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Abstract

Association mining is the conventional data mining technique for analyz-

ing market basket data and it reveals the positive and negative associations

between items. While being an integral part of transaction data, pricing

and time information have not been integrated into market basket analy-

sis in earlier studies. This paper proposes a new approach to mine price,

time and domain related attributes through re-mining of association mining

results. The underlying factors behind positive and negative relationships

can be characterized and described through this second data mining stage.

The applicability of the methodology is demonstrated through the analy-

sis of data coming from a large apparel retail chain, and its algorithmic

complexity is analyzed in comparison to the existing techniques.
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1. Introduction

Association mining is a data mining technique which generates rules

in the form of X ⇒ Y , where X and Y are two non-overlapping discrete

sets. A rule is considered as significant if it is satisfied by at least a cer-

tain percentage of cases (minimum support) and its confidence is above a

certain threshold (minimum confidence). Conventional association mining

considers “positive” relations in the form of X ⇒ Y . However, negative

associations in the form of X ⇒ ¬Y , where ¬Y represents the negation

(absence) of Y , can also be discovered through association mining.

Recent research has positioned association mining as one of the most

popular tools in retail analytics [7]. Association mining primarily generates

positive association rules that reveal complementary effects, suggesting that

the purchase of an item can generate sales of other items. Yet, association

mining can also be used to reveal substitution effects, where substitution

means that a product is purchased instead of another one. Although posi-

tive associations have traditionally been an integral part of retail analytics,

negative associations have not.

Numerous algorithms have been introduced to find positive and nega-

tive associations, following the pioneering work of Agrawal et al. [3]. Market

basket analysis is considered as a motivation, and is used as a test bed for

these algorithms. Price data are readily available within the market bas-

ket data and one would expect to observe its usage in various applications.

Conceptually quantitative association mining (QAM) [14, 22] can handle

pricing data and other attribute data. However, pricing data have not been

utilized before as a quantitative attribute in quantitative association mining

except in [9, 18]. Korn et al. [18] explore a solution with the help of singular
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value decomposition (SVD) and Demiriz et al. [9] extend the results from

SVD to find item associations depending on SVD rule similarities. Quan-

titative association mining is not the only choice for analyzing attribute

data within existing frameworks. Multidimensional association mining [14]

is methodology that can be adapted in analyzing such data. The complexity

of association mining increases with the usage of additional attribute data,

which may include both categorical and quantitative attributes in addition

to the transaction data [4]. Even worse, the attribute data might be denser

compared to transaction data.

The main contribution of this paper is a practical and effective method-

ology that efficiently enables the incorporation of attribute data (e.g. price,

category, sales timeline) in explaining positive and negative item associa-

tions, which respectively indicate the complementarity and substitution ef-

fects. To the best of our knowledge, there exists no methodological research

in the data mining or information science literature that enables such a

multi-faceted analysis to be executed efficiently and is proven on real world

data. The core of the proposed methodology is a new secondary data mining

process to discover new insights regarding positive and negative associations.

As a novel and broadly applicable concept, we introduce and define data

re-mining as the mining of a newly formed data that is constructed upon

the results of an original data mining process. The newly formed data will

contain additional attributes joined with the original data mining results.

In the case study presented in this paper, these attributes are related to

price, item, domain and time. The methodology combines pricing as well as

other information with the original association mining results through a new

mining process, generating new rules to characterize, describe and explain

the underlying factors behind positive and negative associations. Re-mining
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is fundamentally different from post-mining: post-mining only summarizes

the data mining results, such as visualizing the association mining results

[11]. The re-mining methodology extends and generalizes post-mining.

Our work contributes to the field of data mining in four ways:

1. We introduce a new data mining concept and its associated process,

named as Re-Mining, which enables an elaborate analysis of both pos-

itive and negative associations for discovering the factors and explain-

ing the reasons for such associations.

2. We enable the efficient inclusion of price data into the mining process,

in addition to other attributes of the items and the application domain.

3. We illustrate that the proposed methodology is applicable to real world

data, through a case study in apparel retailing industry.

4. Different ways of re-mining, namely exploratory, descriptive and pre-

dictive re-mining, are applied to real world data.

The re-mining framework was first introduced in [10]. This paper elab-

orates on the concept, introduces mathematical formalism and presents the

algorithm for the methodology. The work in this paper also extends the ap-

plication of predictive re-mining in addition to exploratory and descriptive

re-mining, and presents a complexity analysis.

The remainder of the paper is organized as follows. In Section 2, an

overview of the basic concepts in related studies is presented through a

concise literature review. In Section 3, Re-Mining is motivated, defined,

and framed. The methodology is put into use with apparel retail data in

Section 4 and its applicability is demonstrated. In Section 5, the limitations

of quantitative association mining (QAM) are illustrated with regards to

the retail data used in this paper. In Section 6, the complexity of re-mining
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is compared to QAM, illustrating its significant advantage against QAM.

Finally, Section 7 summarizes the study and discusses future directions.

2. Related Literature

One of the most common applications of association mining is literally

market basket analysis (MBA), which can be used in product recommenda-

tion systems [8]. Following the notation used in [14], let I = {I1, I2, ..., Im}

be a set of items considered in MBA. Then each transaction (basket) T

will consist of a set of items where T ⊆ I. Each item in transaction T

will have a corresponding price p, which might change from time to time

i.e. p is not necessarily constant over the time span. Let X and Y be two

non-overlapping sets of items, where X ⊂ I and Y ⊂ I, contained in some

transactions. An association rule is an implication of the following form

X ⇒ Y . Assume D is the set of all transactions, then the support (s) of the

rule is defined as the percentage of the transactions in D that contain both

X and Y i.e. the itemset X ∪Y . Recall that X ∩Y = ∅. The confidence (c)

of the rule X ⇒ Y is defined as the percentage of transactions within D con-

taining X, that also contain Y . In other words, confidence is the percentage

of transactions containing Y , given that those transactions already contain

X. Notice that this is equivalent to the definition of conditional probability.

Quantitative and multi-dimensional association mining are well-known

techniques [14] that can integrate attribute data into the association min-

ing process, where the associations among these attributes are also found.

However, these techniques introduce significant additional complexity, since

association mining is carried out with the complete set of attributes rather

than just the market basket data. In the case of QAM, quantitative at-
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tributes are transformed into categorical attributes through discretization,

transforming the problem into multi-dimensional association mining with

only categorical attributes. This is an NP-Complete problem as shown by

Angiulli et al. [4], meaning that the running time increases exponentially as

the number of additional attributes increases linearly.

Multi-dimensional association mining works directly towards the genera-

tion of multi-dimensional rules. It relates all the possible categorical values

of all the attributes to each other. Re-mining, on the other hand, expands

single dimensional rules with additional attributes. In re-mining, attribute

values are investigated and computed only for the positively and negatively

associated item pairs, with much less computational complexity that can be

solved in polynomial running time.

2.1. Negative Association Mining

In research and practice, association mining commonly refers to posi-

tive association mining. Since positive association mining has been studied

extensively, only (some of) the approaches for finding negative associations

are reviewed. One innovative approach [21] utilizes the domain knowledge

of item hierarchy (taxonomy), and seeks negative association between items

in a pairwise way. Authors in [21] propose the rule interestingness measure

(RI) based on the difference between expected support and actual support:

RI = E[s(XY )]−s(XY )
s(X) . A minimum threshold is specified for RI for the candi-

date negative itemsets, besides the minimum support threshold. Depending

on the taxonomy (e.g. Figure 1(a)) and the frequent itemsets, candidate

negative itemsets can be generated. For example, assuming that the itemset

{CG} is frequent in Figure 1(a), the dashed curves represent some of the

candidate negative itemsets.
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Tan et al. [24] find negative associations through indirect associations.

Figure 1(b) depicts such an indirect association {BC} via item A. In Figure

1(b) itemsets {AB} and {AC} are both assumed to be frequent, whereas

the itemset {BC} is not. The itemset {BC} is said to have an indirect

association via the item A and thus is considered as a candidate negative

association. Item A in this case is called as a mediator for the itemset

{BC}. Just like the aforementioned method in [21], indirect association

mining also uses an interestingness measure -dependency in this case- as a

threshold. Indirect mining selects as candidates the frequent itemsets that

have strong dependency with their mediator.

Both methods discussed above are suitable for retail analytics and the

approach in [24] is selected in this study to compute negative associations

due to convenience of implementation.

2.2. Quantitative and Multi-Dimensional Association Mining

The traditional method of incorporating quantitative data into associa-

tion mining is to discretize (categorize) the continuous attributes. An early

work by Srikant and Agrawal [22] proposes such an approach where the con-

tinuous attributes are first partitioned and then treated just like categorical

data. For this, consecutive integer values are assigned to each adjacent par-

tition. In case the quantitative attribute has few distinct values, consecutive

integer values can be assigned to these few values to conserve the ordering

of the data. When there is not enough support for a partition, the adjacent

partitions are merged and the mining process is rerun. [22] emphasizes rules

with quantitative attributes only on the left hand side (antecedent) of the

rules. However, since each partition is treated as if it were categorical, it is

also possible to obtain rules with quantitative attributes on the right hand
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side (consequent) of the rules.

An alternative statistical approach is followed by Aumann and Lindell

[6] for finding association rules with quantitative attributes. The rules found

in [6] can contain statistics (mean, variance and median) of the quantitative

attributes, as in our methodology.

In comparison to the aforementioned approaches, re-mining does not

investigate every combination of attribute values, and is much faster than

QAM. For the sake of completeness, QAM is also carried out and is compared

against re-mining in Section 5.

Korn et al. [18] summarize the expenses made on the items through ratio

rules. An example ratio rule would be “Customers who buy bread:milk:butter

spend 1:2:5 dollars on these items.” This is a potentially useful way of

utilizing the price data for unveiling the hidden relationships among the

items in sales transactions. According to this approach, one can basically

form a price matrix from sales transactions and analyze it via singular value

decomposition (SVD) to find positive and negative associations. Ensuring

the scalability of SVD in finding the ratio rules is a significant research

challenge. Demiriz et al. [9] use ratio rule similarities based on price data

to find both positive and negative item associations.

2.3. Learning Association Rules

Yao et al. [27] propose a framework of a learning classifier to explain the

mined results. However, the described framework considers and interprets

only the positive association rules and requires human intervention for la-

beling the generated rules as interesting or not. The framework in [27] is

the closest work in the literature to the re-mining methodology proposed

here. However re-mining is unique in the sense that it also includes negative

8



associations and is suitable for the automated rule discovery to explain the

originally mined results. Meanwhile, unlike in [27], the proposed approach is

applied to a real world dataset as a proof of its applicability, and a through

complexity analysis is carried out.

Finally, based on correlation analysis, Antoine and Zäıne [5] propose an

algorithm to classify associations as positive and negative. However learning

is only based on correlation data and the scope is limited to labelling the

associations as positive or negative.

3. The Methodology

The proposed re-mining methodology, which transforms the post-mining

step into a new data mining process, is introduced in this section. A math-

ematical formalism is introduced and the methodology is presented in the

form of an algorithm in Figure 2. Re-mining can be considered as an addi-

tional data mining step of Knowledge Discovery in Databases (KDD) process

[12] and can be conducted in explanatory, descriptive, and predictive man-

ners. Re-mining process is defined as “combining the results of an original

data mining process with a new additional set of data and then mining the

newly formed data again”.

The methodology consists of the following five steps (Figure 2):

1. Perform association mining.

2. Sort the items in the 2-itemsets.

3. Label the item associations accordingly and append them as new

records.

4. Expand the records with additional attributes for re-mining.

5. Perform exploratory, descriptive, and predictive re-mining.
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Conceptually, re-mining process can be extended to include many more

repeating steps, since each time a new set of the attributes can be introduced

and a new data mining technique can be utilized. However, in this paper,

the re-mining process is limited to only one additional data mining step. In

theory, the new mining step may involve any appropriate set of data mining

techniques. In this paper decision tree, colored scattered plot, and several

classification algorithms have been utilized.

The results of data mining may potentially be full of surprises, since it

does not require any pre-assumptions (hypotheses) about the data. Making

sense of such large body of results and the pressure to find surprising insights

may require incorporating new attributes and subsequently executing a new

data mining step, as implemented in re-mining. The goal of this re-mining

process is to explain and interpret the results of the original data mining

process in a different context, by generating new rules from the consoli-

dated data. The results of re-mining need not necessarily yield an outcome

in parallel with the original outcome. For example, if the original data min-

ing yields frequent itemsets, re-mining does not necessarily yield frequent

itemsets again.

The main contribution of this paper is the introduction of the re-mining

process to discover new insights regarding the positive and negative asso-

ciations and an extensive demonstration of its applicability. However the

usage of re-mining process is not limited to gaining new insights. One can

potentially employ the re-mining process to bring further insights to the

results of any data mining task.

The rationale behind using the re-mining process is to exploit the domain

specific knowledge in a new analysis step. One can understandably argue

that such background knowledge can be integrated into the original data
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mining process by introducing new attributes. However, there might be

certain cases that adding such information would increase the complexity of

the underlying model [4] and diminish the strength of the algorithm. To be

more specific, it might be necessary to find attribute associations when the

item associations are also present, which requires constraint-based mining

[20]. Re-mining may help with grasping the causality effects that exist in

the data as well, since the input of the causality models may be an outcome

of the another data mining process.

4. Case Study

In this section, the applicability of the re-mining process is demonstrated

through a real world case study that involves the store level retail sales

data originating from an apparel retail chain. In the case study, there was

access to complete sales, stock and transshipment data belonging to a single

merchandise group (men’s clothes line) coming from all the stores of the

retail chain (over 200 of them across the country) for the 2007 summer

season. A detailed description of the retail data can be found in [10].

In this section, the application of the re-mining methodology on the

retail dataset is presented. Re-mining reveals the profound effect of pricing

on item associations and frequent itemsets, and provides insights that the

retail company can act upon.

4.1. Conventional Association Mining

As the first step of the re-mining methodology, conventional association

mining has been conducted. Apriori algorithm was run to generate the fre-

quent itemsets with a minimum support count of 100. All the 600 items were

found to be frequent. In re-mining, only the frequent 2-itemsets have been
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investigated and 3930 such pairs have been found. Thus frequent itemsets

were used in the analysis, rather than association rules. For the illustration

purposes, the top-5 frequent pairs can be found in Table 1 of [10].

The frequent pairs were then used in finding the negatively related pairs

via indirect association mining. Negative relation is an indicator of product

substitution. Implementing indirect association mining resulted in 5,386

negative itemsets, including the mediator items. These itemsets were re-

duced to a set of 2,433 unique item pairs when the mediators were removed.

This indeed shows that a considerable portion of the item pairs in the dataset

are negatively related via more than one mediator item.

4.2. Re-Mining the Expanded Data

Following the execution of conventional positive and negative association

mining, a new data set E∗ (see Figure 2) was formed from the item pairs and

their additional attributes A∗ for performing exploratory, descriptive and

predictive re-mining. Supervised classification methods require the input

data in table format, in which one of the attributes is the class label. The

type of association, positive (‘+’) or negative (‘-’), was selected as the class

label in the analysis.

An item pair can generate two distinct rows for the learning set - e.g.

pairs AB and BA, but this representation ultimately yields degenerate rules

out of learning process. One way of representing the pair data is to order

(rank) items in the pair according to a sort criterion, which is referred to

as sort attr in the re-mining algorithm (Figure 2). In the case study, sort

attribute was selected as the price, which marks the items as higher and

lower priced items, respectively.

For computing price-related statistics (means and standard deviations)

12



a price-matrix was formed out of the transaction data D. The price-matrix

resembles the full-matrix format of the transaction data with the item’s price

replacing the value of 1 in the full-matrix. The price-matrix was normal-

ized by dividing each column by its maximum value, enabling comparable

statistics. The value 0 in the price-matrix means that the item is not sold in

that transaction. The full price-matrix has the dimensions 2, 753, 260×600.

Besides price related statistics such as minimum, maximum, average and

standard deviations of item prices (MinPriceH, MaxPriceH, MinPriceL, Max-

PriceL, AvgPriceH H1 L0, . . ., StdDevPriceH H1 L0, . . .), attributes related

with time and product hierarchy were appended, totaling to 38 additional

attributes in Step 4 of the algorithm (Figure 2). Attributes related with

time include first and last weeks where the items were sold (StartWeekH,

EndWeekH, StartWeekL, EndWeekL) and item lifetimes (LifeTimeH, Life-

TimeL). Attributes related with product hierarchy include the categories

and the merchandise subgroups of the items (CategoryH, CategoryL, Merch-

SubGrpH, MerchSubGrpL). Together with the record ID, the two item IDs

and the type of association, re-mining was carried out with a total of 42

attributes with 6,363 records. All the additional attributes have been com-

puted for all sorted item-pairs through executing relational queries.

Once the new dataset E∗ is available for the re-mining step, any decision

tree algorithm can be run to generate the descriptive rules. Decision tree

methods such as C5.0, CHAID, CART are readily available within data

mining software in interactive and automated modes.

If decision tree analysis is conducted with all the attributes, support

related attributes would appear as the most significant ones, and data would

be perfectly classified. Therefore it is necessary to exclude the item support

attributes from the analysis.
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One example of the rule describing the ‘+’ class is Rule 1 in Figure 3,

which can be written as follows:

IF LifeTimeL < 22 AND LifeTimeH ≥ 28 THEN ‘+’.

This rule reveals that if the lifetime of the lower-priced item is less than

22 weeks, and the lifetime of the higher-priced item is greater than or equal

to 28 weeks, then there is a very high probability of this item pair to exhibit

‘+’ association (having the target class ‘+’).

An example of ‘-’ class rule is Rule 2 in Figure 3:

IF LifeTimeL < 22 AND LifeTimeH < 28 AND CorrNormPrice HL <

0.003 THEN ‘-’.

This rule reveals that if the lifetime of the lower-priced item is less than

22 weeks, and the lifetime of the higher-priced item is less than 28 weeks, the

correlation between the prices of these items is less than 0.003 (practically

translating into negative correlation), then there is a very high probability

of this item pair to exhibit ‘-’ association (having the target class ‘-’).

Ceteris paribus, given everything else being the same, retail managers

would prefer positive associations between items. This translates into travers-

ing the darker nodes in Figure 3, where nodes are darkened with increasing

probability of positive associations. In the visual mining of the decision

tree, one is interested in the node transitions where a significant change

takes place in the node color. So in Figure 3, a transition from a light-

colored node to a dark node is interesting. By observing Figure 3, several

policies have been developed and are presented below. The policies listed

below are named based on the level of the tree that they are derived. They

are also marked on the tree in Figure 3.

Policy 1: “LifeTimeL ≥ 22”. The lower-priced item should have a life

time greater than or equal to 22 weeks.
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Policy 2: “LifeTimeL ≥ 28”. It’s even better that the low priced item

has life time greater than or equal to 28 weeks, rather than 22 weeks. This

would increase its probability of having positive associations with higher

priced items from 0.73 to 0.92 (shown with darker node).

Policy 3: “IF LifeTimeL < 22 THEN LifeTimeH ≥ 28”. If it is not

possible to apply Policy 1, one should make sure to have higher priced items

have a life time greater than or equal to 28 weeks. This significantly increases

the probability of having positive associations from 0.50 to 0.86.

Policy 4: “IF LifeTimeL ≥ 22 AND LifeTimeL < 28 THEN CorrNorm-

Price HL ≥ 0.003”. If it is possible to apply Policy 1, but not Policy 2, then

the pricing policy of synchronized price decrease can still increase the prob-

ability of positive associations. Policy 4 suggests that the normalized prices

should have positive correlation, so that positive associations will emerge.

Since the prices are monotonically non-increasing through the season, this

insight suggests that the prices of high-price and low-price items should be

decreased together (so that there will be positive correlation between the

normalized prices).

Policy 5: “IF LifeTimeL < 22 AND LifeTimeH < 28 THEN CorrNorm-

Price HL ≥ 0.026”. If it is possible to apply Policy 1, but not Policy 3, then

one should again apply Policy 4, but marking down the prices of the items

such that a higher correlation (at least 0.026, rather than 0.003) exists be-

tween the prices.

Policy 6: When it is possible to apply Policy 1, but not Policy 2 or

Policy 4, there is still good news. For low-priced items in Category “C006”,

a life time between 22 and 28 weeks yields a fairly high (0.77) probability

of positive association (more than double the probability for items in other

categories that have the same life times). So, applying Policy 1 just for
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Category “C006”, making sure that the low-priced item has a life cycle of

at least 22 weeks, guarantees a 0.77 probability of positive association with

at least one other higher priced item.

The policies obtained through visual analysis of decision tree (Figure 3)

should be handled with caution: The policies suggested above should be

put into computational models for numerically justifying their feasibility.

For example, Policy 1 suggests that the lower-priced item should have a

lifetime of at least 22 weeks. But is such a long lifetime financially justified,

especially when there are many lower-priced items? If the additional costs

that will arise are not high enough to offset the additional generated sales,

then Policy 1 may be justified; but this is not guaranteed a priori, without

a formal fact-based numerical analysis. Thus, the policies should not be

applied in isolation, but taking into consideration their interactions.

4.3. Exploratory Re-Mining

Exploratory re-mining is also conducted by creating potentially infor-

mative scatter plots. As seen from Figure 4, positive (“TargetClass=+”)

and negative (“TargetClass=-”) associations are well-separated in different

regions of the plot. For example, if StartWeekL is around the fifth week of

the season then the associations are mainly positive. In addition, a body

of positive associations up to ‘StartWeekL=15’ can be seen in Figure 4. It

means that there is a high possibility of having a positive association be-

tween two items when the lower priced item is introduced early in the season.

Since basic items are usually introduced early in the season, higher chance of

positive association between two items can be hypothesized when the lower

priced item is a basic one vs. a fashion one.

Visual analysis of Figure 5 yields new policies. In the figure, the dark blue

16



points indicate positive associations, and light grey points indicate negative

associations. It is easy to see the very heavy concentration of blue dots in

the region where the initial (maximum) item price is between 14 and 18 TL

(Turkish Liras) (14 < MaxPriceL < 18). The concentration of grey dots in

that region is very dense, suggesting Policy 5. Also, when scanning the y axis

(MaxPriceL), one can observe that items with an initial price tag greater

than 70 TL almost always have positive associations with lower-priced items

in the price range of 38 to 42 TL, suggesting Policy 6.

Policy 7: Keep the initial price of low-priced items in the range of 14 to

18 TL. This will enable them to generate new sales, thanks to their positive

associations with many higher priced items.

Policy 8: Position the items with price tag between 38 to 42 TL together

with (related) items that have an initial price tag over 70 TL.

It is clear that the policies generated by the visual analysis of the decision

tree and a sample colored scatter plot complement each other. This suggests

that one should carry out a variety of analyses in the re-mining stage.

4.4. Predictive Re-Mining

In predictive re-mining, the aim is to predict (based on their attributes)

whether two items have positive or negative associations. To show the ap-

plicability of re-mining, various predictive methods in SAS Enterprise Miner

are used in this study. Support Vector Machines (SVM) [23], Memory Based

Reasoning (MBR), Neural Networks (NN) [26], Gradient Boosting [13], Au-

toNeural and Decision Tree [28] nodes are utilized in predictive analysis.

The data set is partitioned to training set (50%), validation set (20%) and

test set (30%) before predictive methods.

The accuracy results are reported in Table 1. NN model is the clear
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winner among the predictive models. Accuracy rates of the test set from

four different models over 0.70 are an indication of accurate item association

predictions based on the attribute data. Both positive and negative asso-

ciations can be predicted accurately by utilizing attribute data, suggesting

that re-mining approach can be successfully used for predictive purposes.

In addition to accuracy rates, receiver operating characteristic (ROC)

curves (see [28]) are given in Figure 6. Sensitivity and specificity are defined

as the true positive rate and the true negative rate, respectively. By defini-

tion, better classifiers have ROC curves towards the upper left of the plots.

Therefore NN model has the best ROC curve and the decision tree model

has the second best ROC curve among the predictive models. Similarly the

cumulative lift plots [17] are depicted in Figure 7. The most upper right plot

represents the best classifier in terms of lift. NN is again the best classifier

and SVM performs as the next best model.

Variable importance is another statistic regarding classification models.

Table 2 reports importance statistics of training and validation sets sepa-

rately from the decision tree model. In light of Table 2 one can conclude

that the correlation-based attributes play important roles along with the

price-related attributes. Nevertheless, item attributes have predictive prop-

erties in terms of item associations. The attribute data can and should be

used in determining the item associations. The plain transaction data might

be less informative in terms of item associations.

The evidence presented in this section suggests that the use of classifica-

tion models is justified and Policy 9 presents an algorithm for incorporating

classification models into retail markdown planning for the next season:

Policy 9: For every item, compute the values of the important variables

in Table 2. Then put these into the classification model and predict the
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sign of association between every item pair. For items that are predicted to

have positive associations, create clusters based on merchandise group, start

time, and initial price. Present the clusters of items together in marketing

campaigns and in stores.

5. Comparison with Quantitative Association Mining

As mentioned earlier, as an alternative to re-mining, additional attribute

data used can also be incorporated through QAM. This alternative analy-

sis has also been conducted to illustrate its limitations on analyzing retail

data. Quantitative association mining has been studied extensively in the

literature and some of its major applications, such as [22], were reviewed

in Section 2.2. In the case study, an initial analysis of the price data sug-

gested that there are few price levels for each of the products. Therefore a

straight-forward discretization, which does not require a complex transfor-

mation, was possible. One of the most important steps in the QAM is the

discretization step. Instead of utilizing a more complex scheme for QAM,

in the re-mining case study, the item and price information were conjoined

into a new entity.

The two main seasons in apparel retailing, winter and summer, have

approximately equal length. As a common business rule, prices are not

marked down too often. Usually, at least two weeks pass by between sub-

sequent markdowns. Thus, there exist a countable set of price levels within

each season. There might be temporary sales promotions during the season,

but marked down prices remain the same until the next price markdown.

Prices are set at the highest level in the beginning of each season, falling

down by each markdown. If the price data of a product is normalized by
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dividing by the highest price, normalized prices will be less than or equal

to one. When two significant digits are used after the decimal point, prices

can be easily discretized. For example, after an initial markdown of 10%,

the normalized price will be 0.90. Markdowns are usually computed on the

original highest price. In other words, if the second markdown is 30% then

the normalized price is computed as 0.70.

After using this discretization scheme, 3,851 unique product-normalized

price pairs have been obtained for the 600 unique products of the original

transaction data. Each product has six price levels on the average. The

highest number of price levels for a product is 14 and the lowest number of

price levels is two. This shows that markdowns were applied to all the prod-

ucts and no product has been sold at its original price throughout the whole

season. Technically, a discretized price can be appended to a corresponding

product name to create a new unique entity for the QAM. For example ap-

pending 0.90 to the product name ‘A’ after an underscore will create the new

entity ‘A 0.90’. One can easily utilize the conventional association mining

to conduct a discretized QAM after this data transformation.

The top-10 frequent pairs and their support counts can be found in Table

2 of [10]. As can be observed from that table, a large portion of the frequent

purchases occurs at the discounted prices. Among the top-10 frequent item

pairs, only the sixth one has full prices for both of the items. The remaining

pairs are purchased at marked down prices.

The retail company does not allow price differentiations by locations. In

other words, an item will have the same price across all the stores. Quan-

titative association mining can identify negative associations between items

for value combinations that actually never occur. For example, even though

an item A is sold only at the normalized price of 0.70 in the time interval
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that B is sold, QAM can still suggest other price combinations of A and B,

such as (A 1.00, B 1.00) as negative item pairs. Thus, many item-price com-

binations will have negative associations due to the nature of the business

and the way QAM operates, yielding misleading results.

Even though both positive and negative QAM can be run on any given

dataset conceptually, it is not guaranteed to yield useful outcomes. Alter-

natively, re-mining operates only on the confirmed positive and negative

quantitative associations and does not exhibit the discussed problem.

6. Complexity Analysis

In this section, the complexity of the re-mining algorithm is analyzed

in comparison to the conventional QAM. First, the complexity of re-mining

is discussed, based on results from the literature on the Apriori algorithm.

Then, the complexity of QAM is discussed, based on two milestone papers

[4, 25], and results from the computational complexity literature.

Before proceeding with the complexity analysis, it should be remarked

that QAM computes detailed itemsets/rules, that contain specific informa-

tion that contain atomic conditions, such as “Attribute A1 taking the value

of u1j , and attribute A2 taking the value of u2j”. An atomic condition is

in the form Ai = uij for attribute Ai, for categorical attributes, and in the

form Ai ∈ [l, u] for numeric attributes. A frequent itemset in the context of

QAM is as a condition C on a set of distinct attributes A1, . . . , AN , where

N is the total number of attributes. C is in the form C = C1 ∧C2 . . .∧CN ,

where is Ci is an atomic condition on Ai, for each i = 1, . . . N [4]. In [25]

the term pattern is used instead of condition. An association rule in the

context of QAM is an expression in the form Antecedent ⇒ Consequent,
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where both Antecedent and Consequent are conditions. However, this type

of an output still requires aggregating the results to obtain the summary

statistics that re-mining provides. Alternatively, re-mining starts with only

the interesting rules (frequent itemsets in the case study) obtained through

Apriori, and then enriches these results with statistics computed for the

itemsets through database queries. So re-mining eliminates the computa-

tion of specific detailed rules, and computes only the interesting itemsets

and their statistics.

6.1. Complexity of Re-mining

The problem of finding the frequent itemsets (and the related association

rules), itemsets that appear in at least s percent of the transactions, is the

most fundamental analysis in association mining. The standard algorithm

for this problem is the Apriori algorithm, first proposed in [3], and then

improved in numerous succeeding studies, including [2, 15].

A new line of research approaches the frequent itemset discovery prob-

lem from a graph-theoretic perspective, achieving even further efficiency in

running times. [19] extends earlier work in [16], posing the problem as a

frequent subgraph discovery problem. The goal is finding all connected sub-

graphs that appear frequently in a large graph database. The authors report

that their algorithm scales linearly with respect to the size of the data set.

Even though new algorithms are continuously being developed with effi-

ciency increases, the reference complexity result regarding the Apriori algo-

rithm (considering its numerous variants) is that it has an upper bound of

O(|C| · |D|) and a lower bound of O(k · log(|I|/k)) on running time [1]. In

these expressions, |C| denotes the sum of sizes of candidates considered, |D|

denotes the size of the transactions database D, |I| is the number of items,
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and k is the size of the largest set.

Now the complexity of re-mining will be analyzed following a fixed-

schema complexity perspective [25], where the set of attributes A is fixed

(with size N) and the complexity is derived relative to the number of tuples

in the set of items I. In the presentation of the re-mining methodology,

only the itemsets of size 2 were selected. Thus the total number of frequent

itemset candidates is |I|(|I|−1)/2, and its order is O(|I|2). Hence |C| is also

by O(|I|2), and the upper bound for the running of the Apriori algorithm

is O(|I|2 · |D|). In the re-mining phase, the data is enriched with statistics

for the two-itemsets. There are N attributes for which statistics will be

computed. For each of these attributes, there will be a query that filters

the transactions with the itemset of interest, which will take O(|D|). Then

there will be the computation of the statistic, which will require a single pass

over the selected transactions for computing the mean, and two passes for

computing the standard deviation. So the upper bound for the computation

of each statistic is O(|D|2), and this overrides the time for the filter query.

Since there are N attributes, the running time for the computation of the

statistics is O(N · |D|2). When this is combined with the running time of

the Apriori, the upper bound for the whole re-mining process with k = 2 is

O(|I|2 · |D|+ N · |D|2).

6.2. Complexity of Quantitative Association Mining

The alternative to re-mining is carrying out quantitative association min-

ing (QAM), and aggregating the results to obtain statistics for the itemsets.

The two most comprehensive studies in the literature regarding the com-

plexity of QAM are [4, 25].

The most fundamental result in both papers is that QAM is NP-complete,
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even in databases without nulls. The proof of this theorem is through re-

ducing the CLIQUE problem to the QAM problem. The decision version of

the CLIQUE problem tests whether a given graph contains a k-clique, i.e.,

a complete subgraph with size k, that has all its elements connected.

Now the complexity of QAM is analyzed following a fixed-schema com-

plexity perspective, just as was done for re-mining. The additional effort to

compute the summary statistics from the quantitative association rules will

also be considered.

According to Wijsen and Meersman, the fixed-schema complexity of

QAM is O(|D|(2(N+1)+1))) = O(|D|(2N+3)) = O(|D|2N ). The number of

attributes has been taken as N +1, rather than N , to include a new variable

for the item label; but this does not change the complexity much. Once all

the rules are generated, the time to filter for two-itemsets and compute the

statistics is the same as in re-mining, namely O(N · |D|2). So the complexity

of the whole process is O(|D|2N + N · |D|2). Recall that the complexity of

re-mining for k = 2 is O(|I|2 · |D|+ N · |D|2).

The running time of QAM increases exponentially with N . This sug-

gests that re-mining becomes much more efficient as N increases. Also, the

running time of QAM takes power of |D|, which suggests that re-mining

becomes much more efficient for larger databases.

7. Conclusion

A novel methodology, namely re-mining, has been introduced in this

study to enrich the original data mining process. A new set of data is added

to the results of the traditional association mining and an additional data

mining step is conducted. The goal is to describe and explore the factors
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behind positive and negative association mining and to predict the type of

associations based on attribute data. It is shown that not only categorical

attributes (e.g. category of the product), but also quantitative attributes

such as price, lifetime of the products in weeks and some derived statistics,

can be included in the study while avoiding NP-completeness.

The re-mining methodology has been demonstrated through a case study

in apparel retail industry and its practicality has been proven for the prob-

lem at hand. Descriptive, exploratory and predictive re-mining can be im-

plemented to reveal interesting patterns previously hidden in data. The case

study revealed interesting outcomes such as “negative associations are usu-

ally seen between fashion items” and “the price of an item is an important

factor for the item associations in apparel retailing.”

As a future study, re-mining can be applied for different merchandise

groups and for successive seasons, testing its robustness w.r.t. sampling

bias and temporal change, respectively. Data coming from other retailers,

with diverse characteristics, can be used for further experimental evidence.

Finally, data coming from different domains can be used for conforming the

applicability of the re-mining process in those domains.
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Table 1: Classification Results

Test Set Training Set Validation Set
Accuracy Accuracy Accuracy

Model Node Rate Rate Rate

Neural Networks 0.82 0.86 0.83
Decision Tree 0.79 0.84 0.85
SVM 0.76 0.79 0.78
MBR 0.70 0.77 0.72
Gradient Boosting 0.62 0.62 0.62
AutoNeural 0.59 0.61 0.60

Figure 1: (a) Taxonomy of Items and Associations [21]; (b) Indirect Association

Table 2: Decision Tree Model: Variable Importance

Variable Number of Validation
Name Rules Importance Importance

CorrNormPrice HL 5 1.00 1.00
LifeTimeH 3 0.90 0.82
CategoryL 2 0.81 0.78
StdDevPriceL H0 L1 1 0.48 0.45
CorrWeeklySales HL 2 0.46 0.52
LifeTimeL 2 0.45 0.31
StdDevPriceH H0 L1 1 0.39 0.23
CategoryH 2 0.37 0.24
EndWeekL 2 0.33 0.32
MerchSubGrpH 1 0.23 0.18
MaxPriceH 1 0.21 0.00
AvgPriceL H1 L0 1 0.18 0.19
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Figure 2: Re-Mining Algorithm

Inputs

I: set of items; i ∈ I

D: set of transactions, containing only the itemset information

min sup: minimum support required for frequent itemsets

min items: minimum number of items in the itemsets

max items: maximum number of items in the itemsets

sort attr: the attribute used to sort the items within the 2-itemsets, e.g. price of an item in
retailing

Definitions

L+
k

: set of frequent k-itemsets that have positive association; l ∈ L+
k

L−
k

: set of k-itemsets that have negative association; l ∈ L−
k

L∗
k: set of all k-itemsets from association mining; l ∈ L∗

k

l(j): jth element in itemset l; l ∈ L∗
k

i.attr: value of attribute attr for item i; i ∈ I

E+: set of records for re-mining, that contain positive associations; r ∈ E+

E−: set of records for re-mining, that contain negative associations; r ∈ E−

E∗: set of all records for re-mining, r = (l(1), l(2),Γ), r ∈ E, Γ ∈ {+,−}
An: additional attribute n introduced for re-mining; n = 1 . . . N

A∗: set of all attributes introduced for re-mining; A∗ = ∪An

Functions
apriori(D,min items,max items,min sup):

apriori algorithm that operates on D and generates frequent itemsets with minimum of min items
items, maximum of max items, and a minimum support value of min sup

indirect assoc(D,min items,max items):

indirect association mining algorithm that operates on D and generates itemsets that have negative
association, with minimum of min items items and maximum of max items

fAn (l):

function that computes the value of attribute An for a given itemset l, l ∈ L∗
k

swap(a, b) :

function that swaps the values of a and b

Algorithm: Re-mining

1. Perform association mining.

L+
2 = apriori(D, 2, 2,min sup)

L−
2 = indirect assoc(D, 2, 2)

2. Sort the items in the 2-itemsets.

for all l ∈ L+
2 , L−

2

if l(1).sort attr < l(2).sort attr then

l = (l(1), l(2)) = swap(l(1), l(2))

3. Label the item associations accordingly and append them as new records.

E+ = {r : r = (l(1), l(2), +), ∀l ∈ L+
2 }

E− = {r : r = (l(1), l(2),−), ∀l ∈ L−
2 }

E∗ = E+ ∪ E−

4. Expand the records with additional attributes for re-mining.

for n = 1 . . . N
for all r ∈ E∗

r = (r, fAn (l))

5. Perform exploratory, descriptive, and predictive re-mining.
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Figure 3: An Illustrative Decision Tree Model in Re-Mining

Figure 4: Exploratory Re-Mining Example: Analyzing Item Introduction in Season
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Figure 5: Exploratory Re-Mining Example: Effect of the Maximum Item Price

Figure 6: ROC Curves
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Figure 7: Cumulative Lift Plots
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