Abstract: In this paper application of Sliding Mode Control (SMC) to electrical drives and motion control systems is discussed. It is shown that in these applications simplicity in implementation makes concepts of SMC a very attractive design alternative. Application in electrical drives control is discussed for supply via different topologies of the supply converters. Motion control is discussed for single degree of freedom motion control systems as an extension of the control of mechanical coordinates in electrical drives. Extension to multi-body systems is discussed very briefly.

Keywords: Sliding Modes, Electric Drives, Motion Control, Power Converters, Motion Control,

1. INTRODUCTION

Sliding mode motion results in a system performance that includes disturbance rejection and robustness to parameter variation [Utkin, 1992]. It has been presented abundantly in technical literature, both from a theoretical and implementation perspective [Utkin, 1992], [Utkin et al, 1999]. Hence, in this paper, background details on Sliding Mode Control are kept to a minimum.

Our scope is limited on presentation of results of SMC application to electrical drives and motion control systems. The direct application of discontinuous control to motion systems with force as control input led to claims of the chattering phenomena in VSS with sliding modes and the scepticism on the applicability of the discontinuous control based SMC in such systems [Asada et al, 1986]. The solution of the chattering problem attracted many researchers and numerous design methods were proposed to reduce its effects [Young, et al. 1999].

Electrical drives consist of a machine and power converter acting as an interconnecting device between electrical machine and the electrical power source while electrical machine is attached to some mechanical energy source or sink. Thus, electrical drives, in general, act as interconnection devices between electrical and mechanical energy sources. The electrical drive role as interconnection element rises a question of bilateral energy flow and impedance matching for both electrical and mechanical terminals. This requires controlling voltage or current at electrical interconnection terminals and force/torques or velocity at mechanical interconnection terminals.

SMC application in electrical drives seems natural due to discontinuous nature of the outputs of the motor supply converter. Drives control includes control of mechanical motion, control of the electromagnetic processes in the electrical drives resulting in desired changes of the electromagnetic torque/force [Sabanovic et al., 1981]. The last but not the least is switching pattern selection for the supply converters – known as PWM pattern generation [Sabanovic, 1993]. SMC is characterized by simplicity in control design and robustness against unknown or time-varying plant parameters [Utkin et al, 1993]. However, irrespective of the control algorithm, estimation of the system state (rotor and stator flux) and the mechanical coordinates in the presence of the variable parameters are required [Yan et al, 2002]. Recent advanced developments in SMC observers allow the implementation of a “sensorless” electrical drives control [Rao et al, 2009].

Paper is organized as follows. In section 2 structures and mathematical models are discussed. In section 3 selection of switching pattern for switching converter supplying induction machine is discussed. It is shown that solutions derived using SMC methods can be applied to both DC-to-AC and the AC-to-DC converters. In Section 4 induction machine observer design is discussed briefly. In section 5 issues related to single degree of freedom and multi-body mechanical systems control are discussed.

2. STRUCTURES AND MATHEMATICAL MODELS

Motion control systems are related to control of mechanical systems configuration – thus dealing with changes of mechanical coordinates (position and/or velocity) due to the changes of forces/torques acting on the system input(s). The electrical drive as actuator in motion control system needs to generate required force/torque to realize desired motion and adjust electrical impedance on electrical terminals. Both requirements need to be realized by controlling power converter which is attached between electrical machine and the electrical power source. In some cases, due to topological properties of the converters, concurrent realization of both requirements on electrical and mechanical interconnection terminals may not be realizable.

2.1 Power Converters and Electrical Machines

In order to avoid discussion of many different cases we will
consider induction machine (IM) as an example. Due to
dynamical complexity this example may show a way of
controlling other machines as well. In field oriented frame of
references \((d,q)\), dynamics of the electromagnetic energy
conversion, with voltages as inputs and electromagnetic
torque (force) as output, for IM can be written as:

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} &= \begin{bmatrix} -\lambda & \omega \\ -\omega & \lambda \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} \gamma \eta \phi_d \\ \gamma \eta \phi_q \end{bmatrix} + \frac{1}{\sigma L_\sigma} u_d \\
\gamma &= L_m / \sigma L_r, \; \eta = R / L_r, \; \sigma = 1 - L_m^2 / L_r L_s \\
\frac{d}{dt} \begin{bmatrix} \phi_d \\ \phi_q \end{bmatrix} &= \begin{bmatrix} -\eta \phi_d \\ -\eta \phi_q \end{bmatrix} + \frac{1}{\sigma L_\sigma} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} \\
\tau &= (3L_m / 2L_r) \phi_i
\end{align*}
\]

(1)

(2)

(3)

Here \(i_d = [i_d, i_q] \) is stator current vector, \(u_{d,q} = [u_d, u_q] \)
stands for the stator voltage vector, \(\phi_{d,q} = [\phi_d, 0] \) is the rotor
flux vector, \(\rho\) stands for the position of rotor flux vector in
stationary frame of references \((\alpha,\beta)\); \(\theta, \omega\) stand for rotor
position and velocity governed by \(\dot{\theta} = \alpha, \; \dot{\omega} = \tau - \tau_L \), \(\tau_L\)
is the external load, \(L_m, L_s\) and \(L_r\) are mutual, stator and rotor
inductances, respectively. The dynamics of the electromagnetic torque and the rotor flux can be expressed in another
way specifying directly dynamics of the rotor flux modulus and the electromagnetic torque [Sabanovic et al., 1981]

\[
\begin{align*}
\frac{d^2 \phi_i}{dt^2} &= f_s + \frac{\eta L_m}{\sigma L_\sigma} u_d \\
f_s &= -\gamma^2 (L_m i_d - \phi_i) + \eta L_m (\gamma \eta \phi_d + \alpha \phi_q - \lambda i_q) \\
\frac{d \tau}{dt} &= f_r + \frac{3L_m}{2L_r} \phi_i u_d \\
f_r &= \frac{3L_m}{2L_r} (-\gamma \phi_d + \eta L_m i_d) - \phi_i (\gamma \alpha \phi_i - \alpha \phi_d - \lambda i_q)
\end{align*}
\]

Model (4), (5) may be used for direct design of the control
dynamic to enforce flux and torque tracking. Vector \(u_{d,q}\) is
defined as

\[
\begin{bmatrix} u_d \\ u_q \end{bmatrix} = \begin{bmatrix} \cos \rho & \sin \rho \\ -\sin \rho & \cos \rho \end{bmatrix} \begin{bmatrix} u_{d,S} \\ u_{q,S} \end{bmatrix}
\]

where \(u_{\phi^q} = [u_{d,S}, u_{q,S}] \) stand for supply voltage in \((\alpha,\beta)\)
frame of references.

The control properties are greatly influenced by the topology
of supply converters. Fig. 1(a) shows interconnection of a DC
machine to three-phase source. In Fig. 1(b) an AC machines
supplied from three phase source with a DC source as
interconnecting element is depicted. Structure in Fig. 1(b) can
be analyzed as a serial connection of a AC to DC (Fig. 1(a))
and a DC to AC sources/sinks. Topological structures of the
AC to DC and DC to AC converters are the same, thus the
same control algorithm can be applied to both [Sabanovic et
al., 1993]. To avoid complexities, we will assume that DC
voltage \(V_0\) is maintained by input AC to DC converter. The
instantaneous state of switches determines a converter
configuration vector \(S_i (s_{ij})\), \(i = 1,...,m, \; k,j = 1,2,3\) with
\(s_{ij} = 1\) if switch \(S_{ij}\) is ON and \(s_{ij} = 0\) if switch \(S_{ij}\) is
OFF.

Fig.1 Structure of switching converters for interconnection of
DC or AC machines to a three phase source

Converter output voltages \(u_i, u_j, u_k\) can take value \(V_0\) or 0 .
The load phase voltage \(u_{\phi^q}\) for delta connection, and
converter output voltages \(u_i = V_0\) if \(s_{ij} = 1\), \(u_i = 0\) if
\(s_{ij} = 1\), is given by (Fig. 2)

\[
\begin{bmatrix} u_d \\ u_q \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}
\]

(7)

Insertion (7) into (6) allows the transformation
\((1,2,3) \rightarrow (d,q)\) to be expressed as

\[
\begin{bmatrix} u_d \\ u_q \end{bmatrix} = T_{d,q} (\rho) T_{\phi^q,d} (\rho) T_{\phi^q,d} (\rho) \begin{bmatrix} u_{123} (S_i) \end{bmatrix}
\]

(8)

(9)

\[
S_i = [s_{11}, s_{12}, s_{13}, s_{21}, s_{22}, s_{23}]
\]

Fig.2 Converter configuration vectors \(S_i, i = 1,2,...,8\) and
corresponding voltages \(u_i (S_i)\) in \((\alpha,\beta)\) frame of references

Complete dynamical description of a motion control system
includes mechanical motion \(\theta = \alpha, \; \dot{\omega} = \tau - \tau_L\),
the electromagnetic energy conversion (1) - (3) or (4) - (5) and
the operation of the supply converter (8). It is complex, high
order nonlinear dynamics that can be, from a control point of
view, treated in many different ways. In the multi-body
motion control systems the drives are treated as s source of
the torque/force and the dynamics of mechanical motion is
more complex.

2.2 Motion Control Systems

Configuration space dynamics of multi-body, rigid, fully
actuated n-dof system can be expressed as
\[
\mathbf{A}(\mathbf{q})\dot{\mathbf{q}} + \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) = \mathbf{\tau}
\] (9)

Here $\mathbf{q} \in \mathbb{R}^n$ denotes the configuration vector; $\mathbf{A}(\mathbf{q}) \in \mathbb{R}^{n \times n}$ stands for positive definite kinetic energy matrix with bounded strictly positive elements; $\mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \in \mathbb{R}^{n \times n}$ stands for vector Coriolis forces, viscous friction and centripetal forces and is bounded; $\mathbf{g}(\mathbf{q}) \in \mathbb{R}^n$ stands for vector of gravity terms bounded; $\mathbf{\tau} \in \mathbb{R}^n$ stands for vector of generalized joint forces bounded (in further text we will sometimes refer to $\mathbf{\tau}$ as the control vector or input force vector). Motion control assumes force $\mathbf{\tau} \in \mathbb{R}^n$ as control input. As shown in analysis of electrical drives torque is result of electromagnetic interaction and can be controlled by changing electromagnetic state of electrical machine.

3. ELECTROMAGNETIC FORCE/TORQUE CONTROL

3.1 Selection of Reference Current

Rotor flux and component of the stator current orthogonal to rotor flux i_q need to be controlled in order to uniquely determine electromagnetic force/torque. Rotor flux magnitude dynamics (2) is first order systems with current i_d a scalar control input and reference tracking can be achieved if sliding mode is enforced in
\[
S_q = \{\phi_d, i_d : \sigma_q = \phi_q - \phi_d = 0\}
\] (10)

Current reference
\[
i_{q}^{ref} = i_{q}^{eq} - K_i \sigma_q^{[2\xi-1]sign(\sigma_q)}
\] (11)

with $K_i > 0$ enforces sliding mode motion in manifold $\sigma_q^{ref} = 0$; i_{q}^{eq} stands for equivalent current calculated from $\sigma_q = 0$. This can be verified from the time derivative $\dot{V} = -K_2 V^2$, $k > 0$, $\frac{1}{2} \leq \xi \leq 1$ of Lyapunov function $V = (\sigma_q)^2$. For $\phi_d = \phi_q^{ref} \neq 0$ and τ^{ref} the i_q can be determined as $i_{q}^{ref} = 2\tau^{ref}\mathbf{L}_d(\phi_q^{ref})$. This way desired current vector is determined such that desired magnitude of rotor flux and desired electromagnetic force/torque are generated. Alternatively, if for example velocity of the motor needs to be controlled to track its smooth reference ω^{ref}, then from $V = (\sigma_q)^2$, $\sigma_q = \omega - \omega^{ref}$ the current
\[
i_{q}^{ref} = i_{q}^{eq} - K_i \sigma_q^{[2\xi-1]sign(\sigma_q)}
\] (12)

enforces velocity tracking. i_q^{ref} stands for equivalent current calculated from $\sigma_q = 0$. Both components of the reference current are continuous.

3.2 Selection of Converter Configuration Vector

Temporal changes of the converter configuration vector should be selected such that actual current i_{dq} tracks selected reference i_{dq}^{ref} or that sliding mode is enforced in manifold $S_{dq}^{i} = \{i_d,i_q : \sigma_{dq}^{ref} = i_{dq}^{ref} - i_d = 0 \& \sigma_{d}^{ref} = i_{dq}^{ref} - i_q = 0\}$. Another way is to start from dynamics (4), (5) and enforce sliding mode in manifold S_{dq}^{τ} defined as an intersection of the manifolds $\sigma_{d}^{ref} = \dot{e}_q + C_d e_q = 0$, $\dot{e}_q = \phi_q^{ref} - \phi_q$ and $\sigma_{q}^{ref} = \tau^{ref} - \tau = 0$. In both cases design procedure is the same. Selection of the components of input voltage as
\[
u_d = u_{d}^{eq} - k_i sign(\sigma_d)\]
\[
u_q = u_{q}^{eq} - k_i sign(\sigma_q)
\]

enforces component-wise sliding mode in selected manifold. The components of the equivalent voltages are determined from $\sigma_d = 0$ and $\sigma_q = 0$. For example in the current control loop the d-component and q-component of the equivalent current can be expressed as
\[
u_d^{eq} = \sigma_d \left(\frac{\omega^{ref}}{2} - \nu_d \phi_d - \omega \phi_d + \lambda_i\right)
\]
\[
u_q^{eq} = \sigma_q \left(\frac{\omega^{ref}}{2} + \nu_q \phi_q + \omega \phi_q - \lambda_i\right)
\]

Both u_d^{eq} and u_q^{eq} are continuous.

3.2 Selection of Converter Switching Pattern

Further design will be easy if voltages (12) can be realized exactly by converters, but unfortunately that is not the case. As shown in Fig. 2 converter configuration vector can have seven distinct values – thus only seven values in (13) can be exactly reproduced. This requires finding another way of realizing control (13). For Lyapunov function $V(\sigma) > 0$, any converter configuration vector $S_{dq}, k = 1,...,8$ that guaranty $V(S_{dq}) < 0$, satisfies Lyapunov stability requirements. Conceptually, selection of one of the eight configurations $S_{dq}, k = 1,...,8$ requires mapping vector $u_{dq} = [u_d, u_q]$ given by (13) to vector $u_{dq}, k = 1,...,8$. Indeed, many different solutions can be found in literature [Sabanovic et al, 1981], [Sabanovic, 1993], [Utkin et al, 1999]. Below a few, most interesting algorithms will be explained in more details.

Algorithm 1 is based on (8) and the projection of (d,q) reference frame to (a,b,c) reference frame using generalized inverse
\[
u_{(12)} = \left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right] G_{(12)} \nu_{dq}
\]

This algorithm was first published in [Sabanovic et al, 1981] and is a base for the space vector PWM algorithms. Based on this idea many so-called transition tables [Jezernik et al, 2010], [Chen et al, 1997] are derived. This algorithm implicitly enforces zero average of the sum of converter outputs u_1,u_2,u_3 thus gives larger switching frequency compared with all other solutions.
Algorithm 2: is based on usage of the existing degree of freedom in (8) and add additional requirement to control specification in the form

$$\begin{align*}
\begin{bmatrix}
\phi' \\
\dot{\phi}
\end{bmatrix} &= \begin{bmatrix} T_{\alpha\beta} \\ b^T \end{bmatrix} u_{123} - \begin{bmatrix} u_{\alpha} \\ u_{\beta}
\end{bmatrix} \\
\text{subject to:} & \quad \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} u_{\alpha} \\ u_{\beta}
\end{bmatrix} = b_4
\end{align*}$$

(16)

Selecting b^T such that augmented matrix has full rank allows calculation of $u_{\alpha\beta}(S_j)$ such that sliding mode is enforced in manifold $\sigma_{\alpha\beta} = 0 \& \phi = 0$. In [Sabanovic et al., 1981] and [Utkin et al., 1999] b^T is selected to ensure balanced voltages with $u_{\alpha\beta} = 0$. Extensions to, for example, switching optimization, enforcement of desired average voltage of neutral point etc., can be easily implemented by selecting $u_{\alpha\beta}$ and b^T.

Algorithm 2: is selected with requirements to give minimum rate of change of the current control error [Sabanovic et al., 1993]. Temporal changes in converter configuration control should be selected from

$$S_i = \left\{ \begin{array}{l}
\min_{j \in [1,8]} \left\| \dot{u}_{\alpha\beta}(S_j) - u_{\alpha\beta}(S_j) \right\| \quad j = 1,\ldots,8 \\
\text{subject to:} & \quad \dot{\sigma}_{\alpha\beta}(S_j) = -1
\end{array} \right\}$$

(17)

This algorithm gives good results in steady state operations (when change of the current is limited to a current ripple) but is not performing very well when large transients in the current are needed (as for sudden change in load).

Algorithm 3: In algorithms (15) - (17) switching pattern does not depend on the actual amplitude of the error. An interesting improvement of algorithm (17) is proposed in [Chen et al., 1997]. The idea is simple: value of switching function at the end of the switching interval T is minimized and switching pattern of the converter configuration vector is selected as

$$S_i = \left\{ \begin{array}{l}
\min_{j \in [1,8]} \left\| \dot{u}_{\alpha\beta}(S_j) + \sigma_{\alpha\beta}'(S_j) T + \sigma_{\alpha\beta}'(S_j) (1-v)T \right\| \\
\text{subject to:} & \quad j = 1,\ldots,8, v \leq 1
\end{array} \right\}$$

(19)

Further improvement is possible if two control vectors are allowed to be used in one switching interval. Assuming that from (18) vector $S_k, k = 1,\ldots,8$ is selected, by applying simple linear approximation the second vector is determined from (19):

$$S_i = \left\{ \begin{array}{l}
\min_{j \in [1,8]} \left\| \dot{u}_{\alpha\beta}(S_j) + \sigma_{\alpha\beta}'(S_j) T + \sigma_{\alpha\beta}'(S_j) (1-v)T \right\| \\
\text{subject to:} & \quad j = 1,\ldots,8, v \leq 1
\end{array} \right\}$$

Algorithm (19) allows optimization of the switching pattern by selecting optimal value for $0 \leq v \leq 1$. This algorithm shows very good behaviour in steady state and transient conditions.

Selection of temporal changes of the converter configuration vector establishes relationship between control of electromagnetic states of electrical machines and the operation of switching converter.

4. SMC BASED OBSERVERS FOR ELECTRIC DRIVES

Estimation of state and/or parameters in motion control plays an important role in the system realization. As shown above, information on the flux is needed for the electrical machines control. Here we will show application of the sliding mode observer design methods taking an IM machine as an example. The dynamics of IM (1), (2) in (α, β) frame of references is taken as a starting point

$$\begin{align*}
\frac{d}{dt} \begin{bmatrix} i_{\alpha} \\ i_{\beta}
\end{bmatrix} &= \begin{bmatrix} \eta - \omega \eta \phi_{\alpha} - \lambda i_{\alpha} - \frac{1}{\sigma \alpha} u_{\alpha} \\ \phi_{\beta} - \eta i_{\alpha} + \eta \sigma \beta u_{\beta}
\end{bmatrix} \\
\frac{d}{dt} \begin{bmatrix} \phi_{\alpha} \\ \phi_{\beta}
\end{bmatrix} &= \begin{bmatrix} -\eta - \omega \eta \phi_{\alpha} - \lambda i_{\alpha} - \frac{1}{\sigma \alpha} u_{\alpha} \\ \phi_{\beta} - \eta i_{\alpha} + \eta \sigma \beta u_{\beta}
\end{bmatrix}
\end{align*}$$

(20)

(21)

where $\phi_{\alpha} = [\phi_{\alpha\ell} e^i, \ i_{\alpha}]$ and $\phi_{\beta} = [\phi_{\beta\ell} e^i, \ i_{\beta}]$ are rotor flux, stator current and stator voltage vectors, respectively. Stator current and voltage are assumed measured. Observer structure can be selected in the same form as (20), (21). One of the first ideas on IM identification with sliding modes [Izsoimov, 1983], is based on selection of the rotor time constant η and angular velocity ω as control. It has been shown that if sliding mode is enforced in manifold $\sigma_{\alpha\beta} = \phi_{\alpha\ell} e^i$ and $\sigma_{\beta\ell} = \phi_{\beta\ell} e^i$, $e^i = i_{\alpha} - i_{\beta}$ the estimated flux converges to real one. Improved version if this observer is with adaptation of the rotor time constant presented in [Utkin et al., 1999], [Rao et al., 2009]. In [Sahin et al., 1995] stator current observer is selected as

$$\begin{align*}
\frac{d}{dt} \begin{bmatrix} i_{\alpha} \\ i_{\beta}
\end{bmatrix} &= \begin{bmatrix} E_{\alpha} \\ E_{\beta}
\end{bmatrix} + \frac{1}{\sigma \alpha} \begin{bmatrix} u_{\alpha} \\ u_{\beta}
\end{bmatrix} \\
\frac{d}{dt} \begin{bmatrix} \phi_{\alpha} \\ \phi_{\beta}
\end{bmatrix} &= \begin{bmatrix} -\eta - \omega \eta \phi_{\alpha} - \lambda i_{\alpha} - \frac{1}{\sigma \alpha} u_{\alpha} \\ \phi_{\beta} - \eta i_{\alpha} + \eta \sigma \beta u_{\beta}
\end{bmatrix}
\end{align*}$$

(22)

where V_a and V_B are components of the observer control vector and $E_{\alpha\beta} = [E_a E_B]$ is vector that includes known components of stator current dynamics. If sliding mode is enforced in manifold $S_{\alpha\beta} = \{i_{\alpha}, i_{\beta} : \sigma_{\alpha\beta} = 0 \& \sigma_{\beta\ell} = 0\}$

(23)

Equivalent control can be expressed as:

$$\begin{align*}
\gamma_{\alpha\ell} &= \gamma_{\alpha\ell} + \gamma_{\beta\ell} - \lambda i_{\alpha} - E_a \\
\gamma_{\beta\ell} &= \gamma_{\alpha\ell} - \gamma_{\beta\ell} + \lambda i_{\alpha} - E_B
\end{align*}$$

(24)

From (24) two variables can be determined as function of the rest. In sliding mode vector $V_{\alpha\beta} = [V_a V_B]$ can be measured. Selection of vector $E_{\alpha\beta} = [E_a E_B]$ offers a range of possibilities in determining flux and/or other variables from (24). In [Sahin et al., 1995] $E_{\alpha\beta} = [-\gamma_{\alpha\ell} - \gamma_{\beta\ell}]$ is selected and with assumption that ω and η are known rotor flux can be determined from

$$\begin{align*}
\begin{bmatrix} \dot{\phi}_{\alpha} \\ \dot{\phi}_{\beta}
\end{bmatrix} &= \begin{bmatrix} \eta & \omega \eta \phi_{\alpha} - \lambda i_{\alpha} - \frac{1}{\sigma \alpha} u_{\alpha} \\ \phi_{\beta} - \eta i_{\alpha} + \eta \sigma \beta u_{\beta}
\end{bmatrix}
\end{align*}$$

(25)
\[E_{qf}^T = - (i_n R_n / \mathbf{dL}_n) - (i_p R_p / \mathbf{dL}_p) \] is selected in [Derdiyok et al., 2001]. Convergence in Lyapunov sense is proven with assumption that \(\dot{\phi} = 0, \dot{\eta} = 0 \). Moreover it is shown that, by designing additional observer for \(\mathbf{L}_{qf} = \mathbf{V}_{qf} \) as

\[
\begin{bmatrix}
\dot{L}_{\alpha}
\dot{L}_{\beta}
\end{bmatrix} =
\begin{bmatrix}
\dot{\eta} & \dot{\omega} & V_{\alpha q}
\end{bmatrix}
- \eta \frac{L_{\alpha}}{L_{\beta}} \begin{bmatrix}
L_{\alpha} & L_{\beta} & \dot{L}_{\alpha} & \dot{L}_{\beta}
\end{bmatrix}
- \mathbf{K} \begin{bmatrix}
\dot{L}_{\alpha}
\dot{L}_{\beta}
\end{bmatrix}
\tag{26}
\]

with adaptation law

\[
\begin{bmatrix}
\dot{\eta} \\
\dot{\omega}
\end{bmatrix} = \begin{bmatrix}
L_{\alpha} + \eta \dot{L}_{\alpha} \\
L_{\alpha} + \eta \dot{L}_{\alpha}
\end{bmatrix} - L_{\alpha} \begin{bmatrix}
\dot{L}_{\alpha} & \dot{L}_{\alpha} & \dot{L}_{\alpha} & \dot{L}_{\alpha}
\end{bmatrix}
\tag{27}
\]

corresponds to sliding mode and the input force \(\xi \). This can be verified by deriving derivative of Lyapunov function candidate \(V \) and assumption that equivalent force \(\mathbf{f} \) is changing slowly with respect to mechanical dynamics, thus it can be modelled by \(\dot{\xi} = 0 \), observer

\[
\dot{\varepsilon} = \frac{\mathbf{L}_{eq} \mathbf{V}_{eq} - \mathbf{V}_{eq} \mathbf{L}_{eq}}{\mathbf{V}_{eq} \mathbf{L}_{eq}} + \mathbf{K} \mathbf{L}_{eq}
\]

\[
\dot{\varepsilon} = \frac{\mathbf{L}_{eq} \mathbf{V}_{eq} - \mathbf{V}_{eq} \mathbf{L}_{eq}}{\mathbf{V}_{eq} \mathbf{L}_{eq}} + \mathbf{K} \mathbf{L}_{eq}
\]

enforces sliding mode in (29) for appropriate scalar function \(\lambda(V) > 0 \). This can be verified by deriving derivative of Lyapunov function candidate \(V = \sigma \dot{q}^2 / 2 > 0 \), which for control (25) has form \(\dot{V} = \sigma \dot{q} \dot{q} = -\lambda(V) < 0 \). Such a selection allows design of different controller – depending on selection of function \(\lambda(V) > 0 \). General selection as

\[
\dot{V} = -\lambda(V) = -k_2 \dot{q}^2 \hat{V}, \quad k_2 > 0, \quad \frac{1}{2} \xi \leq \xi \leq 1
\]

(31)

leads to sliding mode. The exponential stability for is guaranteed for \(k > 0 \) & \(\xi = 1 \). In realization of control (30) equivalent force/torque is required. From control error dynamics \(\dot{\sigma} = a^{-1}(\tau - \tau_{eq}) \) and assumption that equivalent force \(\hat{\tau} \) is changing slowly with respect to mechanical system dynamics, thus it can be modelled by \(\dot{\hat{\tau}} = 0 \), observer

\[
\hat{\xi} = k_1 \xi - k_2 \xi
\]

(32)

gives estimated equivalent force which can be used in (30) instead of \(\tau_{eq} \).

5.2 Multi-body Mechanical Systems – Configuration Space

Let us look at problem of selection of the control input for multi-body system (9) enforcing sliding mode in manifold

\[
S = \left\{ \mathbf{q}, \dot{\mathbf{q}} \mid \mathbf{A}(\mathbf{q}) \dot{\mathbf{q}} = \mathbf{f} \right\}
\]

(33)

\[
\Delta \mathbf{q} = \mathbf{A}(\mathbf{q}) \mathbf{q} - \Delta \mathbf{q}
\]

Let Lyapunov function candidate be selected as \(V = \sigma^T \sigma / 2 \). Then control

\[
\tau = \tau_{eq} = \mathbf{A}(\mathbf{q}) \mathbf{q} - \mathbf{A}(\mathbf{q}) \mathbf{f}
\]

(34)

gives \(\dot{V} = \sigma^T \dot{\sigma} = -\tau_{eq} \mathbf{q} \mathbf{q} < 0 \), for \(\mathbf{sign}(\mathbf{q}) \) stands for component-vice function with elements \(\mathbf{sign}(x_i) \) being 1 for \(x_i > 0 \) and -1 for \(x_i < 0 \), \(i = 1, 2, \ldots, n \). This leads for wide range of the possibilities for selection of the function \(\mathbf{q} \mathbf{q} \). For example, if \(\mathbf{q} \mathbf{q} \) is selected discontinuous, finite-time convergence to equilibrium and sliding mode motion can be enforced [Utkin et al., 1999].

5.2 Multi-body Mechanical Systems – Operational Space

Dynamics of task \(\mathbf{x} = \mathbf{x}(\mathbf{q}), \mathbf{x} \in \mathbb{R}^n \) with \(\mathbf{q} \in \mathbb{R}^n, p \leq n \) can be expressed as

\[
\dot{x} = \frac{\partial x(\mathbf{q})}{\partial \mathbf{q}} \mathbf{q} = \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}, \dot{x} = \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}} + \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}
\]

(35)

For non-redundant systems \(p = n \), projection of operational space force \(\mathbf{f} \) into configuration space is expressed as \(\tau = \mathbf{J}^T \mathbf{f} \), [Khatib, 1987]. Inserting (9) and \(\tau = \mathbf{J}^T \mathbf{f} \) into

\[
\dot{x} = \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}} + \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}
\]

(36)
Where \(A_s = (JA^{-1}J^T)^{-1} \); \(\mu(q,q) = A_s \left(JA^{-1}b(q,q) - J\dot{q} \right) \) and \(v(q) = A_s \left(J \right) \). Let task manifold is specified by \(S_r = \{ \dot{x}_r, \dot{\sigma}_r \} = \left(C \Delta x + \Delta x = 0; C \in \mathbb{R}^{m \times n}; C > 0 \right) \).

\[
\Delta x = x - x^{\text{off}}
\]

(37)

Then control
\[
f_r = f_r^{\text{off}} - A_s \Psi_s(\sigma_s)
\]

\[
f_r' = \mu(q) + v(q) - A_s \left(C \Delta x - x^{\text{off}} \right)
\]

(38)

for appropriate \(\Psi_s(\sigma_s) \) enforces sliding mode in manifold (37). The structure of the task space control is shown in Fig. 4.

5.3 Multi-body Mechanical Systems – Constrained Systems

Let constraint manifold is represented by \(\phi(q) = 0 \in \mathbb{R}^{m \times n} \).

Constraint Jacobian \(\Phi = (\partial \phi(q) / \partial q) \) is assumed to have full row rank. In the constraint manifold interaction unknown forces \(\lambda \in \mathbb{R}^{m \times n} \), are balanced by the system motion to obtain

\[
A \ddot{q} + b(q, \dot{q}) + g(q) - \tau = \Phi^T \lambda
\]

(39)

Velocity in the constrained direction \(\Phi \dot{q} \) must be zero. That leads to direct application of the SMC concept – the interaction force can be determined from the requirement that sliding mode is enforced in manifold \(\sigma_s(q) = \Phi \dot{q} = 0 \). From \(\sigma_s(\lambda) = \lambda = 0 \) follows

\[
\lambda_{eq} = -\Phi^T (\tau - b - g) - (\Phi A^{-1} \Phi^T)^{-1} \Phi \dot{q}
\]

(40)

Matrix \(\Phi^T \left(\Phi A^{-1} \Phi^T \right)^{-1} \Phi A^{-1} \) stands for the transpose of the generalized inverse of constraint Jacobian. By inserting (40) into (39) equations of motion, with constraint consistent initial conditions, become

\[
A \ddot{q} = \Gamma^T (\tau - b - g) A \dot{q} - \Lambda_s \Phi \dot{q}, \quad \phi(q) = 0 \in \mathbb{R}^{m \times n}
\]

(41)

The unconstrained motion (41) can be enforced by selecting appropriate control input similarly as in task control.

6. CONCLUSIONS

Sliding mode design methods and their applications in electrical drives and motion control systems has been discussed. Selection of temporal changes in converter configuration enforcing sliding mode in electric drives current tracking error is shown as an example of switching converter control in the SMC framework. In addition, design of nonlinear SMC based observers for IM machine is shown. Motion control systems are discussed for single dof and multi-body systems. It has been shown that sliding mode control is well suited for control of such systems.

6. REFERENCES

Săbanovic A and Ohnishi, K., *Motion Control Systems*, John Will&Sons, (Asia), 2010ey

Utkin V.I. (1992), Sliding Modes in Control and Optimization, Springer Verlag, Berlin

