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Abstract

This paper presents a mathematical model and vertical flight control algorithms for a new tilt-wing

unmanned aerial vehicle (UAV). The vehicle is capable of vertical take-off and landing (VTOL). Due to

its tilt-wing structure, it can also fly horizontally. The mathematical model of the vehicle is obtained using

Newton-Euler formulation. A gravity compensated PID controller is designed for altitude control, and three

PID controllers are designed for attitude stabilization of the vehicle. Performances of these controllers are

found to be quite satisfactory as demonstrated by indoor and outdoor flight experiments.
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1. Introduction

Unmanned aerial vehicles (UAVs) designed for various missions such as surveillance and exploration of disasters

(fire, earthquake, flood, etc.) have been the subject of a growing research interest in the last decade. Airplanes
with long flight ranges and helicopters with hovering capabilities constitute the major mobile platforms used
in UAV research. Besides these well known platforms, many researchers recently concentrate on the tilt rotor
aerial vehicles combining the advantages of horizontal and vertical flights. Because these new vehicles have
no conventional design basis, many research groups build their own tilt-rotor vehicles according to the desired
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technical specifications and objectives. Variations among different designs of such vehicles arise due to practical
considerations. Some large scaled examples of those tilt rotor vehicles can be given as Boeing’s V22 Osprey [1]

and Bell’s Eagle Eye [2]. On the other hand, Arizona State University’s tilt-wing HARVee [3] and Compigne

University’s tilt rotor BIROTAN [4] are smaller scaled examples of vehicles with tilting actuators. Boeing’s

V44 [5] and Chiba University’s QTW UAV [6] are some other examples of tilt-rotor and tilt-wing quadrotors
respectively.

One of the major issues in the development of such aerial vehicles is control. In order to develop the flight
control systems for autonomous aerial vehicles, accurate dynamic models for their flight envelope are needed.
The main difficulties in designing stable feedback controllers stem from nonlinearities and couplings exist in the
system. Design, modeling and control of autonomous aerial vehicles have become a very challenging research
area since 90s and various controllers designed for the VTOL vehicles with quadrotor configurations exist in
the literature. Bouabdallah et al. [7] present a PID controller for a simplified model and an LQ controller for a

more sophisticated model. PD [8] and quaternion based PD2 [9] controllers are also used in quadrotor research.

The work in [10] shows the result of optimal controllers based on LQR and State Dependent Riccati Equation.

In [11], hover flight and trajectory tracking of a four-rotor autonomous flying vehicle are demonstrated using

the presented estimation scheme in combination with a linear quadratic regulator (LQR). In [12], Earl and
D’Andrea develop an attitude estimation technique by using a decomposition approach. An output feedback
controller with estimators and observers is used in [13]. Backstepping control of Madani and Benallegue [14] is

an example of recent non-linear control methods applied on quadrotors. In [15], a comparison of two nonlinear

controllers based on integral sliding mode and reinforcement learning are presented. Cheviron et al. [16] present

a generic nonlinear model for reduced scale UAVs to design a controller. Hably and Merchand [17] have recently

proposed a global asymptotic stabilizing controller under bounded inputs. In [18], a minimalist control strategy
for fixed wing micro UAVs that provides airspeed, altitude and heading turn rate control by only using two
pressure sensors and a single axis rate gyro is presented. The performance of the designed controllers are directly
affected by aerodynamics of the vehicles. Huang et al. [19] emphasize the impact of aerodynamic effects at
higher speeds and outdoor conditions.

In this paper, a mathematical model and vertical flight control algorithms for a tilt wing UAV (SUAVI:

Sabancı University Unmanned Aerial VehIcle) are presented. The vehicle consists of four rotating wings and
four rotors, which are mounted on leading edges of each wing. Nonlinear model of the aerial vehicle is derived
using Newton-Euler formulation and linearized around hover conditions. A gravity compensated PID controller
is designed for altitude control and three classical PID controllers are designed to achieve attitude stabilization.
Proposed controllers are verified with indoor and outdoor experiments, and their performance have been found
quite satisfactory.

Organization of the paper is as follows: In section 2, a mathematical model of the tilt-wing aerial vehicle
is derived using Newton-Euler formulation. In section 3, PID controllers are designed for altitude and attitude
stabilization. In section 4, experimental results are presented. Finally, in section 5 the paper is concluded with
some remarks and possible future directions are indicated.

2. A mathematical model for the tilt-wing aerial vehicle

The aerial vehicle considered in this work is equipped with four wings that are mounted at the front and at the
back of the vehicle, and can be rotated from vertical to horizontal positions. Figure 1 below shows the aerial
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vehicle in vertical and horizontal flight modes. With this wing configuration, the vehicle’s airframe transforms

Figure 1. Aerial Vehicle is in vertical (a) and horizontal (b) flight modes.

into a quadrotor structure if the wings are at the vertical position (Figure 1(a)) and into an airplane structure if

the wings are at the horizontal position (Figure 1(b)). Two wings at the front can be rotated independently to
behave as the ailerons while two wings at the back are rotated together to behave as the elevator. This way the
control surfaces of a regular plane in horizontal flight mode are mimicked with minimum number of actuators.
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Figure 2. Aerial vehicle in a tilted configuration (0 < θi < π
2
) .

The two reference frames given in Figure 2 are body fixed reference frame B : (Ob, xb, yb, zb) and

earth fixed inertial reference frame W : (Ow, xw, yw, zw). The position and linear velocity of the vehicle’s

center of mass in world frame are described as, Pw = [X, Y, Z]T and Vw = Ṗw = [Ẋ, Ẏ , Ż]T . The attitude of

the vehicle in world frame is given as αw = [φ, θ, ψ]T where the angular velocity in world frame is given as

Ωw = α̇w = [φ̇, θ̇, ψ̇]T . In these equations φ , θ and ψ are named roll, pitch and yaw angles respectively. The

transformation of linear velocities between world and body frames is given as Vb = [vx, vy, vz]T = R(φ, θ, ψ)Vw

where the rotation matrix R is defined as R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ). The transformation of the angular

velocities between world and body frames is given as Ωb = [p, q, r]T = E(φ, θ)Ωw where the E is the rotational

velocity transformation matrix [20].

151



Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

Using Newton-Euler formulation, the dynamic equations for aerial vehicle in body fixed reference frame
B are given as:

mV̇b + Ωb × (mVb) = Ft, IbΩ̇b + Ωb × (IbΩb) = Mt (1)

where m is the mass and the Ib is the inertia matrix expressed in the body frame B . The total force Ft

acting on the vehicle’s center of gravity is the sum of the forces Fth created by the rotors, Fw the lift and drag
forces generated by the wings, Fg due to gravity, Fd due to external disturbances (e.g. wind, gusts), namely

Ft = Fth + Fw + Fg + Fd where

Fth =

�
�

cθ1 cθ2 cθ3 cθ4

0 0 0 0
−sθ1 −sθ2 −sθ3 −sθ4

�
�

�
���

kω1
2
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�
��� , Fw =
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(F 1
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0
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L(θ1, vx, vz) + F 2
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L(θ4, vx, vz))

�
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and Fg =
[
−sθ sφcθ cφcθ

]T
mg , where sβ and cβ are abbreviations for sin(β) and cos(β) respectively.

Note that the propeller thrusts F(1,2,3,4) are modeled as Fi = kω2
i , where ωi is the propeller’s rotational speed.

Because the wings at the back are rotated together, their angle of attacks are the same for all time

(θ3 = θ4 ). Note that the lift forces F i
L(θi, vx, vz) and the drag forces F i

D(θi, vx, vz) are not just functions of

linear velocities (vx and vz ) like on a fixed-wing type of an airplane, but also functions of angle of attack θi for

each wing, namely
[
F i

D 0 F i
L

]T = R(θi)
[
−1

2 cD(αi)ρAv2
α 0 −1

2cL(αi)ρAv2
α

]T where vα =
√

v2
x + v2

z and

αi = θi − (−atan2(vz, vx)). In these expressions, ρ is the air density, A is the wing area, vα is the airstream

velocity and αi is the effective angle of attack as shown in Figure 3(a). The R(θi) is the rotation matrix

around y axis to transform the lift and drag forces back to the body frame. The lift coefficient cL(αi) and drag
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Figure 3. (a) Effective angle of attack αi , (b) Lift and drag coefficients on large angles of attack.

coefficient cD(αi) in Figure 3(b) are modeled according to the data points obtained from Javafoil and airfoil

models from [21], [22].

The total torque Mt acting on the vehicle’s center of gravity is the sum of the torques Mth created by
the rotors, Mw created by the drag/lift forces of the wings, Mgyro created by the gyroscopic effects of the
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propellers and Md due to external disturbances, namely Mt = Mth + Mw + Mgyro + Md where

Mth =

⎡
⎣lssθ1 − cθ1λ1 −lssθ2 − cθ2λ2 lssθ3 − cθ3λ3 −lssθ4 − cθ4λ4
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4∑
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Jp[ηiΩb ×

⎡
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0
−sθi

⎤
⎦ωi]

In the above equations, η(1,2,3,4) = 1,−1,−1, 1, Jp is the inertia of the propellers about the rotation axis. The

propeller torques T(1,2,3,4) are modeled as Ti = λikω2
i , where λ1,2,3,4 are torque/force ratios. For clockwise

rotating propellers, λ2, λ3 are negative whereas λ1, λ4 are positive for counterclockwise rotating propellers. It
turns out that λ for such kind of propeller sets are measured as 1-5% in the literature [20]. Note that the sum

of torques created by the rotors result in a roll moment along the x axis in horizontal flight mode (θ1,2,3,4 = 0)

and in a yaw moment along the z axis in vertical flight mode (θ1,2,3,4 = π/2).

3. Vertical flight controllers design

To synthesize various controllers, equations derived in Section 2 are rewritten in state-space form as

χ̇ =

⎡
⎢⎢⎣

Ṗw

V̇b

Ω̇b

α̇w

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R−1(αw) · Vb

1/m · [Ft − Ωb × (m · Vb)]
I−1
b · [Mt − Ωb × (Ib ·Ωb)]

E−1(αw) · Ωb

⎤
⎥⎥⎦ = f(χ, u) (2)

where the state vector χ consists of the position (Pw), the attitude (αw), the linear velocity (Vb) and the

angular velocity (Ωb), i.e. χ =
[
Pw Vb Ωb αw

]T . When the aerial vehicle is in vertical flight mode (i.e.

θ1,2,3,4 = π/2), the nonlinear dynamics boil down to the dynamics of a quadrotor given by

V̇b =

⎡
⎣ −gsθ + rvy − qvz

gsφcθ − rvx + pvz
−k
m (ω2
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2 + ω2

3 + ω2
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(3)
where Ixx , Iyy and Izz are the inertias of the vehicle around x , y , z axes.

The parameters used in the dynamic model of the vehicle are given in Table 1 where COG denotes the
center of gravity of the vehicle.

The total propeller speed is defined as ωp � ω1 − ω2 − ω3 + ω4 . Let us also define the following four

virtual control inputs (ui) in terms of actuating forces and torques as

u =

⎡
⎢⎢⎣
u1

u2

u3

u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
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2
4)
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Table 1. Modeling parameters.

Symbol Description Magnitude
m mass 4 kg
ls rotor distance to COG along y axis 0.25 m
ll rotor distance to COG along x axis 0.25 m

Ixx moment of inertia 0.195 kgm2

Iyy moment of inertia 0.135 kgm2

Izz moment of inertia 0.135 kgm2

λ1,4 torque/force ratio 0.01 Nm/N
λ2,3 torque/force ratio -0.01 Nm/N

With these definitions, Equation (3) can be simplified to

V̇b =

⎡
⎣v̇x

v̇y

v̇z

⎤
⎦ =

⎡
⎣ −gsθ + rvy − qvz

gsφcθ − rvx + pvz
u1
m

+ gcθcφ + qvx − pvy

⎤
⎦ , Ω̇b =

⎡
⎣ṗ

q̇
ṙ

⎤
⎦ =

⎡
⎢⎣

u2
Ixx

+ Jp

Ixx
ωpq + Iyy−Izz

Ixx
qr

u3
Iyy

+ Jp

Iyy
ωpp + Izz−Ixx

Iyy
pr

u4
Izz

+ Ixx−Iyy

Izz
pq

⎤
⎥⎦ (5)

Note that these equations are expressed in body frame. For attitude or orientation control, the last three
equations will be directly employed in control formulation. For altitude control, on the other hand, we need to

express the third component of V̇b , i.e. Z dynamics, in earth frame. To this end, we use the orientation matrix
between the body and the earth frames and obtain the following altitude dynamics:

Z̈ = (cφcθ)
u1

m
+ g (6)

Altitude and attitude dynamics can be linearized around hover conditions, i.e. φ ≈ 0, θ ≈ 0 and
ψ ≈ 0, where angular accelerations in body and world frames can be assumed to be approximately equal, i.e.

ṗ ≈ φ̈, q̇ ≈ θ̈, ṙ ≈ ψ̈ . Resulting linearized altitude and attitude dynamics can be expressed in earth frame W
as

Z̈ =
u1

m
+ g, φ̈ =

u2

Ixx
, θ̈ =

u3

Iyy
, ψ̈ =

u4

Izz
(7)

3.1. Altitude and attitude stabilization using PID controllers

A gravity compensated PID controller is designed for altitude control. For attitude control, three classical PID
controllers are designed to stabilize the vehicle in hover mode. Controllers designed for the altitude, roll, pitch
and yaw are given by the following equations:

u1 = m(−g + Kp,zez + Kd,z ż + Ki,z

∫
ez)

u2 = Ixx(Kp,φeφ + Kd,φφ̇ + Ki,φ

∫
eφ)

u3 = Iyy(Kp,θeθ + Kd,θ θ̇ + Ki,θ

∫
eθ)

154
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u4 = Izz(Kp,ψeψ + Kd,ψψ̇ + Ki,ψ

∫
eψ) (8)

where eq = qd − q for q = Z, φ, θ, ψ . In these controllers Kp,q > 0, Kd,q > 0 and Ki,q > 0 are proportional,
derivative and integral control gains, respectively.

4. Experimental results

PID controllers designed in the previous section are implemented in onboard microprocessor of the vehicle and
experimentally tested in both indoor and outdoor environments. In Figure 4, flight scenes from indoor and
outdoor hovering experiments of SUAVI are shown.

��� �!�

Figure 4. Indoor (a) and outdoor (b) flight experiments.

Satisfactory attitude control performance is obtained by PID controller as shown in outdoor flight test
depicted in Figure 5(a). Attitude references given by a pilot are tracked with very small errors (2◦−3◦). Notice
that the responses of the PD controllers are fast enough to enable robust roll and pitch stabilization. Similarly,
the experimental result related to the designed altitude controller is given in Figure 5(b). The vehicle is kept
at the desired altitude successfully where a maximum of 30 cm tracking error occurs as an overshoot in the
transient response.
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Figure 5. Outdoor flight test: attitude stabilization using PID (a), altitude control using gravity compensated PID (b).

5. Conclusion and future works

The full mathematical model of the tilt-wing aerial vehicle is derived using Newton-Euler formulation. A gravity
compensated PID controller is designed and implemented for altitude control. PID controllers are designed and
implemented for attitude stabilization. Performances of the proposed controllers are very good as demonstrated
by sufficiently small altitude and attitude errors obtained from indoor and outdoor flight experiments.

Future works include design and implementation of position control and trajectory tracking algorithms
on our aerial vehicle SUAVI.
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