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Distribution planning of bulk lubricants at BP Turkey 

 

Abstract: We address the distribution planning problem of bulk lubricants at BP Turkey. The 

problem involves the distribution of different lube products from a single production plant to 

industrial customers using a heterogeneous fleet. The fleet consists of tank trucks where each 

tank can only be assigned to a single lube. The objective is to minimize total transportation 

related costs. The problem basically consists of assigning customer orders to the tanks of the 

trucks and determining the routes of the tank trucks simultaneously. We model this problem 

as a 0-1 mixed integer linear program. Since the model is intractable for real-life industrial 

environment we propose two heuristic approaches and investigate their performances. The 

first approach is a linear programming relaxation-based algorithm while the second is a 

rolling-horizon threshold heuristic. We propose two variants of the latter heuristic: the first 

uses a distance priority whereas the second has a due date priority. Our numerical analysis 

using company data show that both variants of the rolling horizon threshold heuristic are able 

to provide good results fast.  

 

Keywords: Distribution, large scale optimization, heuristics, OR in energy, multi-

compartment vehicles. 
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1. Introduction  

The efficiency in transportation and distribution planning is a key success factor in the 

petroleum industry. Petroleum (crude oil) is processed in oil refineries to derive different 

products such as fuel oil, gasoline, diesel fuel, kerosene, liquefied petroleum gas (LPG), 

petrochemicals, lubricating oils (lubes), etc. The refined products are categorized as 

light/white products like gasoline and heavy/black products like lubes. Ronen (1995) 

classifies the distribution of petroleum products into four categories: light products from 

refineries to tank terminals, light products from tank terminals to industrial customers, bulk 

lubes from lube plants to industrial customers, and packaged lubes from lube plants to 

industrial customers. 

Petroleum products are mainly transported to the international markets by maritime 

transportation: approximately 60% of total petroleum produced is transported via sea lines 

(Rodrigue et al., 2009). The other modes of transportation are pipelines, trains, and trucks. 

Table 1 summarizes several properties of different transportation modes in the petroleum 

industry. In general, trucks are used to transport the end products to industrial customers or to 

petrol and service stations.  

Table 1. Modes used in the transportation of petroleum products (Rodrigue et al., 2009). 

  Pipeline Marine Rail Truck 

Volumes Large Very large Small Large 

Materials Crude/Products Crude/Products Products Products 

Scale 2 ML+ 10 ML+ 100 kL 5-60 kL 

Unit costs Very low Low High Very high 

Capital costs High Medium Low Very low 

Access Very limited Very limited Limited High 

Responsiveness 1-4 weeks 7 days 2-4 days 4-12 hours 

Flexibility Limited Limited Good High 

Usage Long haul Long haul Medium haul Short haul 

 

 

In this study, we address the distribution planning of bulk lubes at BP Lube Division 

in Turkey. With its specific characteristics and elements of the distribution system the 

problem differs from many of the transportation problems addressed in the literature. 

Although the oil industry has been a major source of applications, white papers and reports on 

those applications and the academic research in the field are rather scant. Ronen (1995) 
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provides a review of operations research (OR) applications in dispatching petroleum products 

and compares several applications in the oil industry. Among those, Brown and Graves 

(1981) address the gasoline transportation problem with direct deliveries (one stop only) from 

a single bulk terminal at Chevron U.S.A. Brown et al. (1987) generalize this problem for 

Mobil Oil Corporation by considering multiple deliveries during a trip. Bausch et al. (1995) 

propose an elastic set partitioning technique to solve the same problem. The candidate 

schedules are obtained by generating trips using the sweep algorithm. Franz and Woodmansee 

(1990) develop a rule-based semi-automated decision support system for a regional oil 

company to determine the daily schedule of the drivers and the dispatching of the tank trucks. 

Nussbaum and Sepulveda (1997) address the distribution problem for the biggest fuel 

company in Chile. The delivery plans are obtained using a heuristic approach and a planning, 

execution, and control system is developed employing a knowledge-based approach that 

utilizes a graphical user interface which mimics the mental model of the user. In a different 

setting, Day et al. (2009) implemented a three-phase heuristic for cyclical inventory routing 

problem encountered at a carbon dioxide gas distributer in Indiana. Their heuristic determines 

regular routes for each of three available delivery vehicles over a 12-day delivery horizon 

while improving the delivery labor cost, stockouts, delivery regularity, and driver-customer 

familiarity. 

Ben Abdelaziz et al. (2002) model a mathematical program in a single period setting 

and apply a variable neighborhood search approach for dispatching the tank trucks for fuel 

delivery. Malépart et al. (2003) present four heuristics to solve the fuel delivery problem for 

servicing Esso stations in Eastern Canada. Taqa allah et al. (2000) propose heuristics to 

address the multi-period extension of this problem. Avella et al. (2004) address a daily petrol 

delivery problem using a heterogeneous fleet of tank trucks. They assume that the tanks are 

either completely full or completely empty and develop a fast heuristic and an exact method 

based on the set partitioning formulation and branch-and-price algorithm. To test the 

performance of their approach they use real-world data consisting of 25 customers and 6 tank 

trucks of 3 different types.  

Recently, Cornillier et al. (2008a) tackle the petrol station replenishment problem 

(PSRP) where the quantities to deliver are decision variables that are allowed to vary within a 

given interval. They assume that the trucks make at most two stops during a trip, which 

considerably simplifies the problem. They develop an exact algorithm which decomposes the 

PSRP into a truck loading problem and a routing problem. The routing problem reduces to a 

polynomial matching problem since each truck visits at most two stations. The optimal 
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solution to the truck loading problem can be obtained using a heuristic procedure or by 

solving an integer linear program. Cornillier et al. (2008b) extend the PSRP to a multi-period 

setting and develop a multi-phase heuristic with look-back and look-ahead procedures. 

Basically, the heuristic first determines the stations to be serviced in each period. Then, the 

problem reduces to solving multiple PSRPs where the exact algorithm of Cornillier et al. 

(2008a) is utilized. An iterative procedure is applied since the resulting solution may not be 

feasible with respect to the maximum workload constraints. Cornillier et al. (2009) address 

the PRSP with time-windows. In this case, the limit on the number of stops is relaxed to four. 

They develop two heuristics based on the mixed integer linear programming formulation of 

the problem. The first heuristic is designed to solve small instances. It makes a preselection of 

promising arcs and solves the arising mathematical model to optimality. The second is a 

decomposition heuristic based on route preselection and can be used to solve larger instances. 

Vehicles with multiple compartments are also used in the transportation of food and 

grocery items. Chajakis and Guignard (2003) address the delivery scheduling problem with a 

homogeneous fleet of multiple compartment vehicles using Lagrangean approximation 

algorithms. They experiment four different Lagrangean relaxations, a Lagrangean 

substitution, and a Lagrangean decomposition technique to find lower bounds and develop a 

Lagrangean heuristic to obtain feasible solutions. Eglese et al. (2005) use simulated annealing 

to solve a similar real-world vehicle scheduling problem in the U.K. Because of the 

loading/unloading sequence dependency of the products they allow multiple visits to stores. 

Recent articles that address the routing and scheduling of tank trucks/multi-compartment 

vehicles include El Fallahi et al. (2008), Mendoza et al. (2010), Muyldermans and Pang 

(2010), and Knust and Schumacher (2011). 

Our study considers the distribution of bulk lubes from a single lube production plant 

to industrial customers. The fleet is heterogeneous and consists of multi-compartment 

vehicles, i.e., tank trucks, where each compartment can only be assigned to a single product 

and a single customer. The objective is to minimize the distribution related costs. The 

problem basically consists of assigning the customer orders to the tanks of the trucks and 

determining the routes of the loaded tank trucks simultaneously. The orders have ± 2 days 

delivery flexibility; i.e. they can be delivered two days before or after their planned due dates. 

So, the planning horizon is 5 days and the problem is solved every day on a rolling horizon 

basis. Since the company is not charged for the return trip of the trucks to the plant the routing 

problem is an open vehicle routing problem (OVRP). In OVRP, the vehicles either do not 

return to the depot or are assumed to return to the depot by revisiting the customers in the 
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reverse order. The research on OVRP has recently gained momentum and various methods 

have been proposed to efficiently solve it. We refer the reader to Repoussis et al. (2010), 

Emmanouil et al. (2010), Salari et al. (2010) for recent developments and Li et al. (2007) for a 

detailed review on OVRP. 

Our aim is to improve the bulk lubes distribution operations of BP Turkey using OR 

techniques. The problem seems similar to that of Cornillier et al. (2008b) since they both 

attack a multi-period delivery problem using multi-compartment vehicles. However, there are 

some key differences: Firstly, Cornillier et al. (2008b) restrict the trucks to make at most two 

visits during a trip, which significantly simplifies the problem. Moreover, their delivery 

quantities are variable whereas in our problem the distributors and service stations have 

already placed their orders but the company has two-day delivery date flexibility. Also, they 

assume a fixed planning horizon while our problem is solved on rolling horizons. In addition, 

their aim is to minimize total regular working time/overtime costs and distance related travel 

costs whereas in our case since the trucks are outsourced the objective function includes the 

costs associated with the number of visits that the trucks make and the travel cost on open 

routes.  

We first formulate a mathematical programming model of the problem and then 

present two heuristic approaches to solve it. The first approach is a linear programming (LP) 

relaxation-based heuristic while the second is a rolling-horizon threshold heuristic. Two 

variants of the rolling-horizon threshold heuristic are developed: the first uses a distance 

priority whereas the second has a due date priority. To further improve the solution a simple 

local search procedure is applied to the results of both heuristics. The remainder of the paper 

is organized as follows: In Section 2, the description of the problem and its 0-1 mixed integer 

programming formulation are provided. Section 3 describes the heuristics proposed for 

efficiently solving this problem. The numerical investigation and results with regard to the 

performances of the proposed heuristics are given in Section 4. Finally, conclusions and 

future research directions are provided in Section 5.   

2. Problem description and formulation 

The problem is a multi-product, multi-period, heterogeneous fleet distribution planning 

problem involving the assignment of customer orders to tank trucks and routing of tank 

trucks. The elements of the distribution system can be classified into four categories: (i) the 

fleet, which consists of multi-compartment tank trucks; (ii) the distribution network, which 
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includes a single lube production plant where the trucks are loaded and the cities where the 

customers are located at; (iii) the products with their specific properties; and (iv) the 

scheduling system, which has different constraints and flexibilities specific to the problem. In 

what follows, we provide further details on these elements of the problem and then formulate 

the mathematical model. 

2.1. Elements of the problem 

2.1.1 Tank trucks 

The Lubes Division at BP Turkey uses a third party logistics (3PL) service provider for the 

distribution of the bulk lubes. It estimates the fleet type and size it will need throughout the 

year and makes an annual contract with the 3PL provider based on a pre-determined fleet 

dedicated to its delivery services. Therefore, accuracy in the estimation of the appropriate 

fleet size and type is very important. In the case the contracted capacity is insufficient in any 

day the company hires trucks from the spot market at an additional cost. Hence, the truck 

capacity can be considered as a loose constraint in that sense.   

The tank trucks have 4 or 5 tanks (compartments), each with a different capacity. In 

addition to the tank capacity, the trucks have a weight restriction imposed by the regulations 

of the General Directorate of Highways. The maximum tonnage in a truck is determined 

according to its technical properties such as its number of wheels and engine power. Since the 

trucks in the fleet have different weight restrictions and tank capacities, the problem is a 

heterogeneous fleet distribution problem. Furthermore, the trucks are classified as big- and 

small-size trucks where small-size trucks have a total capacity of approximately 7 tons and 

are used to serve the customers whose unloading area is not large enough to accommodate the 

big-size trucks. We refer to this type of customers as “small customers” whereas the 

customers that can be served with any truck are called as “large customers”. 

A tank in a truck can only be filled with the order of one customer only since the 

trucks are not equipped with a flow-meter. The flow-meter is the device used to measure the 

volume of the lube unloaded. If a truck does not have a flow-meter the whole capacity of each 

of its tanks is dedicated to one single order no matter how large the order size is. For instance, 

a tank truck with 5 tanks can be loaded with at most 5 orders and hence can at most serve 5 

customers. 

 



8 
 

 

Figure 1. The distribution network (■ plant, ● cities) 

 

2.1.2. Distribution Network 

The distribution network consists of one plant in Bursa (North-West Turkey) and 180 

customers dispersed in 28 cities located in different regions of Turkey (see Figure 1). The 

tank trucks are loaded at the plant according to the planned deliveries and visit the customers 

using a route such that the total distance until the last customer along the route is minimized. 

Once the loading decisions are made, the routing problem is easy to solve since a truck can at 

most visit five customers (or four depending on the truck). We observed that a truck usually 

visits at most three customers but as opposed to Cornillier et al. (2008a, 2008b) we do not 

impose any limit on the number of stops. The routing is only made for the city-to-city 

network and the distances between the customers located in the same city are not taken into 

account1. This is due to the fact that the company is charged for the long distance trips per 

kilometer basis and pays a fixed-cost for each additional customer serviced in the same city. 

For example, if a truck is loaded to service five customers located in two cities (e.g. two 

customers in the first and three in the second), it first visits the closest city and makes the 

deliveries of the two customers, and then moves to the next city to service the remaining three 

customers. At the end of its trip, the truck returns to the plant. The total cost to the company is 

determined according to the distance of the first city to the plant and the additional customer 

serviced in the same city plus the distance between the first and second cities and the two 

extra deliveries in that city. The company does not pay for the return trip to the plant, which 
                                                
1 Two towns distant from their city centers are considered as cities due to the fuel costs. 

1235 km

831 km
322 km
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makes the routing problem an OVRP. In this paper, we refer to the distance-related variable 

cost as the routing cost and the cost per each additional customer visited in a city as the 

visiting cost. 

2.1.3. Products 

The company produces and distributes 130 different products in total. There are eight basic 

product families: base oil, hydraulic oil, engine oil-fuel, engine oil-diesel, marine, gear oil, 

gear oil-color, and special products. Each product family consists of product groups which 

differ with respect to lube concentration and specification. Since the products are liquid two 

different products cannot be mixed within the same tank. In addition, when a lube is unloaded 

it leaves some residue inside the tank. This residue may affect the quality of the lube that will 

be loaded next. So, the tank may require a cleaning operation depending on the lube type last 

loaded in the tank. For example, changing from a darker (thicker) lube to a lighter (thinner) 

lube requires the cleaning of the tank. On the other hand, in the opposite case cleaning is not 

necessary since the lighter lube will not affect the quality of the darker lube. The cleaning is 

performed using plain water and the associated cost is negligible. 

 

2.1.4. Scheduling 

The Sales Department receives the orders on a daily basis and assigns each order with an 

estimated delivery date. However, the planned delivery date is finalized after an advanced 

payment from the customer has been confirmed. The company has a two-day flexibility in 

determining the delivery date for consolidation purposes, i.e. an order can be delivered two 

days before or after its planned delivery date. In this study, we refer to the latest day that the 

delivery must be made as the due date of the order. That is, a demand with due date 5 can be 

satisfied in any of the days 1, 2, 3, 4, or 5. Therefore, the distribution problem is a multi-

period problem which is solved for each day on a rolling horizon basis. 
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Figure 2. An illustrative example  

 

In summary, the problem consists of two integrated problems: the assignment of 

customer orders to the tanks of the trucks and the routing of the trucks. Figure 2 depicts an 

illustrative example of a loading and routing scheme for two different truck types. The 

objective of the problem is to minimize the total distribution cost over the planning horizon. 

However, the realized total cost is calculated as the sum of the distribution costs of the first 

days in the planning period since the problem needs to be solved every day to finalize the 

delivery schedule of the next day only. 

2.2. Model Formulation  

In this section, a 0-1 mixed integer linear programming model is developed in an attempt to 

obtain optimal distribution plans. The planning horizon is one week, i.e. five days since no 

delivery is made during the weekends. Day 1 is the next business day when the trucks need to 

be dispatched. The model is solved every day for the 5-day planning period on a rolling 

horizon basis; however, only the distribution plan of the next day (i.e. the sub-solution 

involving day 1) is to be implemented and frozen. The input data are updated next day and the 

model is re-solved. The notation and the mathematical formulation are as follows: 
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Notation 

T set of days 

P set of products 

K set of customers 

Jt set of tank trucks available on day t 

Ij set of tanks in tank truck j 

R set of cities 

��
� set of big-size tank trucks available on day t 

Kr set of customers located in city r 

Ks set of small customers 

Qj maximum weight restriction on truck j  

Capij capacity of tank i of truck j 

Dkpt demand of customer k for product p with due day t 

drr’ distance from city r to city r’  

cv cost of visiting an additional customer in a city (visiting cost) 

cr cost per km (routing cost) 

Decision Variables 

xijkpt fraction of tank i of truck j filled with product p ordered by customer k and due  

 on day t 



 >

=
otherwise   0,

 0  if   1,
      

ijkpt

ijkpt

x
y  





=
otherwise   0,

 day on  customer  serves  truck if   1,
      

tkj
q jkt

 





=
otherwise   0,

  day on  city   visits truck if   1,
      

trj
z jrt  





=
otherwise   0,

  day on  servicein  is  truck if   1,
      

tj
p jt

 





=
otherwise   0,

day on  city after y  immediatel 'city   visits truck if   1,
      '

trrj
v tjrr

 

ujrt sub-tour elimination variable 
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Mathematical Model 

Min 
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 The objective function (1) minimizes total routing and visiting costs. Here, if a truck 

services more than one customer in a city ( )jrtKk jkt zq
r

−∑ ∈
 counts the number additional 

customers visited and incurs a visiting cost. The cost of traveling from any city to plant is set 

to zero to have an OVRP environment. Constraint set (2) makes sure that a customer demand 

is satisfied on or before its latest delivery date. Constraints (3) link the binary variables y with 

the continuous assignment variables x: if tank i of truck j is filled with demand p of customer 

k due on day t (xijkpt >0) then that tank is utilized (yijkpt=1). Constraint set (4) ensures that total 

load on a truck does not exceed the maximum weight restriction. Constraints (5) make sure 

that only one product is loaded on a tank. Constraint set (6) assure that if tank i of truck j is 

used for servicing customer k on day t (yijkpt=1) then the tank truck j must serve customer k on 

that day (qjkt=1). Constraints (7) make sure that if customer k is served by truck j on day t 

(qjkt=1) then that truck visits the city where that customer is located at on the same day t 

(zjrt=1). Constraints (8) determine the days during which the trucks are on service. Since the 

returns of the trucks during the planning horizon are not considered constraint set (9) ensures 

that a tank truck is dispatched only once during the planning horizon. Note that the expected 

return days of the trucks on the road are taken into account when solving the problem the next 

day with the updated data. Constraint set (10) makes sure that small customers are not 

serviced using big trucks. Constraints (11) set the plant as the origin of all available trucks. 

Constraints (12) link the visiting variables with the routing variables. Constraints (13) impose 

that the same tank truck enters and leaves a visited city. (14) are the Miller, Tucker and 

Zemlin (1960) sub-tour elimination constraints. Finally, constraints (15)-(21) define the 

decision variables.   

Since this problem is intractable in real-life industrial environment, we propose in the 

next section a greedy LP relaxation-based algorithm and a heuristic approach with two 

variants in an attempt to obtain good solutions in reasonable computational time. Note that we 

also considered the following tighter sub-tour eliminations constraints: 

 

∑ ∑∑
∈ ∈ ∈

′′ −≤+−
j 'rIi Kk Pp

ijkptijjtrjrjtrjjrt xCapQvQww  rrRrRrJjTt t
′≠∈′∈∈∈ ,,,,  (14’) 

jjrt

Ii Kk Pp

ijkptij QwxCap
j r

≤≤∑∑∑
∈ ∈ ∈

  
RrJjTt t ∈∈∈ ,,   (21’) 

 

where wjrt is an additional continuous variable associated with each city r (Kulkarni and 

Bhave, 1985; Desrochers and Laporte, 1991; Kara et al., 2004). However, we observed that 
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the performance of the LP relaxation-based algorithm using these constraints was poorer. This 

might be due to the fact that loose constraints result in a larger feasible region which, in turn, 

allows the algorithm to find certain solutions which are not achievable otherwise.  

3. Solution Methodology 

Our first solution approach is an LP relaxation-based algorithm and the second is a rolling-

horizon threshold heuristic for which two different variants are presented. As mentioned 

earlier, the distribution plan is made daily and the plan of the following day is implemented. 

So, the proposed algorithms are also designed to finalize the delivery schedule of the next day 

by iteratively solving them every day. 

3.1. Linear Programming Relaxation-based Heuristic (LPH) 

The proposed LP relaxation-based heuristic (LPH) basically utilizes the LP relaxation with 

some rounding techniques and tries to find a good feasible solution for the original problem. 

Our initial experiments on the LP problem have shown that the existence of visiting costs in 

the objective function causes inefficiently utilized tank trucks in the solutions. For this reason, 

our LP relaxation-based algorithm is implemented by considering the routing costs only.  

 

Step 0.  Initialize the LP problem and solve it. 

Step 1.  Select a demand arbitrarily with due date 1 (Dkp1). 
If all demands with due date 1 are satisfied, go to Step 4. 

Step 2.  Find the maximum yijkp1 corresponding to Dkp1 and set it equal to 1. 
If Dkpt ≥ Capij let the corresponding xijkpt =1; otherwise set xijkpt = Dkpt /Capij  

Step 3.  Re-solve the LP problem. 
If the LP problem is infeasible, let previously set yijkpt and xijkpt equal to 0. 
Otherwise; if the selected demand Dkp1 is satisfied go to Step 1, else go to Step 2. 

Step 4.  Select a partially loaded truck. 
If there is none, go to Step 7. 

Step 5.  For the selected truck, find the maximum yijkpt < 1 and set it equal to 1. 
If Dkpt ≥ Capij let the corresponding xijkpt =1; otherwise set xijkpt = Dkpt /Capij   

Step 6.  Re-solve the LP problem. 
If the LP problem is infeasible, let previously set yijkpt and xijkpt equal to 0. 
Otherwise; if all yijkpt variables corresponding to the selected truck are 1 or 0, go 
to Step 4, else go to Step 5. 

Step 7.  Terminate. 

Figure 3. Description of LPH  
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In the original model, recall that the binary variables y are used for the assignment of 

the tanks of the trucks and the variables x are used to determine the utilization of the tanks. In 

this algorithm y’s are the key variables because the algorithm first finds the loading scheme of 

the tanks with respect to the customer orders then routes the tank trucks with respect to the 

truck loads.   

The basic idea in LPH is to satisfy the demands of the first day and then to assign the 

remaining orders to the available tanks of the partially loaded trucks to efficiently utilize their 

capacities. Firstly, the data of the LP model is initialized and the model is solved to 

optimality. Then, the algorithm selects a demand with due date 1 and assigns it to the tank for 

which the associated yijkpt value is the largest. After having satisfied all demands with due date 

1, the algorithm attempts to load the remaining empty tanks of the partially loaded tank trucks 

with the waiting orders in the planning horizon. The steps of LPH are detailed in Figure 3.  

Once the demands are assigned to tank trucks, the routes can be obtained by finding a 

Hamiltonian path originating from the plant. Furthermore, since a tank truck can visit at most 

five different cities the optimal route of each truck may easily be determined.  

To determine the plan of the next day, the demand information and the set of available 

tank trucks are updated according to the solution of the previous day along with relevant 

additional data that may become available and the algorithm is re-run. 

3.2. Rolling-horizon Threshold Heuristics  

The primary objective in the rolling-horizon threshold heuristic approach is to find a 

minimum cost distribution plan by satisfying the demands with due date 1, as is the case in 

LPH. We propose two variants: the first uses the distance priority whereas the second has a 

due date priority in selecting the next customer order to be assigned. 

3.2.1. Rolling-horizon Threshold Heuristic 1 (RHTH1) 

Rolling-horizon Threshold Heuristic 1 (RHTH1) aims at assigning the demands of small 

customers first, starting with the customer that has a due date 1 and that is farthest to the 

plant. When all small customers have been served the algorithm assigns the demands of the 

large customers in the same way. The threshold parameter λ is used for controlling the 

insertion of a new customer demand into an existing tour. The RHTH1 procedure is depicted 

in Figure 4. 
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Step 0.  Initialize the data. Set the threshold parameter λ. 

Step 1. a. Select the small customer farthest to the plant with a demand due on day 1 (Dkp1) 
of. If none exists, go to Step 2a. 

 b. Select an available small tank truck that has the maximum weight restriction. 

 c. Assign the selected demand to the selected tank truck using the PutDemand (PD) 
procedure. 

 d. Assign the selected tank truck to the not-yet satisfied demands of small 
customers using the FillTruck (FT) procedure. 

 e. Assign the selected tank truck to the remaining not-yet satisfied demands using 
FT. 

 f. Update the set of available the tank trucks and go to Step 1a. 

Step 2. a. Select Dkp1 of the customer farthest to the plant. If none exists, go to Step 3. 

 b. Select an available tank truck that has the maximum weight restriction. 

 c. Assign the selected demand to the selected tank truck using PD. 

 d. Assign the selected tank truck to the not-yet satisfied demands of large customers 
using FT. 

 e. Update the set of available the tank trucks and go to Step 2a. 

Step 4.  Terminate. 

Figure 4. Description of Rolling-horizon Threshold Heuristic 1 

PutDemand Procedure 

The PutDemand (PD) procedure utilizes the well-known best-fit heuristic used for solving the 

bin packing problem in an attempt to maximize the tank utilization. The selected demand is 

loaded to the best fitting tank if the tank capacity is sufficient, i.e. to the tank that will provide 

maximum utilization. If the tank capacity is not sufficient, the tank with the maximum 

capacity is fully filled and the remaining portion of the demand is loaded to a second tank 

following the same best-fit logic.  

FillTruck (FT) Procedure 

Given a set of customer demands to be satisfied and an available tank truck, the FillTruck 

procedure (FT) iteratively assigns those demands to the tank truck using PD. If the given tank 

truck is completely empty, then FT assigns the demand of the farthest customer to the plant 

which has a due date 1. If the tank truck is partially loaded, then FT attempts to assign the 

order of the customer that is nearest to the previously assigned customer(s) by considering the 

increase in the routing cost. The additional cost of adding city r” to a route is calculated as 

follows:  
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  Insertion cost = 
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r,rarc
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where Cmn is the cost of visiting city n immediately after city m. The first term in the formula 

corresponds to appending city r” to the end of the route whereas the second term evaluates 

the insertion of city r” between all pairs of subsequent cities r and r’ and selects the one 

giving the minimum cost. The demand with the minimum insertion cost is assigned to the 

tank truck using PD if its insertion cost is less than λ. The procedure is repeated until all 

orders have been assigned or all the tanks of the truck have been loaded. The steps of the FT 

procedure are given in Figure 5.  

 

Step 1.  If the tank truck is completely empty, go to step 2; otherwise, go to step 3. 

Step 2.  Select the demand with due date 1 and farthest to the plant and load it using PD. 
Go to step 3. 

Step 3.  If there exists an order from a customer located in the same city as the previous 
demand assigned, go to step 4; otherwise, go to step 5. 

Step 4.  Select the demand with the earliest due date and go to step 6. 

Step 5.  Find the customer with the minimum insertion cost. If the minimum insertion 
cost is smaller than λ go to step 6; otherwise, go to step 7. 

Step 6.  Load the order using PD and go to step 3. 

Step 7.  Terminate. 

Figure 5. Description of FillTruck Procedure 

 

The parameter λ plays an important role in the performance of the heuristic. If λ is set 

too high then the utilization of the trucks are expected to increase; however, the total routing 

cost may increase as well due to the servicing of distant customers. If λ is set too low then 

more trucks may be needed due to the decrease in the utilization of the trucks, which in turn 

will increase the distribution costs as well.  

3.2.2. Rolling-horizon Threshold Heuristic 2 (RHTH2) 

Similar to RHTH1, Rolling-horizon Threshold Heuristic 2 (RHTH2) assigns the 

demands of the small customers first and satisfies the demands of large customers next. In 

RHTH2, a truck is loaded by the customer orders with due date 1 using the FT procedure, as 

is the case in RHTH1. Then, the remaining tanks of the truck are assigned with the waiting 

orders chronologically,  i.e. the demands with  due dates  2, 3, 4, and 5  in this sequence.  This 
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Step 0.  Initialize the data. Set the threshold parameter λ. 

Step 1. a. Select an available small tank truck that has the maximum weight restriction. 

 b. Assign the demands of small customers that have due date 1 using FT. If there 
exist a not-yet satisfied demand with due date 1, go to step 2a. 

 c. Assign the demands of small customers that have due dates 2, 3, 4, 5 using FT. 

 d. Assign the remaining not-yet satisfied demands due on days 1, 2, 3, 4, 5 using 
FT. 

 e. Update the set of available tank trucks and go to Step 1a. 

Step 2. a. Select an available tank truck that has the maximum weight restriction. 

 b. Assign the demands of large customers with due date 1 using FT. 

 c. Assign the demands of large customers with due dates 2, 3, 4, 5 using FT. 

 d. Update the set of available the tank trucks and go to Step 2a. 

Step 3.  Terminate. 

Figure 6. Description of Rolling-horizon Threshold Heuristic 2 

 

difference between RHTH1 and RHTH2 can be interpreted as RHTH1 has a distance priority 

while RHTH2 has a due date priority. The steps of RHTH2 are given in Figure 6.  

To further improve the solution quality we perform a 2-opt local search (LS) 

procedure to the results of both heuristics. LS considers all pair-wise exchanges, both within a 

route and between different routes, and performs the one which provides the maximum 

improvement. 

Table 2. Distance-based routing costs 

 Plant IST KOC SAK BOL ANK ADA 

Plant 0 875 475 572 982 1375 3000 

IST 0 0 400 532 943 1630 3380 

KOC 0 400 0 133 543 1231 2980 

SAK 0 532 133 0 410 1098 2847 

BOL 0 943 543 410 0 687 2437 

ANK 0 1630 1231 1098 687 0 1764 

ADA 0 3380 2980 2847 2437 1764 0 
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Table 3. Demand data 

Customer Id Product Quantity (tons) Due date 

IST1 P1 3.0 1 
KOC1 P3 2.0 1 
BOL1 P2 2.8 1 
IST2 P3 5.0 1 
ANK1 P4 4.5 1 
SAK1 P1 1.5 1 
ADA1(S) P5 3.5 1 
IST3 P2 1.0 2 
ANK2 P4 2.2 3 
SAK2 P3 2.0 3 
IST4(S) P1 2.0 4 
ADA2 P2 3.0 5 
BOL2 P3 1.0 5 

 

3.2.3. An Illustrative Example  

To illustrate the working mechanism of RHTH1, we provide a small example with 6 cities 

and 13 orders to be planned. The distance-based routing costs between the cities are shown in 

Table 2 and the customer orders are given in Table 3. The first 3 letters of the “Customer Id” 

indicates the city where the customer is located in. The additional notation “(S)” denotes that 

the corresponding customer can only be serviced with a small-size truck. For instance, 

“KOC1” denotes the customer #1 in Kocaeli which can be serviced by either big- or small-

size truck whereas “IST4(S)” denotes customer #4 in Istanbul which can only be serviced by 

a small-size truck.  

Figure 7 illustrates the solution obtained using RHTH1 by setting threshold parameter 

λ=500. The step-by-step description of the procedure is as follows: 

(1) ADA1 is selected as the small customer that has an order with due date 1 and that is 

farthest to the plant and its demand for P5 is assigned to the small truck (tank truck 1) 

with the maximum weight restriction using the best-fit approach. Since the order size 

exceeds the capacity of all the tanks of the truck, the order is loaded into two different 

tanks. 

(2) IST4 is selected as the next small customer and its insertion cost is calculated as 

follows:  

( ){ } ( ){ } 12553000 875+3380 3380,,min 00 ==−+ -CCCC rdrdrd  

Since 1255>500 and the order of IST4 is due on day 4, it is not assigned. 
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Since no other small customer order exists, we select next the customer that is located 

to the closest customers who have already been assigned: P2 of ADA2 is assigned to 

the tank truck with best-fit. No more orders can be loaded to truck 1 due to its 

maximum weight restriction. 

(3) Select the demand of the customer farthest to the depot which is due on day 1: P4 of 

ANK1 is selected and assigned to the available tank truck with maximum weight 

restriction (tank truck 2). 

 

 

(a) Tank truck 1: 0 → ADA 

 

(b) Tank truck 2: 0 → SAK → BOL → ANK 

  

(c) Tank truck 3: 0 → KOC → IST 

Figure 7. Solution obtained using RHTH1 

(1) (1) (2)

Tons Assigned 0.0 0.5 3.0 3.0

Tank Capacity 3.0 3.0 3.0 3.0

Wt. Limit: 7 t ADA1

P5

ADA2

P2

ADA1

P5

(3) (4) (6) (7) (5)

Tons Assigned 4.5 2.2 1.0 1.5 2.8

Tank Capacity 5.0 3.0 3.0 4.0 3.0

Wt. Limit: 14 t
ANK1

P4

ANK2

P4

SAK1

P1

BOL2

P3

BOL1

P2

(11) (10) (8) (9) (9)

Tons Assigned 2.0 1.0 3.0 0.6 4.4

Tank Capacity 4.4 4.2 3.6 3.6 4.4

Wt. Limit: 13.3 t
KOC1

P3

IST3

P2

IST1

P1

IST2

P3

IST2

P3
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(4) Select the customer nearest to ANK1: ANK2 is selected and its order for P4 is 

assigned. 

(5) Select the customer nearest to ANK2: BOL1. Its insertion cost is min {687, (687+982-

1375)} = 294 < 500. So, P2 of BOL1 is assigned. 

(6) BOL2 is selected following BOL1 since it is located in the same city and its order for 

P3 is assigned next. 

(7) SAK1 is selected as the nearest customer to BOL2. Its insertion cost is min {410, 

(410+572-982)} = 0, which means that SAK1 is on the way to BOL2. Hence, P1 of 

SAK1 is assigned next. Since all the tanks are filled, a new truck will be selected and 

loaded. 

(8) Select the demand of the customer farthest to the depot which is due on day 1: P1 of 

IST1 is assigned to the available tank truck with maximum weight restriction (tank 

truck 3). 

(9) IST2 is located in the same city as IST1: P3 of IST2 is assigned. 

(10) P2 of IST3 is assigned next. 

(11) KOC1 is selected as the nearest customer to IST3: min {400, (400+475-875)} = 0 and 

P3 is assigned last.  

 

Since all demands due on day 1 are satisfied, the assignment phase terminates. Note that 

because IST4 can only be serviced by a small-size truck its order is not assigned and left for 

the planning the next day since its due date is 4.  

 

 

Figure 8. Loads on tank truck 2 using RHTH2: 0 → KOC → SAK → BOL → ANK 

  

The difference between RHTH1 and RHTH2 procedures is shown in Figure 8 using 

the partial solution for the loading scheme on tank truck 2. Note that RHTH2 first loads truck 

1 as depicted in Figure 7.(c). On truck 2, the order P4 of ANK1 is assigned first as in 

(3) (5) (6) (7) (4)

Tons Assigned 4.5 1.5 2.0 2.2 2.8

Tank Capacity 5.0 3.0 3.0 4.0 3.0

Wt. Limit: 14 t
ANK1

P4

SAK1

P1

ANK2

P4

KOC1

P3

BOL1

P2
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RHTH1. Next, instead of considering all the orders in the list RHTH2 takes into account only 

the orders with due day 1. Hence, the nearest customer to ANK1 with an order due on day 1 

is found as BOL1 and its order P2 is assigned next. Then, the orders of SAK1 and KOC1 are 

loaded, respectively. Finally, since none of the remaining orders due on day 1 is feasible with 

respect to maximum weight restriction order P4 of ANK2 due on day 3 is assigned to the last 

tank. 

4. Numerical investigation  

In this section, we test the performances of proposed heuristics using the real data of BP 

Lubes Logistics Operations. In our preliminary analysis, we use one-month data to first 

investigate the sensitivity of RHTH1 and RHTH2 to the value of threshold parameter λ and 

then to compare the numerical results given by RHTH1, RHTH2, and LPH as well as the 

upper bounds obtained by using IBM ILOG CPLEX 11.0. Next, we report the costs achieved 

by RHTH1 and RHTH2 in comparison with the costs realized by BP using a new data set 

spanning a quarter. The computational study is performed on a notebook computer equipped 

with Intel Celeron 1.6 GHz processor and 1 GB Ram. The algorithms are coded in Java 

programming language. 

Table 4. Fleet composition 

  

Truck  

Tank Capacities (in tons)  Truck Capacity 

(in tons) 

Max Weight Limit 

(in tons) 1 2 3 4 5 

1 6.0 3.0 3.0 3.0 5.0 20.0 13.3 

2 5.1 4.4 4.9 4.3 5.2 24.0 19.1 

3 5.0 4.4 4.8 4.2 5.0 23.4 19.1 

4 5.0 3.5 3.8 3.5 4.0 19.8 13.5 

5 5.0 3.5 3.8 3.8 4.0 20.0 13.3 

6 4.5 3.7 3.6 3.7 4.5 20.0 13.3 

7 4.4 4.2 3.6 3.6 4.4 20.1 13.3 

8 5.0 3.0 3.0 4.0 3.0 18.0 14.0 

9 5.0 3.0 3.0 4.0 3.0 18.0 14.0 

10 3.0 3.0 3.0 3.0 - 12.0 7.0 

11 3.0 2.0 2.0 2.0 3.0 12.0 7.8 

12 2.0 2.5 2.1 2.4 2.0 11.0 7.8 

 
 

The data consist of the cities where the customers are located at and the associated 

distance matrix, the order quantities with their due dates, and tank truck related information 

such as the maximum weight restriction, number of tanks and their capacities. The fleet of the 
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3PL dedicated to the distribution of bulk lubes consists of 10 tank trucks. As mentioned 

earlier, if more trucks are needed they are hired from the spot market. Therefore, we 

considered 2 more additional trucks for capacity flexibility. Out of the 12 tank trucks 

considered, 3 are small-size and 9 are big-size trucks. The details about the fleet are given in 

Table 4. 

 

 

Figure 9. The effect of threshold parameter λ on the solution quality 

 

We have noted earlier that the threshold parameter λ is an important and integral 

component affecting the performance of RHTH1 and RHTH2. To observe its role in the 

solution quality, we perform a sensitivity analysis by solving the problem on the monthly 

data for varying values of λ between 100 and 1500. Note that we did not perform the LS to 

better observe the effect of λ value. The total cost figures2 are reported in Figure 9. The 

results show that RHTH2 is more sensitive to the threshold parameter. This is indeed an 

expected result since RHTH2 attempts to assign the demands in day 1 firstly until the 

utilization. We observe that both small and large λ values give high costs whereas 

intermediate λ values (500-750) provide better solution quality in both heuristics. Since 

λ=500 performs best in both RHTH1 and RHTH2 we utilize this value in the following 

comparative analysis. 

 

 

                                                
2 The cost figures are in “Monetary Units (MU)” that are kept fictitious for confidentiality reasons. 
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Table 5. Daily costs using the preliminary data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The preliminary analysis includes 15 instances corresponding to 15 consecutive 

business days. We implemented the plan of the first day only and re-solved the problem for 

the next day after updating the data accordingly. In Table 5 we report the daily costs obtained 

by RHTH1, RHTH2, LPH, and CPLEX and in Figure 10 we summarize the weekly costs. 

CPLEX upper bounds are obtained by setting the global time limit to 3000 seconds. The 

lower bounds are omitted because the optimality gap varies around 90% and they do not 

provide any meaningful information. Note that the LS is skipped to make a fair comparison. 

Note also that the cost figures reported in the table are the costs of the 1st days of the 5-day 

planning horizon obtained after 15 consecutive runs, updating the data after each run. 

Although we have monthly data the results include only the first three weeks of the month 

due to the fact that the problem is solved on a rolling horizon basis and the plan for the 4th 

week requires the data of the 5th week. We limit the data size with one month since 

performing 15 runs while updating the data manually for CPLEX is too time consuming. 

Besides, we believe that the data size in this preliminary investigation is sufficient to provide 

insights with regard to the performances of the algorithms proposed.  

 

Day RHTH1
 

RHTH2
 

LPH CPLEX 

1 14580 9463 14546 17069 
2 4848 4492 6168 7768 
3 2625 3607 5276 3643 
4 475 2019 2372 1375 
5 8516 7641 7850 7322 

6 12635 13539 13520 18047 
7 4000 4000 3500 5554 
8 1750 2625 875 3769 
9 875 3409 5097 4003 
10 3100 2225 3372 3578 

11 3733 1980 1375 3466 
12 5421 5421 7307 4237 
13 3214 3603 1979 17868 
14 3413 2538 3412 6386 
15 9529 7632 6814 6850 

Total Cost 78714 74194 83463 110935 
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Figure 10. Comparison of preliminary results based on weekly costs 

 

The results indicate that the relative performance of each algorithm differs from one 

day to another, even from one week to another. This is expectable due to the solution 

construction mechanisms and the criteria they include. Because of the rolling horizon nature, 

the results obtained in the first few days may be misleading and an overall cost analysis may 

be more meaningful. Firstly, we observe that both rolling-horizon threshold heuristics 

provide competitive results. Their performances are superior in particular when compared 

with the CPLEX. Although LPH has a comparable performance against RHTH1, RHTH2 

outperforms it with a significant total cost margin (12.5%). Secondly, although RHTH2 

seems to outperform RHTH1 with respect to the total cost figure, further investigation is 

needed according to the weekly results. Furthermore, when the 3rd week is being planned 

some demands from the 4th week are also considered since the time horizon is not frozen. For 

instance, the cost of day 15 may also include the delivery of some demands due on days 16 

thru 19. Hence, a heuristic may assign some of the orders due in the 4th week to the 

distribution plan of the 3rd week, incurring a higher distribution cost in the 3rd week. Due to 

its heuristic nature, RHTH1 is more inclined to do so. As a matter of fact, when we analyze 

the not-yet satisfied demands at the end of day 15, we observe that remaining orders in the 

case of RHTH1 is less than that of RHTH2. Therefore, the results will not be conclusive if 

the time horizon is not frozen. 

When we investigate the computational time efficiency of the algorithms, we see that 

both RHTH1 and RHTH2 can be solved in a negligible time (less than 1 second) and their 

CPU time does not increase much with the growing problem size. On the other hand, LPH 

requires significantly more computation time: the CPU time varied from 5 minutes to 1.5 
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hours in 15 different runs reported in Table 5. The size of the problem determined by the 

active variables and constraints affects the performance of LPH substantially. So, it is hard to 

justify the computational effort spent for LPH by its solution quality. 

Table 6. The weekly results for the three-month data  

Week RHTH1 RHTH2 Current System 

1 9978 9821 10000 
2 8362 9193 11833 
3 14949 14193 13542 
4 13339 14444 15789 
5 18643 15691 18591 
6 6349 7357 9691 
7 18550 20112 15206 
8 18104 16974 17636 
9 4367 5530 8229 
10 21787 20365 22917 
11 9579 10684 11613 
12 7829 7753 8172 
13 10503 11378 18345 

Total Cost 162339 163495 181564 

 

In the current system in practice, the company has some pre-determined routes or 

clusters of cities that can be serviced by the same tank truck. The dispatcher develops the 

daily delivery plans according to these routes manually using MS Excel. To further 

investigate the performances of the rolling-horizon threshold heuristics and compare them 

with the realized costs, we perform an extended computational study on a real data of 3 

months. To better evaluate both algorithms fairly, we freeze the time horizon at the end of 

13th week, i.e. the demands due thereafter are not considered. A total of 65 runs were 

performed for 65 consecutive business days (13 weeks * 5 days) by implementing the plan 

for first day only and updating the data at the end of each run according to this plan. The 

weekly costs are shown in Table 6 and a monthly comparison is given in Figure 11. We 

observe that RHTH1 and RHTH2 outperform the current system by 11.8% and 11.1%, 

respectively. Furthermore, the performance of RHTH1 is slightly better than that of RHTH2. 

These results are promising in the sense that both of the proposed rolling-horizon threshold 

heuristics are capable of improving the current distribution costs of the company 

substantially. It is also worth noting that the experimental data belongs to a period of 

economic downturn during which the customer orders slowed down. Therefore, the benefits 

of the proposed approach might be more substantial when the economy ramps up. 
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Figure 11. Results of extended experimental analysis 

 

5. Conclusions and Future Research 

In this study, we addressed the distribution planning problem of bulk lubricants of BP Turkey. 

We formulated this large-scale industrial problem as a 0-1 mixed integer program and 

proposed an LP relaxation-based and two rolling-horizon threshold heuristic approaches to 

efficiently solve it. The performances of the proposed heuristics were tested using the real 

data of the company. The numerical results revealed that rolling-horizon threshold heuristics 

RHTH1 and RHTH2 were efficient in terms of both computational effort and solution quality. 

The advantages of using the rolling-horizon threshold heuristics are threefold: First, 

they are both cost efficient and easy to implement. Second, they can significantly reduce the 

efforts of the logistics planners who manually load and dispatch the trucks based on their 

experiences in the current practice. Third, they can standardize the planning operations. Since 

these heuristics do not require any commercial solver they can be implemented and integrated 

with the company’s database system with little effort. The computation time they require and 

the ease of their usage would greatly facilitate the decision-making process in the company. 

Furthermore, the data and model parameters can be easily modified to conduct sensitivity 

analyses. The company is currently in the process of integrating their ERP system into the 

Lubes Division and evaluating the implementation of one of the two heuristics. 

 Future research on this problem may consider the cleaning (setup) costs of the tanks 

when switching from one lube type to another and the use flow-meter devices. Although the 

cleaning operation only consumes water and would have a minor effect on the total cost, the 

water consumption may arise as an important criterion from a “green logistics” perspective. 

0

50000

100000

150000

200000

RHTH1 RHTH2 Current System

Month 3

Month 2

Month 1



28 
 

The impact of equipping trucks with a flow-meter requires detailed investigation. What-if 

type analyses may be performed to evaluate the benefit of installing the flow-meter to all or 

some of the tank trucks. The flow-meters would not only affect the routing costs but may also 

reduce the number of trucks needed, hence may affect the annual contract negotiations with 

the 3PL. Finally, although the company currently has ± 2-day delivery flexibility it does not 

know the possible implications of the early and tardy deliveries. If the related parameters are 

determined, the model can be extended to involve penalties associated with the early and 

tardy deliveries.   
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