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ABSTRACT image of the target to be defocused in the cross-range di-

) _ _ rection, whereas the range component causes shifting in the
In synthetic aperture radar (SAR) imaging, the presence Qdyoss-range direction and defocusing in both cross-rande a
moving targets in the scene causes phase errors in the SARnge directions [3]. The image of a target that experiences
data and subsequently defocusing in the formed image. Thggnificant vibration is defocused in the cross-range tivac
defocusing caused by the moving targets exhibits spacggs well [4]. The common approach to space-variant focusing
variant characteristics, i.e., the defocusing arises ont)e s to partition the image into smaller subimages such that
parts of the image containing the moving targets, whereage error on each subimage is approximately space-indarian
the stationary background is not defocused. Consideriag th [3, 5]. After each of the small subimages is focused in-
the reflectivity field to be imaged usually admits sparse repgependently using one of the conventional space-invariant
resentation, we propose a sparsity-driven method for joinhytofocus techniques, these subimages are combinedéogeth
SAR imaging and removing the defocus caused by movingg optain the focused image. These kinds of approaches are
targets. The method is performed in a nonquadratic regulaggzsed on post-processing of the conventionally recortstiuc
ization based framework by solving an optimization prohlemimage. However, we know that conventional imaging does
in which prior information about both the scene and phasggi perform well in sparse aperture scenarios or when the

errors are incorporated as constraints. data are incomplete. On the other hand, regularizatiorebas
Index Terms— Motion errors, phase errors, space-variantmage reconstruction has succesfully been applied to SAR

conventional imaging [6]. These techniques can alleviage t
problems in the case of incomplete data or sparse aperture.
1. INTRODUCTION Moreover, they produce images with increased resolution,
reduced sidelobes, and reduced speckle by incorporation of
In synthetic aperture radar (SAR) imaging, uncertainties o prior information about the features of interest and impos-
the position of the sensing platform or on the motion ofing various constraints (e.g., sparsity, smoothness)taheu
the targets in the underlying scene cause artifacts in the recene. Motivated by these observations and consideririg tha
constructed image. Due to the inexact knowledge about thie SAR imaging, the underlying field usually exhibits a sjgars
position of the SAR sensor, the time required for the tratismi structure, we previosly proposed a sparsity-driven tegimi
ted signal to propagate to the scene center and back cannotfioe joint SAR imaging and space-invariant focusing by us-
determined accuretely, which cause phase errors in the SARRg a nonquadratic regularization based framework [7, 8].
data [1]. This type of phase errors cause space-invaridot de Here, extending this framework we propose a method for
cusing, i.e., the amount of the defocusing in the reconttclic joint sparsity-driven imaging anspace-varianfocusing for
image is same for all points of the scene. Moving targetsorrection of phase errors caused by target motion. This
in the scene cause defocusing in the reconstructed image @gt only involves a nontrivial extension of the phase error
well. However, this defocusing needs to be corrected witlestimation piece of our previous framework, but it also pro-
a space-variant refocus algorithm, since the defocusing apides opportunities for incorporation of information abou
pears only around the positions of the moving targets wiseredhe expected spatial structure of the motion errors as well.
the stationary background is not defocused [2]. Therefordn particular, in the new approach presented here, we not
autofocus techniques developed for space-invariant fogus only exploit the sparsity of the reflectivity field, but we als
cannot handle the defocusing arising in the imaging of aesscerimpose a constraint on the spatial sparsity of the phaseserro
including multiple moving targets with different velogti. based on the assumption that motion in the scene will be
The cross-range component of the target velocity causes ttignited to a small number of spatial locations. The method
is based on minimization of a cost function of both the field
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second is for phase error estimation. Successful resulss hanumber of cross-range positions. The vectds the SAR

been obtained in experiments involving synthetic scenés wi phase history data of all points in the scene. It is also péssi

simulated multiple targets. to view r as the sum of the SAR data corresponding to each
point in the scene.

2. SAR IMAGING MODEL
r= Ccl’rnn—lf(l) + Cclm’rL—Qf(z) +..+ .+ Ccl’rnn—]f(I) (6)
. . . ﬁ_/
SAR is generally used for imaging of the ground from a plane TP1 D2 Tpr

or satellite. On its flight path, a SAR sensor transmits pulse
to the ground and then receives the reflected signals. In most”

SAR applications, the transmitted signal is a chirp signal; Z.) andrp; represent the complex reflgctlwty at the- th
which has the following form: point of the scene and the corresponding SAR data, respec-

tively. I is the total number of points in the scene. Targets
s(t) = Re {exp[j(wot + at?)]} (1)  moving in cross-range direction or vibrating targets calese
focusing in the reconstructed image. The defocusing arises
Here,wy is the center frequency ard is the so-called chirp-  due to the phase errors in the SAR data of these targets. Let
rate. The received signal, (¢) at a certain aperture position us assume the— th point in the scene as a point target mov-
¢ involves the convolution of the transmitted chirp signahwi ing in cross-range direction or vibrating without tranisiat
the projectiorp,, (u) of the field at that observation angle.  The SAR data of this target can be expressed as:

E‘Ffe,Cclmn—i is the:—th column of the model matrig’ and,
(

. j0i (1) o).
gm(t) = Re /Pm(u) expljlwo(t =m0 —7(w)) +  (2) "Pi, ¢’ oy Pin
Tpize 6‘]¢7’(2) 'r'pi2

a(t =70 — 7(u))’]|du} | = ' @)

Here,ry represents the time required for the transmitted sig- ) )

nal to propagate to the scene center and back.7(u) is the Diys i (M) pp.

delay for the returned signal from the scatterer at the raoge ¢ M

sitiondy+u, whered, is the distance between the SAR sensongre,@ represents the phase error in the cross-range direc-

and the scene center. The data used for imaging are obtain d by th i fthe t ¢ d
after a pre-processing operation involving mixing and filte ton caused by the motion of the target ang; andrp;, are

ing steps. After this process, the relation between the fiel¢he phase history data for the stationary and moving point ta
F(z,y) and the pre-processed SAR daa(t) becomes get, respectively. In a similar way, this relation can be ex-
pressed in terms of model matrix as follows:

rm (t) = F(z,y)exp{—jU(zcos 8 + ysin ) }dzdy 3) ,
12+ly'2§L2 Cclmn—i1 (¢) €]¢”(1) Cclmn—il
Cclmn—ig (¢) eI?:(2) Cclmn—iz
where _ .
) - ' ®
U: E(W()—FQOZ(t—T())) (4) . .
Cclmn—iM (¢) ejqb,;(M) Cclmn—iM

andL is the radius of the illuminated area. All of the returned
signals from all observation angles constitute a patch fronyere, Cetmn—i() is thei-th column of the model matrix
the two dimensional spatial Fourier transform of the COITeT( ) that takes the movement of the targets into account and
sponding field. The corresponding discrete model includingjclmniim(qs) is the part ofCmn—_; (¢) for them — th cross-

all returned signals is as follows. range position. In the presence of additional observation
noise, the observation model for the overall system becomes

T1 Cl
r2 C g=C(d)f +v ©)
— 5
/ ©®) where,v is the observation noise. Here, the aim is to estimate
f and¢ from the noisy observatiog.
M CM
r c 3. PROPOSED METHOD

Here, 7, is the vector of observed sampleS,, is a dis-  |n the context of SAR imaging of man-made objects, the

cretized approximation to the continuous observation dern underlying scene, dominated by strong metallic scattgrers
at them — th cross-range positiorf, is a vector representing is usually sparse, i.e., there are few nonzero pixels. Based
the unknown sampled reflectivity image and is the total on that observation, we propose a sparsity-driven method



for joint estimation of the field and phase errors caused byn (14), 1 is al x 1 vector of ones. The constrained opti-
the targets moving in the cross-range direction. The methorhization problem in (14) is replaced with the following un-
is based on a nonquadratic regularization-based framewodonstrained problem that incorporates a penalty term on the
which allows the incorporation of the prior sparsity inf@m magnitudes of3,, (i)’s.

tion about the field and about the phase error into the problem

The phase errors are incorporated to the problem using th&: " = argmin
vector 3, which includes phase errors corresponding to all fm
points in the scene, for all cross-range positions.

2
Gm — cmT<"“>ﬂmH2 X2 (1B — 1y +
I
X 3 (1B ()] - 1)
B 2 =
8. = argmin g = Cu 7B+ 22 18— 1], +
m 2

8= (10)
: X3 (1Bl — 22 (1B
m=1,2,..,M (16)

ﬁ]\l
] This optimization problem is solved by using the same tech-
Here, (3, is the vector of phase errors for the — th cross-  pique as in the field estimation step. Using the estindate

range position and has the following form: the following matrix is created,
5, = [eml(m), cioalm) emmm)]T (11) B = diag {[35,?+1>(z‘)} (17)
The method is performed by minimizing the following cost "Which is used to update the model matrix for the-t/ cross-
function with respect to the field and phase errors. range position.
argmin J(f, ) = argminlg — C(6)F13 + A [ flly + 218 — 1y CLtD() = CrBRHY (18)

st [BE)|=1 Vi After these phase estimation and model matrix update proce-
12 dures have been completed for all cross-range positioas, th

Here,1is a M1 x 1 vector of ones. Since the number of algorithm passes to the next iteration, by incrementirand
moving points is much less than the total number of points infotating to (13).
the scene, most of thevalues in the vectof are zero. Since
the elements of are in the form ofe’?’s, when¢ is zero, 4. EXPERIMENTAL RESULTS
[ becomes one. Therefore, this sparsity on the phase errors
is incorporated into the problem by using the regularizatio We show experimental results on two different synthetic
term || — 1||;. This problem is solved iteratively. In each scenes. To demonstrate the effectiveness of and highlight
iteration, in first step, the cost functiof( f, 5) is minimized  the benefits specificly provided by the proposed method, for

with respect to the field'. both experiments, the images reconstructed by convemtiona
. . imaging (the polarformat algorithm [2]) and sparsity-eiiv
FOY) = arg m}n J(f, ) = imaging [6] are presented as well. In the first experiment,
9 there are multiple moving targets in the scene. To simulate
arg min Hg - C(")(qﬁ)fH2 + 0 £l (13)  different motions and velocities of the targets, the phase h

tory data of each target are corrupted by a different phase
This minimization problem is solved using the technique inerror function. The phase histories of the three point targe
[6]. Using the field estimatg, in the second step, to estimate are corrupted by independent random phase error functions
the phase errors imposed by the moving targets, the folpwinuniformly distributed in[—m/2,7/2]. The phase histories

cost function is minimized for each cross-range position: ~ Of the two bigger targets are corrupted by quadratic phase
error functions of different peak values. In Figure 1, the

B — arg min J(f* Y 8,,) = results of the first experiment are displayed. In the second
B ) experiment, the scene is constructed so that it involvesyman
arg %ﬂn ‘gm _ CmT(n-‘rl)ﬁmH + X2 (1B — 1|, stationary point targets and a strongly vibrating rigiapo
m 2

target. To simulate it, the phase history data correspanigin
sit.  |Bm(i)]=1 Vi (14) each point of this target are corrupted by independent rando
. phase error functions uniformly distributed jrm/2, 7/2].
Here,T" is a diagonal matrix, with the entriggi) onits main  The results of the second experiment are displayed in Figure
diagonal, as follows: 2. From the results for conventional imaging and sparsity-
) driven imaging without any phase error correction, the defo
T+ = diag {f (n+1) (i)} (15)  cusing and artifacts in the reconstructed images causetkby t
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Fig. 1. a) Original scene. b) Image reconstructed by con

ventional imaging. ¢) Image reconstructed by sparsityeatri
imaging. d) Image reconstructed by the proposed method.

moving targets are clearly seen. On the other hand, imag
reconstructed by the proposed method are well focused and
show the advantages of sparsity-driven imaging such as high
resolution, reduced speckle and sidelobes, as well adigéfec

correction of the phase errors due to target motion.

5. CONCLUSION

We proposed a sparsity-driven method for joint imaging and
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Fig. 2. a) Original scene. b) Image reconstructed by con-
ventional imaging. c) Image reconstructed by sparsityeari
imaging. d) Image reconstructed by the proposed method.
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