figure 1. (Color Online) The schematic of the ferroelectric capacitor considered in this 

study. 

 

Figure 2. (Color Online) The RT domain total polarization configurations of the (a) 12 

nm, (b)16 nm and (c) 20 nm thick films with 2x1026 ionized impurities/m3 and the 

extracted ferroelectric polarization given for (d) 12, (e)16 and (f) 20 nm thick films on the 

right hand side. Scales are given to display the range of P3 in C/m
2. 

 

Figure 3. (Color Online) Schematic of the built-in field plotted as a function of position 

along the thickness of the ferroelectric film for a given homogeneous charge density 

(Right axis). The red curve indicates the variation of the Curie point along the thickness 

due to the built-in field.  

 

Figure 4. (Color Online) Domain structures for (a) 12 nm, (b) 16 nm and (c) 20 nm thick 

films with dead layers. The right hand side of each colormap for a given thickness are the 

domain structures for ρ=5x1025 (Upper colormap) and ρ=2x1026 (Lower colormap). 

Scales are given to display the range of P3 in C/m
2. 

 

Figure 5. (Color Online) (a) Wave vector of the polarization along the film plane as a 

function of film thickness at the transition derived from solving Eqn. A16 for the point of 

loss of stability of the paraelectric phase summarized in the Appendix (red curve) and the 

wave vector we found in our simulations (blue squares) for d=1 unit cell. (b) Wave vector 
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of the polarization along the film plane as a function of thickness for films without charge 

(blue curve with diamonds), films having 5x1025 ionized impurities/m3 charge density 

(red curve with squares) and films having 2x1026 ionized impurities/m3 charge density 

(black curve with triangles)  for d=1 unit cell. The curves in (b) passing through the data 

points are guides for the eyes. 

 

Figure 6. (Color Online) (a) Phase transition temperatures in films with dead layers as a 

function of thickness when (a) No charge is present. The blue curve with diamonds are 

the results of our simulations and the red curve with squares are the results obtained by 

solving Eqn. A16 in the Appendix after Ref. 43. (b) Comparison of the results for charge-

free (blue curve with diamonds), films having 5x1025 ionized impurities/m3 depletion 

charge (red curve with squares), films having 2x1026 ionized impurities/m3 depletion 

charge (black curve with triangles) and the green curve with triangles is the case for d=0 

(no dead layer) and 2x1026 ionized impurities/m3 depletion charge given for comparison. 

Note that in (b) the red and blue curves have a strong overlap where the blue curve is just 

partially visible. The bulk transition temperature for (001)BaTiO3 fully strained on 

(001)SrTiO3 is 652°C. 

 



 29 

 

 

 

 
 
 
 
 
 
 

 
 

 

 

Figure 1.



 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 
 
 
 
 
 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 



 31 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 32 

 
 
 
 
 
 
 
 

 

 
(a) 

 

 

 

 
(b) 

 

 

 

 

 
(c) 

 

 

 
 
 
 

Figure 4. 
 
 
 
 
 
 



 33 

 
 
 

 
 
 
 

Figure 5. 

 

 

 

 

 

 

 



 34 

 

 

 

 

 

 

 

 
 

 

Figure 6. 
 

 



 35 

 

 

 


