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Ayça Çeşmelioğlu, Wilfried Meidl

Sabancı University, MDBF, Orhanlı, 34956 Tuzla, İstanbul, Turkey.

Abstract

In this presentation, a technique for constructing bent functions
from plateaued functions is introduced and analysed. This general-
izes earlier techniques for constructing bent from near-bent functions.
Using this construction, we obtain a big variety of inequivalent bent
functions, some weakly regular and some non-weakly regular. Classes
of bent function with some additional properties that enable the con-
struction of strongly regular graphs are constructed, and explicit ex-
pressions for bent functions with maximal degree are presented.

1 Introduction

For a prime p, let f be a function from Fnp to Fp. The Fourier transform of

f is then defined to be the complex valued function f̂ on Fnp

f̂(b) =
∑
x∈Fn

p

εf(x)−b·xp

where εp = e2πi/p and b · x denotes the conventional dot product in Fnp .

The Fourier spectrum spec(f) of f is the set of all values of f̂ . We remark
that one can equivalently consider functions from an arbitrary n-dimensional
vector space over Fp to Fp, and substitute the dot product with any (non-
degenerate) inner product. Frequently the finite field Fpn with the inner
product Trn(bx) is used, where Trn(z) denotes the absolute trace of z ∈ Fpn .

The function f is called a bent function if |f̂(b)|2 = pn for all b ∈ Fnp . The

normalized Fourier coefficient of f at b ∈ Fnp is defined by p−n/2f̂(b). For
a bent function the normalized Fourier coefficients are obviously ±1 when
p = 2, and for p > 2 we always have (cf. [7])

p−n/2f̂(b) =

{
±εf

∗(b)
p : n even or n odd and p ≡ 1 mod 4

±iεf
∗(b)
p : n odd and p ≡ 3 mod 4

(1)

where f∗ is a function from Fnp to Fp.
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A bent function f : Fnp → Fp is called regular if for all b ∈ Fnp

p−n/2f̂(b) = εf
∗(b)
p .

When p = 2, a bent function is trivially regular, and as can be seen from
(1), for p > 2 a regular bent function can only exist for even n and for odd
n when p ≡ 1 mod 4.

A function f : Fnp → Fp is called weakly regular if, for all b ∈ Fnp , we have

p−n/2f̂(b) = ζ εf
∗(b)
p

for some complex number ζ with |ζ| = 1. By (1), ζ can only be ±1 or ±i.
Note that regular implies weakly regular.

A function f : Fnp → Fp is called plateaued if |f̂(b)|2 = A or 0 for all
b ∈ Fnp . By Parseval’s identity, we obtain that A = pn+s for an integer

s with 0 ≤ s ≤ n. Moreover, support of f̂ defined by supp(f̂) = {b ∈
Fpn | f̂(b) 6= 0} has cardinality pn−s. We will call a plateaued function with

|f̂(b)|2 = pn+s or 0 an s-plateaued function. The case s = 0 corresponds
to bent functions by definition. For 1-plateaued functions the term near-
bent function is common (see [3, 9]), binary 1-plateaued and 2-plateaued
functions are referred to as semi-bent functions in [5].

We present a technique for constructing bent functions from plateaued
functions which generalizes earlier constructions of bent functions from near-
bent functions. Though the technique also works for p = 2, we assume in
the following that p is odd, as we are mainly interested in this type of
functions, which we also will call p-ary functions. In Section 2 we analyse
the Fourier spectrum of quadratic functions and the effect of equivalence
transformations to the Fourier spectrum. In particular, we show under which
conditions the multiplication of a p-ary function with a constant changes the
signs in the Fourier spectrum. The procedure for constructing bent functions
from s-plateaued functions is presented in Section 3. In Section 4 we point
out that the construction delivers a large variety of provable inequivalent
bent functions, and we give some simple examples of weakly regular and
non-weakly regular bent functions. Bent functions with some additional
properties can be used to construct strongly regular graphs (see [6, 11, 12]).
We will show how to obtain a large variety of such bent functions. Finally,
we present simple explicit expressions for bent functions in odd dimension
with maximal possible degree.
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2 Fourier spectrum

Two functions f and g from Fnp to Fp are called extended affine equivalent
(EA-equivalent) if

g(x) = cf(L(x) + u) + v · x+ e

for some c ∈ F∗p, e ∈ Fp, u, v ∈ Fnp , and a linear permutation L : Fnp → Fnp . As
well known, EA-equivalence preserves the main characteristics of the Fourier
spectrum, in particular if f is bent then also g is bent. More precisely we
have the following properties which can be verified straightforward.

(i) ̂(f + e)(b) = εepf̂(b),

(ii) if fv(x) = f(x) + v · x then f̂v(b) = f̂(b− v),

(iii) ̂f(x+ u)(b) = εb·up f̂(b),

(iv) if L(x) = Ax for A ∈ GL(Fp) then ̂f(L(x))(b) = f̂((A−1)T b), where
AT denotes the transpose of the matrix A.

We note that these transformations do not only preserve the absolute value
of the Fourier coefficients but also their sign is not changed. This is different
if f is multiplied by a constant c ∈ F∗p. Before we analyse the effect of this
transformation, we give an analysis of the Fourier transform of quadratic
functions. Using the properties (i),(ii), we omit the affine part and consider
quadratic functions f(x) =

∑
1≤i≤j≤n aijxixj from Fnp to Fp, where we put

x = (x1, . . . , xn). Every such quadratic function f can be associated with a
quadratic form

f(x) = xTAx

where xT denotes the transpose of the vector x, and A is a symmetric
matrix with entries in Fp. By [10, Theorem 6.21] any quadratic form can be
transformed to a diagonal quadratic form by a coordinate transformation,
i.e. D = CTAC for a nonsingular (even orthogonal) matrix C over Fp and
a diagonal matrix D = diag(d1, . . . , dn), and it is sufficient to describe the
Fourier spectrum of a quadratic form

f(x) = d1x
2
1 + · · ·+ dn−sx

2
n−s := Qdn,n−s(x)

for some 0 ≤ s ≤ n − 1 and d = (d1, . . . , dn−s). We may assume that the
nonzero elements of the matrixD are d1, . . . , dn−s. The following proposition
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describing Fourier spectrum of Qdn,n−s(x) was presented in [3], where bent
functions have been constructed from near-bent functions. For convenience
we will include the proof.

Proposition 1 [3] For the quadratic function Qdn,n−s(x) = d1x
2
1 + · · · +

dn−sx
2
n−s from Fnp to Fp, let ∆ =

∏n−s
i=1 di, and let η denote the quadratic

character of Fp. The Fourier spectrum of Qdn,n−s is given by

spec(Qdn,n−s) =


{

0, η(∆)p
n+s
2 ε

f∗(b)
p | b ∈ supp(Q̂dn,n−s)

}
: p ≡ 1 mod 4,{

0, η(∆)in−sp
n+s
2 ε

f∗(b)
p | b ∈ supp(Q̂dn,n−s)

}
: p ≡ 3 mod 4,

if s > 0, where f∗(x) is a function from supp(Q̂dn,n−s) to Fp, and

spec(Qdn,n) =


{
η(∆)p

n
2 ε
f∗(b)
p | b ∈ Fnp

}
: p ≡ 1 mod 4,{

η(∆)inp
n
2 ε
f∗(b)
p | b ∈ Fnp

}
: p ≡ 3 mod 4,

where f∗(x) is a function from Fnp to Fp.

Proof : We start with two facts which are simple to verify. For two functions
f : Fnp → Fp and g : Fmp → Fp, we define the function f ⊕ g from Fnp × Fmp
by (f ⊕ g)(x, y) = f(x) + g(y). Then (see also [1])

̂(f ⊕ g)(u, v) = f̂(u)ĝ(v). (2)

For a function f : Fmp → Fp let f̃ be the function from Fm+n
p = Fmp × Fnp to

Fp defined by f̃(x, y) = f(x). Then (see also [3, Lemma 2], and compare
with Lemma 1 in Section 3)

̂̃
f(b, c) =

{
pnf̂(b) : c = 0,

0 : else.
(3)

We first consider Qd1,1(x) = dx2 and note that by [10, Theorem 5.33]

Q̂d1,1(0) =
∑
x∈Fp

εdx
2

p = η(d)G(η, χ1)

where χ1 is the canonical additive character of Fp and G(η, χ1) is the asso-
ciated Gaussian sum. Consequently

Q̂d1,1(b) =
∑
x∈Fp

εdx
2−bx

p =
∑
x∈Fp

εd(x−b/(2d))
2−b2/(4d)

p = ε−b
2/(4d)

p η(d)G(η, χ1).
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With [10, Theorem 5.15] we then obtain

Q̂d1,1(b) =

 η(∆)p
1
2 ε
−b2/(4d)
p : p ≡ 1 mod 4,

η(∆)ip
1
2 ε
−b2/(4d)
p : p ≡ 3 mod 4.

With equation (3) we get the assertion for Qdn,1 for arbitrary n. The general
assertion then follows with induction from equation (2). 2

Remark 1 Since the multiplication of a quadratic function f by a constant
c ∈ F∗p causes a multiplication by c of every element in the associated diago-
nal matrix, the Fourier spectra of the functions f and cf is identical if and
only if n− s is even or n− s is odd and c is a square in Fp. If n− s is odd
and c is a nonsquare, then the Fourier coefficients of f and cf have opposite
sign.

Remark 2 Let Qdn,n−s(x) = d1x
2
1 + · · · + dn−sx

2 and Qd
′
n,n−s(x) = d′1x

2
1 +

· · ·+ d′n−sx
2 be two quadratic s-plateaued functions from Fnp to Fp, then one

can be obtained from the other by a coordinate transformation if and only if
η(∆) = η(∆′), where ∆ =

∏n−s
i=1 di and ∆′ =

∏n−s
i=1 d

′
i (see e.g. [10, Exercise

6.24]). If n− s is odd we can also change the character of ∆ by multiplying
the s-plateaued function by a nonsquare. Consequently every quadratic s-
plateaued function from Fnp to Fp is EA-equivalent to x21 + x22 + · · ·+ x2n−s if
n− s is odd. If n− s is even then there are two EA-inequivalent classes of
quadratic s-plateaued functions in dimension n.

We will show next that Remark 1 is a special case of a much more general
theorem.

For a function f : Fnp → Fp and b ∈ Fnp , let Nb(j) = |{x ∈ Fnp :
f(x)− b · x = j}| for each j = 0, . . . , p− 1. Then

f̂(b) =

p−1∑
j=0

Nb(j)ε
j
p,

and for any c ∈ F∗p we have

ĉf(cb) =
∑
x∈Fn

p

εcf(x)−(cb)·xp =
∑
x∈Fn

p

εc(f(x)−b·x)p =

p−1∑
j=0

Nb(j)ε
cj
p . (4)
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Suppose that |f̂(b)| = p(n+s)/2, then we have [7, p.2019]

p−1∑
j=0

Nb(j)ε
j
p ∓ p(n+s)/2εf

∗(b)
p = 0 (5)

when n− s is even, and

p−1∑
j=0

(
Nb(j)∓

(
j − f∗(b)

p

)
p(n+s−1)/2

)
εjp = 0 (6)

when n− s is odd, where 0 ≤ f∗(b) ≤ p− 1 is an integer depending on b.
If n − s is even, then using the automorphism σc of Q(εp) that fixes Q

and σc(εp) = εcp, equation (5) implies

p−1∑
j=0

Nb(j)ε
cj
p = ±p(n+s)/2εcf∗(b)p .

Consequently using equation (4)

ĉf(cb) =

p−1∑
j=0

Nb(j)ε
cj
p = ±p(n+s)/2εcf∗(b)p .

If n− s is odd, with the automorphism σc and equation (6) we get

p−1∑
j=0

Nb(j)ε
cj
p ∓

(
j − f∗(b)

p

)
p(n+s−1)/2εcjp = 0.

Hence equation (4) can be written as

ĉf(cb) = ±p(n+s−1)/2
(
j − f∗(b)

p

)
εcjp .

Replacing j first by j + f∗(b) and then by c−1j, we obtain

ĉf(cb) = ±p(n+s−1)/2
p−1∑
j=0

εcf
∗(b)

p

(
c−1j

p

)
εjp

= ±
(
c−1

p

)
ε(c−1)f

∗(b)
p p(n+s−1)/2

p−1∑
j=0

εf
∗(b)
p

(
j

p

)
εjp

=

(
c

p

)
ε(c−1)f

∗(b)
p f̂(b).

We have shown the following theorem.
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Theorem 1 For an element b ∈ Fnp and a function f : Fnp → Fp suppose

that |f̂(b)|2 = pn+s for some s ≥ 0. If n− s is even or n− s is odd and c is

a square in Fp, then ĉf(cb) = εkf̂(b) for some integer k. If n− s is odd and

c is a nonsquare in Fp, then ĉf(cb) = −εkp f̂(b) for some integer k.

3 The construction

In this section we describe the procedure to construct p-ary bent functions
from Fn+sp to Fp from s-plateaued functions from Fnp to Fp. The construction
seen in the framework of finite fields Fpn has been used in [4] to show the
existence of ternary bent functions attaining the upper bound on algebraic
degree given by Hou [8]. The construction can be seen as a generalization
of the constructions in [5, 3, 9] where s = 1.

Theorem 2 For each u = (u1, u2, · · · , us) ∈ Fsp, let fu(x) : Fnp → Fp be an

s-plateaued function. If supp(f̂u) ∩ supp(f̂v) = ∅ for u, v ∈ Fsp, u 6= v, then
the function F (x, y1, y2, · · · , ys) from Fn+sp to Fp defined by

F (x, y1, y2, · · · , ys) =
∑
u∈Fs

p

(−1)s
∏s
i=1 yi(yi − 1) · · · (yi − (p− 1))

(y1 − u1) · · · (ys − us)
fu(x)

is bent.

Proof : For a ∈ Fnp , b ∈ Fsp, and putting y = (y1, . . . , ys), the Fourier

transform F̂ of F at (a, b) is

F̂ (a, b) =
∑

x∈Fn
p ,y∈Fs

p

εF (x,y)−a·x−b·y
p =

∑
y∈Fs

p

ε−b·yp

∑
x∈Fn

p

εF (x,y)−a·x
p

=
∑
y∈Fs

p

ε−b·yp

∑
x∈Fn

p

ε
fy(x)−a·x
p =

∑
y∈Fs

p

ε−b·yp f̂y(a).

As each a ∈ Fnp belongs to the support of exactly one f̂y, y ∈ Fsp, for this y

we have
∣∣∣F̂ (a, b)

∣∣∣ = |ε−b·yp f̂y(a)| = p
n+s
2 . 2

Given s-plateaued functions, there are various possible approaches to pro-
duce a set of s-plateaued functions with Fourier transforms with pairwise
disjoint support. We suggest a simple one using the following lemma.
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Lemma 1 For some integers n and s < n, let f : Fn−sp → Fp be a bent
function and u = (un−s+1, . . . , un) ∈ Fsp. Then the function in dimension n

fu(x1 . . . , xn) = f(x1, . . . , xn−s) +
n∑

i=n−s+1

uixi

is s-plateaued with

supp(f̂u) = {(b1, . . . , bn−s, un−s+1, . . . , un) | bi ∈ Fp, 1 ≤ i ≤ n− s}.

Proof : For b = (b1, . . . , bn)

f̂u(b) =
∑
x∈Fn

p

εfu(x)−b·xp

=
∑

xn−s+1,...,xn∈Fp

ε
∑n

i=n−s+1(ui−bi)xi
p

∑
x1,...,xn−s∈Fp

ε
f(x1,...,xn−s)−

∑n−s
i=1 bixi

p

Since f is a bent function in the variables x1, . . . , xn−s, we have∣∣∣∣∣∣
∑

x1,...,xn−s∈Fp

ε
f(x1,...,xn−s)−

∑n−s
i=1 bixi

p

∣∣∣∣∣∣ = p(n−s)/2

and thus

|f̂u(b)| =
{
p(n+s)/2 if bi = ui, n− s+ 1 ≤ i ≤ n,

0 else.

2

As their Fourier spectrum is completely known we will apply Lemma 1 to
quadratic functions x21 + · · ·+ x2n−s.

Corollary 1 For u ∈ Fsp let du ∈ (F∗p)n−s. Thendu ·
 x21

...
x2n−s

+ u ·

 xn−s+1
...
xn

 , u ∈ Fsp


is a set of s-plateaued functions with Fourier transforms having pairwise
disjoint support.
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We remark that this procedure of separating the supports of the Fourier
transforms can be applied to any set of bent functions in n−s variables which
by Lemma 1 can be seen as a set of s-plateaued functions in n variables.

Example 1 For p = 3, n = 2, s = 1 we may choose f0(x) = x21, f1(x) =
2x21 + x2, f2(x) = 2x21 + 2x2. Writing x3 for y, with Theorem 2 we obtain
the bent function

F (x) = x21x
2
3 + x21 + x2x3

in dimension 3 and algebraic degree 4.

4 Applications

Inequivalent bent functions

With the construction in Theorem 2, a large variety of inequivalent bent
functions, weakly regular as well as non-weakly regular ones, can be ob-
tained. As it is well known, EA-equivalent functions have always the same
algebraic degree. By Theorem 1, EA-equivalence does not change the sign
of the Fourier coefficients of bent functions in even dimension. If the di-
mension is odd, then an equivalence transformation either does not change
the sign of any Fourier coefficient of a bent function, or the signs of all
Fourier coefficients are altered. In particular a weakly regular bent function
and a non-weakly regular bent function are never EA-equivalent. Using the
construction in Theorem 2 we can design inequivalent bent functions of the
same algebraic degree.

Example 2. Consider the 2-plateaued functions from F4
3 to F3

g0(x1, x2, x3, x4) = x21 + x22, g1(x1, x2, x3, x4) = 2x21 + x22.

Choosing f0j(x1, x2, x3, x4) = g0(x1, x2, x3, x4)+jx4 and fij(x1, x2, x3, x4) =
g1(x1, x2, x3, x4) + ix3 + jx4 for i = 1, 2 and j = 0, 1, 2, and applying the
construction in Theorem 2, we get the bent function in dimension 6

F (x1, x2, x3, x4, y1, y2) = x21y
2
1 + x21 + x22 + x3y1 + x4y2.

Example 3. With the same 2-plateaued functions g0 and g1 from F4
3 to F3

as in Example 2, we choose f00(x1, x2, x3, x4) = g0(x1, x2, x3, x4) and for 0 ≤
i, j ≤ 2 and (i, j) 6= (0, 0) we choose fij(x1, x2, x3, x4) = g1(x1, x2, x3, x4) +
ix3 + jx4. Then the construction in Theorem 2 yields the bent function

F (x1, x2, x3, x4, y1, y2) = 2x21y
2
1y

2
2 + x21y

2
1 + x21y

2
2 + x21 + x22 + x3y1 + x4y2.
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Let ∆ be defined as in Proposition 1, then for g0 we have ∆ = 1, a square,
and for g1 we have ∆ = 2, a nonsquare in F3. Therefore the functions in
Examples 2 and 3 are non-weakly regular. In the construction of Example 2
the function g0 is used 3 times, g1 is used 6 times. From the description of the
Fourier spectrum of a quadratic function given in Proposition 1 we conclude
that 3·34 Fourier coefficients have negative sign, and 6·34 Fourier coefficients
have positive sign. In fact the Fourier spectrum of the bent function in
Example 2 is {−2763, 27162, (27ε23)

162,−27ε903 , 27ε1623 , (−27ε23)
90}, where the

integer in the exponent denotes the multiplicity of the corresponding Fourier
coefficient. For constructing Example 3, g0 is used only once, 8 times g1 is
used. Consequently 34 Fourier coefficients have negative sign, 8 · 34 have
positive sign. In fact the Fourier spectrum of the bent function in Example
3 is {−279, 27216, (27ε23)

216,−27ε363 , 27ε2163 , (−27ε23)
36}. By Theorem 1 the

two bent functions of algebraic degree 6 are inequivalent.

Bent functions and strongly regular graphs

In [2, 6, 11] it is shown that partial difference sets and strongly regular graphs
can be obtained from some classes of p-ary bent functions:
Let n be an even integer and f : Fnp → Fp be a bent function with the
additional properties that

(a) f is weakly regular

(b) for a constant k with gcd(k − 1, p− 1) = 1 we have for all t ∈ Fp

f(tx) = tkf(x).

Then the sets D0, DR, DN defined by

D0 = {x ∈ Fnp | f(x) = 0}, DN = {x ∈ Fnp | f(x) is a nonsquare of Fp},
DR = {x ∈ Fnp | f(x) is a nonzero square of Fp}

are partial difference sets of Fnp . Their Cayley graphs are strongly regular.
There are a few examples of bent functions known that satisfy the above

conditions, some of them yielding new strongly regular graphs, see [11]. Also
note that every p-ary quadratic function f which does not have a linear term
satisfies f(tx) = t2f(x) for all t ∈ Fp. But in general, a bent function does
not satisfy those conditions.

In the following we relate our construction of bent functions to the con-
struction of strongly regular graphs. We present a general formula for a class
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of bent functions which enable the construction of strongly regular graphs.
As we will see, this class of bent functions is interesting from different point
of views.

For each j ∈ {1, · · · , s}, let σj represent the elementary symmetric func-
tion

σj(y1, · · · , ys) :=
∑

1≤i1<···<ij≤s
yi1 · · · yij

with s indeterminates over Fp. We define a function G(y1, · · · , ys) from Fsp
to Fp by

G(y1, · · · , ys) =
s∑
j=1

(−1)jσj(y
p−1
1 , · · · , yp−1s ).

Lemma 2

G(y1, · · · , ys) =

{
0 if (y1, · · · , ys) = (0, · · · , 0)
−1 otherwise.

Proof : If y1, y2, · · · , ys 6= 0 then

G(y1, · · · , ys) = (−1)s
(
s

s

)
+(−1)s−1

(
s

s− 1

)
+(−1)s−2

(
s

s− 2

)
+· · ·+(−1)

(
s

1

)
= −1.

If some yi1 , · · · , yir = 0 then G(y1, · · · , ys) will be reduced to the sum of
(p − 1)st powers elementary symmetric functions in s − r variables and we
will have

G(y1, · · · , ys) = (−1)s−r
(
s− r
s− r

)
+(−1)s−r−1

(
s− r

s− r − 1

)
+· · ·+(−1)

(
s− r

1

)
= −1.

2

Theorem 3 Let g0, g1 be two distinct bent functions from Fn−sp to Fp sat-
isfying gi(tx1, . . . , txn−s) = t2gi(x1, . . . , xn−s) for all t ∈ Fp. We interpret
g0, g1 as s-plateaued functions in n variables, and define a function F from
Fnp × Fsp = Fn+sp to Fp by

F (x, y1, · · · , ys) = G(y1, · · · , ys)(g0(x)−g1(x))+xn−s+1y1+· · ·+xnys+g0(x)

Then F is a bent function of degree s(p − 1) + d, where d is the degree of
g0 − g1, that satisfies F (tx, ty1, · · · , tys) = t2F (x, y1, · · · , ys) for all t ∈ Fp.
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Proof : For each nonzero vector (y1, · · · , ys) ∈ Fsp, we define the function
fy1,···,ys(x) = g1(x) + xn−s+1y1 + · · · + xnys from Fnp to Fp. By Corollary 1
and the remarks thereafter {g0, fy1,···,ys | (y1, · · · , ys) ∈ Fsp \{(0, . . . , 0)}} is a
set of s-plateaued functions with Fourier transforms with pairwise disjoint
support. Then

F̂ (a, b1, · · · , bs) =
∑
x∈Fn

p

εF (x,y1,···,ys)−a.x−b1y1−···−bsys
p

=
∑
x∈Fn

p

εg0(x)−a.xp

∑
(y1,···,ys)∈Fs

p

ε(g0(x)−g1(x))G(y1,···,ys)+(xn−s+1−b1)y1+···+(xn−bs)ys
p

=
∑
x∈Fn

p

εg0(x)−a.xp

1 +
∑

(y1,···,ys)∈Fs
p\{(0,···,0)}

ε(g1(x)−g0(x))+(xn−s+1−b1)y1+···+(xn−bs)ys
p


= ĝ0(a) +

∑
(y1,···,ys)∈Fs

p\{(0,···,0)}

ε−b1y1−···−bsysp

∑
x∈Fn

p

εg1(x)+xn−s+1y1+···+xnys−a.x
p

= ĝ0(a) +
∑

(y1,···,ys)∈Fs
p\{(0,···,0)}

ε−b1y1−···−bsysp
̂fy1,y2,···,ys(a)

2

Remark 3 The bent function of Theorem 3 is obtained with the construc-
tion in Theorem 2 taking f0 = g0 and fu = g1, u 6= 0, and by separating the
supports of the Fourier transforms similarly as in Corollary 1 for quadratic
functions.

Example 4. For the 1-plateaued quadratic functions g0, g1 : F3
3 → F3 given

by g0(x1, x2, x3) = 2x21 + x22 and g1(x1, x2, x3) = x21 + 2x22 with Theorem 3
(and putting y = x4) we obtain the bent function of algebraic degree 4

F1(x1, x2, x3, x4) = 2x1x
2
4 + x22x

2
4 + x3x4 + 2x21 + x22.

Example 5. Applying Theorem 3 to the 2-plateaued quadratic functions
g0(x1, x2, x3, x4) = x21+x22, g1(x1, x2, x3, x4) = 4x21+x22 from F4

5 to F5, yields
the bent function of algebraic degree 6

F2(x1, x2, x3, x4, x5, x6) = 2x21x
4
5x

4
6 + 3x21x

4
5 + 3x21x

4
6 +x3x5 +x4x6 +x21 +x22.

The functions in Examples 2 and 3 are all in even dimension and satisfy the
conditions (a),(b), therefore correspond to strongly regular graphs. Accord-
ing to the signs of the Fourier coefficients, the graph corresponding to F1 is
of negative Latin square type, and the graph corresponding to F2 is of Latin
square type (see [11]).
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Examples of bent functions with maximal degree

A p-ary bent function f in dimension n can have algebraic degree at most
(p− 1)n/2 + 1, see Hou [8]. The bent function f must then be non-weakly
regular. In a first approach, in [4] the construction described in Theorem 2
is used with maximal possible s = n − 1 to show the existence of ternary
bent functions in odd dimension attaining the Hou’s upper bound on the
algebraic degree. Constructions of such functions from F3n × Fs3 to F3 are
described. We here present some simple explicit expressions for such bent
functions.

We first use Theorem 3 to obtain a closed formula for arbitrary odd
dimension. The functions g0(x) = x21, g1(x) = 2x21 from Fn3 to F3 are (n−1)-
plateaued. Applying Theorem 3 to these functions yields a ternary bent
function in dimension n+s and algebraic degree 2n. As obvious this function
attains Hou’s bound on the algebraic degree, and we have the following
corollary.

Corollary 2 For an arbitrary integer n let x = (x1, . . . , xn), y = (y1, . . . , yn−1).
The function F from Fn3 × Fs3 = Fn+s3 to F3

F (x,y) = 2x21G(y1, . . . , yn−1) + x21 + x2y1 + · · ·+ xnyn−1 (7)

is a bent function with maximal possible algebraic degree.

Example 6. For n = 2 the ternary function (7) of maximal possible alge-
braic degree 4 is the function in Example 1

F (x) = x21x
2
3 + x21 + x2x3,

for n = 3, function (7) is the ternary function

F (x1, x2, x3, y1, y2) = 2x21y
2
1y

2
2 + x21y

2
1 + x21y

2
2 + x2y1 + x3y2 + x21

of algebraic degree 6.

Corollary 2 gives one explicit formula for a ternary bent function with
maximal algebraic degree in arbitrary odd dimension. A large number of
ternary bent functions with maximal degree can be obtained using sets of
s-plateaued functions described as in Corollary 1 with s = n− 1.

Example 7. Using the notation of Corollary 1 for n = 3 thus s = 2 we may
choose d00 = d02 = d20 = d11 = d22 = 1 and d01 = d10 = d12 = d21 = 2.
Applying the construction of Theorem 2, yields the ternary bent function

F (x1, x2, x3, y1, y2) = x21y
2
1y

2
2 + x21y

2
1y2 + 2x21y

2
1 + x21y1y

2
2 + x21y1y2 +

2x21y1 + 2x21y
2
2 + 2x21y2 + x21 + x2y1 + x3y2
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of degree 6.

By Remark 3 the bent function in dimension 5 in Example 6 is obtained by
choosing d00 = 1 and du = 2 for u 6= 00. By Proposition 1 the proportion
of Fourier coefficients with positive sign is smaller than for the function in
Example 7. Consequently these two functions of maximal algebraic degree
are inequivalent.

Remark 4 One may hope that this construction of ternary bent functions
of maximal degree can be generalized to the case p > 3. One may start
with bent functions from Fp to Fp, i.e. in dimension 1, with algebraic degree
(p+1)/2, interpret this functions as (n−1)-plateaued functions in dimension
n and proceed as above for the case p = 3 to construct a bent function of
maximal degree (p−1)(2n−1)/2+1 in dimension 2n−1. But by [8, Theorem
4.6] bent functions from Fp to Fp are always quadratic. Consequently this
procedure is only applicable for p = 3.
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[3] A. Çeşmelioğlu, G. McGuire, W. Meidl, A construction of weakly and
non-weakly regular bent functions, preprint 2010.

[4] A. Çeşmelioğlu, W. Meidl, Bent functions of maximal degree, preprint
2010.

[5] P. Charpin, E. Pasalic, C. Tavernier, On bent and semi-bent quadratic
Boolean functions. IEEE Trans. Inform. Theory 51 (2005), 4286–4298.

[6] T. Feng, B. Wen, Q. Xiang, J. Yin, Partial difference sets from p-ary
weakly regular bent functions and quadratic forms, preprint 2010.

[7] T. Helleseth, A. Kholosha, Monomial and quadratic bent functions over
the finite field of odd characteristic. IEEE Trans. Inform. Theory 52
(2006), 2018–2032.

[8] X.D. Hou, p-ary and q-ary versions of certain results about bent functions
and resilient functions. Finite Fields Appl. 10 (2004), 566–582.

14



[9] G. Leander, G. McGuire, Construction of bent functions from near-bent
functions. Journal of Combinatorial Theory, Series A 116 (2009), 960–
970.

[10] R. Lidl, H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia Math.
Appl., vol. 20, Cambridge Univ. Press, Cambridge, 1997.

[11] Y. Tan, A. Pott, T. Feng, Strongly regular graphs associated with
ternary bent functions. Journal of Combinatorial Theory, Series A 117
(2010), 668–682.

[12] Y. Tan, J. Yang, X. Zhang, A recursive approach to construct p-ary
bent functions which are not weakly regular. In: Proceedings of IEEE
International Conference on Information Theory and Information Secu-
rity, Beijing, 2010, to appear.

15


