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Abstract

In this note we give an elementary proof of the Fritz-John and Karush–Kuhn–Tucker conditions for nonlinear finite
dimensional programming problems with equality and/or inequality constraints. The proof avoids the implicit function
theorem usually applied when dealing with equality constraints and uses a generalization of Farkas lemma and the Bolz-
ano-Weierstrass property for compact sets.
� 2006 Published by Elsevier B.V.
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1. Introduction

Let A be an m · n matrix with rows a>k , 1 6 k 6 m, b 2 Rm an m-dimensional vector, and fi : Rn ! R,
0 6 i 6 q some non-affine, continuously differentiable functions. We consider the optimization problem
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minff0ðxÞ : x 2FPg; FP :¼ fx 2 Rn : a>k x 6 bk; 1 6 k 6 m; f iðxÞ 6 0; 1 6 i 6 qg; ðPÞ
and the program including equalities
minff0ðxÞ : x 2FQg; FQ :¼FP \ fx 2 Rn : hjðxÞ ¼ 0; 1 6 j 6 rg; ðQÞ
where the functions hj : Rn ! R, 1 6 j 6 r, are non-affine and continuously differentiable.
Two basic results covered in every course on nonlinear programming are the Fritz-John (FJ) and

Karush–Kuhn–Tucker (KKT) necessary conditions for the local minimizers of optimization problems (P)
and (Q) [7–9]. Denoting the nonnegative orthant of Rl by Rl

þ, the FJ necessary conditions for problem (P)
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are given by the following: If xP is a local minimizer of problem (P), then there exist (see for example [2,5])
vectors 0 6¼ k 2 Rqþ1

þ and m 2 Rm
þ satisfying
Xq

i¼0

kirfiðxP Þ þ
Xm

k¼1

mkak ¼ 0;

kifiðxP Þ ¼ 0; 1 6 i 6 q and mkða>k xP � bkÞ ¼ 0; 1 6 k 6 m:

ðFJPÞ
For optimization problem (Q) the resulting FJ conditions are as follows: If xQ is a local minimizer of problem
(Q), then there exist (see for example [2,5]) vectors ðk; mÞ 2 Rqþ1þm

þ , l 2 Rr with (k,l) 5 0 satisfying
Xq

i¼0

kirfiðxQÞ þ
Xr

j¼1

ljrhjðxQÞ þ
Xm

k¼1

mkak ¼ 0;

kifiðxQÞ ¼ 0; 1 6 i 6 q and mkða>k xQ � bkÞ ¼ 0; 1 6 k 6 m:

ðFJQÞ
If k0 given in conditions (FJP) and (FJQ) can be chosen positive, then the resulting necessary conditions are
called the KKT conditions for problems (P) and (Q), respectively. A sufficient condition for k0 to be positive is
given by a so-called first-order constraint qualification. In Section 2 we first give an elementary proof of the FJ
and KKT conditions for problem (P). Then the same proof is given for optimization problem (Q) by using a
perturbation argument but avoiding the implicit function theorem.

2. The FJ and KKT conditions for problems (P) and (Q)

For d > 0 and �x 2 Rn, let Nð�x; dÞ denote a d-neighborhood of �x given by
Nð�x; dÞ :¼ fx 2 Rn : kx� �xk 6 dg:
A vector xP is called a local minimizer of optimization problem (P) (respectively, for optimization problem (Q)
if xP 2FP (respectively, xP 2FQ) and there exists some d > 0 such that f0(xP) 6 f0(x) for every
x 2FP \NðxP ; dÞ (respectively, x 2FQ \NðxP ; dÞÞ.

We introduce the active index sets I(x): = {1 6 i 6 q : fi(x) = 0} and KðxÞ ¼ f1 6 k 6 m : a>k x ¼ bkg, and
denote by B(x), the matrix consisting of the corresponding active rows a>k ; k 2 KðxÞ.

Lemma 2.1. If xP is a local minimizer of problem (P), then max{$fi(xP)>d : i 2 I(xP) [ {0}} P 0 for every d such

that B(xP)d 6 0.

Proof. Suppose by contradiction there exists some d0 satisfying B(xP)d0 6 0 and
0 > rfiðxP Þ>d0 ¼ lim
t#0

fiðxP þ td0Þ � fiðxP Þ
t

for every i 2 I(xP) [ {0}. By the finiteness of the sets {0, . . . ,q} and {1, . . . ,m} and the continuity of fi this im-
plies the existence of some t0 > 0 satisfying
fiðxP þ td0Þ < 0; i 62 IðxP Þ; fiðxP þ td0Þ < fiðxP Þ; i 2 IðxP Þ [ f0g;AðxP þ td0Þ 6 b
for every 0 < t 6 t0. Hence, the vector xP + td0 belongs to FP and satisfies f0(xP + t d0) < f0(xP) for every
0 < t 6 t0. This contradicts that xP is a local minimum. h

Remark 2.1. If the function f0 is pseudo-convex and the functions fi, 1 6 i 6 q are strictly pseudo-convex,
then for a feasible xP the reverse implication in Lemma 2.1 also holds and in this result local minimizer is
replaced by global minimizer. A proof of this will be given at the end of this section. Moreover, if
maxBd60,kdk=1{$fi(xP)>d : i 2 I(xP) [ {0}} > 0 and xP feasible, then one can show that xP is a local minimum
of order one [5], i.e., there exists some d > 0 and c > 0 such that f0(x) � f0(xP) P ckx � xPk for every
x 2FP \NðxP ; dÞ.
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The proof of the FJ conditions for problem (P) will be based on the following generalization of Farkas
lemma [6]. For completeness, a short proof, using the strong duality result for linear programming, will be
given in Appendix A.

Lemma 2.2. Let Ds � Rs
þ be the unit simplex. If B is a p · n matrix and ci 2 Rn; 1 6 i 6 s, some given vectors,

then the following conditions are equivalent:

1. For every d 2 Rn satisfying Bd 6 0 it holds that max16i6sc
>
i d P 0.

2. There exists some k 2 Ds and l 2 Rp
þ satisfying

Ps
i¼1kici þ B>l ¼ 0.

Proof (FJ conditions for problem (P)). By combining Lemmas 2.1 and 2.2, the FJ conditions follow. h

It is well-known that the KKT conditions follow from the FJ conditions under some constraint qualifica-
tion. We say that the Mangasarian-Fromovitz (MF) constraint qualification for problem (P) holds at a feasible
point x if there exists some d0 satisfying
BðxÞd0 6 0 and max
i2IðxÞ
frfiðxÞ>d0g < 0:
We now show that at a local minimizer xP of problem (P) satisfying the MF constraint qualification, the KKT
conditions must hold.

Proof (KKT conditions for problem (P)). Assume that k0 = 0 in the FJ conditions. Applying Lemma 2.2 to the
FJ conditions with k0 = 0 we obtain that maxi2IðxP ÞrfiðxP Þ>d P 0 for every B(xP)d 6 0. This contradicts the
MF constraint qualification. h

To prove the FJ and KKT conditions for problem (Q) without using the implicit function theorem we con-
sider for a local minimizer xQ of problem (Q) and d > 0 appropriately chosen and � > 0, the perturbed feasible
region
Fdð�Þ :¼FP \NðxQ; dÞ \ fx 2 Rn : hjðxÞ 6 �;�hjðxÞ 6 �; 1 6 j 6 rg;

and the associated optimization problem
minff0ðxÞ þ kx� xQk2
: x 2Fdð�Þg: ðQdð�ÞÞ
Since the feasible region is compact a global minimizer xQ(�) exists for problem (Qd(�)). For these global min-
imizers one can show the following result.

Lemma 2.3. For any sequence �l#0 it follows that liml"1xQ(�l) = xQ.

Proof. Let us assume to the contrary that there exists a sequence xQð�lÞ; l 2 N which does not converge to xQ.
By kxQ(�l) � xQk 6 d and the Bolzano-Weierstrass property for compact sets there exists some subsequence
xQð�lÞ; l 2 L � N satisfying
lim
l"1; l2L

xQð�lÞ ¼ �x 6¼ xQ: ð2:1Þ
By continuity �x must be feasible for problem (Q). Since xQ is feasible for (Qd(�l)), l 2 L it follows that
f0ðxQð�lÞÞ þ kxQð�lÞ � xQk2
6 f0ðxQÞ ð2:2Þ
for every l 2 L. Taking now the limit in relation (2.2) we find by relation (2.1) that
f0ð�xÞ þ k�x� xQk2
6 f0ðxQÞ
and this contradicts the local optimality of xQ for problem (Q). h

If xQ is a strict local minimizer, i.e., f0(xQ) < f0(x) for every x 2FQ \NðxQ; dÞ and x 5 xQ, we do not need
in the above proof the penalty term kx � xQk2. Using Lemma 2.3 one can now give an elementary proof of the
FJ and KKT conditions for a local minimizer xQ of problem (Q).
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Proof (FJ conditions for problem (Q)). Let �l be a strictly decreasing sequence and consider the associated
optimal solutions xQ(�l) of (Qd(�l)). For notational convenience we denote xQ(�l) by x(l) and by Lemma 2.3
there exists some l P l0 such that kx(l) � xQk < d for every l P l0. Introduce now the set
J l :¼ f1 6 j 6 r : hjðxðlÞÞ ¼ �l or hjðxðlÞÞ ¼ ��lg:
The set of all subsets of the finite set {1, . . . , r} is finite and so the sequence J l; l 2 N contains some subset
J � f1; . . . ; rg such that L :¼ fl 2 N : J l ¼ Jg is infinite. Applying now for every l P l0 and l 2 L the FJ con-
ditions to problem (Qd(�l)) we obtain that there exist vectors kl 2 Rqþ1

þ , ll 2 RjJ j, ml 2 Rm
þ, 0 5 (kl,ll),

satisfying
� k0lgðxðlÞÞ �
Xq

i¼1

kilrfiðxðlÞÞ �
X
j2J

ljlrhjðxðlÞÞ ¼
Xm

k¼1

mklak;

mklða>k xðlÞ � bkÞ ¼ 0; 1 6 k 6 m; and kilfiðxðlÞÞ ¼ 0; 1 6 i 6 q

ð2:3Þ
with g(x): = $f0(x) + 2(x � xQ). By relation (2.3) and Caratheodory’s lemma (see Appendix A) one can find
for every l 2 L some subset Kl � {1, . . . ,m} and a vector m�l 2 RjKlj

þ satisfying
�k0lgðxðlÞÞ �
Xq

i¼1

kilrfiðxðlÞÞ �
X
j2J

ljlrhjðxðlÞÞ ¼
X
k2Kl

m�klak ð2:4Þ
and the vectors ak, k 2 Kl are linearly independent. Since 0 5 (kl,ll) we may assume in relation (2.4) that the
vector ðkl; ll; m

�
l Þ has Euclidean norm 1. Again by selecting an infinite subsequence L0 � L if necessary we can

assume Kl ¼ K (the same) for all l 2 L0. By the Bolzano-Weierstrass theorem the sequence of vectors
ðkl; ll; m

�
l Þ; l 2 L0 has a converging subsequence, i.e., there exists an infinite set L1 � L0 with

liml2L1;l"1ðkl; ll; m
�
l Þ ¼ ð�k; �l;�mÞ and ð�k; �l;�mÞ having Euclidean norm 1. Moreover, it follows by Lemma 2.3

and the continuity of hj that J � f1 6 j 6 r : hjðxQÞ ¼ 0g. Applying again Lemma 2.3 and the continuity of
the gradients the desired result follows from relation (2.4) by letting l 2 L1 converge to infinity leading to
the FJ condition:
Xq

i¼0

�kirfiðxQÞ þ
X
j2J

�ljrhjðxQÞ þ
X
k2K

�mkak ¼ 0:
By construction the vectors ak, k 2 K, are linearly independent. Since ð�k; �l;�mÞ has Euclidean norm 1 and ak,
k 2 K, are linearly independent this implies ð�k; �lÞ 6¼ 0. h

For problem (Q) we introduce the following constraint qualification: The MF constraint qualification for
problem (Q) is said to hold at a feasible point x if

MF1. $hj(x), 1 6 j 6 r are linearly independent.
MF2. lin{$hj(x), 1 6 j 6 r} \ lin{ak,k 2 K(x)} = {0}.
MF3. There exists some d0 satisfying
BðxÞd0 6 0;rhjðxÞ>d0 ¼ 0; 0 6 j 6 r; and max
i2IðxÞ
frfiðxÞ>d0g < 0:
This is a natural condition. Without condition (MF2) a FJ point need not be a KKT point as shown by the
two-dimensional optimization problem (with minimizer and FJ point xQ = 0)
minfx1 : x2 6 0;�x2 6 0; x2 � x2
1 ¼ 0g:
Proof (KKT conditions for problem (Q)). To show that at a minimizer xQ of problem (Q) satisfying the MF
constraint qualification the KKT condition must hold we assume to the contrary that in the FJ condition for
problem (Q) we have k0 = 0. By (MF3) it must follow that k = 0 and using (k,l) 5 0 it follows that l 5 0.
Applying now (MF2) and (MF3) to the FJ conditions with k = 0 and l 5 0 we obtain a contradiction. h



S� . _I. Birbil et al. / European Journal of Operational Research xxx (2006) xxx–xxx 5

ARTICLE IN PRESS
As observed in Remark 2.1 we will now show for f0 pseudo-convex and fi, 1 6 i 6 q strictly pseudo-convex
on Rn, that for xP 2FP the condition max{$fi(xP)>d : i 2 I(xP) [ {0}} P 0 for every d such that B(xP)d 6 0

implies that xP is an global minimizer of problem (P). Recall that a function / : Rn 7! R is called pseudo-con-
vex on Rn if / is differentiable on Rn and $/(x)>d P 0 implies /(x + d) P /(x) for every x; d 2 Rn. It is called
strictly pseudo-convex on Rn if / is differentiable and $/(x)>d P 0 implies /(x + d) > /(x) for every x 2 Rn

and 0 6¼ d 2 Rn [1].

Proof (Converse of Lemma 2.1 for f0 pseudo-convex and fi,1 6 i 6 q strictly pseudo-convex). To prove the
converse of Lemma 2.1 let us assume by contradiction that the feasible xP is not an global minimizer of
problem (P). Hence, there exists some x0 2FP satisfying f0(x0) < f0(xP). By the pseudo-convexity of f0 this
implies that $f0(xP)>(x0 � xP) < 0. Also by strict pseudo-convexity of fi,1 6 i 6 q using fi(x0) 6 0 =
fi(xP),i 2 I(xP) and x0 5 xP we obtain that $fi(xP)>(x0 � xP) < 0 for every i 2 I(xP). Finally it holds that
B(xP)(x0 � xP) 6 0 and we arrive at a contradiction to our initial assumption. h

Combining Lemmas 2.1 and 2.2 we immediately obtain the following result [2].

Lemma 2.4. Let f0 be pseudo-convex and fi,1 6 i 6 q strictly pseudo-convex. Then it follows that xP 2FP is a

global minimizer of (P) if and only if xP satisfies the FJ conditions.
3. Conclusion

In this note we have shown that the basic results in nonlinear programming are a natural and direct conse-
quence of basic results in linear programming and analysis. In our proof we could avoid the implicit function
theorem usually applied in the proof of the FJ conditions for problem (Q) (see for example [2,5]). The proof of
the implicit function theorem [11] and its understanding is in general difficult for undergraduate/graduate stu-
dents in the applied computational sciences. This concern was also the main objective for constructing an alter-
native elementary proof by McShane [10] for the FJ and KKT conditions for problem (Q). By not regarding
separately linear and nonlinear inequalities the result in [10] is weaker than ours (also the linear independence
constraint qualification for (Q) is used) and his proof uses the penalty approach of nonlinear programming (see
also [3] for a similar proof). As such this technique and the technique used in this paper have their pros and
cons. An advantage of the presented approach for problem (P) is the fact that it can easily identify the class
of functions for which the FJ conditions for problem (P) are not only necessary but also sufficient. This seems
to be difficult to show by means of the penalty approach of McShane. However, to our belief the main advan-
tage of our proof technique is its display of a natural connection between linear and nonlinear programming.

Appendix A

In this appendix we give a short proof of Lemma 2.2 by means of the strong duality theorem for linear
programming.

Proof. To verify 1) 2 we observe that
0 ¼ min
Bd60

max
16i6s

c>i d ¼ min
Bd60; c>i d�z60; 16i6s

z: ðA:1Þ
This is a linear programming problem and by the strong duality theorem of linear programming (cf. [4]) we
obtain
min
Bd60; c>i d�z60; 16i6s

z ¼ max 0>
k

l

� �
:
Xs

i¼1

kici þ B>l ¼ 0; k 2 Ds; l 2 Rp
þ

( )
: ðA:2Þ
Applying now relations (A.1) and (A.2) we know that the feasible region of the dual problem is not empty and
so there exist some k 2 Ds and l 2 Rp

þ satisfying
Ps

i¼1kic
>
i dþ B>l ¼ 0: To show the reverse implication it fol-

lows that there exists some k 2 Ds and l 2 Rp
þ satisfying

Ps
i¼1kic

>
i d ¼ �l>Bd for every d 2 Rn: Hence for

Bd 6 0 and using l 2 Rp
þ we obtain max16i6sc

>
i d P

Ps
i¼1kic

>
i d P 0. h
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In our analysis we also use the following result known as Caratheodory’s lemma.

Lemma A.1. Let v 2 Rm be represented as cone combination v ¼
Pm

k¼1mkak, mk P 0. Then there is a

representation v ¼
P

k2K�mkak, �mk > 0; k 2 K such that ak; k 2 K are linearly independent.

Proof. We can assume
v ¼
Xm

k¼1

mkak; with mk > 0; ðA:3Þ
and suppose that the vectors ak,k = 1, . . . ,m are linearly dependent. So there is a non-trivial combination
0 ¼

Pm
k¼1skak. By multiplying this relation by a factor q and adding to (A.3) we find
v ¼
Xm

k¼1

ðmk þ qskÞak
and see that we can choose q 2 R in such a way that (at least) one of the coefficients (mk + qsk) is zero and the
others P0. This can be done until the desired representation is attained. h
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