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Abstract

Motivated by the vision of sensor networks, we consider decentralized estimation networks over bandwidth–

limited communication links, and are particularly interested in the tradeoff between the estimation accuracy and the

cost of communications due to, e.g., energy consumption. We employ a class of in–network processing strategies

that admits directed acyclic graph representations and yields a tractable Bayesian risk that comprises the cost of

communications and estimation error penalty. This perspective captures a broad range of possibilities for processing

under network constraints and enables a rigorous design problem in the form of constrained optimization. A similar

scheme and the structures exhibited by the solutions have been previously studied in the context of decentralized

detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt

this framework for estimation, however, the corresponding optimization scheme involves integral operators that cannot

be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain

particle representations and approximate computational schemes for both the in–network processing strategies and

their optimization. The proposed Monte Carlo optimization procedure operates in a scalable and efficient fashion and,

owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced

from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically

as the communication becomes more costly, through a parameterized Bayesian risk.
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Index Terms

Decentralized estimation, communication constrained inference, random fields, message passing algorithms, graph-

ical models, Monte Carlo methods, wireless sensor networks, in–network processing.

NOMENCLATURE

uπ(j), uj Incoming messages to node j from its parents π(j) and outgoing messages from node j to its

children χ(j).

Uπ(j),Uj The sets of all possible incoming messages to node j and all possible outgoing messages from

node j.

yj Observation of node j which is a random draw from the random variable Yj .

γj(yj , uπ(j)) Local rule of node j.

ΓG
j Space of rules local to node j that are feasible in the network G.

γ In–network processing strategy as a concatenation of all local rules.

ΓG Space of all feasible strategies over G.

c(u, x, x̂) Cost function penalizing the communication u and the pair (x, x̂).

J(γ) Bayesian risk of γ given c(u, x, x̂).

γ∗ Person–by–person (pbp) optimal in–network processing strategy.

cj(uj , xj , x̂j) Cost function local to node j.

φ∗j Function characterizing the jth pbp optimal local rule.

P ∗
j (uπ(j), xj) Incoming message likelihood of node j in the pbp optimal strategy.

C∗
j (uj , xj) Cost–to–go function for node j in the pbp optimal strategy.

P ∗
i→j(ui→j |xi) Forward likelihood message from node i to node j in the pbp optimal strategy.

C∗
k→j(uj→k, xj) Backward cost message from node k to node j in the pbp optimal strategy.

I∗k(uπ(k), xk; γ∗k) Total conditional cost local to node k in the pbp optimal strategy.

cdj (xj , x̂j) Estimation cost function local to node j.

ccj(xj , x̂j) Communication cost function of node j.

λ Unit conversion constant; estimation penalty per unit communication cost.

J∗
d|xk,uπ(k)

Conditional estimation cost local to node k in the pbp optimal strategy.

J∗
c|xk,uπ(k)

Conditional cost due to node k’ s communication rule in the pbp optimal strategy.

[.]
l

In Algorithm 2, the value taken by [.] in the lth iteration.

x
(m)
j , y

(p)
j mth element of the sample set Sxj

generated from p(xj) and pth element of the sample set

Syj
generated from p(yj).

˜[.]
∗r

In Section IV, r–step approximation to [.]
∗
.

[̃.]
l

In Algorithm 3, approximate evaluation of [.] in the lth iteration.
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I. INTRODUCTION

The introduction of wireless sensor networks and their envisioned applications has nurtured the research on

decentralized versions of canonical statistical inference problems in signal processing including detection, estimation

and fusion. Typically, a large amount of observations induced by multiple quantities of interest are collected by

sensor platforms at distinct locations and possibly in various modes [1]. While this spatially distributed nature

neccessitates some communications, it is often the case that the components rely on limited energy stored in

batteries [2], and transmitting bits is usually far more costly than computing them in terms of energy dissipation

[3]. There are also resource limitations regarding sensing and computations and, therefore, any feasible processing

scheme needs to take the relevant tradeoffs into account and ensure a collaborative operation of the components

[4].

This work is motivated by the interest in designing decentralized processing schemes for estimation subject to

a number of constraints regarding communications. The platforms setup a connected ad–hoc network on which

it is possible to establish links between any two nodes and maintain higher level topologies yielding multi-tier

architectures (see, e.g., [5]–[7]). These links are of finite capacity constraining the set of feasible symbols that can

be transmitted over them and vary in length in the number of hops. The tradeoff between estimation accuracy and the

cost of these transmissions is of concern to us. One possible way to abstract the energy cost of communications is

to consider the number of hops and utilize a first order radio model for each hop, i.e., a model of energy dissipation

for transmitting and receiving k bits at d meters distance (see e.g. [8]).

The phenomenon to be sensed is modeled by a collection of spatially correlated random variables. Such random-

field models have been proposed in a variety of contexts including turbulent flow (Chp. 12 of [9]) and geostatistics

data [10] such as temperature measurements over a field (Chp. 1 of [11]).

Previous work on decentralized estimation includes the canonical approach that assumes a star topology and

bandwidth (BW) limited links in which a fusion center (FC) performs the estimation task based on messages from

a finite alphabet sent by the so-called peripheral sensors. The transmitted symbols are quantized measurements

and the design of quantizers together with a fusion rule is of concern in order to improve the estimation accuracy

in various settings including Bayesian (e.g., [12], [13]), non-Bayesian (e.g., [14]), unknown prior and/or noise

distribution (e.g., [15]–[17]), vector valued parameter (e.g., [18]) as well as the estimation of a random field (e.g.,

[19]–[21]). These treatments are limited in capturing certain aspects of the problem. First of all, the communication

structures for which results can be produced are restricted to star topologies. Furthermore, the cost of transmissions

from peripherals to the FC which possibly varies considering the multi–hop nature is not explicitly accounted for.

Finally, often, a common random variable is of concern and estimation is performed only at the fusion center.

This restricts the amount of collaboration among platforms for online processing of observations and opens up a

possibility for a computational bottleneck in the case of multiple random variables (or a vector valued state) which

can possibly be distributed over the nodes. We address these limitations through a class of in–network processing

strategies which capture a much broader range of communication and computation structures.
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The decentralized random field estimation strategy in [19] utilizes bi-directional communications over a star topol-

ogy and narrows the interval of uncertainty regarding the common variable based on reciprocal messaging between

the fusion center and the peripherals. However, the variable representing the decision on the partition selection does

not provide conditional independence for the observations, and consequently exact fusion of the messages is not

tractable and Monte Carlo approximations are employed. Time-evolving random field estimation/prediction through

Kalman-Bucy filtering (KBF) is considered in [22] and [23]. In particular, [23] addresses decentralized estimation

through distributing the realization of the KBF, whereas [22] considers a center for filtering and communication

constraints through surrogate communication costs and an estimation penalty. In order to reduce the amount of

transmissions to the FC, model reduction is performed by variable selection at each step in a combinatorial setting.

The problem we consider differs from this work in that, rather than considering a dynamical problem involving

the processing of observations collected at consecutive time steps due to dynamical state transitions and modifying

the model of the static estimation problem arising at each time step, we are interested in a static problem and

optimization of a broader class of strategies such that graceful degradation is featured addressing the tradeoff.

Graphical models together with message passing algorithms has proved useful for decentralized statistical infer-

ence in sensor networks (see e.g., [24] and the references therein). In this framework, efficient statistical inference

is achieved through message passing algorithms over a graph representation that reveals the probabilistic model

underlying the estimation problem, which is often distinct from any graph representation of the available links. After

mapping the former onto the latter, a decentralized inference scheme is obtained which can be realized provided that

the underlying communication network supports the required messaging. It is often the case that the BW limitations

necessitate approximations of the messages which consequently degrade the inference performance. Although it is

possible to analyze the effects of these errors to some extent [25], it is hard to solve the problem of designing

in–network processing schemes while taking into account the available links and capacities together with the cost

of transmission over them (see, e.g., Chp. 5 of [26]).

We consider a class of in–network processing strategies that is composed of local communication and computation

rules and operates over a subset of all available links such that a directed acyclic topology is rendered through

the following: Treating the set of platforms as the vertex set of a graph, each node is associated with a (set of)

random variable(s) from the collection, possibly with the variable(s) of a random field that model the phenomenon

of interest at the location of the platform. Each link is represented by a directed edge starting from the source

and terminating at the sink node. In addition, a set of admissible symbols that comply with the link capacity is

associated with each edge. Given a set of links that renders a directed acyclic graph (DAG), a strategy is achieved

by having all nodes produce outgoing messages to their children and an estimate of the random variables they

are associated with, based on the incoming messages from their parents as well as the measurements they receive.

Given a prior distribution for the random field and a tractable cost, this class yields a tractable Bayesian risk

under a number of reasonable assumptions. Hence a rigorous problem setting for decentralized inference under

communication constraints is obtained in the form of a constrained optimization problem in which the objective

function is a Bayesian risk that penalizes both estimation errors and the transmissions, and the feasible set of
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strategies is constrained by the corresponding graph representation that captures the availability and the capacity of

the links.

This class of decentralized strategies together with the structures exhibited by the solution have been recently

studied in [27] (see also [28]) in the context of decentralized detection. After a Team Decision Theoretic investi-

gation, an iterative procedure is obtained which, starting from an initial strategy, converges to a person–by–person

optimal one and can be realized as a message passing algorithm, provided that certain assumptions hold.

We adopt this framework for decentralized estimation in which the variables of concern take values from

denumerable sets, and hence yield expressions with integral operators that cannot be evaluated exactly in general. In

order to keep the fidelity to the problem setting, we introduce an approximation framework utilizing Monte Carlo

(MC) methods such that the particle representations and approximate computational schemes for the operators

replace the original expressions. As a result, the iterative solution is transformed to MC optimization algorithms

which also maintain the following benefits of the original scheme: First, this framework enables us to consider

a broad range of communication and computation structures for the design of decentralized estimation networks.

Second, in the case that a dual objective is selected as a weighted–sum of the estimation performance and the cost

of communications, a graceful degradation of the estimation accuracy is achieved as communication becomes more

costly. The resulting pareto–optimal curve enables a quantification of the tradeoff of concern. Under reasonable

assumptions, the optimization procedure scales with the number of platforms as well as the number of variables

involved and can be realized as message passing algorithms matching a possible self-organization requirement,

provided that certain assumptions hold. Lastly, since the approach is Bayesian, it is possible to introduce information

on the process of concern through a prior density function. In addition, the MC optimization scheme we propose

features scalability with the cardinality of the sample sets required and can produce results for any set of distributions

provided that independent samples can be generated from the marginals.

In the next section we define the problem in a constrained optimization setting, and then we present the Team

Decision Theoretic investigation in Section III. In Section IV we introduce our MC optimization framework

for in–network processing strategies over DAGs and in Section V we demonstrate the aforementioned features

through examples1. Finally we provide some observations together with possible future directions, and conclude in

Section VI.

II. PROBLEM DEFINITION

We start this section with a number of basic definitions about our graphical representation of the problem and

the variables involved in that representation. Then, in Section II-A, we present the in–network processing paradigm

we consider. This paradigm operates over DAGs for “network constrained online processing” of the set of collected

observations and was previously studied in [28]. Subsequently, in Section II-B, we state the design problem for the

processing strategy taking into account communication constraints in a constrained optimization setting, which is

to be solved offline, i.e., before processing the observations.

1The preliminary results of the proposed scheme appear in [29].
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We consider N sensor platforms dispersed over a region. A graph G = (V, E) represents an online communication

and computation structure where each platform is associated with a node v ∈ V . An edge (i, j) ∈ E corresponds

to the finite capacity communication link from platform i to j on which i can transmit a symbol ui→j without

errors from the set of admissible symbols Ui→j which is finite and the number of elements |Ui→j | is in accordance

with the link capacity capturing the bandwidth constraints2. A particular example of such a network can be seen

in Fig. 3(a) given in Section V.

Each sensor platform is associated with a set of possibly multidimensional variables. For example, in a random

field estimation scenario, these variables might be the temperature, humidity or the flow vector at some location,

possibly at the position of the platform. We denote a concatenation of the variables associated with node j by Xj . Let

us denote the denumerable set from which Xj takes values from by Xj . The random variables to be estimated is the

union of those associated with the platforms and can be represented with a concatenation X = (X1,X2, ...,XN )T

which takes values from X = X1 × X2 × ... × XN . Similarly, node j might be collecting a number of possibly

multidimensional observations and a concatenation of these observations is denoted by Yj . The set from which Yj

takes values from is denumerable and denoted by Yj . All observations collected by the network is given by the

vector Y = (Y1, Y2, ..., YN )T which takes values from Y = Y1 × Y2 × ...× YN .

The statistical model of the variables and the observations is given by the joint cumulative distribution function

PX,Y (X,Y ) with the density pX,Y (X,Y ). Note that there are no restrictions on the dimensionality of the fields of

X and Y , i.e., dim(Xj),dim(Yj) ≥ 1 for j ∈ V . Therefore, Xj and Yj can accommodate multi–modal variables

of multiple dimensions. Hence, this model enables a broad range of possibilities for decentralized inference.

A. In–network processing paradigm over DAGs

Consider a DAG G = (V, E). Let uπ(j) denote the incoming messages to node j from its parent nodes π(j), given

by uπ(j) , {ui→j |i ∈ π(j)}. Let Uπ(j) denote the set from which uπ(j) takes values. This set is constructed through

consecutive Cartesian products given by Uπ(j) , ⊗
i∈π(j)

Ui→j where ⊗ denotes consecutive Cartesian Products3.

The set of outgoing messages from node j to child nodes χ(j), given by uj , {uj→k|k ∈ χ(j)} takes values from

the set Uj which can be defined in a similar way to that for Uπ(j) as Uj , ⊗
k∈χ(j)

Uj→k. The cardinalities of Uπ(j)

and Uj can be found as
∣

∣Uπ(j)

∣

∣ =
∏

i∈π(j) |Ui→j | and |Uj | =
∏

k∈χ(j) |Uj→k|, respectively.

As node j measures yj ∈ Yj and receives uπ(j) ∈ Uπ(j); it evaluates a function, called its local rule, defined

by γj : Yj × Uπ(j) → Uj ×Xj which produces an estimate x̂j ∈ Xj as well as outgoing messages uj ∈ Uj . The

design process of the optimal γj is the topic of Section II-B. The space of rules local to node j is given by

2For example, it is possible to represent a link with capacity log2 dij bits with Ui→j such that |Ui→j | = dij +1 where 0 ∈ Ui→j indicates

no transmission and enables a message censoring or selective communication scheme. In [27] (and [28]), a channel model is accommodated to

consider communication link errors. In addition, various transmission schemes such as “broadcast” and “peer–to–peer” are captured. Our setting

falls into “peer–to–peer” type communication in this perspective. We assume that the links are error–free and do not employ a channel model.

3In other words, e.g., X = X1 ×X2 ×X3 and X = ⊗
i∈{1,2,3}

Xi are synonymous.
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Fig. 1. Online processing scheme modeled with a DAG G = (V, E): (a) The viewpoint of node j in G which evaluates its local rule γj

based on its measurement yj as well as on the received messages uπ(j) and produces an inference on the value of the random variable it is

associated with, i.e., x̂j , together with outgoing messages uj to its children. (b) The global view of the decentralized strategy over G where a

random vector X takes the value x as the outcome of an experiment and induces observations y.

ΓG
j , {γj |γj : Yj × Uπ(j) → Uj ×Xj} where the superscript G denotes that the definition of the set relies on G.

Note that {Ui→j |(i, j) ∈ E} also relies on G through the edge set E .

A DAG implies a partial ordering and it is possible to obtain a forward and backward partial ordering in accordance

with the reachability relation such that the parentless and the childless nodes have the smallest order respectively.

The directed acyclic nature of G leads to causal online processing of the observations when the nodes execute

their local rules in accordance with the forward partial order, i.e., starting from the parentless nodes, at each step,

nodes with the corresponding order evaluate their local rules and processing stops after the childless nodes. The

process from node j’s point of view is illustrated in Fig. 1(a). The aggregation of local rules denoted by γ is called

a strategy, i.e., γ = (γ1, γ2, ..., γN ), and takes values from the set of feasible strategies given by ΓG = ⊗
v∈V

ΓG
v .

Considering the space of all possible estimators, i.e., Γ , {γ|γ : Y → X}, it holds that ΓG ⊂ Γ. The set of all

messages in the network is given by u , {ui→j |(i, j) ∈ E}, and takes values from U , ⊗
(i,j)∈E

Ui→j . The global

view of this paradigm is illustrated in Fig. 1(b).

B. Design problem in a constrained optimization setting

It is possible to select a cost c for the network described by any graph G such that an estimation error penalty

for the pair (x, x̂) and a cost due to the corresponding set of messages in the network u are assigned, i.e.,

c : U × X × X → R. In addition, given γ = (γ1, ..., γN ) ∈ ΓG , the tuple (UT , X̂T )T = γ(Y ) is a random vector

conditionally independent of X given Y , denoted by (UT , X̂T )T ⊥⊥ X |Y , and the density p(u, x̂|y) is specified

by γ and denoted by p(u, x̂|y; γ). Note that, by construction, considering the causal online processing in the DAG,

it holds that

p(u, x̂|y; γ) =

N
∏

j=1

p(uj , x̂j |yj , uπ(j); γj) (1)

Consider a Bayesian risk E {c(u, x, x̂); γ}. The distribution used in the expectation is specified by γ as well and

the corresponding probability density function (pdf) is constructed using Eq.(1) as p(u, x̂, x; γ) =
∫

Y

dyp(u, x̂|y; γ)p(y, x).

Therefore, for any given strategy γ ∈ ΓG , there corresponds a Bayesian risk J(γ) = E {c(u, x, x̂); γ} and the

problem of finding the best strategy for estimation under communication constraints described by G turns into a
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constrained optimization problem given by

(P) : min J(γ) (2)

subject to γ ∈ ΓG

It can be shown that if there exists an optimal strategy, then there exists an optimal deterministic strategy

[30]. Therefore it suffices to consider the deterministic local rule spaces for which case it is convenient to treat

p(uj , x̂j |yj , uπ(j); γj) as a finite set of densities parameterized by uj , i.e.,

p(uj , x̂j |yj , uπ(j); γj) = puj
(x̂j |yj , uπ(j); γj) (3)

p[γj(yj ,uπ(j))]Uj

(x̂j |yj , uπ(j); γj) = δ(x̂j −
[

γj(yj , uπ(j))
]

Xj
) (4)

where δ is the Dirac’s delta distribution4. Hence, the local rule γj and the density family puj
(x̂j |yj , uπ(j); γj)

specify each other accordingly.

Note that, it is possible to express the treatment in [12], [13] as well as the bounded parameters estimation setting

utilized in [14], [17] through a non-informative prior within the framework above.

III. TEAM DECISION THEORETIC INVESTIGATION

Problem (P) in (2) is a typical team decision problem [31] and such problems are intractable in various settings,

including conventional decentralized detection in which star–topologies are considered and X is finite [30]. Never-

theless, necessary (but not sufficient) conditions of optimality yield nonlinear Gauss–Seidel iterations which converge

to a person–by–person optimal strategy. Given an optimal strategy γ∗ ∈ ΓG it holds that J(γ∗j , γ
∗
\j) ≤ J(γj , γ

∗
\j)

for all γj ∈ ΓG
j where \j denotes V \ {j} 5. Equivalently a relaxation of (P) is to find a Nash equilibirium where

no change in a single local rule yields a better objective value, i.e., one is interested in finding γ∗ = (γ∗1 , ..., γ
∗
N )

such that

γ∗j = arg min
γj∈ΓG

j

J(γj , γ
∗
\j) (5)

for all j ∈ {1, 2, ..., N}. Such a solution is also said to be person-by-person (pbp) optimal and it is possible to

converge to one starting from an initial strategy by the immediate iterations given by Algorithm 1.

Considering problem (P) in the detection setting, the pbp optimal strategies from the class of concern lie

in a finitely parameterized subspace of ΓG under certain conditions [27] and consequently a tractable iterative

optimization algorithm is obtained. We adopt the elaborate investigation of Kreidl (Chp.3 of [28]) for decentralized

estimation under communication constraints and obtain a variational form for the pbp optimal local rules. These

rules, unlike the pbp optimal local rules in the detection setting, are characterized through functions over denumerable

domains and in general, do not yield any finite parameterization.

4We denote with [.]S the element of its n-tuple argument that takes values from the set S.

5Note that, when it is obvious from the context, we abuse the notation and denote {xi|i ∈ I} by xI where I is an index set for the collection

of variables {x1, x2, ..., xN}.
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Algorithm 1 Iterations converging to a person-by-person optimal strategy.

1: Choose γ0 = (γ0
1 , γ

0
2 , ..., γ

0
N ) such that γ0

j ∈ ΓG
j for j = 1, 2, ..., N ; Choose ε ∈ R

+ ;l = 0 . Initialize

2: l = l + 1

3: For j = N,N − 1, . . . , 1 Do γl
j = arg min

γj∈ΓG
j

J(γl−1
1 , ..., γl−1

j−1, γj , γ
l
j+1, ..., γ

l
N ) . Update

4: If J(γl−1) − J(γl) < ε STOP, else, GO TO 2; . Check

In principle, the Propositions regarding the pbp optimal estimation strategies given in this Section can be obtained

from those in [27] by performing the marginalizations in the variables Xjs and X̂js through appropriate integrations

under ideal channels and “peer–to–peer” transmission assumptions. In this respect, the proofs in this Section follow

the same key steps with their detection counterparts. We also note that integrals over Xj or Yj should be interpreted

in accordance with the dimensionality of their domains.

The first condition that leads pbp optimal local rules to exhibit a useful structure is the conditional independence

of the observations:

Assumption 1: (Conditional Independence) The noise processes of the sensors are mutually independent and

hence given the state of X , the observations are conditionally independent, i.e., p(x, y) = p(x)
∏N

i=1 p(yi|x).
Proposition 3.1: (Proposition 3.1 in [28] for estimation) Consider (P) under Assumption 1. The j th pbp optimal

rule given by Eq.(5) reduces to

γ∗j (yj , uπ(j)) = arg min
(uj ,x̂j)∈Uj×Xj

∫

X

dx p(yj |x)θ∗j (uj , x̂j , x;uπ(j)) (6)

where

θ∗j (uj , x̂j , x;uπ(j)) = p(x)
∑

u\ {j}∪π(j)

∫

X\j

dx̂\j c(u, x̂, x)
∏

i6=j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ
∗
i ) (7)

for all uπ(j) ∈ Uπ(j) and yj ∈ Yj with non-zero probability, i.e., p(yj , uπ(j); γ
∗
\j) > 0.

Proof: The proof follows the factorization of J(γ) = J(γj , γ\j) after substituting γ\j = γ∗\j , Eq.s(1),(3),(4)

and Assumption 1 together with the fact that if a pbp local rule exists, then a deterministic pbp local rule exists

[30]. See [32] for a detailed proof.

Regarding Proposition 3.1 (and Eq.(6) in particular), it can be shown that
∫

X

dxp(Yj |x)θ∗j (uj , x̂j , x;Uπ(j)) ∝ E{c(u, x, x̂)|Yj , Uπ(j); γ
∗
\j}

where uj and x̂j are free variables6 and in this respect it is revealed that the jth pbp optimal rule involves minimizing

the conditional expected cost given the incoming messages uπ(j) and the measurement yj where the underlying

distribution is specified by all the local rules other than the jth.

Note that in Eq.(6), θ∗j does not depend on the observation yj and the likelihood p(yj |xj) acts as a sufficient

statistics. Hence, θj provides a useful parameterization for the jth pbp optimal rule, which, unlike its appearance

6Note that c(u, x, x̂) can be expanded as c((u\j , uj), x, (x̂\j , x̂j)) to explicitly show the free variables uj and x̂j of the jth local rule.

July 27, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

as a finite dimensional vector in the detection setting [27], is a function over a denumerable domain. In addition,

it is useful to treat the right hand side (RHS) of Eq. (7) as an operator ψ such that given any set of local rules for

nodes other than the jth, i.e., γ\j ∈ ΓG
\j , fixed not necessarily at an optimum, ψ produces θj , i.e., θj = ψj(γ\j).

Then, the corresponding local rule for the jth node is obtained through Eq.(6) which can also be treated as an

operator given θj , i.e., γj = ςj(θj). Therefore, it is possible to obtain an iterative scheme which, starting from an

initial strategy, converges to a pbp optimal one, in principle, by replacing the Update step of Algorithm 1 with

θl
j = fj(θ

l−1
1 , ..., θl−1

j−1, θ
l
j+1, ..., θ

l
N ) (8)

for j = 1, 2, ..., N where fj denotes the composite operator (obtained after substituting ςi(θi) for all i ∈ \j in

ψj). Note that, as a consequence of the fact that X is denumarable, the fixed point equations {θj = fj(θ\j)}j∈V

corresponding to Algorithm 1 with the aforementioned modification are not practically solvable in general.

Nevertheless, optimality in a pbp sense has been considered in the decentralized estimation literature for the

canonical star–topology. For example, Proposition 3.1 applied for quantizer peripherals and a fusion center setting

together with a squared error cost, i.e., c(u, x̂, x) = (x̂− x)2, specializes to the optimality conditions presented in

[12]. For this case, the structure of the local rules as given above do not yield closed form representations in general,

altough relatively straightforward numerical computations are involved when the joint density p(x, y1, ..., yN ) is

Gaussian and x is a scalar. The fact that the fusion rule is not scalable in the number of peripherals raises the

potential issue of computational bottlenecks. This consideration has led to a fusion rule which is linear in the

received symbols [13].

A. Pbp optimal strategies over DAGs: Efficient online strategies

We continue with assumptions under which efficient online processing becomes possible [27]:

Assumption 2: (Measurement Locality) Every node j observes yj due to only xj , i.e., p(yj |x) = p(yj |xj).

Corollary 3.2: (Corollary 3.2 in [28] for Estimation) Under Assumptions 1 and 2, the jth pbp optimal rule given

by Proposition 3.1 reduces to

γ∗j (Yj , Uπ(j)) = arg min
(uj ,x̂j)∈(Uj×Xj)

∫

Xj

dxjp(Yj |xj)φ
∗(uj , x̂j , xj ;Uπ(j)) (9)

where

φ∗j (uj , x̂j , xj ;uπ(j)) =

∫

x\j∈X\j

dx\jθ
∗
j (uj , x̂j , x;uπ(j)) (10)

Proof: Substitute p(yj |x) = p(yj |xj) in Eq.(6) and rearrange the terms.

Under Assumptions 1 and 2, the local rules evaluate marginalizations over only the set from which the associated

variable takes values from, i.e., Xj , rather than X , and become independent of the number of nodes. This provides

scalability in the number of nodes (and correspondingly the number of variables) and hence efficiency for online

processing.
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B. Pbp optimal strategies over DAGs: Efficient offline optimization

Corollary 3.2 provides an efficient oline processing strategy. However, we do not have such efficiency for

specifying the pbp optimal local rules since φ∗j given by Eq.(10) depends on all the nodes other than the jth.

Under additional assumptions discussed below, the offline optimization scales with the number of nodes:

Assumption 3: (Cost Locality) The Bayesian cost function is additive over the nodes j ∈ V , i.e.,

c(u, x̂, x) =
∑

j∈V

cj(uj , x̂j , xj) (11)

Assumption 4: (Polytree Topology) Graph G = (V, E) is a polytree, i.e., G is a directed acyclic graph with an

acyclic undirected counterpart.

Proposition 3.3: (Proposition 3.2 in [28] for estimation) Consider Problem (P) given in (2) such that X and X̂

take values from a denumerable set X . Under Assumptions 1–4, Eq.(9) applies with

φ∗j (uj , x̂j , xj ;uπ(j)) ∝ p(xj)P
∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

(12)

where P ∗
j (uπ(j)|xj) is the incoming message likelihood given by the forward recursion

P ∗
j (uπ(j)|xj) =















1 , if π(j) = ∅
∫

Xπ(j)

dxπ(j)p(xπ(j)|xj)
∏

i∈π(j)

P ∗
i→j(ui→j |xi) , otherwise

(13)

with forward terms regarding influence of i ∈ π(j) on j given by

P ∗
i→j(ui→j |xi) =

∑

uχ(i)\j∈Uχ(i)\j

∑

uπ(i)∈Uπ(i)

P ∗
i (uπ(i)|xi)

∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ
∗
i )p(yi|xi) (14)

and where C∗
j (uj , xj) is the cost–to–go function which is added to the local cost and given by the backward

recursion

C∗
j (uj , xj) =











0 , if χ(j) = ∅
∑

k∈χ(j) C
∗
k→j(uj→k, xj) , otherwise

(15)

with backward cost message regarding the influence of k ∈ χ(j) on j given by

C∗
k→j(uj→k, xj) =

∫

Xπ(k)\j

dxπ(k)\j

∫

Xk

dxkp(xπ(k)\j , xk|xj)
∑

uπ(k)\j∈Uπ(k)\j

∏

m∈π(k)\j

P ∗
m→k(um→k|xm)×

I∗k(uπ(k), xk; γ∗k) (16)

and where I∗k(uπ(k), xk; γ∗k) is the total conditional cost of node k given by

I∗k(uπ(k), xk; γ∗k) =

∫

Yk

dyk

∫

Xk

dx̂k

∑

uk∈Uk

[ck(uk, x̂k, xk) + C∗
k(uk, xk)] p(uk, x̂k|yk, uπ(k); γ

∗
k)p(yk|xk) (17)

Proof: (Sketch) First, we recognize that the DAG structure together with Assumption 2 implies that the set of

incoming messages uπ(j) depends on not all the rules other than the jth but only the local rules of the nodes that

are ancestors of node j (denoted by an(j)), i.e., p(uπ(j)|x; γ∗\j) = p(uπ(j)|xan(j); γ∗an(j)). Under Assumption 3
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the output of the jth local rule, i.e., (uj , x̂j), does not affect the costs of nodes other than the descendants of j

denoted by de(j), i.e.,

E{
∑

i∈\j

c(ui, x̂i, xi)|uj , x̂j ; γ
∗
\j} = E{

∑

i∈\j\de(j)

c(ui, x̂i, xi); γ
∗
\j} + E{

∑

i∈de(j)

c(ui, x̂i, xi)|uj , x̂j ; γ
∗
\j}

In other words, optimization of γj can be performed equivalently with an objective regarding the costs only on

node j and its descendants. Under Assumption 4, the operation of rules local to the ancestors of j and descendants

of j are mutually exclusive and the incoming message likelihoods and the expected costs yield the structure given

by Eq.(12). Moreover, Assumption 4 guarantees that there are no parent nodes with common ancestors and no child

nodes with common descendants yielding the multiplicative structure in Eq.s(13)–(14) and the additive structure of

the expected costs in Eq.s(15)–(17). A detailed proof is provided in Appendix A of [32].

Considering Eq.s(13) and (14) we note that P ∗
i→j(ui→j |xi) is the likelihood of xi based on the particular message

ui→j on the link from node i to j, and under Assumption 4, P ∗
j (uπ(j)|xj) is the likelihood of xj for the particular

incoming message vector uπ(j), i.e., p(uπ(j)|xj ; γan(j)). A similar treatment of Eq.s(15) and (16) reveals that

C∗
k→j(uj→k, xj) terms are the expected cost if the actual value of the random variable associated with node j takes

the value xj and node j sends the message uj→k on the link to its child k. Hence, under a polytree topology,

C∗
j (uj , xj) is the total expected cost induced on the descendants of j for transmitting uj , or cost–to–go function.

This cost is added to the local cost cj(uj , x̂j , xj) in Eq.(12) which also penalizes the transmission cost. Also

considering Eq.s(9) and (12), and noting that under these assumptions p(xj)p(yj |xj)P (uπ(j)|xj) ∝ p(xj |yj , uπ(j)),

we conclude that given the measurement yj and the incoming messages uπ(j), node j chooses the output with the

minimum expected cost where this cost is the sum of the costs due to the local rule of node j and rules of its

descendants, and the underlying distribution is determined by the rules local to ascendants of node j.

Similar to the treatment regarding Proposition 3.1 to yield the set of fixed point equations given by Eq.(8), it

is possible to consider Eq.s (13)–(17) as operators for any given (not neccessarily optimal) strategy γ\j ∈ ΓG
\j .

Similarly, it is possible to summarize this treatment by dj , fj , gj and hj such that

φj = dj(Pj , Cχ(j)→j) (18)

Pj = fj(Pπ(j)→j) (19)

Pj→χ(j) = gj(φj , Pj) (20)

Cj→π(j) = hj(φj , Pπ(j)→j , Cχ(j)→j) (21)

where Pπ(j)→j = {Pi→j}i∈π(j), Cχ(j)→j = {Ck→j}k∈χ(j) and Cj→π(j) = {Cj→i}i∈π(j). Note that dj , fj , gj and

hj are specified by the RHSs of Eq.s(12) and (15), Eq.(13), Eq.(14), and finally Eq.s(16) and (17) respectively.

Consequently, the forward recursion implied by fj and gj with respect to the forward partial–ordering of G together

with the backward recursion implied by hj and dj with respect to the backward partial–ordering yields Algorithm 2

after replacing the Update step of Algorithm 1 as described.

It is possible to perform this algorithm in a message passing fashion treating each node j ∈ V as an entity which

can perform computations and communications. Each node j ∈ V starts only with the knowledge of p(xj , xπ(j))

July 27, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

Algorithm 2 Iterations converging to a pbp optimal in-network processing strategy over a DAG G.

1: Choose γ0 = (γ0
1 , γ

0
2 , ..., γ

0
N ) such that γ0

j ∈ ΓG
j for j = 1, 2, ..., N ; Choose ε ∈ R

+ ;l = 0 . Initialize

2: l = l + 1

3: For j = 1, 2, ..., N Do . Update Step 1: Forward Pass

P l
j = fj(

{

P l
i→j(ui→j |xi)

}

i∈π(j)
)

{

P l
j→k(uj→k|xj)

}

k∈χ(j)
= gj(φ

l−1
j , P l

j)

4: For j = N,N − 1, ..., 1 Do . Update Step 2: Backward Pass

φl
j = dj(P

l
j ,
{

Cl
k→j(uj→k, xj)

}

k∈χ(j)
)

{

Cl
j→i(ui→j , xi)

}

i∈π(j)
= hj(φ

l
j ,
{

P l
i→j(ui→j |xi)

}

i∈π(j)
,
{

Cl
k→j(uj→k, xj)

}

k∈χ(j)
)

5: If J(γl−1) − J(γl) < ε STOP, else GO TO 2 . Check

and c(uj , x̂j , xj) and an initial local rule γ0
j ∈ ΓG

j which determines p(uj , x̂j |yj , uπ(j); γ
0
j ). In the forward pass,

starting from the parentless nodes and proceeding in forward partial ordering implied by G, each node receives

Pi→j from its parents i ∈ π(j), computes Pj→k for its children k ∈ χ(j) and transmits them. In the backward pass,

starting from the childless nodes and proceeding in the backward partial–ordering, each node receives Ck→j from

its children k ∈ χ(j) and computes Cj→i for its parents i ∈ π(j) which involves updating the local rule. Note that,

in contrast with the online processing strategy which assumes a polytree topology allowing only uni–directional

links, the message passing interpretation of the offline strategy optimization requires bi–directional communications.

It is reasonable to assume that both the topology assumed by the online processing and the links required by the

offline optimization are provided by the underlying network layer through physically available connections and

appropriate protocols [5]–[7].

In Section III-A, owing to the information structure introduced under Assumptions 1 and 2, an efficient online

processing strategy is achieved. With the addition of Assumptions 3–4, the optimization of the local rules in a

pbp sense admits a message passing algorithm which scales both with the number of variables and the number

of platforms. The resulting iterative scheme given as Algorithm 2 is amenable for network self-organization, in

principle, through its message passing structure [27].

It is often the case that it is hard to achieve consistency in penalizing the estimation errors and communication

costs through an arbitrary selection of the cost function c : U × X × X → R. It is possible to select one which

results in smooth degradation in the estimation performance as the link utilization is decreased. Also considering

Proposition 3.3, we assume a separable cost and develop the simplifications this provides.

Assumption 5: (Separable Costs) The global cost function c(u, x̂, x) is separable to functions penalizing estima-

tion errors and communications. In particular, c(u, x̂, x) = cd(x̂, x) + λcc(u, x) where cd and cc are cost functions

for estimation errors and communications respectively. Here, λ appears as a unit conversion constant and can be
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interpreted as the equivalent estimation penalty per unit communication cost [28]. Hence J(γ) = Jd(γ) + λJc(γ)

where Jd(γ) = E{cd(x̂, x); γ} and Jc(γ) = E{cc(u, x); γ} respectively7.

Note that, Assumption 5, together with Assumption 3 implies that the local cost functions are separable, i.e.,

cj(uj , xj , x̂j) = cdj (xj , x̂j) + λccj(uj , xj) (22)

Corollary 3.4: Consider Proposition 3.3, if the local costs are separable, i.e., Assumption 5 holds in addition to

Assumptions 1-4, then the pbp optimal local rule in the variational form given by Eq.(9) is separated into two rules

for estimation and communication as γ∗j = (ν∗j , µ
∗
j ) given by

x̂j = ν∗j (yj , uπ(j)) = arg min
x̂j∈Xj

∫

xj∈Xj

dxjp(xj)p(yj |xj)P
∗
j (uπ(j)|xj)c

d
j (x̂j , xj) (23)

uj = µ∗
j (yj , uπ(j)) = arg min

uj∈Uj

∫

xj∈Xj

dxjp(xj)p(yj |xj)P
∗
j (uπ(j)|xj)

[

λccj(xj , uj) + C∗
j (uj , xj)

]

(24)

Moreover, the corresponding density p(uj , x̂j |yj , uπ(j); γ
∗
j ) given by Eq.(3) takes the form

p(uj , x̂j |yj , uπ(j); γ
∗
j ) = p(x̂j |yj , uπ(j); ν

∗
j )p(uj |yj , uπ(j);µ

∗
j ) (25)

Proof: After substituting the separable local cost in Eq.(12) and Eq.(9), the optimization is separated into two

problems over arguments x̂j ∈ X and uj ∈ Uj . This separation also implies that Uj and X̂j are conditionally

idependent denoted by Uj ⊥⊥ X̂j | (Yj , Uπ(j)) yielding Eq.(25) by definition.

Example 3.5: Consider a separable local cost where the estimation penalty is given by cdj (x̂j , xj) = (x̂j − xj)
2

as in the conventional mean squared error (MSE) estimator. We obtain a closed form expression for the estimation

rule regarding the variational form in Eq.(23) after differentiating with respect to x̂ and equating the result to zero:

x̂j = ν∗j (Yj , Uπ(j)) =

∫

Xj
dxj xjp(xj)p(Yj |xj)P

∗
j (Uπ(j)|xj)

∫

Xj
dxj p(xj)p(Yj |xj)P ∗

j (Uπ(j)|xj)
(26)

Note that, since P ∗
j (uπ(j)|xj) = p(uπ(j)|xj ; γ

∗
an(j)) and the conditional independence relation Uπ(j) ⊥⊥ Yj |Xj

holds yielding p(xj , yj , uπ(j)) = p(xj)p(yj |xj)p(uπ(j)|xj), the denominator in Eq.(26) is nothing but p(yj , uπ(j)) =

p(yj , uπ(j); γ
∗
an(j)) and the estimator is given by

x̂j = ν∗j (yj , uπ(j)) =

∫

Xj

dxj xjp(xj |yj , uπ(j); γ
∗
an(j))

Hence, any selection of the local rules for ancestors affect the optimal estimation rule for node j through the

likelihood P ∗
j (uπ(j)|xj). Under this particular choice of the estimation cost, uπ(j) is treated as another conditionally

independent observation while utilizing the MSE estimator based on the posterior.

7Note that convex combinations of dual objectives, i.e., J ′(γ) = αJd(γ) + (1 − α)Jc(γ), yield pareto-optimal curves parameterized by

α. This setting preserves the pareto-optimal front since λ = (1 − α)/α and J(γ) ∝ J ′(γ) yielding a graceful degradation of the estimation

performance with λ.
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Corollary 3.6: Consider Proposition 3.3, if the local costs are separable, then I∗k(uπ(k), xk; γ∗k) given by Eq.(17)

takes the form

I∗k(uπ(k), xk; γ∗k) = J∗
d|xk,uπ(k)

+ J∗
c|xk,uπ(k)

(27)

where J∗
d|xk,uπ(k)

is the local expected estimation cost conditioned on xk and uπ(k) given by

J∗
d|xk,uπ(k)

=

∫

Xk

dx̂k c
d
k(x̂k, xk)p(x̂k|xk, uπ(k); ν

∗
k) (28)

and J∗
c|xk,uπ(k)

is the total expected cost of transmitting the symbol uk conditioned on xk and uπ(k), including

costs induced on the descendants given by the cost–to–go function C∗
k(uk, xk), as well as the transmission cost

captured by cck(uk, xk), i.e.,

J∗
c|xk,uπ(k)

=
∑

uk∈Uk

(λcck(uk, xk) + C∗
k(uk, xk)) p(uk|xk, uπ(k);µ

∗
k) (29)

Moreover, the conditional pdf of the estimations specified by ν∗k is given by

p(x̂k|xk, uπ(k); ν
∗
k) =

∫

Yk

dyk p(x̂k|yk, uπ(k); ν
∗
k)p(yk|xk) (30)

and the conditional probability mass function of the outgoing messages specified by µ∗
k is given by

p(uk|xk, uπ(k);µ
∗
k) =

∫

Yk

dyk p(uk|yk, uπ(k);µ
∗
k)p(yk|xk) (31)

Proof: After substituting the separable local cost for node k given by Eq.(22) in Eq.(17) and rearranging terms

I∗k(uπ(k), xk; γ∗k) =

∫

Xk

dx̂kc
d
k(x̂k, xk)

∫

Yk

dykp(x̂k|yk, uπ(k); ν
∗
k)p(yk|xk)

+ λ
∑

uk∈Uk

[λcck(uk, xk) + C∗
k(uk, xk)]

∫

Yk

dykp(uk|yk, uπ(k);µ
∗
k)p(yk|xk) (32)

is obtained.

Therefore, under Assumptions 1–5, sufficient conditions of pbp optimality are provided by Eq.s (12)–(16) together

with Eq.s (27)–(31) implying an iterative optimization scheme. In principle, once the operators implied by these

expressions are utilized in Algorithm 2, it is possible to find a pbp optimal decentralized estimation strategy starting

with an initial one.

Finally, the corresponding Bayesian risk at the lth step, i.e., J(γl), which is also required by the Check step of

Algorithm 2 is obtained as

J(γl) =
∑

j∈V

Gj(γ
l
j) (33)

Gj(γ
l
j) =

∫

Xj

dxjp(xj)
∑

uπj∈Uπj

P l+1
j (uπ(j)|xj)

∫

Yj

dyj

∫

Xj

dx̂j

∑

uj∈Uj

cj(uj , x̂j , xj)p(uj , x̂j |yj , uπ(j); γ
l
j)p(yj |xj)

(34)
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IV. MC OPTIMIZATION FRAMEWORK FOR IN-NETWORK PROCESSING STRATEGIES OVER DAGS

In Section III-A and III-B we have provided conditions of optimality in a person–by–person sense rendering

Algorithm 2 for the offline optimization of the class of decentralized estimation strategies of concern. Specifically,

provided that Assumptions 1–4 hold, the operator representations dj , fj , gj and hj given by Eq.s(18)–(21) summarize

the characterization of jth pbp optimal rule given by Eq.s (13)-(17), respectively, applied for local rules that are

not necessarily optimal. If, in addition, Assumption 5 holds, the structures exhibited in Corollaries 3.4 and 3.6 are

induced on the operators. However, it is not possible to evaluate the right hand side (RHS) of these equations and

correspondingly dj , fj , gj and hj exactly, in general, for arbitrary prior marginals p(xj), observation likelihoods

p(yj |xj) and rules local to nodes other than j, i.e., γ\j . A similar problem arises in message passing algorithms

over continous Markov random fields and has been the motivation for algorithms relying on particle representations

together with approximate computational schemes including Non-parametric Belief Propagation [33] which has

been successfully applied in a number of contexts including articulated visual object tracking [34].

In this section, we propose particle based representations together with approximate computational schemes so

that Algorithm 2 can be realized. We exploit the Monte Carlo method [35], [36] and Importance Sampling [37],

[38] such that independent samples generated from only the marginal distributions of X and Y are required, i.e.,

Sxj
, {x(1)

j , x
(2)
j , ..., x

(Mj)
j } such that x

(m)
j ∼ p(xj) for m = 1, 2, ...,Mj (35)

Syj
, {y(1)

j , y
(2)
j , ..., y

(Pj)
j } such that y

(p)
j ∼ p(yj) for p = 1, 2, ..., Pj (36)

for j ∈ V . Although the sizes of these sets might vary for each j ∈ V , we assume that Mj = M and Pj = P for

j ∈ V for simplicity of the discussion throughout.

We employ these sets in a way that the corresponding proposal densities (for importance sampling) are products

of the corresponding marginals. This approach is advantageous for a number of reasons: First, we only need to

know the marginal densities local to nodes, which can be computed using those densities that are already necessary

in Algorithm 2, i.e., p(xπ(i), xi) and p(yi|xi) for all i ∈ V . Therefore, sampling can be carried out locally. The

second advantage is that, it is a relatively straightforward task to generate pseudorandom numbers from an arbitrary

probability density function provided that the inverse of the corresponding cumulative distribution can be evaluated

(see, e.g., Chp. 2 in [38]).

We proceed by considering the sufficient condition of person-by-person optimality for the jth rule given by

Proposition 3.3. The Monte Carlo optimization algorithm we propose follows successive approximations to the

expressions constituting the jth pbp optimal local rule (see Eq.s(9) and (12)). In Section IV-A we approximate the

pbp optimal rule assuming that the factors in the RHS of Eq.(12) are known over their entire domain sets. In the

second step we proceed with approximating to the incoming message likelihood (Sec.IV-B). In Section IV-C, the

node–to–node terms, i.e., forward likelihood messages P ∗
i→j from the parents i ∈ π(j) and backward cost messages

C∗
k→j from the children k ∈ χ(j), are approximated. Finally, in Section IV-D, all the approximations are utilized

together comprising the proposed algorithm after a treatment of the approximations as operators in a similar fashion

to our development in Section III.
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A. Approximating the person–by–person optimal local rule

Given a pbp optimal strategy γ∗ ∈ ΓG , consider the jth optimal local rule given by Eq.s(9) and (12) in the case

that the remaining are fixed at the optimum γ\j = γ∗\j . After substituting Eq.(12) in Eq.(9) we obtain

γ∗j (Yj , Uπ(j)) = arg min
(uj ,x̂j)∈(Uj×Xj)

R∗
j (uj , x̂j ;Yj , Uπ(j)) (37)

R∗
j (uj , x̂j ; yj , uπ(j)) =

∫

Xj

dxjp(xj)p(yj |xj)P
∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

(38)

for all uj ∈ Uj , uπ(j) ∈ Uπ(j), yj ∈ Yj and x̂j ∈ Xj where unlike the detection problem in [27], Xj is a denumerable

set and the RHS of Eq.(38) involves an integral over Xj . It is reasonable to assume that the observation likelihood

p(yj |xj) and the cost cj(uj , x̂j , xj) are known. However, the incoming message likelihood, i.e., P ∗
j (uπ(j)|xj),

together with the cost–to–go function, i.e., C∗
j (uj , xj), depend on the remaining local rules γ∗\j (see Section III-B)

and do not necessarily admit closed form expressions for arbitrary γ\j ∈ ΓG
j .

Suppose that it is possible to evaluate P ∗
j (uπ(j)|xj) and C∗

j (uj , xj) over their entire domains. The integral on

the RHS of Eq.(38) still prevents R∗
j to be evaluated exactly, in general. Nevertheless, an approximation is possible

through the classical Monte Carlo method given M independent samples (such as the set Sxj
given by Eq.(35))

generated from p(xj):

R̃∗
j (uj , x̂j ; yj , yπ(j)) =

1
∣

∣Sxj

∣

∣

∑

xj∈Sxj

p(yj |xj)P
∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

(39)

where tilde denotes that R̃∗
j is an approximation, i.e., R̃∗

j (uj , x̂j ; yj , yπ(j)) ≈ R∗
j (uj , x̂j ; yj , yπ(j)) over its entire

domain. After we substitute R̃∗
j in place of R∗

j in the variational form of γ∗j given by Eq.(37), we obtain a local

rule which is an approximation to γ∗j . Let us represent the approximation to the optimal local rule by γ̃∗j
1

where the

superscript 1 denotes that the approximation involves a single MC approximated function, then γ̃∗j
1
(yj , uπ(j)) ≈

γ∗j (yj , uπ(j)) for all yj ∈ Yj and for all uπ(j) ∈ Uπ(j) with nonzero probability.

Consider Corollary 3.4. The objective of minimization in the variational form of the jth local rule given by Eq.(37)

is separable, i.e., R∗
j (uj , x̂j ; yj , uπ(j)) = R∗

j,d(x̂j ; yj , uπ(j)) + R∗
j,c(uj ; yj , uπ(j)), under a separable cost function

local to node j and yields two separate problems and corresponding rules for estimation and communication denoted

by νj and µj respectively. Similarly the approximation R̃∗
j given by Eq.(39) splits trivially to two approximations,

i.e., ν̃∗j
1

and µ̃∗
j

1
.

Example 4.1: Consider a separable cost as discussed in Corollary 3.4 with a quadratic estimation cost as in

Example 3.5. Eq.(39) substituted in Eq.(37) implies that the explicit solution for the quadratic estimation error

given by Eq.(26) is approximated by

x̂j = ν̃∗j
1
(yj , uπ(j)) =

(

M
∑

m=1

x
(m)
j p(yj |x(m)

j )P ∗
j (uπ(j)|x(m)

j )

)

/

(

M
∑

m=1

p(yj |x(m)
j )P ∗

j (uπ(j)|x(m)
j )

)

(40)

For the case, a similar approximation to the local communication rule given by Eq.(24) can be obtained as

uj = µ̃∗
j

1
(yj , uπ(j)) = arg min

uj∈Uj

M
∑

m=1

p(yj |x(m)
j )P ∗

j (uπ(j)|x(m)
j )

[

λccj(x
(m)
j , uj) + C∗

j (uj , x
(m)
j )

]

(41)
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B. Approximating the message likelihood function

In the previous section, we proposed an approximation to the jth optimal rule which requires the incoming

message likelihood P ∗
j (uπ(j)|xj) and the conditional expected cost C∗

j (uj , xj) to be known at xj = x
(m)
j for

m = 1, 2, ...,M , for all uπ(j) ∈ Uπ(j) and for all uj ∈ Uj respectively. Since it is not possible to express

these functions in closed form for an arbitrary set of local rules γj ∈ ΓG
j , in this step, we consider approximate

computations of the message likelihood function given by Eq.(13) and the cost–to–go function given by Eq.(15).

First, we consider Eq.(13) for the case in which π(j) 6= ∅. Suppose that the forward node–to–node terms, i.e.,

P ∗
i→j(ui→j |xi) for i ∈ π(j), are known such that we can evaluate them at xi = x

(m)
i where x

(m)
i ∈ Sxi

and for all

ui→j ∈ Ui→j . This assumption is justified by the fact that if the 1–step approximation described in Section IV-A

were to be applied to the rules local to nodes i ∈ π(j), then Sxi
would be utilized.

Next, we note that it is possible to treat the concatenation of the elements of the parent sample sets, i.e., Sxi

for i ∈ π(j), as a sample set that is drawn from the product of distributions that generated them. In other words,

consider x
(m)
π(j) , (x

(m)
i )i∈π(j) for m = 1, 2, ...,M where x

(m)
i ∈ Sxi

for i ∈ π(j). These elements constitute a

sample set Sπ(j) , {x(m)
π(j)} and it holds that x

(m)
π(j) ∼

∏

i∈π(j) p(xi).

This observation enables the Importance Sampling approximation (see, e.g., Chp. 3 in [38]) for P ∗
j through the

importance sampling density
∏

i∈π(j) p(xi). Then the importance weights are given by

ω
(m)(m′)
j = p(x

(m′)
π(j) |x

(m)
j )/

∏

i∈π(j)

p(x
(m′)
i )

with the corresponding approximation

P̃ ∗
j

1
(uπ(j)|x(m)

j ) =
1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈π(j)

P ∗
i→j(ui→j |x(m′)

i ) (42)

for m = 1, 2, ...,M and for all uπ(j) ∈ Uπ(j).

Let us turn to the computation of the cost–to–go term C∗
j (uj , xj) and consider Eq.(15) for the case in which

χ(j) 6= ∅. We assume that the node–to–node backward cost terms, i.e., for all k ∈ χ(j), C∗
k→j(uj→k, xj), are

known at xj = x
(m)
j for m = 1, 2, ...,M and for all uj→k ∈ Uj→k. Then, the required values, i.e., C∗

j (uj , x
(m)
j ) for

m = 1, 2, ...,M and for all uj ∈ Uj , can be computed exactly by simply substituting them in the RHS of Eq.(15).

As a result, given evaluations of the node–to–node terms P ∗
i→j and C∗

k→j at sample points generated from the

appropriate marginal distributions, node j can find the one–step approximate incoming message likelihood P̃ ∗
j

1

given by Eq.(42) at all possible (uπ(j), x
(m)
j ) pairs. In addition, the cost–to–go function C∗

j given by Eq.(15) can

easily be evaluated at all possible (uj , x
(m)
j ) pairs as mentioned before. Note that, these sets of possible pairs

are exactly the sample points employed in the one–step approximate pbp optimal rule γ̃∗j
1
(yj , uπ(j)) defined in

Section IV-A. Hence, a further approximation to the pbp optimal rule is obtained by substituting P̃ ∗
j

1
in place

of P ∗
j in the RHS of the expression for R̃∗

j (i.e., Eq.(39)) and then substituting the result in place of R∗
j in

the variational form of the jth pbp optimal rule given in Eq.(37). Let γ̃∗j
2

denote this approximate rule, then

γ̃∗j
2
(yj , uπ(j)) ≈ γ̃∗j

1
(yj , uπ(j)) ≈ γ∗j (yj , uπ(j)) for all yj ∈ Yj and for all uπ(j) ∈ Uπ(j) with nonzero probability.

July 27, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 19

C. Approximating the node–to–node terms

In the previous section, the approximation to the jth local rule is introduced under the conditions that for all

i ∈ π(j), P ∗
i→j(ui→j |xi) is known for all ui→j ∈ Ui→j and xi = x

(m)
i for x

(m)
i ∈ Sxi

. Another requirement is to

be able to evaluate C∗
k→j(uj→k, xj) for all uj→k ∈ Uj→k and xj = x

(m)
j where x

(m)
j ∈ Sxj

. In this Section, we

are concerned with approximating the evaluations of the forward likelihood message P ∗
i→j given by Eq.(14) and

the backward cost message C∗
k→j given by Eq.(16) at the sample sets.

First, we consider the parent nodes i ∈ π(j) and consider evaluation of Eq.(14) at the required values of its

arguments. Suppose that γ∗i is fixed at the optimum, implying also that p(ui, x̂i|yi, uπ(i); γ
∗
i ) is specified through

Eq.s(3) and (4) for all i ∈ π(i). The multiple integral term in Eq.(14), rewritten here as

p(ui|xi, uπ(i); γ
∗
i ) =

∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ
∗
i )p(yi|xi)

for convenience, should be evaluated at xi = x
(m)
i for m = 1, 2, ...,M , for all ui ∈ Ui and for all uπ(i) ∈ Uπ(i).

Since there is no closed form solution for arbitrary choice of γ∗i and the likelihood p(yi|xi), we perform an

Importance Sampling approximation through the importance sampling density p(yi). Utilizing y
(p)
i ∈ Syi

and the

importance weights given by

ω
(m)(p)
i = p(y

(p)
i |x(m)

i )/p(y
(p)
i )

an importance sampling approximation to p(ui|x(m)
i , uπ(i); γ

∗
i ) for m = 1, 2, ...,M , for all ui ∈ Ui and for all

uπ(i) ∈ Uπ(i) is given by

p̃(ui|x(m)
i , uπ(i); γ

∗
i ) =

1
P
∑

p=1
ω

(m)(p)
i

P
∑

p=1

ω
(m)(p)
i δ

ui,[γ∗
i
(y

(p)
i

,uπ(i))]Ui

(43)

where δ denotes the Kronecker’s delta. Note that, if Assumption 5 holds, the estimation and communication rules

separate and the discussion above applies with p(ui|xi, uπ(i); γ
∗
i ) = p(ui|xi, uπ(i);µ

∗
i ).

Regarding the forward likelihood message given by Eq.(14), having approximated the multiple integral term for

j ∈ V , we similarly assume that P ∗
i (uπ(i)|xi) is known for i ∈ π(j), for xi = x

(m)
i such that x

(m)
i ∈ Sxi

, and for

all uπ(i) ∈ Uπ(i). Together with Eq.(43) we obtain

P̃ ∗
i→j(ui→j |x(m)

i ) =
∑

uχ(i)\j∈Uχ(i)\j

∑

uπ(i)∈uπ(i)

P ∗
i (uπ(i)|x(m)

i )p̃(ui|uπ(i), x
(m)
i ; γ∗i ) (44)

for m = 1, 2, ...,M and for all ui→j ∈ Ui→j . It is possible to replace the node–to–node terms assumed to be known

in Eq.(42) with Eq.(44) and obtain a further step in the progressive approximations to γ∗j .

The remaining term to consider is the cost–to–go function of j on the branch initiated with its child k ∈ χ(j), i.e.,

the backward cost message C∗
k→j(uj→k, xj) given by Eq.(16). We proceed with approximating the evaluations of

this function at all possible (uj→k, x
(m)
j ) pairs such that x

(m)
j ∈ Sxj

and uj→k ∈ Uj→k. With a similar reasoning,

we utilize Monte Carlo methods on the RHS of the expression obtained by substituting the total conditional cost

local to node k given by Eq.(17) in the backward cost message given by Eq.(16).
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In Appendix A, we approximate the total conditional cost function evaluated at all possible (uπ(k), x
(m)
k ) for

uπ(k) ∈ Uπ(k) and x
(m)
k ∈ Sxk

and obtain Ĩ∗(uπ(k), x
(m)
k ; γ∗k). Given this approximation, we consider the backward

cost message given by Eq.(16) which further requires forward likelihoods from all parents of node k except node j

and it is reasonable to assume that for any j′ ∈ π(k)\j, P ∗
j′→k(uj′→k|x′j) is known at x′j = x

(m)
j′ for x

(m)
j′ ∈ Sxj′

and

for all uj′→k ∈ Uj′→k. Similarly, we observe that the set which is constituted of elements that are concetanation of

elements from the usual sample sets local to j′ ∈ π(k)\j is distributed according to the product of the corresponding

marginals. In other words, let us define x
(m)
π(k)\j , (x

(m)
j′ )j′∈π(k)\j . Then it holds that x

(m)
π(k)\j ∼∏j′∈π(k)\j p(xj′)

and an importance sampling approximation to Eq.(16) is possible through the importance density
∏

j′∈π(k)\j p(xj′).

Having computed Ĩ∗(uπ(k), x
(m)
k ; γ∗k) and utilizing the usual sample sets local to nodes j′ ∈ π(k)\j together with

the importance sampling weigths

ω(m)(m′) = p(x
(m′)
π(k)\j , x

(m′)
k |x(m)

j )/p(x
(m′)
k )

∏

j′∈π(k)\j

p(x
(m′)
j′ )

we obtain

C̃∗
k→j(uj→k, x

(m)
j ) =

1
M
∑

m′=1

ω(m)(m′)

M
∑

m′=1

ω(m)(m′)
∑

uπ(k)\j

∏

j′∈π(k)\j

P ∗
j′→k(uj′→k|x(m′)

j′ )Ĩ∗(uπ(k), x
(m′)
k ; γ∗k) (45)

for m = 1, 2, ...,M and for all uj→k ∈ Uj→k which, after substituting in place of C∗
k→j in the RHS of Eq.(15) for

χ(j) 6= ∅ yields C̃∗
j , i.e.,

C̃∗
j (uj , x

(m)
j ) =

∑

k∈χ(j)

C̃∗
k→j(uj→k, x

(m)
j ) (46)

for m = 1, 2, ...,M and for all uj ∈ Uj .

As a result, after substituting P̃ ∗
i→j in place of P ∗

i→j in the RHS of Eq.(42), we obtain a further approximation

to P ∗
j given by

P̃ ∗
j

2
(uπ(j)|x(m)

j ) =
1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈π(j)

P̃ ∗
i→j(ui→j |x(m′)

i ) (47)

for m = 1, 2, ...,M and for all uπ(j) ∈ Uπ(j). This approximation together with C̃∗
k→j given by Eq.(46) employed in

R̃∗
j yields γ̃∗j

3
(yj , uπ(j)) ≈ γ̃∗j

2
(yj , uπ(j)) ≈ γ̃∗j

1
(yj , uπ(j)) ≈ γ∗j (yj , uπ(j)) for all yj ∈ Yj and for all uπ(j) ∈ Uπ(j)

with nonzero probability.

D. MC Optimization of in–network processing strategies over DAGs

In Sections IV-A–IV-C we have introduced a Monte Carlo approximation framework regarding the sufficient

conditions of person–by–person optimality given in Proposition 3.3. Considering a pbp optimal decentralized

estimation strategy constrained by a polytree G, i.e., γ∗ ∈ ΓG , and having γ\j fixed at the optimal rules, i.e.,

γ\j = γ∗\j , we have constructed a local rule for node j, denoted by γ̃∗j
3
(yj , uπ(j)), such that it is an approximation

to the optimal rule γ∗j given by Eq.s(37) and (38), following the progression

γ̃∗j
1
(yj , uπ(j)) = arg min

(uj ,x̂j)∈(Uj×Xj)

∑

xj∈Sxj

p(yj |xj)P
∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]
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where Sxj
is given by Eq.(35),

γ̃∗j
2
(yj , uπ(j)) = arg min

(uj ,x̂j)∈(Uj×Xj)

∑

xj∈Sxj

p(yj |xj)P̃ ∗
j

1
(uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

where P̃ ∗
j

1
is given by Eq.(42),

γ̃∗j
3
(yj , uπ(j)) = arg min

(uj ,x̂j)∈(Uj×Xj)

∑

xj∈Sxj

p(yj |xj)P̃ ∗
j

2
(uπ(j)|xj)

[

cj(uj , x̂j , xj) + C̃∗
j (uj , xj)

]

(48)

where C̃∗
j (uj , xj) and P̃ ∗

j

2
are given by Eq.s (46) and (47) respectively. Hence, in order to obtain γ̃∗j

3
we have

utilized the proposed particle representations and approximate computational schemes for all terms that depend on

γ∗\j including the forward message likelihoods and the backward cost messages. Note that, we have not approximated

γ∗\j up to this point and assumed that it is exactly known.

On the other hand, given Sxj
and Syj

, the approximation framework is valid for rules local to any node j ∈ V:

Owing to fusing the forward message likelihoods via importance sampling, approximations of the node–to–node

terms given by Eq.s(44) and (45) utilize the discretization provided by these sets regardless of which node’s local

rule is subject to approximation. Hence, it is possible to treat the RHSs of all expressions within the framework

introduced in Sections IV-A–IV-C, as operators valid for any strategy γ ∈ ΓG including those in the “approximating”

form, e.g., γ̃∗j
3

given in Eq. (48). For the rest of this paper, an approximation to a function that appears in the

local rules refers to its corresponding approximation in Eq.(48) and we denote these functions without any further

superscripts, e.g., we denote γ̃∗j
3

with γ̃∗j . Let us summarize the Monte Carlo framework with

φ̃j(Sxj
, x̂j) = d̃j(P̃j(Sxj

), C̃χ(j)→j)

P̃j(Sxj
) = f̃j(P̃π(j)→j)

P̃j→χ(j) = g̃j(φ̃j(Sxj
, x̂j), P̃j(Sxj

))

C̃j→π(j) = h̃j(φ̃j(Sxj
, x̂j), P̃π(j)→j , C̃χ(j)→j)

where

P̃j(Sxj
) = {(P̃j(uπ(j)|xj), uπ(j), xj)|uπ(j) ∈ Uπ(j) ∧ xj ∈ Sxj

}

P̃π(j)→j = {P̃i→j(Sxi
)}i∈π(j)

P̃i→j(Sxi
) = {(P̃i→j(ui→j , xi), ui→j , xi)|ui→j ∈ Ui→j ∧ xi ∈ Sxi

}

P̃j→χ(j) = {P̃j→k(Sxj
)}k∈χ(j)

C̃χ(j)→j = {C̃k→j(Sxj
)}k∈χ(j)

and φ̃j(Sxj
, x̂j) is given by

{

(p(yj |xj)P̃j(uπ(j)|xj)
[

c(uj , x̂j , xj) + C̃j(uj , xj)
]

, uj , xj)|uj ∈ Uj , uπ(j) ∈ Uπ(j), xj ∈ Sxj

}
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Algorithm 3 Iterations converging to an approximate pbp optimal decentralized estimation strategy over a DAG G.

1: Choose γ0 = (γ0
1 , γ

0
2 , ..., γ

0
N ) such that γ0

j ∈ ΓG
j for j = 1, 2, ..., N ; Choose ε ∈ R

+ ;l = 0 . Initialize

2: l = l + 1

3: For j = 1, 2, ..., N Do . Update Step 1: Forward Pass

P̃j
l
(Sxj

) = f̃j(
{

P̃ l
i→j(Sxi

)
}

i∈π(j)
)

{

P̃ l
j→k(Sxj

)
}

k∈χ(j)
= g̃j(φ̃j

l−1
(Sxj

, x̂j), P̃ l
j(Sxj

))

4: For j = N,N − 1, ..., 1 Do . Update Step 2: Backward Pass

φ̃j
l
(Sxj

, x̂j) = d̃j(P̃j
l
(Sxj

),
{

C̃l
k→j(Sxj

)
}

k∈χ(j)
)

{

C̃l
j→i(Sxi

)
}

i∈π(j)
= h̃j(φ̃j

l
(Sxj

, x̂j),
{

P̃ l
i→j(Sxi

)
}

i∈π(j)
,
{

C̃l
k→j(Sxj

)
}

k∈χ(j)
)

5: If τ(J̃(γ̃l), J̃(γ̃l−1), ..., J̃(γ̃0)) < ε STOP, else GO TO 2 . Check

Note that C̃k→j(Sxj
) implies a definition in a similar fashion to that for P̃i→j(Sxi

). Note also that φ̃j(Sxj
, x̂j) is

not a complete discretization of φj since x̂j is a free variable that can take values from Xj .

It is immediately possible to employ this framework in Algorithm 2 and achieve a Monte Carlo optimization

algorithm which, starting with initial local rules, iteratively results in a strategy that corresponds to performing

computations to approximate a person-by-person optimal one. Given by Algorithm 3, this scheme maintains the

message passing interpretation appearing in the Update step of Algorithm 2.

Starting with G = (V, E) and {Ui→j |(i, j) ∈ E}, each node initially maintains the knowledge of p(xπ(j), xj)

and c(uj , x̂j , xj). As soon as samples from the marginal distributions, i.e., Sxj
, together with samples from the

marginal distributions of the observation processes, i.e., Syj
, are generated for all j ∈ V , and an initial local rule

γ0
j ∈ ΓG

j is selected, the iterative scheme yields a set of local rules such that each node performs computations

corrresponding to an approximation to a person–by–person optimum.

The approximate computation of the expected cost required in the Check step of Algorithm 3, i.e., J̃(γ̃l), is

performed through a Monte Carlo approximation G̃j(γ̃
l
j) to Gj(γ

l
j) given by Eq.(34) using the usual sample sets,

i.e., Sxj
and Syj

, as

G̃j(γ̃
l
j) =

1

M

M
∑

m=1

∑

uπ(j)∈Uπ(j)

P̃ l+1
j (uπ(j)|x(m)

j )×

1
P
∑

p=1
ω

(m)(p)
k

P
∑

p=1

ω
(m)(p)
k cj( [γ̃l

j(y
(p)
j , uπ(j))]Uj

, [γ̃l
j(y

(p)
j , uπ(j))]Xj

, x
(m)
j ) (49)
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where ω
(m)(p)
k = p(y

(p)
k |x(m)

k )/p(y
(p)
k ). If Assumption 5 holds, the expression above turns to

G̃j(γ̃
l
j) =

1

M

M
∑

m=1

∑

uπ(j)∈Uπ(j)

P̃ l+1
j (uπ(j)|x(m)

j )



J̃ l

d|x
(m)
j

,uπ(j)
+ λ

∑

uj∈Uj

ccj(uj , x
(m)
j )p̃(uj |x(m)

j , uπ(j); µ̃
l
j)



 (50)

and after distributing the multiplication in the RHS of the equation above and substituting in Eq.(33) in place of

Gj(γ
l
j), we obtain J̃(γ̃l) = J̃d(γ̃

l) + λJ̃c(γ̃
l).

Considering the separable cost function as discussed in Corollary 3.4 and a quadratic estimation cost as in

Example 3.5, the approximate local estimation and communication rules at the jth node have complexities of

O(M) and O (|Uj |M) given an observation and incoming message pair (yj , uπ(j)) where |Uj | is as defined in

Section II-A. In the offline iterations, after receiving the forward likelihood messages as |Ui→j | ×M arrays from

the parents, the likelihood messages to the child nodes are computed in O
(

M2 |π(j)|
∣

∣Uπ(j)

∣

∣

)

where
∣

∣Uπ(j)

∣

∣ is

as defined in Section II-A as well (for a parentless node, this complexity is of O (|Uj |MP )). After receiving the

backward cost messages from the child nodes as |Uj→k|×M arrays, the cost messages to the parents are computed

in O
(

M
∣

∣Uπ(j)

∣

∣ (M |π(j)| + P |Uj |)
)

(for a childless node, this complexity is of O
(
∣

∣Uπ(j)

∣

∣MP
)

). Note that the

per node complexity is polynomial in the sizes of the sample sets. Owing to the message passing nature, a single

forward–backward iteration of the optimization scales with the number of nodes in the sense that, given N nodes,

if v is the node with highest computational demand bounded by O(C(v)), then a single forward–backward iteration

is bounded by O (NC(v)). Hence the computational complexity increases only linearly with the number of nodes,

making the algorithm scalable. We also note that
∣

∣Uπ(j)

∣

∣ and |Uj | grow combinatorially with the number of parents

and number of children of node j, respectively. Therefore, nodes with the highest in–degree and/or out–degree

bound the computational requirements of the iterations.

Note that {J(γl)|l = 0, 1, 2, ...} obtained through Algorithm 2 is non–increasing whereas {J̃(γ̃l)} in Algorithm 3,

being a MC approximation to the former, does not necessarily exhibit this property. Let us define an approximation

error sequence err[l] = J(γl) − J̃(γ̃l). This sequence will be identically zero with probability one as M,P → ∞.

For finite M and P , it is possible to smooth the fluctuation of err[l] through filtering and utilize the corresponding

termination condition, e.g., check whether J̃(γ̃l) ∗ h[l] < ε where h[l] is the impulse response of a linear, time

invariant filter and ∗ denotes convolution. In general, a sequence that is non–increasing with high probability can

be obtained through an operator τ (Check step of Algorithm 3), investigation of which is beyond the scope of this

work.

V. EXAMPLES

In this section, we demonstrate Algorithm 3 introduced in Section IV in various scenarios including Gaussian

priors, non-Gaussian priors, and large random graphs.

A. A Simple Gaussian Example

We consider a small network example in which a decentralized estimation network composed of four platforms

perform an estimation task. A Gaussian random field X = (X1,X2,X3,X4)
T is of concern and platform j
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Fig. 2. (a) The DAG G = (V,X ) where V = {1, 2, 3, 4} and E = {(1, 3), (2, 3), (3, 4)}. (b) the Markov Random Field (MRF) GX subject

to estimation by the decentralized estimation network in (a). (c) Communication rules for node 3: (top to bottom) the initial communication

rule, i.e., u3→4 = µ0
3(y3, uπ(3)) and illustrations of the converged communication rule for the Gaussian example for λ = 0.1 at the end

of the 4th step, specifically, u3→4 = µ4
3(y3, uπ(3)) for uπ(3) = {2, 2}, {0, 0} and {1, 1} respectively. (d) Illustrations of the initial and

converged estimation rules for node 4 for the Gaussian example at the end of the 4th step, i.e., ν0
4 and x̂4 = ν̃4

4 (y4, uπ(4)) respectively.

(e) The approximate performance points converged revealing the tradeoff together with the lower and upper bounds of the example Gaussian

problem: Estimation performance measured in MSE for the optimum centralized and myopic rules correspond to the lower (blue dashed–line)

and the upper bound (red solid–line) respectively. The estimation network in Fig.2(a) is subject to optimization through Alg. 3 starting with

the initial rules given by Eq.s(52) and (53) which achieve (Jc(γ0), Jd(γ0)) (black ×). The pareto–optimal performance curves, achieved for

the approximate pbp optimal strategies while λ is increased from 0 with steps of 0.001, are approximated by {(J̃c(γ̃∗
λ), J̃d(γ̃∗

λ))} where γ̃∗
λ

is the approximated optimum strategy for λ. Results for 1, 2 and 3 bit selective communication schemes are presented . (f) For the Laplacian

example; the converged estimation rule local to node 4 at the end of the 3rd step, i.e., x̂4 = ν̃3
4 (y4, uπ(4)). (g) Approximate performance

points achieved for the Laplacian case for 10 sample sets and λ = 0, 0.025, 0.05, ..., 0.25.

is associated with Xj . In the first scenario, we consider a polytree online processing topology (Fig. 2(a)), a

communication structure not covered by the star–topology paradigms (e.g., [13] and [19]), as well as stringent

BW constraints such that U1→3 = U2→3 = U3→4 = {0, 1, 2}. We call this a 1–bit selective communication scheme

and also consider 2–bit and 3–bit schemes to be discussed later in this section. The online processing scheme operates

as given in Section II-A: Since nodes 1 and 2 are parentless, upon measuring y1 and y2 ∈ R induced by X1 and X2,

they evaluate their local rules as (u1→3, x̂1) = γ1(y1) and (u2→3, x̂2) = γ2(y2) respectively. Upon receiving these

messages and measuring y3 ∈ R induced by X3, node 3 evaluates its local rule (u3→4, x̂3) = γ3(y3, u1→3, u2→3),

and similarly node 4 evaluates x̂4 = γ4(y4, u3→4). The strategy γ =(γ1, ..., γ4) is subject to design, which we

perform through Algorithm 3.

In addition, we comply with Assumption 3 and select separable local costs also enabling Assumption 5 to hold.
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The cost function local to node j is given by cj(uj , x̂j , xj) = cdj (xj , x̂j) + λccj(uj , xj) where the communication

cost is additive as ccj(uj , xj) =
∑

k∈χ(j) c
c
j→k(uj→k, xj) and where ccj→k(uj→k) is the cost of transmitting the

symbol uj→k on the link (j, k) ∈ E selected as

ccj→k(uj→k, xj) =











0, if uj→k = 0

1, otherwise

indicating the link use. Hence, Uj→k together with ccj→k define a selective communication scheme where uj→k = 0

indicates no communications and uj→k 6= 0 indicates transmission of a one bit message. The estimation error is

penalized by cdj (xj , x̂j) = (xj − x̂j)
2. Hence the total cost of a strategy is J(γ) = Jd(γ) +λJc(γ) where Jd is the

MSE and Jc is the total link use rate.

The random field of concern is a multivariate Gaussian, i.e., x ∼ N (0,CX), and Markov with respect to the

graph GX presented in Fig. 2(b). The covariance matrix is given by

CX =





















2 1.125 1.5 1.125

1.125 2 1.5 1.125

1.5 1.5 2 1.5

1.125 1.125 1.5 2





















(51)

which conforms with the Markov properties of GX . Altough the communication structure of the decentralized

estimation network is not related with the Markov random field representation of X and Algorithm 3 would

produce results for any choice, for the sake of simplicity we selected the graph in Fig. 2(b) as the undirected

counterpart of that in Fig. 2(a).

The noise processes nj for j ∈ V are additive, mutually independent and given by nj ∼ N (0, 0.5), so that

Assumption 1 holds. In addition, we suppose that Assumption 2 holds and the observation likelihoods are p(yj |xj) =

N (xj , 0.5). Considering CX , each sensor has an SNR of 6dB.

Since separable local cost functions are utilized, the pbp optimal rules are also split into estimation and commu-

nications functions given by Eq.(23) and (24) respectively. Moreover, owing to the selection of cdj as the squared

error estimation penalty, the local estimation rules take the form given in Eq.(26). We initialize the local rules, i.e.,

ν0
j and µ0

j for j ∈ V , as follows:

1) Each node applies a myopic inference rule, i.e., performs estimation solely based on its local measurements.

This rule is selected as the MMSE estimation rule, i.e., E{Xj |Yj = yj} given by

ν0
j (yj , uπ(j)) =

∞
∫

−∞

dxj xjp(xj |yj) (52)

2) The initial communication rule of node j that is not childless is a quantization of the observation yj , i.e.,

µ0
i (yi, uπ(i)) =















1 , yi < −2σn

0 , − 2σn 6 yi 6 2σn

2 , yi > 2σn

(53)
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regardless of the incoming messages.

Considering J(γ) = Jd(γ) + λJc(γ) and pbp optimal strategies achieved by Algorithm 2, in principle, different

values of λ would yield different performance points (Jc(γ
∗), Jd(γ

∗)). Moreover, in this case, after a certain

value λ = λ∗, the communication cost λJc will dominate such that the decrease in the decision cost Jd with

the contributions of the communicated symbols will not be enough to decrease J and symbol 0 will be the best

choice. Moreover, the individual estimators will be the myopic rules, since myopic rules with no communications

constitute a pbp optimal strategy. Hence, it is possible to interpret λ∗ as the maximum price per bit that the system

affords to decrease the expected estimation error. As we increase λ from 0 we approximate samples from the

corresponding pareto–optimal curve which enables us to quantify the tradeoff between the cost of estimation errors

and communication.

We use 2000 and 30000 samples for each Sxi
and Syi

generated from p(xi) and p(yi) respectively and use

Algorithm 3 for varying λ from 0 with 0.001 steps. Example converged local communication and estimation rules

are presented in Fig. 2(c) and (d) for node 3 and 4 respectively, where λ = 0.1 and convergence is declared after

4 “offline” iterations. Note that the initial communication rule shown at the top row of Fig. 2(c) and the initial

estimation rule illustrated by the black dashed line in Fig. 2(d) are valid for all of the nodes with appropriate choices

of the domain and range labels. The pbp optimal communication rule local to node 3 can be treated as a collection

of threshold rules for each incoming message value (some of which are illustrated in Fig. 2(c)). Now, let us turn

to the estimation rule in Fig. 2(d). If the message received by node 4 suggests a high/medium/low value for x4

that is consistent with y4, then the pbp estimation rule local to node 4 acts similar to the myopic rule (Note the

asymptotic behaviour of ṽ4
4 for u3→4 = 2 and u3→4 = 1 respectively in comparison with the initial rule as well as

ṽ4
4 for u3→4 = 0 in Fig. 2(d)), otherwise, the estimate diverts from the nominal values as implied by the incoming

message.

The approximate performance points, i.e., (J̃c, J̃d) pairs where J̃c is the approximate total link use rate and J̃d

is the approximate total MSE, of the converged strategies γ̃∗ are presented in Fig. 2(e)(black ‘+’s). The upper

and lower bounds are MSEs corresponding to the myopic rule and the centralized optimal rule respectively. We

repeat the same scenario with different BW constraints: Specifically, we select Ui→js corresponding to 2 and 3–bit

selective communication schemes. The initial communication rules are appropriately modified versions of that given

by Eq.(53) and the approximate performance points obtained are presented in Fig. 2(e) as well8. Note that, for the

squared error cost, the optimal centralized rule given by E{X|Y = y} yields a communication cost of Jc = 3Q

where Q is the number of bits used to represent a real number, i.e., yj , before transmitting to the fusion center. Let

8For these experiments, we use the condition
∣

∣J̃(γ̃l−1) − J̃(γ̃l)
∣

∣ < 1.0e− 4 in the Check step of Alg. 3. The resulting average number of

steps for convergence (within ±3σ) are 3.6±1.5, 4.2±2.0 and 4.1±1.8 for 1, 2 and 3–bit schemes respectively. Please note that for the graph

given in Fig. 2(a), the complexity is determined by node 3 (Section IV-D). The time constant of forward messaging is fairly small compared to

that for the backward messaging: In the 1–bit setting, node 3 computes the likelihood message to node 4 in 0.7713 sec.s whereas the backward

messages take approximately 200 sec.s to be computed in a typical run using a 4–core PC with 8 GB.s of memory and non–optimized MATLAB

code. Under these conditions, one iteration is typically completed in approximately 272 seconds.
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us consider (J̃c, J̃d) pairs for the 1–bit selective communication scheme, for λ = 0 (the transmission has no cost).

The link use rate is approximately 1.65 bits, which is far less than the total capacity of 3 bits for the communication

graph given in Fig. 2(a). This indicates that the information of receiving no messages is successfully maintained

in this perspective. Moreover, the communication stops for λ∗ ≈ 0.355. Similarly, approximate points for 2–bit

and 3–bit schemes (Fig. 2(e)) indicate that, if λ is small enough, we can achieve smaller MSE for the same total

communication load as we increase the link capacities.

B. A Simple Heavy Tailed Example

The MC framework applies for arbitrary distributions provided that samples can be generated from their marginals.

This can be an important advantage in certain problem settings in which it is not possible to obtain closed form

expressions even for the centralized rule. We consider such a scenario in which X is distributed by a heavy tailed

prior p(x), specifically a multivariate-symmetric Laplacian (MSL) given by

p(x) =
2

(2π)d/2|Cx|1/2

(

xTC−1
x x

2

)1−d/2

K1−d/2(
√

2xTC−1
x x) (54)

where d is the dimension of x, Cx is a covariance matrix, and Kη(u) is the Bessel function of the second kind of

order η (See, e.g. [39]). Let us denote this density by SLd(CX). Unlike the Gaussian case, uncorrelatedness does

not imply independence and not being a member of the exponential family, SLd(CX) does not imply a Markov

random field. On the other hand, it is possible to generate samples from an MSL utilizing samples generated from

a multivariate Gaussian of zero mean and the desired covariance matrix together with samples drawn from the unit

univariate exponential distribution, i.e., given u ∼ N (0,CX) and z ∼ e−z , generate samples of X by x =
√
zu,

then x ∼ SLd(Cx).

Similar to that in the previous section, we assume the underlying communication structure described by G =

(V, E) in Fig. 2(a) together with a 1–bit selective communication scheme on each link, and similar cost functions,

observation likelihoods, and initial local rules.

The Monte Carlo framework extends trivially for (finite) Gaussian Mixture Models which can be used to represent

arbitrary priors. To the best knowledge of the authors, in the case of a MSL prior, even the centralized paradigm

fails to provide a solution without employing numerical approximations.

For our case, we consider X = (X1,X2,X3,X4)
T such that pX(x) = SL4(CX) where CX is given by Eq.(51)

and we exploit the fact that the jth marginal density of SLd(CX) is given by SL1([CX ]j,j) and it is straightforward

to generate samples from these marginals [40]. For the observations, although the marginal densities yield closed

form expressions9, it is not easy to sample from this density since it does not yield a cumulative distribution function

in closed form. Nevertheless, we can consider the mixture approximation
∑

x
(m)
j

∈Sxj

p(yj |x(m)
j ) ≈ p(yj) where

Sxj
= {x(1)

j , x
(2)
j , ..., x

(M)
j }, and generate sufficient number of samples from p(yj |x(m)

j ) for each element of Sxj

so that the union of these samples are distributed by the mixture.

9It can be shown that p(yj) = 1
4
e−yj+1/4

(

e2yj + 1 − Φ(yj + 1/2) e2yj + Φ(yj − 1/2)
)

for j ∈ V where Φ is the error function.
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We generate
∣

∣Sxj

∣

∣ = 3000 samples from the prior marginals and
∣

∣Syj

∣

∣ = 45000 samples from the aforementioned

mixture densities by generating 15 samples from each component. We run Algorithm 3 for different choices of λ and

for 10 different sample sets. An example converged estimation rule is illustrated in Fig. 2(f) which is local to node

3 and obtained for λ = 0.1 after 3 offline iterations. Note that, contrary to that in the Gaussian example, the initial

myopic estimation rule for any node is not linear (black dashed curve in Fig. 2(f)) and is successfully represented

within the MC framework. The asymptotic behaviours in the case that the measurement and the incoming message

confirm each other are similar to that in the Gaussian example.

In Fig. 2(g), approximate performance points for the converged strategies based on the aforementioned 10 sample

sets are presented where the upper and lower bounds are the MSEs corresponding to the myopic and centralized rules,

respectively10. In particular, for each value of λ, we generate results based on the 10 sample sets. Collective results

from such sample sets for a particular value of λ provide a sample–based approximation of the corresponding

performance point on the pareto–optimal curve. We observe that these sample–based results form clusters with

reasonable variability, indicating their approximation quality. This level of variability can be expected since heavy

tailed distributions require utilization of larger sample sets. Nevertheless, the framework we propose produces

distributed solutions in problem settings which do not admit straightforward solutions even in the centralized case.

C. An Example with a Large Graph

In this section, we consider a relatively large scale problem: 50 platforms are randomly deployed over an area

of 100 unit squares and each location sj ∈ R
2 is associated with a scalar random variable, Xj . We assume that the

random field X = (X1,X2, ...,X50)
T is Gaussian with zero mean, i.e., X ∼ N (0,Cx) and Cx = [Ci,j ] complies

with the Matérn covariance function which is commonly utilized in spatial data modeling [10] and given by

Ci,j =







τ2 + σ2, h = 0
(

σ2/2(η−1)Γ(η)
) (

2
√
ηh/φ

)η
2Kη

(

2
√
ηh/φ

)

, h > 0

where h , ‖si − sj‖, Kη is a modified Bessel function of the second kind of order η and τ2, σ2 are parameters

that determine the decaying characteristics. Such a random deployment together with the polytree we generate by

randomly selecting 6 childless nodes and employing Kruskal’s algorithm on the Gabriel graph is given in Fig. 3(a).

Different from the previous scenarios, only the variables associated with the childless nodes are of concern and

only the childless nodes perform estimation whereas the remaining operate in a fusion setting such that they merely

provide information to their children based on the incoming messages from parents and the measurements they

make. This is possible by simply selecting the estimation penalty as cdj (xj , x̂j) = (xj − x̂j)
2 if j is childless and

zero otherwise. We consider a 1–bit selective communication scheme on each link and the communication cost

considers the link use rate. Similar to the previous examples, the initial communication rules are quantization of the

10Another intricacy for this case is that the evaluation of the myopic and centralized strategies and the corresponding MSEs require numerical

approximations for which we utilize MC methods as well.
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Fig. 3. (a) 50 randomly deployed nodes and the polytree generated from a spanning tree of the Gabriel Graph of the deployment after randomly

selecting 6 childless nodes; parentless and childless nodes are shown by red triangles and red squares (e.g., node 10) respectively, (b) converged

estimation rule local to (childless) node 10 for λ = 0.005 at the end of 6 iterations, (c) approximate performance points of converged strategies

for λ = 0.0005, 0.00158, ..., 0.158 and 10 sample sets. The upper and lower bounds of the problem are the myopic and the centralized MSEs

shown by the solid red line and the dashed blue line respectively.

measurements and the childless nodes are initiated with the corresponding myopic estimation rules (for τ2 + σ2 = 1,

σ2
nj

= 0.25 ∀j ∈ V).

We employ Algorithm 3 for a geometrically increasing sequence λ = 0.0005, 0.00158, ..., 0.158 and for 10

different sample sets such that
∣

∣Sxj

∣

∣ = 2000 and
∣

∣Syj

∣

∣ = 30000. An example converged estimation rule is illustrated

in Fig. 3(b). We consider node 10 in Fig. 3(a); the initial myopic rule is linear with the observation y10, however,

the converged strategy, as expected considering the previous examples, exhibits a highly nonlinear behaviour as the

incoming messages suggest less likely (high or low) values for x10. When no messages is sent, the pbp optimal

rule is similar to a mid–way between the estimator functions selected when incoming messages imply a high and

a low value for x10 respectively.

The Monte Carlo estimates of the performances of approximate pbp optimal strategies are shown in Fig. 3(c).

Note that the myopic MSE for each platform is 0.2 yielding a total of 1.2 whereas the centralised MSE (blue

dashed–line) is specified by the deployment (through Cx). The MC framework successfully performs in large graph

scenarios and similar to the example in Section V-B and the results given in Fig. 2(g), the performance points for

different sample sets form clusters around the points from the pareto–optimal curve they approximate and capture

the trade–off between estimation accuracy measured with MSE and the cost of communications in bits.

VI. CONCLUSION

In this work, we have considered the design of decentralized estimation strategies. Motivated by sensor network

applications, we take the communication constraints into account including the availability and BW of the links as

well as the cost of transmitting symbols over them. We are particularly interested in trading off estimation accuracy

with the utilization of communication resources. We employ a class of online processing strategies over DAGs

which is constituted of local rules operating in accordance with a (forward) message–passing structure on a DAG.
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This class provides a number of benefits compared with the conventional approaches in decentralized estimation

including that it covers any association of the nodes with the variables that make up the global state and it is

valid for any DAG presumably supported by the available set of links. Another important feature is that, under a

Bayesian setting, it yields a rigorous design problem and a tractable offline strategy optimization procedure in a

message passing fashion provided that some reasonable assumptions hold. This design setting, different from that

in previous work on decentralized estimation, enables us to explicitly consider the cost of communications, and

for a parametric dual–objective Bayesian risk, a pareto–optimal curve is obtained revealing the trade–off through

the graceful degradation of estimation accuracy as the communication becomes more costly. It is also possible to

model a broader range of constraints on the communication structure to be used during online processing. For

example, it is possible to consider extensions of the conventional star–topology since it is a particular polytree

structure. In addition, it is possible to model selective communication schemes through an appropriate selection of

the communication cost(s).

The graphical model perspective for decentralized estimation in recent work takes the communication constraints

into account to a certain extent, nevertheless a general framework which explicitly captures the cost of transmissions

especially under stringent constraints similar to those of our concern has not been introduced. The in–network

processing strategies over DAGs have been previously studied for decentralized detection [28] and hence our first

contribution is the extension of these results for the estimation problem and a rephrasing of the offline optimization

procedure which is composed of consecutive forward and backward message–passings.

However, in contrast with the detection problem, the global state vector takes values from a Euclidean space

in our case, and consequently the forward and backward messages, i.e., the likelihoods of the incoming messages

conditioned on the local rules of the ascendants and the expected cost induced on the descendants, as well as the

pbp optimal local rules require the computation of integral operators which cannot be evaluated exactly, in general.

We overcome this problem through our second contribution which is a Monte Carlo framework under which

particle representations together with approximate computational schemes are utilized for all expressions involved,

including the local rules. Through this approach, we provide a feasible computational scheme while we conserve

the appealing features of the original framework which include scalability with the number of platforms as well as

the number of variables involved. The proposed algorithm also scales with the sample set sizes and produces results

for any set of distributions provided that samples can be generated from the marginals. We have demonstrated these

features through several examples including a Gaussian problem, a non-Gaussian prior problem, and a random large

graph scenario in Section V. The MC optimizations produce reasonable sets of local rules, and we observe that the

estimation accuracy is traded–off with communication load as we vary their relative emphases on the total cost.

Equivalently, the performances achieved approximate the corresponding pareto–optimal curve.

One possible extension of this work, on which we have already obtained some preliminary results, is considering

in–network strategies that are composed of two–stage local rules over undirected graphs (UGs). The family of

strategies we considered also enable investigation of the two–stage strategies over UGs which render intertwined

local star–graphs under certain assumptions and arguably better match some scenarios including the estimation of a
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random field. We have proposed a similar MC framework for this family yielding a similar optimization algorithm

[41] which, together with the approximations presented in this work, can also potentially be applied for hybrid

in–network processing strategies employing both families [42].

There are a number of issues left beyond the scope of this work. In contrast with the non–approximated case, the

iterative offline strategy optimization procedure does not yield a monotonically decreasing sequence. Investigation of

a robust stopping condition remains as future work. Another possible extension is introduction of possible smoothing

approaches through kernel methods. The IS estimate we use is known to be mildly biased (page 95 in [38]) and

the analysis of the bias in our work remains an open issue. It might also be worthwile to consider the problem of

selecting the graph structure that yields the best pbp optimal strategy given an a priori distribution.

APPENDIX

APPROXIMATING THE TOTAL CONDITIONAL COST

In this Appendix, we consider the total conditional cost local to node k, i.e., I∗k(uπ(k), xk; γ∗k) given by Eq.(17)

(in the context of Proposition 3.3), and approximate its evaluations at xk = x
(m)
k for all x

(m)
k ∈ Sxk

and for

all uπ(k) ∈ Uπ(k). We assume that γk is fixed at the pbp optimal rule γ∗k , and the density it specifies, i.e.,

p(uk, x̂k|yk, uπ(k); γ
∗
k), is known. After substituting this density, which is given in Eq.s(3) and (4) in Section II-B,

into Eq.(17), we obtain

I∗k(uπ(k), xk; γ∗k) =

∫

Yk

dyk [ ck( [γ∗k(yk, uπ(k))]Uk
, [γ∗k(yk, uπ(k))]Xk

, xk) + C∗
k( [γ∗k(yk, uπ(k))]Uk

, xk) ]p(yk|xk)

(55)

evaluation of which can be approximated at all (uπ(k), x
(m)
k ) pairs such that x

(m)
k ∈ Sxk

and uπ(k) ∈ Uπ(k) using

the Importance Sampling method with the importance density p(yk). Assuming that the cost–to–go function local

to node k, i.e., C∗
k(uk, xk), is known for all possible (uk, x

(m)
k ) pairs and utilizing y

(p)
k ∈ Syk

together with the

importance weights

ω
(m)(p)
k = p(y

(p)
k |x(m)

k )/p(y
(p)
k )

we obtain the approximation given by

Ĩ∗k(uπ(k), x
(m)
k ; γ∗k) =

1
P
∑

p=1
ω

(m)(p)
k

P
∑

p=1

ω
(m)(p)
k [ ck( [γ∗k(y

(p)
k , uπ(k))]Uk

, [γ∗k(y
(p)
k , uπ(k))]Xk

, x
(m)
k )

+ C∗
k( [γ∗k(y

(p)
k , uπ(k))]Uk

, x
(m)
k ) ] (56)

for m = 1, 2, ...,M and uπ(k) ∈ Uπ(k) such that Ĩ∗k(uπ(k), x
(m)
k ; γ∗k) ≈ I∗k(uπ(k), x

(m)
k ; γ∗k) holds.

In addition, if the separable cost assumption (Assumption 5 in Section III-B) holds, we consider Corollary 3.6

and find Importance Sampling approximations to the evaluations of the conditional estimation cost local to node k

given by Eq.(28) and the conditional cost due to node k’s communication rule given by Eq.(29) at (uπ(k), x
(m)
k )
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with a similar reasoning we used above. These approximations to J∗

d|x
(m)

k
,uπ(k)

and J∗

c|x
(m)

k
,uπ(k)

are given by

J̃∗

d|x
(m)

k
,uπ(k)

=
1

P
∑

p=1
ω

(m)(p)
k

P
∑

p=1

ω
(m)(p)
k cdk(ν∗k(y

(p)
k , uπ(k)), x

(m)
k )

J̃∗

c|x
(m)

k
,uπ(k)

=
∑

uk

(

λcck(uk, x
(m)
k ) + C∗

k(uk, x
(m)
k )

)

p̃(uk|x(m)
k , uπ(k);µ

∗
k)

where p̃(uk|x(m)
k , uπ(k);µ

∗
k) is given by Eq.(43). Note that, J̃∗

d|x
(m)

k
,uπ(k)

≈ J∗

d|x
(m)

k
,uπ(k)

and J̃∗

c|x
(m)

k
,uπ(k)

≈
J∗

c|x
(m)

k
,uπ(k)

hold, and consequently, the approximation to the total conditional cost is obtained as Ĩk
∗
(uπ(k), x

(m)
k ; γ∗k) =

J̃∗

d|x
(m)

k
,uπ(k)

+ J̃∗

c|x
(m)

k
,uπ(k)

.
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