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Abstract—Image formation algorithms in a variety of appli-
cations have explicit or implicit dependence on a mathematical
model of the observation process. Inaccuracies in the observa-
tion model may cause various degradations and artifacts in the
reconstructed images. The application of interest in this paper
is synthetic aperture radar (SAR) imaging, which particularly
suffers from motion-induced model errors. These types of errors
result in phase errors in SAR data, which cause defocusing of the
reconstructed images. Particularly focusing on imaging of fields
that admit a sparse representation, we propose a sparsity-driven
method for joint SAR imaging and phase error correction. Phase
error correction is performed during the image formation process.
The problem is set up as an optimization problem in a non-
quadratic regularization-based framework. The method involves
an iterative algorithm, where each iteration of which consists of
consecutive steps of image formation and model error correction.
Experimental results show the effectiveness of the approach for
various types of phase errors, as well as the improvements that it
provides over existing techniques for model error compensation
in SAR.

Index Terms—Autofocus, phase errors, regularization, sparsity,
synthetic aperture radar (SAR).

I. INTRODUCTION

S YNTHETIC aperture radar (SAR) has recently been and
continues to be a sensor of great interest in a variety of

remote sensing applications, particularly because it overcomes
certain limitations of other sensing modalities. First, SAR is an
active sensor using its own illumination. To illuminate a ground
patch of interest, the SAR sensor uses microwave signals that
provide SAR with the capability of imaging day and night as
well as in adverse weather conditions. Due to these features of
SAR, SAR image formation has become an important research
topic. The problem of SAR image formation is a typical example
of inverse problems in imaging. The solution of inverse prob-
lems in imaging requires the use of a mathematical model of
the observation process. However, such models often involve
errors and uncertainties themselves. As a predominant example
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in SAR imaging, motion-induced errors are reasons for model
uncertainties that may cause undesired artifacts in the formed
imagery. This type of errors causes phase errors in the SAR
data, which result in defocusing of the reconstructed images [1].
Because of the defocusing effect of such errors, the techniques
developed for removing phase errors are often called autofocus
techniques.
Various studies have been presented on the SAR autofocus

problem [2]–[17]. One of the most well-known techniques, i.e.,
phase gradient autofocus (PGA) [2], estimates phase errors
using the data obtained by isolating many single defocused
targets via center-shifting and windowing operations. It is
based on the assumption that there is a single target at each
range coordinate. Another well-known approach for autofocus
is based on the optimization of a sharpness metric of the
defocused image intensity [3]–[10]. These techniques aim to
find the phase error estimate, which minimizes or maximizes a
sharpness function of the conventionally reconstructed image.
Commonly used metrics are entropy or square of the image
intensity. Techniques such as map-drift autofocus [11] use
subaperture data to estimate the phase errors. These techniques
are suitable mostly for quadratic and slowly varying phase
errors. A recently proposed autofocus technique, i.e., mul-
tichannel autofocus (MCA) [12], is based on a noniterative
algorithm, which finds the focused image in terms of a basis
formed from the defocused image, relying on a condition on the
image support to obtain a unique solution. In particular, MCA
estimates 1-D phase error functions by directly solving a set
of linear equations obtained through an assumption that there
are zero-reflectivity regions in the scene to be imaged. When
this is not precisely satisfied, presence of a low-return region is
exploited, and the phase error is estimated by minimizing the
energy of the low-return region. When the desired conditions
are satisfied, MCA performs very well. However, in scenarios
involving low-quality data (e.g., due to low SNR) the perfor-
mance of MCA degrades. A number of modifications to MCA
have been proposed, including the incorporation of sharpness
metric optimization into the framework [12], and the use of a
semidefinite relaxation-based optimization procedure [17] for
better phase error estimation performance.
One common aspect of all autofocus techniques referred to

above is that they perform postprocessing, i.e., they use conven-
tionally reconstructed (i.e., reconstructed by the polar-format
algorithm [18], [19]) defocused images in the process of phase
error estimation. However, our starting point is the observation
that more advanced SAR image formation techniques have
recently been developed. Of particular interest in this paper is
the regularization-based SAR imaging (see, e.g., [20]–[22]),



which has been shown to offer certain improvements over
conventional imaging. Regularization-based techniques can
alleviate the problems in the case of incomplete data or sparse
apertures. Moreover, they produce images with increased reso-
lution, reduced sidelobes, and reduced speckle by incorporation
of prior information about the features of interest and imposing
various constraints (e.g., sparsity and smoothness) about the
scene. However, existing regularization-based SAR imaging
techniques rely on a perfect observation model and do not in-
volve any mechanism for addressing any model uncertainties.
Motivated by these observations and considering scenes that

admit sparse representation in some dictionary, we propose a
sparsity-driven technique for joint SAR imaging and phase error
correction by using a nonquadratic regularization-based frame-
work. In the proposed sparsity-driven autofocus (SDA) method,
phase errors are considered as model errors that are estimated
and removed during image formation. The proposed method
handles the problem as an optimization problem in which the
cost function is composed of a data fidelity term (which exhibits
dependence on the model parameters) and a regularization term,
which is the -norm of the field. For simplicity, we consider
scenes that are spatially sparse; however, our approach can be
applied to fields that are sparse in any given dictionary by using
an -norm penalty on the associated sparse representation coef-
ficients. The cost function is iteratively minimized with respect
to the field and the phase error using coordinate descent. In the
first step of every iteration, the cost function is minimized with
respect to the field, and in the second step, the phase error is
estimated given the field estimate. The phase error estimate is
used to update the model matrix, and the algorithm passes to the
next iteration. To the best of our knowledge, this paper is first
in the context of providing a solution to the problem of model
errors in sparsity-driven image reconstruction.
Sharpness-based autofocus techniques [3]–[10] share certain

aspects of our perspective, but our approach is fundamentally
different. In particular, our approach also involves a certain
type of sharpness metric about the field but inside of a cost
function as a side constraint (regularization term) to a data
fidelity term, which incorporates the system model and the data
into the optimization problem for image formation. Hence,
our approach imposes the sharpnesslike constraint during the
process of image formation, rather than as postprocessing. This
enables our technique to correct for artifacts in the scene due
to model errors effectively, in an early stage of the image for-
mation process. Furthermore, unlike existing sharpness-based
autofocus techniques, our model error correction approach is
coupled with an advanced sparsity-driven image formation
technique that has the capability of producing high-resolution
images with enhanced features, and as a result, our approach is
not limited by the constraints of conventional SAR imaging. In
fact, our approach benefits from a dual use of sparsity, i.e., both
for model error correction (autofocusing) and for improved
imaging. Finally, our framework is not limited to sharpness
metrics on the scene but can be used in principle for model
error correction in scenes that admit a sparse representation in
any given dictionary.
We present results on synthetic scenes, as well as on two

public data sets. Qualitative as well as quantitative analysis of

the experimental results shows the effectiveness of the proposed
method and the improvements it provides over existing methods
in terms of both scene reconstruction and phase error estimation.
The rest of this paper is organized as follows. In Section II, the

observation model for a SAR imaging system is described. In
Section III, a general view of the phase errors and their effect on
the SAR data are provided. In Section IV, the proposed method
is described in detail, and in Section V, the experimental results
are presented. We conclude this paper in Section VI and provide
some technical details in the Appendix.

II. SAR OBSERVATION MODEL

In SAR systems, one of the most widely used signals in trans-
mission is the chirp signal as follows:

(1)

Here, is the center frequency and is the so-called chirp
rate. For spotlight-mode SAR, which is the modality of interest
in this paper, the relationship between the observed data
at the th aperture position, i.e., obtained after a preprocessing
step, and the underlying field is as follows:

(2)

Here, is the radius of the circular patch to be imaged, is the
observation angle at the th aperture position, and has the
following form:

(3)

Here, is the round-trip propagation time (demodulation time).
All of the returned signals from all observation angles consti-
tute a patch from the 2-D spatial Fourier transform of the corre-
sponding field. These data are called phase histories and lie on a
polar grid in the 2-D frequency domain, as shown in Fig. 1. Let
the 2-D discrete phase history data be denoted by a
matrix . The column of , i.e., denoted by the
vector , is obtained by sampling (the returned signal
at cross-range position ), in fast time (range direction) at
positions. In terms of this notation, the discrete observation

model can be formulated as follows [20]:

(4)

Here, the vector of observed samples is obtained just by con-
catenating the columns of the 2-D phase history data under
each other. and are discretized approximations to the con-
tinuous observation kernel at the cross-range position and
for all cross-range positions, respectively. is a vector repre-
senting the sampled and column-stacked version of the reflec-
tivity image . Note that and are the total numbers
of range and cross-range positions, respectively.



Fig. 1. Graphical representation of an annulus segment containing known sam-
ples of the phase history data in the 2-D frequency domain.

III. PHASE ERRORS

During the preprocessing of the SAR data (mentioned in
Section II), the demodulation time needs to be known. When
this time is known imperfectly, the SAR data obtained after
preprocessing contain phase errors. The inexact knowledge
of the demodulation time occurs when the distance between
the SAR sensor and the scene center cannot be determined
perfectly due to SAR platform position uncertainties or when
the signal has delay due to some atmospheric effects. Since
uncertainties on, e.g., the position of the platform are constant
over a signal received at one aperture position but are dif-
ferent at each aperture position, phase errors caused by such
uncertainties vary only along the cross-range direction in the
frequency domain. The implication of such an error in the
image domain is the convolution of (each range line of) the
image with a 1-D blurring kernel in the cross-range direction.
Hence, such phase errors cause defocusing of the image in the
cross-range direction. An example of SAR platform position
uncertainties arises from errors in measuring the aircraft ve-
locity. A constant error on aircraft velocity induces a quadratic
phase error function in the data [1]. Usually, phase errors
arising due to SAR platform position uncertainties are slowly
varying (e.g., quadratic and polynomials) phase errors, whereas
phase errors induced by propagation effects are much more
irregular (e.g., random) phase errors [1]. While most phase
errors encountered are 1-D cross-range-varying functions, it
is possible to encounter both range and cross-range-varying
2-D phase errors as well. For instance, in low-frequency UWB
SAR systems, severe propagation effects may appear through
the ionosphere, including Faraday rotation, dispersion, and
scintillation [23] that cause 2-D phase errors, defocusing the
reconstructed image in both range and cross-range directions.
Moreover, waveform errors such as frequency jitter from pulse
to pulse, transmission-line reflections, and waveguide disper-
sion effects may cause defocus in both range and cross-range
directions [18]. Two-dimensional phase errors can in principle
be handled in two subcategories as separable and nonseparable

errors, but it is not common to encounter 2-D separable phase
errors in practice.
For these three types of phase error functions, let us investi-

gate the relationship between the phase-corrupted and error-free
phase history data in terms of the observation model.

A. 2-D Nonseparable Phase Errors

In the presence of 2-D nonseparable phase errors, all sample
points of the phase history data are perturbed with dif-
ferent and potentially independent phase errors. Let -
be a 2-D nonseparable phase error function. The relationship
between the phase-corrupted and error-free phase histories are
as follows:

- (5)

Here, denotes the phase-corrupted phase history data. To
express this relationship in terms of the observation model, we
first define the vector - as follows:

- - - -
(6)

which is created by concatenating the columns of the phase error
matrix - under each other. Here, is the total number
of data samples and equal to the product . Using the corre-
sponding vector forms, the relationship in (5) becomes

- (7)

where - is a diagonal matrix given as

- - - (8)

In terms of observation model matrices, the relationship in (7)
is as follows:

- - (9)

where is the initially assumed model matrix by the imaging
system and - is the model matrix that takes the phase
errors into account. The equations (7) and (9) can be expressed
in the following form as well:

- - -

for (10)

Here, denotes th element of vector and denotes th
row of the model matrix .

B. 2-D Separable Phase Errors

A 2-D separable phase error function is composed of range-
varying and cross-range-varying 1-D phase error functions as
follows:

- (11)

Here, , representing the range-varying phase error, is a
vector, and , representing the cross-range-varying phase error,



is an vector. The vector for 2-D separable phase
errors - is obtained by concatenating the columns of
- as follows:

-

- - -

- -

(12)

A 2-D separable phase error function affects the observation
model matrix in the following manner:

- - - (13)

Here, - is a diagonal matrix given as

- - - -

(14)

C. 1-D Phase Errors

We mentioned before that most encountered phase errors are
only functions of the cross range. In other words, for a partic-
ular cross-range position, the phase error is same at all range
positions. Let - be the 1-D cross-range-varying phase error.
- is a vector of length as follows:

- - - - (15)

In the case of 1-D phase errors, the relationship between the
error-free and the phase-corrupted data can be expressed as

- - - (16)

Here, - is an diagonal matrix defined as

- - - - -

- - (17)

These relationships can also be stated as follows:

- -
-

for (18)

Here, and are the error-free phase history data and the as-
sumedmodel matrix for the th cross-range position. Note that,
in a 1-D cross-range phase error case, there are unknowns; in
a 2-D separable phase error case, there are unknowns;

and in a 2-D nonseparable phase error case, there are
unknowns. Hence, correcting for 2-D nonseparable phase errors
is a much more difficult problem than the others.

IV. PROPOSED METHOD

Sparsity-driven radar imaging has already found use in a
number of contexts [24]–[36]. In SAR applications, there is
widespread use of sparsity-based imaging due to the advantages
such as super-resolution and the artifact suppression that it
provides. Such techniques assume that the observation model
is known exactly. However, it is common to encounter model
errors. In the presence of phase errors and additive measure-
ment noise induced by the SAR system, the observation model
becomes

(19)

where stands for measurement noise, which is assumed to be
white Gaussian noise and is the noisy phase-corrupted obser-
vation data. Here, refers to one of the three types of phase
errors introduced in Section III.
Based on these observations, we propose a nonquadratic reg-

ularization-based method for joint imaging and phase error cor-
rection. While existing sparsity-driven SAR imaging methods
assume that data contain no phase errors, our approach jointly
estimates and compensates such errors in the data while per-
forming sparsity-driven image formation. In particular, we pose
the problem of joint imaging and phase error estimation as the
problem of minimizing the following cost function:

(20)

Here, is the regularization parameter, which specifies the
strength of the contribution of the regularization term into the
solution. The given cost function is minimized jointly with
respect to and using a coordinate descent technique. The
algorithm is an iterative algorithm, which cycles through steps
of image formation and phase error estimation and compen-
sation. Every iteration involves two steps. In the first step,
the cost function is minimized with respect to the field, and
in the second step, the phase error is estimated given the field
estimate. Before the algorithm passes to the next iteration, the
model matrix is updated using the estimated phase error. This
flow is outlined in Algorithm 1.
In Algorithm 1, denotes the iteration number. and
are the image and phase error estimates at iteration , re-

spectively. Note that the knowns in this algorithm are the noisy
phase-corrupted data and the initially assumed model matrix
. The unknowns are the field and the phase error together

with the associated model matrix that takes the phase er-
rors into account. It is worth noting here that the use of the
nonquadratic regularization-based framework contributes to the
accurate estimation of the phase errors as well. Although non-
quadratic regularization by itself cannot completely handle the
kinds of phase errors considered in this paper, it exhibits some



robustness to small perturbations on the observation model ma-
trix [37]. In the context of our approach, the nonquadratic regu-
larization term in the cost function provides a small amount of
focusing of the estimated field in each iteration. This focusing
then enables better estimation of the phase error. This in turn
results in a more accurate observation model matrix, which pro-
vides better data fidelity and leads to a better field estimate in
the next iteration.

Algorithm 1 Algorithm for the Proposed SDA Method

Initialize and

1.

2.

3. Update using and .

4. Let and return to 1.

Stop when is less than a
predetermined threshold.

In this paper, the value of the threshold is chosen as .

Next, we provide the details of the algorithm for the three
classes of phase errors described in Section III.

A. Algorithm for 1-D Phase Errors

In the algorithm for 1-D phase errors, in the first step of every
iteration, the following cost function is minimized with respect
to :

- (21)

This is the image formation step and is the same for all types of
phase errors. To avoid problems due to nondifferentiability of
the -norm at the origin, a smooth approximation is used [20]
as follows:

(22)

where is a nonnegative small constant. In each iteration, the
field estimate is obtained as

- - -
(23)

where is a diagonal matrix, i.e.,

(24)
The matrix inversion in (23) is not carried out explicitly but
rather numerically, through the conjugate gradient algorithm.
Note that this algorithm has been used in a variety of settings
for sparsity-driven radar imaging and has been shown to be a
descent algorithm [38].

The second step involves phase error estimation, in which a
different procedure is implemented for each type of phase er-
rors. For 1-D cross-range-varying phase errors, given the field
estimate, the following cost function is minimized for every
cross-range position [39]

- -
-

(25)
where - denotes the phase error estimate for the cross-
range position in the iteration . In (25), the
vector is the noisy SAR data at the th cross-range position.
After evaluating the norm expression in (25) (see Appendix for
details), we obtain the following:

-

-

-

(26)

where

(27)
We know that negative cosine has its minimum at zero and in-
teger multiples of ; therefore, if we set the argument of the
cosine to zero, we can find the phase error estimate in a closed
form, as given in (28), for the corresponding aperture position:

- (28)

Using the phase error estimate, the model matrix is updated as
follows:

-
- (29)

We increment and turn back to the optimization problem in
(21).
Moreover, note that phase updates are performed after each

step of the f-iteration in (23); as a result of which, the overall
computational load of our approach is not significantly more
than that of just image formation.

B. Algorithm for 2-D Separable Phase Errors

In case of 2-D separable phase errors, the field estimate is
obtained via minimizing the following cost function:

- (30)

Given the field estimate, first, the phase error in the cross-
range direction is estimated using the 1-D phase error estima-
tion procedure described in Section IV-A; then, this estimate is
used to update the model matrix as follows:

(31)

(32)



Fig. 2. (a) The original scene. (b) Conventional imaging from the data without phase errors. (c) Sparsity-driven imaging from the data without phase errors.

Fig. 3. Left- Phase error. Middle- Images reconstructed by conventional imaging. Right- Images reconstructed by the proposed SDA method. (a) Results for
quadratic phase error. (b) Results for an 8th order polynomial phase error. (c) Results for a phase error uniformly distributed in .

Then, to estimate the phase error in the range direction, the el-
ements of the data vector and the rows of the model matrix

are ordered in such a way that the elements and rows
corresponding to the same range position lie under each other.
Let these modified data vector and modified model matrix be

and , respectively (i.e., the phase history matrix is
row stacked rather than column stacked). Using these new vari-
ables, the phase error estimate for the range direction is found
repeating the same procedure as in the cross-range direction and,
this time, for every range position. This can be expressed as fol-
lows:

(33)

(34)

Here, and represent the parts of and
corresponding to a particular range position , respectively. To
return to the original form, the rows of the matrix

are rearranged so that the rows corresponding to the same cross-
range position lie under each other. This rearranged matrix is
denoted by - , which is used in the next iteration to
find the next field estimate.

C. Algorithm for 2-D Nonseparable Phase Errors

In a more general case in which we consider 2-D nonsepa-
rable phase errors, the image formation step of the algorithm is
essentially identical to its counterpart in previous cases. To ob-
tain the field estimate, the following cost function is minimized
with respect to :

- (35)

Using the same point of view as in the previous two cases, in
the phase error estimation step, the following cost function is
minimized [40]:

-

-
-

(36)



Fig. 4. Experimental results on a speckled scene. (a) Conventional image reconstructed from noisy data without phase error. (b) Conventional image reconstructed
from noisy data with phase error. (c) Image reconstructed by sparsity-driven imaging from noisy data with phase error. (d) Image reconstructed by the proposed
SDA method.

TABLE I
SAR SYSTEM PARAMETERS USED IN THE SYNTHETIC SCENE EXPERIMENT

WHOSE RESULTS ARE SHOWN IN FIGS. 2 AND 3

Here, - denotes the phase error estimate for the th
data sample in iteration . This step is solved in the closed
form in a similar way to that in (25). In particular, the solution
of the optimization problem in (36) is as follows:

- (37)

where

(38)
Using the phase error estimate, the model matrix is updated
through:

-
- (39)

If the phase error type (i.e., 1-D, 2-D separable, or 2-D non-
separable) is known, then it is natural to use the corresponding
version of the proposed algorithm for best phase error estima-
tion performance. If the phase error type is not known a priori,
then the version of our algorithm for the 2-D nonseparable case
can be used since this is the most general scenario. For any of
these three types of phase errors, our algorithm does not re-
quire any knowledge about how the phase error function varies
(randomly, quadratically, polynomially, etc.) along the range (in
2-D cases) or cross-range (in 1-D and 2-D cases) directions. We
demonstrate the effectiveness of our approach on data corrupted
by various phase error functions.

V. EXPERIMENTAL RESULTS

We have applied the proposed SDA method in a number of
scenarios and present our results in the following two subsec-
tions. In Section V-A, we present our results on various types of
data and demonstrate the improvements in visual image quality,
as compared with the uncompensated case. In Section V-B, we

Fig. 5. (a) Conventional imaging from the data without phase error. (b) Spar-
sity-driven imaging from the data without phase error.

provide a quantitative comparison of our approach with existing
state-of-the-art autofocus techniques.

A. Qualitative Results and Comparison to the
Uncompensated Case

To present qualitative results for the proposedmethod in com-
parison to the uncompansated case, several experiments have
been performed on various synthetic scenes as well as on two
public SAR data sets provided by the U.S. Air Force Research
Laboratory (AFRL): the Slicy data, which is part of the MSTAR
data set [41], and the Backhoe data [42].
To generate synthetic SAR data for a 32 32 scene, we

have used a SAR system model with the parameters given in
Table I. The resulting phase history data lie on a polar grid. As
observation noise, complex white Gaussian noise is added to
the data so that SNR is 30 dB. We have performed experiments
for four different types of phase errors. The original synthetic
image is shown in Fig. 2(a). For the data without phase errors,
conventional and sparsity-driven reconstructions are given in
Fig. 2(b) and (c), respectively. In this paper, in all of the ex-
periments, the polar-format algorithm is used for conventional
imaging. Results by conventional imaging and by the proposed
method for different types of phase errors are shown in Fig. 3.
Conventionally reconstructed images suffer from degradation
due to phase errors. The results show the effectiveness of the
proposed method. As shown in Fig. 3, it is not possible to vi-
sually distinguish the images formed by the proposed method
from the original scene.
To demonstrate the performance of SDA in the presence

of speckle, we present some results on a 128 128 synthetic
scene in Fig. 4. The scene consists of six pointlike targets and
a spatially extended target with the shape of a square frame. To
create speckle, a random phase is added to the reflectivities of



Fig. 6. Left- Images reconstructed by conventional imaging. Middle- Images reconstructed by sparsity-driven imaging. Right- Images reconstructed by the pro-
posed SDA method. (a) Results for a 1-D quadratic phase error. (b) Results for a 1-D phase error uniformly distributed in . (c) Results for a 2-D separable
phase error composed of two 1-D phase errors uniformly distributed in . (d) Results for a 2-D non-separable phase error uniformly distributed in

.

the underlying scene. The corresponding SAR data are simu-
lated by taking a 32 32 band-limited segment from the 2-D
Fourier transform of the scene. Then a 1-D cross-range-varying
random phase error, i.e., uniformly distributed in ,
has been added to the data. The speckle is clearly visible in
the conventional image reconstructed from the data without
phase errors in Fig. 4(a). The images reconstructed by con-
ventional imaging and sparsity-driven imaging when the data
are corrupted by phase errors are shown in Fig. 4(b) and (c),
respectively. The result in Fig. 4(d) demonstrates that SDA can
effectively perform imaging and phase error compensation in
the presence of speckle.
In Fig. 5, we present the images reconstructed from the Slicy

data without phase errors. The Slicy target is a precisely de-
signed and machined engineering test target containing multiple
simple geometric radar reflector static shapes. Fig. 5(a) shows
the image reconstructed conventionally, and Fig. 5(b) shows the
result of sparsity-driven imaging. As seen in the figures, spar-
sity-driven imaging provides high-resolution images with en-
hanced features (in this particular example, this means locations
of dominant point scatterers). Fig. 6(a) and (b) shows the re-
sults on the Slicy data for a 1-D quadratic and a 1-D random
phase error, which is uniformly distributed in . The im-
ages in the middle column correspond to the direct applica-

Fig. 7. (a) Conventional imaging from the data without phase error. (b) Spar-
sity-driven imaging from the data without phase error.

tion of the sparsity-driven imaging technique of [20] without
model error compensation. The significant degradation in the re-
constructions show that sparsity-driven imaging without model
error compensation cannot handle phase errors. From the im-
ages presented in the right column, we can see clearly that the
images formed by the proposed SDA method inherit and ex-
hibit the advantages of sparsity-driven imaging [see Fig. 5(b)],
and in the meantime, the phase errors are removed as well. In
Fig. 6(c) and (d), the results for 2-D separable and nonseparable
random phase errors are displayed. 2-D phase errors cause a dra-
matic degradation on the reconstructed images. However, the



Fig. 8. Left- Images reconstructed by conventional imaging. Middle- Images reconstructed by sparsity-driven imaging. Right- Images reconstructed by the pro-
posed SDA method. (a) Results for a 1-D phase error uniformly distributed in . (b) Results for a 2-D separable phase error composed of two 1-D
phase errors uniformly distributed in .

Fig. 9. Experiments on the Slicy data with 70% frequency band omissions :
(a) Conventional imaging from the data without phase error. (b) Sparsity-driven
imaging from the data without phase error.

proposed SDA method successfully corrects the 2-D phase er-
rors as well and produces images that exhibit accurate localiza-
tion of the true scatterers and significant artifact suppression.
Another data set on which we present results is the Backhoe

data set. We present 2-D image reconstruction experiments
based on the AFRL “Backhoe Data Dome, Version 1.0,” which
consists of a simulated wideband (7–13 GHz), full polarization,
complex backscatter data from a backhoe vehicle in free space.
The backscatter data are available over a full upper steradian
viewing hemisphere. In our experiments, we use VV polar-
ization data, i.e., centered at 10 GHz, and with an azimuthal
span of . The data we use in our experiments have a
bandwidth of 1 GHz. To deal with the wide-angle observation
in the Backhoe data set, we incorporate the subaperture-based
composite imaging approach of [43] into our framework. The
composite image is formed by combining the subaperture
images so that each pixel value of the composite image is deter-
mined by selecting the maximum value for that pixel across the
subaperture images. For this experiment, phase error estimation
and correction are performed for every subaperture image.
In Fig. 7, we show the conventionally and sparsity-driven
reconstructed images for the data without a phase error. The
results on Backhoe data for 1-D and 2-D separable random

phase errors are presented in Fig. 8. In the left and middle
columns of Fig. 8, the artifacts due to phase errors are clearly
seen in the images reconstructed by conventional imaging and
sparsity-driven imaging, respectively. However, both 1-D and
2-D phase errors are compensated effectively by the proposed
method. From the given examples so far, we see that the pro-
posed SDA method corrects the phase errors effectively and
provides images with high resolution and reduced sidelobes,
due to the nonquadratic regularization-based framework.
We mentioned that regularization-based imaging gives satis-

fying results in cases of incomplete data as well. We explore this
aspect in the presence of phase errors performing an experiment
on Slicy data with frequency-band omissions. In this experi-
ment, data from randomly selected contiguous frequency bands
corresponding to 70% of frequencies have been set to zero, i.e.,
only 30% of the spectral data within the radar’s bandwidth are
available. A detailed explanation of this spectral masking pro-
cedure can be found in [43]. Then, a 1-D quadratic phase error
function was applied to the data. The results of this experiment
are presented in Figs. 9 and 10. As shown from the reconstruc-
tions, the proposed method produces feature enhanced images
and removes phase errors effectively even when the data are par-
tially available.
Finally, we demonstrate how the nonquadratic regularization

functional in our framework supports phase error compensa-
tion, through a simple experiment in which we compare the re-
sults of our approach with a quadratic regularization scheme.
In this experiment, we have applied a 1-D cross-range-varying
random phase error, which is uniformly distributed in to
the data from a synthetic scene simulated just by taking its 2-D
Fourier transform. To construct a quadratic regularization-based
scheme, we have replaced the -norm in our approach with an
-norm without changing the phase error estimation piece. We
present the results of this experiment in Fig. 11. As shown in the
images, with the quadratic regularization approach, it is not pos-
sible to correct phase errors, whereas the image reconstructed



Fig. 10. Experiments on the Slicy data with 70% frequency band omissions and 1-D quadratic phase error: (a) Conventional imaging. (b) Sparsity-driven imaging
(c) Proposed SDA method.

Fig. 11. Results of the experiment for testing the effect of the nonquadratic regularization term in the proposed SDA method on phase error compensation. (a)
The original scene. (b) Conventional imaging from the data with phase error. (c) Image reconstructed in the case of replacing the -norm in our approach with an
-norm without changing the phase error estimation piece. (d) Image reconstructed by the proposed SDA method.

by our nonquadratic regularization-based SDA algorithm is per-
fectly focused.

B. Quantitative Results in Comparison to State-of-the-Art
Autofocus Methods

In the second part of the experimental study, we present
results for comparison of the proposed technique with existing
autofocus techniques. In Fig. 12, we show comparative results
for a 64 64 synthetic scene. The SAR data are simulated by
taking a band-limited segment on a rectangular grid from the
2-D discrete Fourier transform of the scene. Then, complex
white Gaussian noise is added to the data so that the input SNR
is 10.85 dB. Then, a 1-D cross-range-varying random phase
error, which is uniformly distributed in , is added to the
data. The performance of the proposed technique is compared
with the performance of PGA [2] and entropy minimization
techniques [3], [5]–[7]. For entropy minimization, we have
used the procedure given in [5]. For this particular experiment,
the results suggest that all three methods do a good job in
estimating the phase error. However, in terms of image quality,
while PGA and entropy minimization are limited by conven-
tional imaging, the proposed SDA method demonstrates the
advantage of joint sparsity-driven imaging and phase error
correction and produces a scene that appears to provide a very
accurate representation of the original scene. For the same
synthetic scene, we have also performed experiments with
different input SNRs. For each SNR value, we have applied 20
different random 1-D phase errors, where all of them uniformly
distributed in . For each experiment, we compute three
different metrics. These are the MSE between the original
image and the image resulting from the application of the
autofocus technique considered, target-to-background ratio,
and metrics for the phase error estimation error. These metrics
are computed as follows:

MSE (40)

Here, and denote the original and the reconstructed images,
respectively. is the total number of pixels.
The target-to-background ratio is used to determine the ac-

centuation of the target pixels with respect to the background:

TBR (41)

Here, and denote the pixel indices for the target and the
background regions, respectively. is the number of back-
ground pixels.
To compare the phase error estimation performance of the

proposed method to other techniques, we first compute the esti-
mation error for phase errors as follows:

(42)

Here, is effectively the phase error that remains in the
problem after correction of the data or the model using the
estimated phase error. To evaluate various techniques based on
their phase error estimation performance, it makes sense to first
remove the components in that either have no effect on the
reconstructed image or that can be easily dealt with, and then
perform the evaluation based on the remaining error. We first
note that a constant (as a function of the aperture position) phase
shift has no effect on the reconstructed image [1]. Second, a
linear phase shift does not cause blurring but rather a spatial
shift in the reconstructed image. Such a phase error can be
compensated by appropriate spatial operations on the scene [4],
which we perform prior to quantitative evaluation. To disregard
the effect of any constant phase shift in our evaluation, and also
noting that the amount of variation of the phase error across the



Fig. 12. (a) The original scene. (b) Conventional imaging from noisy data without phase error. (c) Conventional imaging from noisy data with phase error. (d)
Result of PGA. (e) Result of entropy minimization. (f) Result of the proposed SDA method.

Fig. 13. Quantitative evaluation of the reconstruction of the scene in Fig. 12(a) for various SNRs. Each point on the curves corresponds to an average over 20
experiments with different random 1-D phase errors uniformly distributed in . (a) MSE versus SNR. (b) Target-to-background ratio versus SNR. (c) MSE
for phase error estimations versus SNR.

aperture is closely related to the degree of degradation of the
formed imagery, we propose using evaluation metrics based on
the total variation (TV) of and on the -norm of the gradient
of :

TV MSE

(43)
Here, is the vector, obtained by taking first-
order differences between successive elements of . is the
total number of cross-range positions.
Now, we get back to the quantitative evaluation of the recon-

struction of the scene in Fig. 12(a) for various SNRs.We present
the comparison results for these three metrics in Fig. 13. Since
TV and MSE values are similar for these particular exper-
iments, for the sake of space, we show the results for MSE
only. From the plots presented, it is clearly seen that the pro-
posed method performs better than the other techniques, par-
ticularly for low SNR values. We also note in Fig. 13(a) that
the proposed SDA method yields much better performance in
terms of the MSE between the original and the reconstructed

images even at high SNRs. This is due to the fact that SDA ben-
efits from the advantages of sparsity-driven imaging (unlike the
other techniques) over conventional imaging (see Fig. 12) in ad-
dition to successfully correcting the phase errors (similar to the
other techniques) at high SNRs.
All of the three algorithms were implemented using nonop-

timized Matlab code on an Intel Celeron 2.13-GHz CPU. In
the experiment of Fig. 12, the computation times required by
PGA, entropy minimization, and the proposed SDA method are
0.624, 1.1076, and 2.1216 s, respectively. For the experiments
of Fig. 13, the average computation times for PGA, entropymin-
imization, and SDA are 0.3095, 0.4719, and 3.4961 s, respec-
tively. The computational load of SDA is relatively more than
the other methods, but this can be justified through the benefits
provided by the sparsity-driven imaging framework underlying
SDA, as demonstrated in our experiments.
In Fig. 14, we display some comparative results on the

Backhoe data as well. For this experiment, the applied 1-D
phase error is a random error with a uniform distribution in

. In this example, for quantitative comparison, we use



Fig. 14. Experiments on the Backhoe data for a 1-D random phase error with a uniform distribution in . (a) Conventional imaging with phase error. (b)
Result of PGA. (c) Result of entropy minimization. (d) Result of the proposed SDA method.

Fig. 15. (a) The original scene. (b) Conventional imaging from noisy phase-corrupted data for input SNR of 27 dB. (c) Result of MCA for input SNR of 27 dB.
(d) Result of the proposed SDA method for input SNR of 27 dB. (e) Conventional imaging from noisy phase-corrupted data for input SNR of 10 dB. (f) Result of
MCA for input SNR of 10 dB. (g) Result of the proposed SDA method for input SNR of 10 dB. (h) MSEs for phase error estimation versus SNR.

TABLE II
MSE ACHIEVED BY VARIOUS METHODS IN ESTIMATING THE PHASE ERROR

FOR THE BACKHOE EXPERIMENT IN FIG. 14

the MSE for the phase error. The MSE values are shown in
Table II.
The results show that the proposed method performs phase

error estimation more accurately than PGA and entropy min-
imization techniques. Furthermore, the proposed method also
exhibits superiority over existing autofocus techniques in terms
of the quality of the reconstructed scene. In particular, the pro-
posed method results in a finer and more detailed visualization
through noise and sidelobe suppression as well as resolution im-
provements. The reconstructed images and quantitative compar-
ison show the effectiveness of the proposed approach.
Finally, we compare our method with the recently proposed

MCA technique [12]. We have generated a 64 64 synthetic
scene that satisfies the requirements of MCA, involving a con-
dition on the rank of the image, as well as the presence of a
low-return region in the scene. The SAR data used in these ex-
periments are corrupted by a 1-D cross-range-varying random
phase error, which is uniformly distributed in . We show
the results of the experiments performed for various input SNR

levels in Fig. 15. We observe that both MCA and SDA perform
successful phase error compensation at the relatively high SNR
of 27 dB (see Fig. 15(c) and (d)). However, when SNR is re-
duced to 10 dB, MCA is not able to correct the phase error, as
shown in Fig. 15(f). On the other hand, SDA compensates phase
errors, and suppresses noise and clutter effectively even for this
relatively low SNR case, as shown in Fig. 15(g). Fig. 15(h) con-
tains a plot of MSEs for phase error estimation achieved by
MCA and SDA on this scene for various SNR levels. This plot
demonstrates the robustness of SDA to noise. Average compu-
tation times required by MCA and the proposed SDA method
for the experiments displayed in Fig. 15 are 0.1629 and 2.5151
s, respectively (using nonoptimized Matlab code on an Intel
Celeron 2.13-GHz CPU). The results of these experiments show
that, although MCA is a fast algorithm and works very well in
scenarios involving high-quality data, its performance degrades
significantly as the SNR decreases.

VI. CONCLUSION

We have proposed and demonstrated a sparsity-driven tech-
nique for joint SAR imaging and phase error correction. The
method corrects the phase errors during the image formation
process while it produces high-resolution focused SAR images,
due to its sparsity enforcing nature resulting from the use of a



nonquadratic regularization-based framework. While the pro-
posed SDA method requires more computation compared with
existing autofocus techniques due to its sparsity-driven image
formation part, its overall computational load is not significantly
more than that of sparsity-driven imaging without phase error
compensation since image formation and phase error estima-
tion are performed simultaneously in the proposed method. The
method can handle 1-D as well as 2-D phase errors. Experi-
mental results on various scenarios demonstrate the effective-
ness of the proposed approach as well as the improvements that
it provides over existing methods for phase error correction.
In this paper, we have considered SAR, but our approach is

applicable in other areas, where similar types of model errors
are encountered as well. Since the proposed method has a spar-
sity-driven structure, it is applicable only to radar imaging sce-
narios in which the underlying scene admits a sparse represen-
tation in a particular domain. Other potential extensions may be
the formulation of the problem for scenarios involving sparse
representations of the field in various spatial dictionaries or in-
corporation of prior information or some constraints on phase
error. For future work, model errors in multistatic scenarios and
target-motion-induced phase errors would be of interest as well.

APPENDIX

In this Appendix, we describe how we get from (25) to (26).
The cost function in (25) for phase error estimation is as follows:

- -
-

Here, M denotes the total number of cross-range positions.
When we evaluate the norm expression, we get
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Let and .
Since we can write - as - ,

the equation becomes

-

- -

The cosines in the previous equation can be added with the
phasor addition rule to a single cosine. The phasors for terms

- and - are as follows:

If we add phasors

we can find the magnitude and the phase of the new cosine as

magnitude phase

Finally, we can write

-

-
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