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ABSTRACT
In this paper, we consider audio-visual speech recognition with
background music. The proposed algorithm is an integration of
audio-visual speech recognition and single channel source se-
paration (SCSS). We apply the proposed algorithm to recognize
spoken speech that is mixed with music signals. First, the SCSS
algorithm based on nonnegative matrix factorization (NMF)
and spectral masks is used to separate the audio speech signal
from the background music in magnitude spectral domain. After
speech audio is separated from music, regular audio-visual spe-
ech recognition (AVSR) is employed using multi-stream hidden
Markov models. Employing two approaches together, we try to
improve recognition accuracy by both processing the audio sig-
nal with SCSS and supporting the recognition task with visual
information. Experimental results show that combining audio-
visual speech recognition with source separation gives remar-
kable improvements in the accuracy of the speech recognition
system.

1. INTRODUCTION
One of the challenging problems of automatic speech recogni-
tion (ASR) systems is recognizing speech signals when they are
mixed with background music or any other signals. The perfor-
mance of a speech recognition system quickly degrades when
there is music in the background. To improve speech recogni-
tion performance it would be better to remove music from the
speech signal before applying ASR. Augmenting audio infor-
mation with visual information that is not affected by the backg-
round signals will also improve the recognition performance.
The need to recognize speech signals that are mixed with backg-
round music signals is encountered in many applications such
as broadcasting news, songs, documentary programs, and other
shows on TV.

Single channel source separation (SSCS) aims to separate
the original source signals from a single observed mixture of
these source signals. Nonnegative matrix factorization [1] mo-
dels are trained using training data for each source signal and
these models are employed in separating source signals in the
observed mixed signal [2, 3].
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In this paper, we combine SCSS techniques with AVSR to
recognize speech signals that are mixed with music signals. The
aim of the proposed algorithm is to make use of the advantages
of combining visual information in the speech recognition pro-
cess, and also make use of the advantages of separating the spe-
ech signal from the mixed signal. We use the NMF algorithm
and spectral masks to separate speech signals from the backg-
round music signals. We use NMF for SCSS because it yields
a fast, efficient, and simple algorithm. Combining NMF with
spectral masks gives better separation results than using NMF
only [2]. We assume that training audio signals for each source
are available. NMF and the training audio data are used to train
a set of basis vectors for each source in magnitude spectral do-
main. After observing the mixed signal, NMF is used to decom-
pose the magnitude spectrogram of the mixed signal with the
trained basis vectors for both sources. The decomposition re-
sults are used to build a spectral mask. The spectral mask com-
putes the spectrogram of the estimated speech signal by scaling
the mixed signal spectrogram according to the contribution of
the speech signal in the mixed signal.

Speech recognition from audio with hidden Markov models
(HMM) [4] employs hidden states with Gaussian mixture model
emissions and Markovian transitions between the states. When
there is noise in the audio source and in the presence of visual
information, audio-visual speech recognition (AVSR) may be
also used which relies on supporting the audio information with
visual information [5]. In AVSR the visual features are hand-
led in a separate stream of states thus resulting a multi-stream
HMM (MSHMM) [5]. We use the separated speech signal to-
gether with visual data as different streams in an MSHMM.

The remainder of this paper is organized as follows: In sec-
tion 2, we describe the speech-music separation algorithm. In
section 3, we show the main procedures of the audio-visual spe-
ech recognition which we employ during recognition of the se-
parated speech signal. In the remaining sections, we represent
our observations and the results of our experiments.

2. SPEECH-MUSIC SIGNAL
SEPARATION

Given an observed mixed signal y(t) which is a mixture of spe-
ech x(t) and music signals m(t), we aim to find an estimate
for x(t) from y(t). We solve this problem in the short time Fo-
urier transform (STFT) domain. Let Y (t, f) be the STFT of



y(t), where t represents the frame index and f is the frequency-
index. Due to linearity of the STFT, we have:

Y (t, f) = X(t, f) +M(t, f), (1)

|Y (t, f)| ejφY (t,f) = |X(t, f)| ejφX (t,f)+|M(t, f)| ejφM (t,f).

(2)
The phase angles are usually ignored in this framework [3].
Hence, we can write the magnitude spectrogram of the measu-
red audio signal as the sum of source signals’ magnitude spect-
rograms as follows:

Y = X + M . (3)

Here X and M are unknown magnitude spectrograms, and
need to be estimated using observed data and training speech
and music spectra. The magnitude spectrogram for the obser-
ved signal y(t) is obtained by taking the magnitude of the DFT
of the windowed signal for each column of the spectrogram.

To solve this problem, we use NMF with the magnitude
spectra of the training data to train a set of basis vectors for
each source as shown in section 2.2. Then NMF is used to de-
compose the spectrogram of the mixed signal into a weighted
linear combination of these trained basis vectors for both sour-
ces as shown in section 2.3. The weighted sum of the decompo-
sion terms that include the trained speech basis vectors is used
as an initial estimate of the magnitude spectra of the speech sig-
nal. The weighted sum of the remaining decomposion terms is
used as an initial estimate of the magnitude spectra of the music
signal. The initial estimates of both sources are used to build a
spectral mask as shown in section 2.4. The spectral mask calcu-
lates the spectrogram of the estimated speech signal by scaling
every entry of the mixed signal spectrogram according to the
contribution of the speech signal in the mixture.

2.1. Non-negative matrix factorization

Non-negative matrix factorization is used to decompose any
nonnegative matrix V into a nonnegative basis vectors matrix
B and a nonnegative weights matrix W .

V ≈ BW . (4)

The matrices B and W can be found by solving the following
generalized Kullback-Leibler divergence cost function [1]:

min
B,W

D (V ||BW ) , (5)

where

D (V ||BW ) =
∑
i,j

(
V i,j log

V i,j

(BW )i,j
− V i,j + (BW )i,j

)
,

subject to elements of B,W ≥ 0. The solution for equation (5)
can be computed by alternating updates of B and W as follows:

B ← B ⊗
V

BW W T

1W T
, (6)

W ←W ⊗
BT V

BW
BT1

, (7)

where 1 is a matrix of ones with the same size of V , the ope-
rations ⊗ and all divisions are element-wise multiplication and
division respectively.

2.2. Training the bases

Given a set of training data of speech and music signals, the
magnitude spectrogram X train and M train of the training spe-
ech and music signals are calculated respectively. NMF uses the
two spectrograms to train a set of basis vectors as a model for
each source signal. The update rules in equations (6, 7) are used
to decompose the magnitude spectrograms into bases and we-
ights positive matrices as follows:

X train ≈ BspeechW speech,

M train ≈ BmusicWmusic,
(8)

after each iteration, we normalize the columns of Bspeech and
Bmusic. All the matrices B and W are initialized by positive
random noise. The bases matrices Bspeech and Bmusic are used
as trained models for speech and music signals.

2.3. Decomposition of the mixed signal

After observing the mixed signal y(t), the magnitude spectrog-
ram Y of the mixed signal is computed. To find the contribution
of every source signal in the mixed signal, NMF is used to de-
compose the magnitude spectrogram Y of the mixed signal as a
linear combination with the trained basis vectors in Bspeech and
Bmusic as follows:

Y ≈
[
Bspeech , Bmusic

]
W , (9)

where Bspeech and Bmusic are obtained from solving equati-
ons in (8). Here we only solve for W in equation (9) using the
update rule in equation (7), and the bases matrix is fixed. W
is initialized by positive random noise. The initial estimate of
the separated speech signal magnitude spectrogram is found by
multiplying the bases matrix Bspeech with its corresponding we-
ights in matrix W in equation (9). Also the initial estimate of
the separated music signal magnitude spectrogram is found by
multiplying the bases matrix Bmusic with its corresponding we-
ights in matrix W in equation (9). The initial magnitude spect-
rogram estimates for speech and music signals are respectively
calculated as follows:

X̃ = BspeechW S , M̃ = BmusicWM . (10)

Where W S and WM are submatrices in matrix W that cor-
respond to the speech and music components respectively in
equation (9).

2.4. Spectral mask and speech signal reconstruction

As we can see from equations (9, 10) the two matrices X̃ and
M̃ may not sum up to the matrix Y . We usually get nonzero
decomposion error since NMF usually gives an approximation
as follows:

Y ≈ X̃ + M̃ . (11)

Assuming noise is negligible in the mixed signal, the estimated
spectrograms of speech and music should sum up to the mixed
signal spectrogram. To make the error zero, we use the initial
estimated magnitude spectrograms X̃ and M̃ to build a spectral
mask [2] as follows:

H =
X̃
p

X̃
p

+ M̃
p . (12)



Where p > 0 is a parameter, (.)p, and division are element-wise
operations. Notice that elements of H ∈ [0, 1]. These masks
will scale every time-frequency bin in the observed mixed sig-
nal magnitude spectrogram with a ratio that explains how much
each signal contributes in the mixed signal as follows:

X̂ = H ⊗ Y , M̂ = (1−H)⊗ Y . (13)

where X̂ and M̂ are the final estimates of the magnitude spect-
rograms of the speech and music signals respectively, 1 is a
matrix of ones, and ⊗ is element-wise multiplication. Spectral
mask works as a soft mask for the observed mixed signal. Every
entry of the separated speech signal spectrogram is a scaled ver-
sion of its corresponding entry of the spectrogram of the mixed
signal. The scale values are defined in the spectral mask mat-
rix H . Using different values for p leads to different kinds of
masks. When p = 2 the mask H can be considered as a Wi-
ener filter. At p = ∞, we achieve a binary mask (hard mask),
which will choose the larger source component at each entry as
the only component.

After finding the contribution of the speech signal in the
mixed signal, the estimated speech signal x̂(t) can be found by
using inverse STFT on the estimated magnitude spectrogram X̂

combined with the phase of the mixed signal.
After separating the speech signal from the music backg-

round, the audio-visual speech recognition system is used with
the separated signal x̂(t) rather than dealing with the observed
mixed signal y(t). In the next sections, we show the main pro-
cedures for audio-visual speech recognition for the separated
speech signal.

3. AUDIO-VISUAL SPEECH
RECOGNITION SYSTEM

As mentioned in the introduction, the recognition system propo-
sed in this work relies on performing speech recognition using
both a speech signal separated from background music and its
corresponding visual information. Because of the multi-channel
nature of the system, separate feature extraction processes for
each channel are performed for training and recognition. Ext-
racted features for different channels are then handled in an
MSHMM, where these multiple streams of observations are
used in calculating the emission probabilities of the HMM mo-
del. In the MSHMM, given a multi-stream observation sequence
(o1,o2, . . . ,oT ), it is assumed that each observation is a con-
catenation of multiple vectors oTt = [o1

t
T
, . . . ,oSt

T
], where S

is the number of streams–which is two in our case. The emission
probability for a state qt is:

p(ot|qt) =
S∏
i=1

p(oit|qt)αi , (14)

where αi are the stream weights. The streams are usually sepa-
rately modeled with a Gaussian mixture model. In the following
subsection, we give information about the features that we use
in our recognition experiments.

3.1. Audio-Visual Features for the MSHMM

Audio features are extracted as Mel frequency cepstral coeffici-
ents (MFCC) [6] with 13 static features as well as ∆ and ∆∆

features, making a total of 39 features. For the separated spe-
ech, feature extraction is performed after the proposed methods
extract speech from the mixed signal.

For the visual data, a square region of interest (ROI) is ext-
racted and tracked between consecutive frames. The ROI is de-
termined by using landmark points, which are extracted using
Active Shape Models (ASM) [7, 8]. After all the landmark po-
ints are extracted on the face area, weight center of the lip is
taken as ROI center. The size of the ROI is calculated by taking
as one and a half times of the distance between the eye centers.

To extract the visual features that are used in the MSHMM,
Principle Component Analysis (PCA) is applied on ROI frames.
For PCA top 30 principle components for each frame are ext-
racted. To represent a visual frame, first derivatives of principle
components are also added resulting in a vector of 60 dimen-
sions. So, an audio-visual frame is represented by two streams,
having 39 and 60 features respectively.

3.2. Training the HMMs and MSHMMs

Initially we model the phones with three states, and train an
audio-only HMM. Then, to obtain an audio-visual MSHMM
from audio only HMM, we concatenate visual features to audio
features and train the multi-stream model using single-pass
retraining from the audio-only HMM with only one iteration
which gives better results than jointly training all streams. Since
in the training we use only clean audio which is much more re-
liable than the video data and instead of performing a combined
training, this single-pass retraining approach relying mostly on
audio data using visual data only to calculate emission probabi-
lities of the visual stream gives better results.

3.3. Recognition with the MSHMM

After training and obtaining the MSHMM from clean audio and
visual data, we test the recognition accuracies on different types
of audio and visual data. Since the main objective of our work
is investigating recognition on mixed and separated speech and
these conditions have no effect on visual data, visual stream is
always the same in recognition. On the contrary audio stream
changes with respect to the speech information being used. To
test the accuracies, we give different stream weights (α values)
to each stream to perform audio only, visual only or audio visual
recognition. For audio only recognition we give one to audio st-
ream weight and zero to visual stream weight and vice versa for
visual only recognition. For audio-visual speech recognition,
we perform different weight combinations on validation/held-
out data at each given signal to music ratio (SMR) and take the
combination that gives the best results.

4. EXPERIMENTS AND DISCUSSION
We tested the proposed system with the M2VTS video database
[9], which consists of videos of 37 different people recorded
in five sessions and arranged in five tapes. On the videos, the
speakers say ten French digits, which are modeled as ten words
and 19 phonemes. We have used first four tapes as training data
and the fifth tape (excluding one video due to occlusion on the
chin) as testing data. The reason for our choice is that, first four
tapes are recorded under similar conditions however, fifth tape



has some visual differences like glasses or hat that add extra
challenge to the data. This type of testing with one tape is dif-
ferent from jack-knife testing in previous works [5] and may
result in slight relative decrease in visual recognition accuracy.
For music data, piano music from piano society web site [10]
was downloaded. We used 38 pieces from different composers
but from a single artist for training and left out one piece for
the testing stage. The test data was formed by adding random
portions of the test music file to the 36 speech utterance files at
different speech to music ratio (SMR) values in dB. The audio
power levels of each file were found using the “audio voltmeter”
program from the G.191 ITU-T STL software suite [11].

For the speech music separation algorithm, we used the tra-
ining speech signals from the first four tapes. The magnitude
spectrograms for the training speech and music data were cal-
culated by using the STFT, a Hamming window was used, and
the FFT was taken at 512 points, the first 257 FFT points only
were used since the remaining points are the conjugate of the
first 257 points. The sampling rate is 16KHz. We trained diffe-
rent numbers of basis vectors Ns for the speech signal and Nm
for music signal such that Ns, Nm ∈ {32, 64, 128}. In order
to get better source separation results, we applied the proposed
SCSS algorithm on male and female speakers separately by bu-
ilding different bases for them.

The parameters {Ns, Nm, p} of the source separation and
the audio-visual stream weights {αa, αv} of the audio-visual
speech recognition were searched for every SMR on validation
data by trying out several values. We used the first tape from the
same database as validation data. We recorded the values of the
parameters that gave the best results for different experiments
as shown in Table 1.

After finding the parameter values, we applied the propo-
sed algorithm to the test set in tape 5 and the trained models
that are trained on the first four tapes as shown before. Table 2
shows the results that correspond to the parameter values that
are given in Table 1 for every SMR value. The table shows the
performance of using only speech recognition system (Audio
column) without using either visual information or source sepa-
ration. It also shows the results of using only visual information
(Visual column), using Audio-Visual automatic speech recog-
nition without source separation (Audio Visual column), using
automatic speech recognition after applying source separation
without using any visual information (SCSS Audio column). In
the last column of that table, we show the results of our propo-
sed algorithm, which combines the single channel source sepa-
ration with Audio-Visual automatic speech recognition (SCSS
A-V column). The table shows that incorporating visual infor-
mation only or SCSS only improves the performance of ASR.
Incorporating both SCSS and visual information to ASR gives
remarkable improvements in the accuracy of ASR.

We can see from Table 1 that using SCSS in audio-visual
speech recognition makes the AVSR system rely more on the
audio data even for low SMR.

5. CONCLUSION
In this paper, we introduced an algorithm for audio-visual spe-
ech recognition using source separation to get better recogni-
tion accuracy. We separated the speech signal from the mixed

Tablo 1: Best choice of the parameters for different methods and
different SMR values.

SMR Audio Visual SCSS Audio SCSS A-V
Nm = 32, p = 1

dB αa αv Ns Nm p Ns αa αv

-5 0.1 0.9 128 128 2 32 0.5 0.5
0 0.3 0.7 32 32 1 32 0.5 0.5
5 0.5 0.5 32 32 1 32 0.7 0.3
10 0.6 0.4 32 32 1 32 0.8 0.2
15 0.7 0.3 128 32 1 128 0.8 0.2
20 0.9 0.1 128 32 1 128 0.9 0.1

Clean 1.0 0.0 n/a n/a n/a n/a 1.0 0.0

Tablo 2: Recognition accuracies % for different methods.
SMR Audio Visual Audio SCSS SCSS
dB Visual Audio A-V
-5 15.83% 43.89% 46.39% 45.83% 66.94%
0 25.83% 43.89% 57.78% 62.50% 80.28%
5 55.00% 43.89% 75.83% 84.72% 90.83%

10 81.94% 43.89% 87.78% 91.39% 95.56%
15 92.22% 43.89% 95.28% 97.22% 98.06%
20 97.78% 43.89% 98.06% 99.17% 99.44%

Clean 100% 43.89% 100% 100% 100%

signal, then we applied the audio-visual speech recognition on
the separated speech signal. In our future work, we plan to in-
tegrate the visual information to improve source separation as
proposed in [12]. Furthermore, the MSHMM model used in this
work handles stream transitions in a synchronous fashion, ho-
wever there exists extended models [13] in the literature that
can handle state level asynchrony and can improve recognition
rate, implementation of which are left as future work.
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