

LOW POWER H.264 VIDEO COMPRESSION HARDWARE DESIGNS

by

Mustafa Parlak

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of
the requirements for the degree of

Doctorate of Philosophy

Sabancı University

February 2009

II

LOW POWER H.264 VIDEO COMPRESSION HARDWARE DESIGNS

APPROVED BY:

Assist. Prof. Dr. İlker Hamzaoğlu ………………………….

(Thesis Supervisor)

Assist. Prof. Dr. Ayhan Bozkurt ………………………….

Assist. Prof. Dr. Müjdat Çetin ………………………….

Prof. Dr. Günhan Dündar ………………………….

Assist. Prof. Dr. Hakan Erdoğan ………………………….

DATE OF APPROVAL: ………………………….

III

To my Mother, Father, Brothers and Sisters

To my beloved wife Neslihan and our future children

IV

1 ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. İlker Hamzaoğlu for all his guidance,

support, and patience throughout my PhD study. It has been a great honor for me to work

under his guidance.

I would also like to thank my thesis committee members Dr. Ayhan Bozkurt and Dr.

Müjdat Çetin for their valuable comments on the dissertation, and Dr. Günhan Dündar and

Dr. Hakan Erdoğan for participating in my thesis jury.

My special thanks to System-on-Chip Design & Test group members, particularly

Yusuf Adıbelli and Özgür Taşdizen for their collaboration and help during my PhD study.

My sincere thanks to all my friends and colleagues in Sabancı University including

Mehmet Özdemir, Alisher Kholmatov, Ünal Şen and İbrahim İnanç. I appreciate their

friendship and help which made my life easier and more pleasant during my PhD study.

I am particularly grateful to my parents and my wife, Neslihan, for their constant

support, encouragement, assistance and patience. Without them, this study would never

have been possible.

I would like to thank Sabanci University for supporting this research. I would also

like to thank Scientific and Technological Research Council of Turkey (TUBITAK) for

supporting this research under the contract 106E153.

V

LOW POWER H.264 VIDEO COMPRESSION HARDWARE DESIGNS

Mustafa Parlak

2 ABSTRACT

 Video compression systems are used in many commercial products such as digital

camcorders, cellular phones and video teleconferencing systems. H.264 / MPEG4 Part 10,

the recently developed international standard for video compression, offers significantly

better video compression efficiency than previous international standards. However, this

coding gain comes with an increase in encoding complexity and therefore in power

consumption. Since portable devices operate with battery, it is important to reduce power

consumption so that the battery life can be increased. In addition, consuming excessive

power degrades the performance of integrated circuits, increases packaging and cooling

costs, reduces the reliability and may cause device failures. Therefore, power consumption

is an important design metric for video compression hardware.

In this thesis, we propose low power hardware designs for Deblocking Filter (DBF),

intra prediction and intra mode decision parts of an H.264 video encoder. The proposed

hardware architectures are implemented in Verilog HDL and mapped to Xilinx Virtex II

FPGA. We performed detailed power consumption analysis of FPGA implementations of

these hardware designs using Xilinx XPower tool. We also measured the power

consumptions of DBF hardware implementations on a Xilinx Virtex II FPGA and there is a

good match between estimated and measured power consumption results.

We then worked on decreasing the power consumption of FPGA implementations of

these H.264 video compression hardware designs by reducing switching activity using

Register Transfer Level (RTL) low power techniques. We applied several RTL low power

techniques such as clock gating and glitch reduction to these designs and quantified their

impact on the power consumption of the FPGA implementations of these designs. We

proposed novel computational complexity and power reduction techniques which avoid

VI

unnecessary calculations in DBF, intra prediction and intra mode decision parts of an

H.264 video encoder. We quantified the computation reductions achieved by the proposed

techniques using H.264 Joint Model software encoder. We applied these techniques to

proposed hardware designs and quantified their impact on the power consumption of the

FPGA implementations of these designs.

VII

DÜŞÜK GÜÇ KULLANIMLI H.264 VİDEO SIKIŞTIRMA DONANIM TASARIMLARI

Mustafa Parlak

3 ÖZET

Video sıkıştırma sistemleri, dijital kameralar, cep telefonları ve video telekonferans

sistemleri gibi bir çok ticari üründe kullanılmaktadır. Yakın tarihte geliştirilmiş uluslararası

bir standart olan H.264 / MPEG4 Part 10, kendinden önceki standartlara göre belirgin

şekilde daha iyi sıkıştırma verimi sağlamaktadır. Ancak,bu kodlama kazancı hesaplama

karmaşıklığı ve güç tüketimi artışını beraberinde getirmektedir. Taşınabilir cihazlar pil ile

çalıştığı için, güç tüketimini azaltmak pil ömrünün uzamasını sağlayacaktır. Bunun yanında

aşırı güç tüketimi, entegre devrelerin performansını düşürür, paketleme ve soğutma

maliyetlerini arttırır, dayanıklılığını azaltır ve bozulmalarına sebep olabilir. Bu nedenle,güç

tüketimi, video sıkıştırma donanımları için önemli bir tasarım ölçüsüdür.

Bu tezde, H.264 Blok Giderici Filtre (BGF), çerçeve içi öngörü ve çerçeve içi kip

seçimi algoritmaları için düşük güç kullanımlı donanım tasarımları önerildi. Önerilen

donanım mimarileri Verilog HDL ile gerçeklendi ve Xilinx Virtex II FPGA ye sentezlendi.

Xilinx XPower yazılımı kullanılarak bu donanımların FPGA gerçeklemelerinin detaylı güç

tüketim analizleri yapıldı. Ayrıca Xilinx Virtex II FPGA üzerinde çalışan BGF

donanımının güç tüketimi ölçüldü ve tahmin edilen güç tüketimi ile ölçülen güç tüketimi

arasında yakın sonuçlar elde edildi.

Daha sonra H.264 video sıkıştırma donanım tasarımlarının FPGA gerçeklemelerinin

güç tüketimleri saklayıcı aktarma (RTL) seviyesinde düşük güç teknikleri ile anahtarlama

aktiviteleri düşürülerek azaltılmaya çalışıldı. Bu donanımlara saat kapılama, küçük

sıçramaları azaltma gibi RTL seviyesinde düşük güç teknikleri uygulandı ve bu tekniklerin

bu donanımların FPGA içindeki güç tüketimleri üzerindeki etkileri belirlendi. Ayrıca bu

tezde H.264 video kodlayıcıda bulunan BGF, çerçeve içi öngörü ve çerçeve içi kip seçimi

modüllerindeki gereksiz hesaplamaları engelleyen, özgün sayısal karmaşıklık ve güç

VIII

tüketimi azaltıcı teknikler önerildi. Önerilen tekniklerin hesaplama miktarında yaptığı

azalma H.264 referans yazılımı (JM) kullanılarak belirlendi. Bu teknikler önerilen donanım

tasarımlarına uygulandı ve bu tekniklerin bu donanımların FPGA içindeki güç tüketimleri

üzerindeki etkileri belirlendi.

IX

4 TABLE OF CONTENTS

1 ACKNOWLEDGEMENT ... IV

2 ABSTRACT ... V

3 ÖZET .. VII

4 TABLE OF CONTENTS ... IX

6 LIST OF FIGURES ... XI

7 LIST OF TABLES ... XIII

1 CHAPTER I .. 1

INTRODUCTION…………………………………………………………………….1

1.1 H.264 Video Compression Standard ... 1

1.2 Low Power Hardware Design ... 5

1.3 Thesis Contributions ... 7

1.4 Thesis Organization .. 10

2 CHAPTER II ... 11

LOW POWER H.264 DEBLOCKING FILTER HARDWARE DESIGNS………...11

2.1 Overview of H.264 Adaptive Deblocking Filter Algorithm 14

2.2 Proposed Hardware Architectures .. 17

2.3 Implementation Results... 23

2.4 ARM Versatile / PB926EJ-S Development Board Implementation 24

2.5 Power Consumption Results ... 26

X

2.6 A Novel Computational Complexity Reduction Technique for H.264 Deblocking
Filter .. 31

3 CHAPTER III ... 42

LOW POWER H.264 INTRA PREDICTION HARDWARE DESIGNS…………...42

3.1 H.264 Intra Prediction Algorithm Overview .. 44

3.2 Proposed Computational Complexity and Power Reduction Technique 54

3.3 Proposed Intra Prediction Hardware Architectures .. 64

3.4 Power Consumption Analysis ... 68

4 CHAPTER IV ... 74

LOW POWER H.264 INTRA MODE DECISION HARDWARE DESIGNS……...74

4.1 Hadamard Transform .. 77

4.2 Proposed Computational Complexity Reduction Technique 78

4.3 Computation Reduction for Residue Calculations .. 96

4.4 Computation Reduction Results.. 96

4.5 Proposed 16x16 Intra Mode Decision Hardware Architectures 100

4.6 Power Consumption Analysis ... 101

5 CHAPTER V... 105

CONCLUSIONS AND FUTURE WORK…………………………………………105

6 BIBLIOGRAPHY ... 107

5

4.2.1 HT of Predicted Blocks by Intra 4x4 Modes .. 80

4.2.2 HT of Predicted Blocks by Intra 16x16 and 8x8 Horizontal, Vertical and DC
Modes .. 89

4.2.3 HT of Predicted Blocks by Intra 16x16 and 8x8 Plane Mode 94

XI

6

7 LIST OF FIGURES

Figure 1.1 H.264 Encoder Block Diagram .. 3

Figure 1.2 H.264 Decoder Block Diagram ... 4

Figure 1.3 ITRS 2005 Projection of Maximum Allowable Power Consumption for ICs . 6

Figure 2.1 Illustration of H.264 DBF Algorithm .. 15

Figure 2.2 Edge Filtering Order in a MB Specified in H.264 Standard 15

Figure 2.3 H.264 Deblocking Filter Algorithm ... 16

Figure 2.4 Proposed DBF Hardware Block Diagram.. 18

Figure 2.5 Proposed DBF Hardware Datapath .. 19

Figure 2.6 Processing Order of 4×4 Blocks by IT/IQ Module .. 20

Figure 2.7 Proposed Novel Edge Filtering Order ... 21

Figure 2.8 4x4 Blocks Stored in LUMA and CHROMA SRAMs 22

Figure 2.9 ARM Versatile / PB926EJ-S Development Environment and Power

Measurement Setup ... 25

Figure 2.10 Integration of Deblocking Filter Hardware into ARM Versatile Board 26

Figure 2.11Unfiltered Video Frame .. 27

Figure 2.12 The Same Frame Filtered by H.264 Deblocking Filter Algorithm 27

Figure 3.1 A 4x4 Luma Block and Neighboring Pixels ... 45

Figure 3.2 4x4 Luma Prediction Modes .. 45

Figure 3.3 Examples of Real Images for 4x4 Luma Prediction Modes 46

Figure 3.4 Prediction Equations for 4x4 Luma Prediction Modes 48

XII

Figure 3.5 16x16 Luma Prediction Modes .. 49

Figure 3.6 Examples of Real Images for 16x16 Luma Prediction Modes 49

Figure 3.7 Prediction Equations for 16x16 Luma Prediction Modes 51

Figure 3.8 Chroma Component of a MB and its Neighboring Pixels 52

Figure 3.9 Prediction Equations for 8x8 Chroma Prediction Modes 54

Figure 3.10 Four Pixel Groups of Neighboring Pixels of a MB 58

Figure 3.11 4x4 Intra Prediction Hardware Architecture .. 65

Figure 3.12 16x16 Intra Prediction Hardware Architecture .. 66

Figure 3.13 8x8 Intra Prediction Hardware Architecture .. 67

Figure 4.1 Formation of DC Block for Intra 16x16 Prediction Modes 75

Figure 4.2 SATD Calculation for Each 4x4 Block ... 76

Figure 4.3 Addition Operations Performed by Intra Prediction and Mode Decision...... 77

Figure 4.4 Fast HT Algorithm for a 4x4 Block ... 79

Figure 4.5 Hadamard Transform of Vertical, Horizontal and DC Modes 80

Figure 4.6 16x16 MB and its Neighboring Pixels ... 91

Figure 4.7 Rate Distortion Curves of the Original SATD Mode Decision and SATD

Mode Decision with Proposed Technique for Mother&Daughter (M&D), Crew and

Foreman ... 98

Figure 4.8 Rate Distortion Curves of the Original SATD Mode Decision and SATD

Mode Decision with Proposed Technique for Soccer, Football and Mobile 99

Figure 4.9 Proposed Hardware for Original Intra 16x16 Mode Decision 102

Figure 4.10 Proposed Hardware for Intra 16x16 Mode Decision with Proposed

Technique .. 103

XIII

8 LIST OF TABLES

Table 2.1 Conditions that Determine BS .. 17

Table 2.2 FPGA Resource Usage and Clock Frequency After Place and Route 24

Table 2.3 DBF Hardware Comparison .. 24

Table 2.4 Power Consumption of DBF Hardware Implementations at 50 MHz 28

Table 2.5 Power Consumption Comparison of Block SelectRAM and Distributed

SelectRAM .. 28

Table 2.6 Impact of Clock Gating on Datapath Power Consumption 29

Table 2.7 Impact of Glitch Reduction on Datapath Power Consumption 29

Table 2.8 Power Consumption Estimations and Measurements of DBF_16×16 and

DBF_4×4 Hardware at 34 MHz .. 31

Table 2.9 DBF Modes ... 32

Table 2.10 Equations for Mode 6 and their Simplified Versions when

p2=p1=p0=q0=q1=q2 .. 32

Table 2.11 Equations for Mode 6 and their Simplified Versions when p1=p0=q0=q1 .. 32

Table 2.12 The Amount of Computation Required by DBF Mode 0 For Different Equal

Pixel Combinations ... 34

Table 2.13 The Amount of Computation Required by DBF Mode 1 For Different Equal

Pixel Combinations ... 34

Table 2.14 The Amount of Computation Required by DBF Mode 2 For Different Equal

Pixel Combinations ... 34

Table 2.15 The Amount of Computation Required by DBF Mode 3 For Different Equal

Pixel Combinations ... 35

XIV

Table 2.16 The Amount of Computation Required by DBF Mode 5 For Different Equal

Pixel Combinations ... 35

Table 2.17 The Amount of Computation Required by DBF Mode 6 For Different Equal

Pixel Combinations ... 36

Table 2.18 The Amount of Computation Required by DBF Mode 7 For Different Equal

Pixel Combinations ... 36

Table 2.19 The Amount of Computation Required by DBF Mode 4 For Different Equal

Pixel Combinations ... 37

Table 2.20 The Amount of Computation Required by DBF Mode 7 38

Table 2.21 Number of Occurrences of Different Equal Pixel Combinations for DBF

Mode 6 ... 39

Table 2.22 Computation Reduction Results .. 40

Table 2.23 Comparison Overhead ... 41

Table 3.1 Availability of 4x4 Luma Prediction Modes ... 48

Table 3.2 Availability of 16x16 Luma Prediction Modes ... 50

Table 3.3 Availability of 8x8 Luma Prediction Modes ... 52

Table 3.4 4x4 Intra Modes and Corresponding Neighboring Pixels 55

Table 3.5 Percentage of 4x4 Intra Prediction Modes with Equal Neighboring Pixels 57

Table 3.6 Computation Amount of 4x4 Intra Modes .. 57

Table 3.7 Intra 4x4 Modes Computation Reduction Results .. 58

Table 3.8 Percentage of 16x16 Intra Prediction Modes with Equal Neighboring Pixels 60

Table 3.9 Percentage of 8x8 Intra Prediction Modes (Chroma CB, CR) with Equal

Neighboring Pixels .. 61

Table 3.10 Computation Amount of Intra 16x16 and Intra 8x8 Modes 61

Table 3.11 Intra 16x16 Computation Reduction Results .. 63

Table 3.12 Intra 8x8 (Chroma CB, CR) Computation Reduction Results 63

XV

Table 3.13 FPGA Resource Usages of Original Intra Prediction Hardware and Intra

Prediction Hardware with Proposed Technique .. 67

Table 3.14 Power Consumption Reduction of Intra 4x4 Prediction Hardware (QP=28) 69

Table 3.15 Power Consumption Reduction of Intra 4x4 Prediction Hardware (Q=35) .. 70

Table 3.16 Power Consumption Reduction of Intra 4x4 Prediction Hardware (Q=42) .. 70

Table 3.17 Power Consumption Reduction of Intra 16x16 Prediction Hardware (QP=28)

 ... 71

Table 3.18 Power Consumption Reduction of Intra 16x16 Prediction Hardware (QP=

35) .. 71

Table 3.19 Power Consumption Reduction of Intra 16x16 Prediction Hardware (QP=

42) .. 72

Table 3.20 Power Consumption Reduction of Intra 8x8 Prediction Hardware (QP=28) 72

Table 3.21 Power Consumption Reduction of Intra 8x8 Prediction Hardware (QP=35) 73

Table 3.22 Power Consumption Reduction of Intra 8x8 Prediction Hardware (QP=42) 73

Table 4.1 Pre-calculated Values for DDL Prediction Mode ... 85

Table 4.2 DDL Mode Prediction Calculations Using Pre-calculated Values 85

Table 4.3 Pre-calculated Values for DDR Prediction Mode ... 86

Table 4.4 DDR Mode Prediction Calculations Using Pre-calculated Values 86

Table 4.5 Pre-calculated Values for VR Prediction Mode .. 87

Table 4.6 VR Mode Prediction Calculations Using Pre-calculated Values 88

Table 4.7 Pre-calculated Values for HUP Prediction Mode ... 88

Table 4.8 HUP Mode Prediction Calculations Using Pre-calculated Values 89

Table 4.9 Computation Reductions for Intra Prediction Modes 97

Table 4.10 Average PSNR Comparison of the Original SATD Mode Decision with

Proposed Technique .. 99

Table 4.11 Power Consumption Reduction of Intra 16x16 Mode Decision Hardware

(QP=42) ... 104

1

1 CHAPTER I

INTRODUCTION

1.1 H.264 Video Compression Standard

Video compression systems are used in many commercial products, from consumer

electronic devices such as digital camcorders, cellular phones to video teleconferencing

systems. These applications make the video compression hardware devices an inevitable

part of many commercial products. To improve the performance of the existing

applications and to enable the applicability of video compression to new real-time

applications, recently, a new international standard for video compression is developed.

This new standard, offering significantly better video compression efficiency than previous

video compression standards, is developed with the collaboration of ITU and ISO

standardization organizations. Hence it is called with two different names, H.264 and

MPEG4 Part 10 [1].

H.264 video coding standard has a much higher coding efficiency (capable of saving

up to %50 bit rate at the same level of video quality) than the previous standards [2]. Due

to its high coding efficiency and due to its flexibility and robustness to different

2

communication environments, in the near future, H.264 is expected to be widely used in

many applications such as digital TV, DVD, video transmission in wireless networks, and

video conferencing over the internet.

The human visual system appears to distinguish scene content in terms of brightness

and color information individually, and with greater sensitivity to the details of brightness

than color [3]. Same as the previous video compression standards, H.264 is designed to

take advantage of this by using YCbCr color space. In YCbCr color space, each pixel is

represented with three 8-bit components called Y, Cb, and Cr. Y, the luminance (luma)

component, represents brightness. Cb and Cr, chrominance (chroma) components,

represent the extent to which the color differs from gray toward blue and red, respectively.

Since the human visual system is more sensitive to luma component than chroma

components, H.264 standard uses 4:2:0 sampling. In 4:2:0 sampling, for every four luma

samples, there are two chroma samples, one Cb and one Cr.

The top-level block diagram of an H.264 video encoder is shown in Figure 1.1. As

shown in the figure, the video compression efficiency achieved in H.264 standard is not a

result of any single feature but rather a combination of a number of encoding tools such as

motion estimation, intra prediction and deblocking filter (DBF). Same as the previous video

compression standards, H.264 standard does not specify all the algorithms that will be used

in an encoder such as mode decision. Instead, it defines the syntax of the encoded bit

stream and functionality of the decoder that can decode this bit stream.

As shown in Figure 1.1, an H.264 encoder has a forward path and a reconstruction

path. The forward path is used to encode a video frame and create the bit stream by using

intra and inter predictions. The reconstruction path is used to decode the encoded frame and

reconstruct the decoded frame. Since a decoder never gets original images, but rather works

on the decoded frames, reconstruction path in the encoder ensures that both encoder and

decoder use identical reference frames for intra and inter prediction. This avoids possible

encoder – decoder mismatches [1,3,4].

3

Figure 1.1 H.264 Encoder Block Diagram

Forward path starts with partitioning the input frame into macroblocks (MB). Each

MB is encoded in intra or inter mode depending on the mode decision. In both intra and

inter modes, the current MB is predicted from the reconstructed frame. Intra mode

generates the predicted MB based on spatial redundancy, whereas inter mode, generates the

predicted MB based on temporal redundancy. Mode decision compares the required

amount of bits to encode a MB and the quality of the decoded MB for both of these modes

and chooses the mode with better quality and bit-rate performance. In either case, intra or

inter mode, the predicted MB is subtracted from the current MB to generate the residual

MB. Residual MB is transformed using 4x4 and 2x2 integer transforms. Transformed

residual data is quantized and quantized transform coefficients are re-ordered in a zig-zag

scan order. The reordered quantized transform coefficients are entropy coded. The entropy-

coded coefficients together with header information, such as MB prediction mode and

quantization step size, form the compressed bit stream. The compressed bit stream is

passed to network abstraction layer (NAL) for storage or transmission [1,3,4].

Reconstruction path begins with inverse quantization and inverse transform

operations. The quantized transform coefficients are inverse quantized and inverse

transformed to generate the reconstructed residual data. Since quantization is a lossy

process, inverse quantized and inverse transformed coefficients are not identical to the

original residual data. The reconstructed residual data are added to the predicted pixels in

order to create the reconstructed frame. DBF is, then, applied to reduce the effects of

blocking artifacts in the reconstructed frame [1,3,4].

4

H.264 intra prediction and mode decision algorithms have a very high computational

complexity. Because, in order to improve the compression efficiency, H.264 standard uses

many intra prediction modes for a MB and selects the best mode for that MB using a mode

decision algorithm.

The DBF algorithm used in H.264 standard is more complex than the DBF

algorithms used in previous video compression standards. First of all, H.264 DBF

algorithm is highly adaptive and applied to each edge of all the 4×4 luma and chroma

blocks in a MB. Second, it can update 3 pixels in each direction that the filtering takes

place. Third, in order to decide whether the DBF will be applied to an edge, the related

pixels in the current and neighboring 4×4 blocks must be read from memory and processed.

Because of these complexities, the DBF algorithm can easily account for one-third of the

computational complexity of an H.264 video decoder [4,5].

Inverse

Transform

Inverse

Quant

Entropy

Decoder

Intra

Prediction

Motion

Compensation

Reference

Frame (F’n-1)

Reconstructed

Frame (F’n)

Deblocking

Filter

NAL

+

+

Inter

Prediction

Intra

Prediction

Prediction

Figure 1.2 H.264 Decoder Block Diagram

H.264 decoder is similar to the reconstruction path of H.264 encoder. It receives a

compressed bit stream from the NAL as shown in Figure 1.2. The bit stream is decoded,

inverse quantized and inverse transformed to get residual data. Using the header

information decoded from the bit stream, the decoder creates a prediction block, identical

to prediction block generated in reconstruction path of H.264 encoder. The prediction block

is added to the residual block to create the reconstructed block. Blocking artifacts are, then,

removed from reconstructed block by applying DBF.

H.264 has three profiles; Baseline, Main, and Extended. Each profile has 14 levels. A

profile is a set of algorithmic features and a level shows encoding capability such as picture

5

size and frame rate. In this thesis, we use Baseline profile level 2.0. Baseline profile has

lower latency than main and extended profiles, and it is used for wireless video applications

and video conferencing. In Baseline profile level 2.0, video is digitized at CIF (352x288)

size YCbCr using 4:2:0 sampling at 30 frames per second, and I slices, P slices and

context-adaptive variable length entropy coding are supported [1,3].

1.2 Low Power Hardware Design

Multimedia applications running on portable devices have increased recently and this

trend is expected to continue in the future. Since portable devices operate with battery, it is

important to reduce power consumption so that battery life can be increased. Therefore,

power consumption has become a critical design metric for portable applications.

In addition, consuming excessive power for a long time causes the chips to heat up

and degrades the performance, because transistors run faster when they are cool rather than

hot. Excessive power consumption also increases packaging and cooling costs. Excessive

power consumption also reduces the reliability and may cause device failures [6]. Repeated

cycling from hot to cool shortens the life of a chip by inducing mechanical stress that can

literally tear a chip apart. Hot metal interconnects on the chip are also more susceptible to

disintegration because of a phenomenon called electromigration. Therefore, there is an

upper bound for allowed power consumption in integrated circuits (IC).

The maximum allowable power consumption for ICs projected by International

Technology Roadmap for Semiconductors in 2005 is given in Figure 1.3 [7]. In the figure,

maximum allowable power for three types of applications is presented; high-performance

applications for which a heat sink on the package is permitted, cost-performance

applications for which economical power management solutions are used and applications

with portable battery for which no cooling system is used. In all cases, total power

consumption continues to increase, despite the use of a lower supply voltage. The increased

power consumption is driven by higher operating frequencies, higher overall interconnect

capacitance, and exponentially growing number of scaled transistors [7]. Therefore, power

consumption is an important design metric for all applications.

6

Figure 1.3 ITRS 2005 Projection of Maximum Allowable Power Consumption for ICs

Field Programmable Gate Arrays (FPGA) consume more power than standard cell-

based Application Specific Integrated Circuits (ASIC). FPGAs have look-up tables and

programmable switches. Look-up table based logic implementation is inefficient in terms

of power consumption and programmable switches have high power consumption because

of large output capacitances. Therefore, power consumption is an even more important

design metric for FPGA implementations.

ICs have static and dynamic power consumption. Static power consumption is a

result of leakage currents in an IC. Dynamic power consumption is a result of short circuit

currents and charging and discharging of capacitances in an IC. Dynamic power

consumption is proportional to the switching activity (α), total capacitance (CL), supply

voltage (VDD), operating frequency (f) and short circuit current (ISC) as shown in the

following equation. The power consumption due to charging and discharging of

capacitances is the dominant component of dynamic power consumption and it can be

reduced either by decreasing switching activity, capacitance, supply voltage or frequency.

7

fVIfVCP DDSCDDLdyn +≈ →
2

10α (1.1)

In this thesis, we focused on decreasing the power consumption of FPGA

implementations of H.264 video compression hardware by reducing switching activity

using Register Transfer Level (RTL) low power techniques such as clock gating [8,9,10],

glitch reduction [11,12] and computational complexity reduction [13,14,15].

The power consumption of a digital hardware implementation on a Xilinx FPGA is

estimated using Xilinx XPower tool. Since the switching activity is input pattern

dependent, in order to estimate the dynamic power consumption, timing simulation of the

placed and routed netlist of that hardware implementation is done for several input patterns

using Mentor Graphics ModelSim SE 6.1c and the signal activities are stored in a Value

Change Dump (VCD) file. This VCD file is used for estimating the power consumption of

that hardware using Xilinx XPower tool.

1.3 Thesis Contributions

H.264 standard is expected to be used in many applications in the near future.

Therefore, in the last few years, hardware architectures for implementing H.264 encoders

and decoders for portable devices, digital TV and DVD recorder applications are started to

be developed in both academia and industry. However, since H.264 standard has been

recently developed, there are a small number of publications in the literature about

designing hardware architectures for H.264 standard [16,17,18,19,20,21]. There are even

fewer publications in the literature about low power hardware architectures for H.264

standard [22,23,24].

In this thesis, we proposed low power hardware designs for DBF, intra prediction and

intra mode decision parts of an H.264 video encoder and performed detailed power

consumption analysis of FPGA implementations of these hardware designs. We also

measured the power consumptions of DBF hardware implementations on a Xilinx Virtex II

FPGA and there is a good match between estimated and measured power consumption

results. We applied several RTL low power techniques such as clock gating and glitch

8

reduction to these designs and quantified their impact on the power consumption of the

FPGA implementations of these designs. We proposed novel computational complexity

and power reduction techniques for DBF, intra prediction and intra mode decision parts of

an H.264 video encoder. We quantified the computation reductions achieved by the

proposed techniques using H.264 Joint Model (JM) software encoder version 14.0. We

applied these techniques to proposed hardware designs and quantified their impact on the

power consumption of the FPGA implementations of these designs.

We propose two efficient and low power H.264 DBF hardware implementations that

can be used as part of an H.264 video encoder or decoder for portable applications [25].

The first implementation (DBF_4x4) starts filtering the available edges as soon as a new

4x4 block is ready by using a novel edge filtering order to overlap the execution of DBF

module with other modules in the H.264 encoder/decoder. Overlapping the execution of

DBF hardware with the execution of the other modules in the H.264 encoder/decoder

improves the performance of the H.264 encoder/decoder. The second implementation

(DBF_16x16) starts filtering the available edges after a new 16x16 MB is ready.

Both DBF hardware architectures are implemented in Verilog HDL and both

implementations are synthesized to 0.18 µm UMC standard cell library. Both DBF

implementations can work at 200 MHz and they can process 30 VGA (640×480) frames

per second. DBF_4×4 and DBF_16×16 hardware implementations, excluding on-chip

memories, are synthesized to 7.4 K and 5.3 K gates respectively. These gate counts are the

lowest among the H.264 DBF hardware implementations presented in the literature.

DBF_16x16 has 36% less power consumption than DBF_4x4 on a Xilinx Virtex II FPGA

on an Arm Versatile PB926EJ-S development board. Therefore, DBF_4×4 hardware can be

used in an H.264 encoder or decoder for which the performance is more important, whereas

DBF_16×16 hardware can be used in an H.264 encoder or decoder for which the power

consumption is more important.

We propose a novel computational complexity and power reduction technique for

H.264 DBF algorithm. This technique avoids unnecessary calculations in DBF algorithm

by exploiting spatial redundancy present in the pixels that will be filtered by DBF

algorithm and therefore reduces the power consumption of H.264 DBF hardware

significantly. If some or all of the pixels that will be filtered are equal, H.264 DBF

9

equations simplify significantly. Since the proposed technique uses the subtraction

operations performed before the filtering process to determine whether the pixels that will

be filtered are equal or not, the equality of the pixels are determined with a very small

overhead. By exploiting the equality of the pixels, the proposed technique reduces the

amount of addition and shift operations performed by H.264 DBF up to 39% and 50%

respectively with a small comparison overhead.

We propose a novel technique for reducing the amount of computations performed by

H.264 intra prediction algorithm and therefore reducing the power consumption of H.264

intra prediction hardware significantly without any PSNR and bit rate loss. The proposed

technique performs a small number of comparisons among neighboring pixels of the

current block before the intra prediction process. If the neighboring pixels of the current

block are equal, the prediction equations of H.264 intra prediction modes simplify

significantly for this block. By exploiting the equality of the neighboring pixels, the

proposed technique reduces the amount of computations performed by 4x4 luminance,

16x16 luminance, and 8x8 chrominance prediction modes up to 60%, 28%, and 68%

respectively with a small comparison overhead. We also implemented an efficient 4x4 intra

prediction hardware including the proposed technique using Verilog HDL. We quantified

the impact of the proposed technique on the power consumption of this hardware on a

Xilinx Virtex II FPGA using Xilinx XPower, and it reduced the power consumption of this

hardware up to 18.6% [26].

We propose a novel computational complexity reduction technique for H.264 intra

mode decision. The proposed technique exploits the fixed prediction block patterns of intra

prediction modes and the distribution property of Hadamard transform. The proposed

technique reduces the computational complexity of Sum of Absolute Transformed

Difference (SATD) based intra 4x4, intra 16x16 and intra 8x8 mode decisions by 46%,

64% and 62% respectively without any PSNR loss. In addition, it avoids the calculation of

intra 16x16 and intra 8x8 plane prediction modes by slightly modifying SATD criterion

used in H.264 reference software (JM) which slightly impacts the coding efficiency. It

doesn’t affect the PSNR for some videos, it increases the PSNR slightly for some videos

and it decreases the PSNR slightly for some videos. Since plane mode is the most

computationally intensive 16x16 and 8x8 prediction mode, avoiding plane mode

10

calculations reduces the computational complexity of 16x16 and 8x8 intra prediction

algorithm by 80%.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II, first, gives an overview of H.264 DBF algorithm. It, then, presents two

efficient low power H.264 DBF hardware implementations and the impact of several RTL

low power techniques on these hardware implementations. A novel computational

complexity and power reduction technique for H.264 DBF algorithm is also presented in

this chapter.

Chapter III, first, gives an overview of H.264 intra prediction algorithm. It, then,

presents a novel computational complexity and power reduction technique for H.264 intra

prediction. An efficient H.264 intra prediction hardware implementing this technique and

its power consumption analysis is also presented in this chapter.

Chapter IV, first, gives an overview of H.264 intra mode decision algorithm. It, then,

presents a novel computational complexity and power reduction technique for H.264 intra

mode decision.

Chapter V presents conclusions and future work.

11

2 CHAPTER II

LOW POWER H.264 DEBLOCKING FILTER HARDWARE DESIGNS

The video compression efficiency achieved in H.264 standard is not a result of any

single feature but rather a combination of a number of encoding tools. As it is shown in the

top level block diagrams of an H.264 encoder and decoder in Figure 1.1 and 1.2., one of

these tools is the adaptive DBF algorithm [1,3,4,27]. DBF is applied to each MB, a 16×16

pixel array, after inverse quantization and inverse transform. DBF improves the visual

quality of decoded frames by reducing the visually disturbing blocking artifacts and

discontinuities in a frame due to coarse quantization of MBs and motion compensated

prediction. Since the filtered frame is used as a reference frame for motion-compensated

prediction of future frames, DBF also increases coding efficiency resulting in bit rate

savings [27].

The DBF algorithm used in H.264 standard is more complex than the DBF

algorithms used in previous video compression standards. First of all, H.264 DBF

algorithm is highly adaptive and applied to each edge of all the 4×4 luma and chroma

blocks in a MB. Second, it can update 3 pixels in each direction that the filtering takes

place. Third, in order to decide whether the DBF will be applied to an edge, the related

pixels in the current and neighboring 4×4 blocks must be read from memory and processed.

12

Because of these complexities, the DBF algorithm can easily account for one-third of the

computational complexity of an H.264 video decoder [27].

In this thesis, we propose two efficient and low power H.264 DBF hardware

implementations that can be used as part of an H.264 video encoder or decoder for portable

applications [28,29]. The first implementation (DBF_4×4) starts filtering the available

edges as soon as a new 4x4 block is ready by using a novel edge filtering order. The second

implementation (DBF_16×16) starts filtering the available edges after a new 16x16 MB is

ready.

The execution of DBF_4×4 hardware can be overlapped with the execution of the

other modules in an H.264 encoder/decoder much more than the execution of DBF_16×16

hardware can be overlapped with the execution of the other modules. Overlapping the

execution of DBF hardware with the execution of the other modules in the H.264

encoder/decoder improves the performance of the H.264 encoder/decoder. However,

because of the nature of the DBF algorithm, control unit and address generation of

DBF_16×16 hardware is simpler. Therefore, DBF_16x16 hardware has less area and

consumes less power than DBF_4×4 hardware.

Both DBF hardware architectures are implemented in Verilog HDL and both

implementations are verified to work correctly in a Xilinx Virtex II FPGA on Arm

Versatile PB926EJ-S Development Board. Both hardware implementations can work at

67 MHz on a Xilinx Virtex II FPGA and they can process 30 CIF (352x288) frames per

second. Both hardware implementations can work at 200 MHz when synthesized to

0.18 µm UMC standard cell library and they can process 30 VGA (640×480) frames per

second. DBF_4×4 and DBF_16×16 hardware implementations, excluding on-chip

memories, are synthesized to 7.4 K and 5.3 K gates respectively.

The power consumptions of both DBF hardware implementations on a Xilinx

Virtex II FPGA are estimated using Xilinx XPower tool. DBF_16×16 has 36% less power

consumption than DBF_4×4. The power consumption of DBF_16×16 is further reduced by

28% by using block SelectRAMs instead of distributed SelectRAMs and by 3.1% by using

clock gating. Furthermore, power consumption of DBF datapath is reduced by 13% using

clock gating and by 4.7% using glitch reduction technique. The power consumptions of

13

both implementations on a Xilinx Virtex II FPGA are also measured and the measurement

results are consistent with the estimation results.

Therefore, these two H.264 DBF hardware implementations can be used as part of

H.264 video encoders or decoders for portable applications with different power-

performance requirements. DBF_4×4 hardware can be used in an H.264 encoder or decoder

for which the performance is more important, whereas DBF_16×16 hardware can be used

in an H.264 encoder or decoder for which the power consumption is more important.

Several hardware architectures for real-time implementation of H.264 DBF algorithm

are presented in the literature [16,30,31,32,33]. These architectures achieve high

performance at the expense of high hardware cost. The gate counts of our H.264 DBF

hardware implementations are the lowest among these H.264 DBF hardware

implementations. We could not compare power consumptions of our DBF hardware

implementations with these DBF hardware implementations, since the power consumptions

of these DBF hardware implementations are not reported.

We also propose a novel computational complexity and power reduction technique

for H.264 DBF algorithm. This technique avoids unnecessary calculations in DBF

algorithm by exploiting spatial redundancy present in the pixels that will be filtered by

DBF algorithm and therefore reduces the power consumption of H.264 DBF hardware

significantly. If some or all of the pixels that will be filtered are equal, H.264 DBF

equations simplify significantly. Since the proposed technique uses the subtraction

operations performed before the filtering process to determine whether the pixels that will

be filtered are equal or not, the equality of the pixels are determined with a very small

overhead. By exploiting the equality of the pixels, the proposed technique reduces the

amount of addition and shift operations performed by H.264 DBF up to 39% and 50%

respectively with a small comparison overhead.

14

2.1 Overview of H.264 Adaptive Deblocking Filter Algorithm

H.264 adaptive DBF algorithm removes visually disturbing block boundaries created

by coarse quantization of MBs and motion compensated prediction. MBs in a frame are

filtered in raster scan order. Filtering is applied to each edge of all the 4x4 luma and

chroma blocks in a MB as shown in Figure 2.1. The vertical 4×4 block edges in a MB are

filtered before the horizontal 4×4 block edges in the order shown in Figure 2.2 [1].

DBF algorithm for one row/column of a vertical/horizontal edge is shown in Figure

2.3 [27]. There are several conditions that determine whether a 4×4 block edge will be

filtered or not. There are additional conditions that determine the strength of the filtering

for the 4x4 block edges that will be filtered. As shown in the Figure 2.3, boundary strength

(BS) parameter, α and β threshold values and the values of the pixels in the edge determine

the outcomes of these conditions, and the values of up to 3 pixels on both sides of an edge

can be changed depending on the outcomes of these conditions. H.264 DBF algorithm can

be divided into eight modes based on the outcomes of these conditions as shown in

Figure 2.3.

H.264 DBF algorithm is adaptive in three levels; slice level, edge level and sample

level [1,27]. Slice level adaptivity is used to adjust the filtering strength in a slice to the

characteristics of the slice data. The filtering strength in a slice is adjusted by encoder using

the offset-a and offset-b parameters. The α and β threshold values that determine whether a

4x4 block edge will be filtered or not and how strong the filtering will be for an edge are a

function of quantization parameter (QP) and these two offset parameters.

Edge level adaptivity is used to adjust the filtering strength for an edge to the

characteristics of that edge. The filtering strength for an edge is adjusted using the

Boundary Strength (BS) parameter. Every edge is assigned a BS value depending on the

coding modes and conditions of the 4x4 blocks. The conditions used for determining the

BS value for an edge between two neighboring 4x4 blocks are summarized in Table 2.1

[1,27]. The strength of the filtering done for an edge is proportional to its BS value. No

filtering is done for the edges with a BS value of zero, whereas strongest filtering is done

for the edges with a BS value of four.

15

Figure 2.1 Illustration of H.264 DBF Algorithm

Figure 2.2 Edge Filtering Order in a MB Specified in H.264 Standard

16

Figure 2.3 H.264 Deblocking Filter Algorithm

17

Sample level adaptivity is used to adjust the filtering strength for an edge to the

characteristics of the pixels in that edge in order to distinguish the true edges from those

created by quantization. The filtering strength for an edge is therefore determined by

comparing pixel gradients in that edge with α and β threshold values for that edge.

Table 2.1 Conditions that Determine BS

Coding Modes and Conditions BS

One of the blocks is intra and the edge is a macroblock edge 4

One of the blocks is intra 3

One of the blocks has coded residuals 2

Difference of block motion ≥ 1 luma sample distance and Motion
compensation from different reference frames

1

Else 0

2.2 Proposed Hardware Architectures

The block diagram of proposed DBF hardware is shown in Figure 2.4. Both DBF

hardware, DBF_4x4 and DBF_16x16, include a datapath, a control unit, one 384×8

register file and two dual-port internal SRAMs to store partially filtered pixels.

As it can be seen from Figure 1.1 and 1.2, in an H.264 encoder and decoder, DBF

module gets its input, reconstructed MB, from Inverse Transform/Quant (IT/IQ) module.

IT/IQ module generates the reconstructed MB, one 4×4 block at a time. A 384×8 input

buffer, IBUF, is used between IT/IQ and DBF modules to store one reconstructed MB

(256 luminance pixels + 128 chrominance pixels) generated by IT/IQ module.

The datapaths of both DBF hardware implementations are the same. The DBF

datapath is implemented as a two stage pipeline to improve the clock frequency and

throughput. As shown in Figure 2.5, the first pipeline stage includes one 12-bit adder and

two shifters to perform numerical calculations like multiplication and addition. The

second pipeline stage includes one 12-bit comparator, several two’s complementers and

multiplexers to determine conditional branch results.

18

Figure 2.4 Proposed DBF Hardware Block Diagram

DBF_4×4 hardware starts filtering available edges as soon as a new 4x4 block is

ready by using a novel edge filtering order we proposed. There are 16 4×4 blocks in a

MB and they are processed by IT/IQ module in the order shown in Figure 2.6 [1]. The

proposed novel edge filtering order for a MB is shown in Figure 2.7.

The idea behind this novel order is that after a new 4×4 block is ready start filtering

the edges that can be filtered without violating the filtering order specified in the H.264

standard [1]. After the first 4×4 block in a MB is processed and loaded into IBUF by

IT/IQ module, DBF module can only filter edge 1 without violating the filtering order

specified in H.264 standard. After the second 4×4 block is loaded into IBUF, DBF

module can filter edge 2 and edge 3, and so on.

The execution of DBF_4×4 hardware can be overlapped with the execution of the

other modules in an H.264 encoder/decoder much more than the execution of

DBF_16×16 hardware can be overlapped with the execution of the other modules.

Overlapping the execution of DBF hardware with the execution of the other modules in

the H.264 encoder/decoder improves the performance of the H.264 encoder/decoder.

19

Figure 2.5 Proposed DBF Hardware Datapath

20

DBF_16x16 hardware uses the same edge filtering order specified in the H.264

standard. Since this edge filtering order has a regular pattern, control unit and address

generation of DBF_16×16 hardware is simpler. Therefore, DBF_16x16 hardware has less

area and consumes less power than DBF_4×4 hardware.

There are three on-chip memories in both DBF hardware implementations. A

384×8 register file, SPAD, is used to store partially filtered pixels in a 16×16 MB until all

the edges in this MB are fully filtered. Since SPAD is the most frequently accessed

memory in the DBF hardware, we reduced the number of access to SPAD by adding two

registers in datapath to store some of the temporary results.

In the M×N frame shown in Figure 2.8, squares represent 16x16 MBs and each MB

has sixteen 4×4 blocks. In order to filter a MB, its upper and left neighboring 4×4 blocks,

shown as shaded small squares in Figure 2.8, should be available. Since our DBF

hardware gets its input MB from IT/IQ hardware and it does not have access to off-chip

frame memory, the upper 4×4 blocks of all MBs in a row of the frame, shown as lightly

shaded small squares in Figure 2.8, and the left 4×4 blocks of the current MB, shown as

darkly shaded small squares in Figure 2.8, have to be stored in on-chip local memory.

The left 4x4 blocks are stored in SPAD. The upper 4x4 luminance and

chrominance blocks are stored in the 1408×8 LUMA SRAM and 704×8 CHROMA

SRAM memories shown in Figure 2.4 respectively. For a CIF size video, 4×352×8 =

1408×8 memory is needed for storing upper 4x4 luminance blocks and 4x88x8+4x88x8 =

704×8 memory is needed for storing upper 4x4 chrominance blocks.

Figure 2.6 Processing Order of 4×4 Blocks by IT/IQ Module

21

Figure 2.7 Proposed Novel Edge Filtering Order

The DBF hardware implementations in the literature use off-chip memory for

storing these neighboring 4×4 blocks [16,30,31,32,33]. Since accessing on-chip SRAMs

consumes less power than accessing off-chip memory, using on-chip SRAMs for storing

these neighboring 4×4 blocks reduces power consumption of our DBF hardware

implementations.

Transpose pixel arrays are used to transpose the horizontal aligned pixels into

vertical aligned positions in several DBF hardware implementations in the literature

[30,31,32,33]. Since the memories used in our DBF hardware implementations are 8-bit

wide, any pixel stored in memory can directly be accessed, therefore, there is no need for

transposing one row of eight pixel data into one column of eight pixel data. Not using a

transpose pixel array reduces area of our DBF hardware implementations.

The edges 1, 2, 3, 4, 17, 18, 19, 20, 33, 34, 37, 38, 41, 42, 45 and 46 of a MB

shown in Figure 2.3 are not filtered if this MB is located in the upper or the left frame

boundary. This is not the case for the MBs located inside the frame. This causes an

22

irregularity and, therefore, increases the complexity of the control unit. In order to avoid

this irregularity and therefore simplify the control unit, we have extended the frames at

the upper and left frame boundaries for 4 pixels in depth as shown in Figure 2.8. We

assigned zero to these pixels and assigned zero to the BS values of these edges in order to

avoid filtering these edges without causing an irregularity in the control unit.

Figure 2.8 4x4 Blocks Stored in LUMA and CHROMA SRAMs

23

2.3 Implementation Results

The proposed DBF hardware architectures are implemented in Verilog HDL. The

implementations are verified with RTL simulations using Mentor Graphics ModelSim

SE. RTL simulation results matched the results of a MATLAB model of the H.264

adaptive DBF algorithm.

The Verilog RTL designs are synthesized to a 2V8000ff1157 Xilinx Virtex II

FPGA with speed grade 5 using Mentor Graphics Precision RTL 2005b. The resulting

netlists are placed and routed to the same FPGA using Xilinx ISE 8.2i.

DBF_4x4 hardware works at 67 MHz and it takes 5248 clock cycles in the worst-

case for DBF_4×4 hardware to process a MB. The FPGA implementation can process a

CIF (352x288) frame in 30.9 ms (396 MB * 5248 clock cycles per MB * 14.9 ns clock

cycle = 30.9 ms). Therefore, it can process 1000/30.9 = 32 CIF frames per second.

DBF_16x16 hardware works at 72 MHz and it takes 5376 clock cycles in the

worst-case for DBF_16×16 hardware to process a MB. The FPGA implementation can

process a CIF (352x288) frame in 29.6 ms (396 MB * 5376 clock cycles per MB * 13.9

ns clock cycle = 29.6 ms). Therefore, it can process 1000/29.6 = 33 CIF frames per

second.

FPGA resource usages of both DBF implementations including on chip memories

are shown in Table 2.2. LUMA SRAM and CHROMA SRAM are implemented as dual-

port block SelectRAMs. SPAD and IBUF are implemented as dual-port distributed

SelectRAMs.

Both DBF hardware implementations are synthesized to 0.18 µm UMC standard

cell library. Both hardware implementations can work at 200 MHz and they can process

30 VGA (640x480) frames per second. DBF_4×4 and DBF_16×16 hardware

implementations, excluding on-chip memories, are synthesized to 7.4 K and 5.3 K gates

respectively.

As shown in Table 2.3, these gate counts are the lowest among the H.264 DBF

hardware implementations presented in the literature [16,30,31,32,33]. These hardware

implementations achieve high performance at the expense of high hardware cost. We

24

achieved real-time performance by only using one 12-bit adder, one 12-bit comparator, a

few shifters, and a number of multiplexers in our datapath.

Table 2.2 FPGA Resource Usage and Clock Frequency After Place and Route

Resource DBF_4x4 Hardware DBF_16x16 Hardware

Function Generators 4074 2537

DFFs 335 306

Block SelectRAMs 2 2

Clock Frequency 67 MHz 72 MHz

Table 2.3 DBF Hardware Comparison

Category [7] [10] [12] [31] [32] DBF_16x16

Gate Count 20.6 K 9.2 K 11.8 K 14.8 K 7.5 K 5.3 K

Technology
0.25 µ

Artisan

0.18 µ

UMC

0.18 µ

UMC

0.18 µ

UMC

0.13 µ

TSMC
0.18 µ UMC

On-chip Memory Size 160x32 80x32 140x32 160x32 32x32 384x8

2.4 ARM Versatile / PB926EJ-S Development Board Implementation

Both DBF hardware implementations are verified to work correctly in the ARM

Versatile PB926EJ-S development environment shown in Figure 2.9. As shown in the

figure, the development environment consists of a PC connected to ARM Versatile

PB926EJ-S board through ARM Multi-ICE, a logic tile mounted on the Versatile

PB926EJ-S baseboard and a color LCD panel [34].

PC is used to create the bit stream that will be loaded into the 8-million-gate Xilinx

Virtex II FPGA on the logic tile which can be configured to implement custom-designed

logic. ARM Multi-ICE is used for communicating between PC and Arm Versatile board,

and AXD Debugger from ARM Developer Suite is used for debugging the system. The

Color LCD panel is used to display images for visual verification.

25

Figure 2.9 ARM Versatile / PB926EJ-S Development Environment and Power

Measurement Setup

As shown in Figure 2.10, an AHB bus interface is designed and integrated into

DBF hardware in order to communicate with ARM processor and external SRAM

through AHB bus, and DBF Hardware is integrated into the FPGA on the logic tile as a

master of the AHB S bus.

A video frame is loaded into SRAM located on the board from PC using software.

This video frame is used as an input to DBF hardware running on the FPGA. DBF

hardware applies the H.264 DBF algorithm to this video frame and writes the resulting

frame back to SRAM. The resulting video frame is shown on the color LCD panel.

An unfiltered video frame and the same video frame filtered by H.264 DBF

hardware running in the FPGA on the logic tile are shown in Figure 2.11 and Figure 2.12.

As it can be seen from the figure, some of the blocking artifacts in the unfiltered video

frame are reduced and some of them are totally removed.

26

Figure 2.10 Integration of Deblocking Filter Hardware into ARM Versatile Board

2.5 Power Consumption Results

The power consumptions of both DBF hardware implementations on a Xilinx

Virtex II FPGA are estimated using Xilinx XPower tool. In order to estimate the power

consumption of a DBF hardware implementation, timing simulation of the placed and

routed netlist of that DBF hardware implementation is done using Mentor Graphics

ModelSim SE for one frame of Foreman video sequence and the signal activities are

stored in a VCD file. This VCD file is used for estimating the power consumption of that

DBF hardware implementation using Xilinx XPower tool.

The power consumptions of both DBF hardware implementations on a Xilinx

Virtex II FPGA at 50 MHz are shown in Table 2.4. Since DBF hardware will be used as

part of an H.264 encoder or decoder only internal power consumption is considered and

input and output power consumptions are ignored. To make a fair comparison between

the power consumptions of the two DBF hardware implementations, we used same

number of distributed SelectRAMs and block SelectRAMs for both implementations. As

shown in the table, DBF_16x16 hardware has 36% less power consumption than

DBF_4x4 hardware.

27

Figure 2.11Unfiltered Video Frame

Figure 2.12 The Same Frame Filtered by H.264 Deblocking Filter Algorithm

28

Table 2.4 Power Consumption of DBF Hardware Implementations at 50 MHz

Category DBF_4×4 DBF_16×16

Clock 56.37 mW 50.36 mW

Logic 145.65 mW 52.47 mW

Signal 83.56 mW 79.39 mW

Total 285.58 mW 182.22 mW

Table 2.5 Power Consumption Comparison of Block SelectRAM and Distributed

SelectRAM

Category
Maximum Switching

Activity
Minimum Switching

Activity

Block SelectRAM 12.02 mW 3.7 mW

Distributed SelectRAM 67.54 mW 21.67 mW

The power consumption of a DBF hardware implementation can be divided into

three main categories; signal power, logic power and clock power. Signal power is the

power dissipated in routing tracks between logic blocks. A significant amount of power is

dissipated in routing tracks. It accounts for 29% of total power consumption of DBF_4×4

hardware and 43% of total power consumption of DBF_16×16 hardware. Logic power is

the amount of power dissipated in the parts where computations take place. Clock power

is due to clock tree used in the FPGA. Since there is less number of flip-flops in

DBF_16×16 hardware in comparison with the DBF_4×4 hardware, the clock power of

DBF_16x16 hardware is less than the clock power of DBF_4x4 hardware.

Xilinx Virtex-II FPGAs have block SelectRAM and distributed SelectRAM

memories. In DBF hardware implementations, we used both block SelectRAMs and

distributed SelectRAMs as local memories for storing intermediate results. We, therefore,

characterized the power consumptions of block SelectRAMs and distributed SelectRAMs

using Xilinx XPower tool for the cases when there is maximum switching activity and

minimum switching activity in the RAMs, and the results are shown in Table 2.5.

The results show that the power consumption of a distributed SelectRAM is much

more than the power consumption of a block SelectRAM. This is because a distributed

29

SelectRAM is formed by look up tables in Configurable Logic Blocks (CLBs) and this

causes the memory to be distributed in the FPGA and have long interconnects. On the

other hand, a block SelectRAM is a carefully designed and optimized full-custom SRAM.

Therefore, we decided to use only block SelectRAMs in DBF_16×16 hardware.

Using block SelectRAMs instead of distributed SelectRAMs in DBF_16×16 hardware

provided additional 28% power reduction and total power consumption of DBF_16x16

hardware is reduced from 182.22 mW to 130.45 mW.

In addition, we applied clock gating and glitch reduction techniques to DBF

datapath for reducing its power consumption. DBF datapath is two-stage pipelined. The

first stage performs numerical calculations every clock cycle, but the second stage is not

active for a considerable amount of clock cycles. Therefore, we turned off the second

stage by clock gating when it is inactive. Table 2.6 shows the impact of clock gating on

datapath power consumption. The datapath power consumption is reduced by 13% using

clock gating.

Table 2.6 Impact of Clock Gating on Datapath Power Consumption

Category Datapath Datapath with Clock Gating

Clock 7.46 mW 6.71 mW

Logic 7.62 mW 5.88 mW

Signal 18.41 mW 16.56 mW

Total 33.49 mW 29.15 mW

Table 2.7 Impact of Glitch Reduction on Datapath Power Consumption

Category Datapath Datapath without Glitches Pipelined Datapath

Clock 7.46 mW 7.37 mW 9,25 mW

Logic 7.62 mW 6.60 mW 6,07 mW

Signal 18.41 mW 16.47 mW 16,59 mW

Total 33.49 mW 30.44 mW 31,91 mW

Glitch is a spurious transition at a node within a single cycle before the node settles

to the correct logic value. Unlike ASICs, in which signals can be routed using any

30

available silicon, FPGAs implement interconnects using fixed metal tracks and

programmable switches. The relative scarcity of programmable switches often forces

signals to take longer routes than would be seen in an ASIC. As a result, the potential for

unequal delays among signals, and hence the creation of glitches, is more likely than that

in an ASIC. Thus, reducing glitches by pipelining is an effective power reduction

technique for FPGAs [12].

The impact of glitches on DBF datapath power consumption can be seen by

simulating the datapath under zero delay model and analyzing its power consumption.

The glitch free power consumption of DBF datapath is shown in Table 2.7. The glitch

free power consumption shows the maximum power consumption reduction that can be

obtained by reducing glitches. Table 2.7 shows the impact of reducing glitches by

pipelining on datapath power consumption. We inserted two pipeline registers

immediately before the inputs of the adder. This reduced the datapath power consumption

by 4.7%. We therefore obtained 50% of maximum possible power reduction that can be

obtained by reducing glitches.

We also measured the power consumptions of both DBF hardware implementations

on a Xilinx Virtex II FPGA using the setup shown in Figure 2.9. Using this setup, we

measured the average current before DBF hardware is running on the FPGA. We, then,

measured the average current while DBF hardware is running on the FPGA at 34 MHz in

a continuous loop. Since the FPGA on the logic tile is supplied with 3.3 V power supply,

the power consumption of DBF hardware is calculated by multiplying the difference in

average current with 3.3 V.

The power consumption measurement and estimation results are shown in Table

2.8. DBF_4x4 hardware used for these measurements and estimations has 3 distributed

SelectRAMs and 2 block SelectRAMs, however, DBF_16×16 hardware used for these

measurements and estimations has 5 block SelectRAMs. The power consumption

measurement results are slightly larger than the power consumption estimation results.

The difference between measured and estimated results is caused by the power consumed

for reading the unfiltered MBs from and writing the filtered MBs to the SRAM on the

logic tile through AHB bus which is not included in power consumption estimations.

31

Table 2.8 Power Consumption Estimations and Measurements of DBF_16×16 and

DBF_4×4 Hardware at 34 MHz

DBF Hardware
Average
Current

without DBF

Average
Current

with DBF

Estimated
Power

Measured
Power

DBF_4×4 999 mA 1076 mA 220.6 mW 254.1 mW
DBF_16×16 1119 mA 1152 mA 89.7 mW 108.9 mW

2.6 A Novel Computational Complexity Reduction Technique for H.264

Deblocking Filter

In this section, we propose a novel computational complexity reduction technique

which avoids unnecessary calculations in H.264 DBF and therefore reduces the power

consumption of H.264 DBF hardware.

H.264 DBF algorithm is highly adaptive and eight different filtering equations are

used based on BS, α and β parameters and pixel gradient as shown in Figure 2.3. Eight

possible conditions, called modes, and the pixels used in filtering equations used in these

modes are listed in Table 2.9. The filtering equations used in each mode are given in

Figure 2.3. As it can be seen from filtering equations, H.264 DBF algorithm can be

implemented using only addition and shift operations.

If some or all of the pixels used in filtering equations are equal, then the filtering

equations either simplify significantly or become unnecessary. The filtering equations

used in mode 6 are given in Table 2.10. For mode 6, if the pixels that will be filtered are

all equal, ∆0, ∆p1 and ∆q1 become zero and filtering becomes unnecessary. In addition,

if some of the pixels that will be filtered are equal, the filtering equations used in this

mode simplify significantly. Table 2.11 shows such a case in which p1=p0=q0=q1=p. As

shown in Tables 2.10 and 2.11, some or all of the calculations are avoided if the equality

of the pixels that will be filtered is known before the filtering process.

32

Table 2.9 DBF Modes

BS |p2-p0|<β |q2-q0|<β Pixels used in filtering equations Mode
B

S
=

4

False False p1, p0, q0, q1 1
False True p1, p0, q0, q1, q2, q3 3
True False p3, p2, p1, p0, q0, q1, 5
True True p3, p2, p1, p0, q0, q1, q2, q3 7

4>
B

S
>

0 False False p1, p0, q0, q1 0
False True p1, p0, q0, q1, q2 2
True False p2, p1, p0, q0, q1 4
True True p2, p1, p0, q0, q1, q2 6

Table 2.10 Equations for Mode 6 and their Simplified Versions when

p2=p1=p0=q0=q1=q2

Equations for mode 6
Simplified equations for mode 6

when p2=p1=p0=q0=q1=q2
p'0 = p0+∆0 p'0 = p0
q'0 = q0-∆0 q'0 = q0
p'1 = p1+∆p1 p'1 = p1
q'1 = q1+∆q1 q'1 = q1
∆0i = (4(q0-p0)+(p1-q1)+4)>>3 ∆0i = 0
∆0 = Min(Max(-c0, ∆0i),c0) ∆0 = 0
∆p1i = (p2+((p0+q0+1)>>1)-2p1)>>1 ∆p1i = 0
∆p1 = Min(Max(-c1, ∆p1i),c1) ∆p1 = 0
∆q1i = (q2+((p0+q0+1)>>1)-2q1)>>1 ∆q1i = 0
∆q1 = Min(Max(-c1, ∆q1i),c1) ∆q1 = 0

Table 2.11 Equations for Mode 6 and their Simplified Versions when p1=p0=q0=q1

Equations for mode 6
Simplified equations for mode 6
when p1=p0=q0=q1

p'0 = p0+∆0 p'0 = p0
q'0 = q0-∆0 q'0 = q0
p'1 = p1+∆p1 p'1 = p1+∆p1
q'1 = q1+∆q1 q'1 = q1+∆q1
∆0i = (4(q0-p0)+(p1-q1)+4)>>3 ∆0i = 0
∆0 = Min(Max(-c0, ∆0i),c0) ∆0 = 0
∆p1i = (p2+((p0+q0+1)>>1)-2p1)>>1 ∆p1i = (p2-p) >>1
∆p1 = Min(Max(-c1, ∆p1i),c1) ∆p1 = Min(Max(-c1, ∆p1i),c1)
∆q1i = (q2+((p0+q0+1)>>1)-2q1)>>1 ∆q1i = (q2-p) >>1
∆q1 = Min(Max(-c1, ∆q1i),c1) ∆q1 = Min(Max(-c1, ∆q1i),c1)

33

In order to avoid the overhead for determining the equality of the pixels that will be

filtered, we propose to use the subtraction operations performed in conditional branches

of DBF algorithm as shown in Figure 2.3. These conditional branches include the five

subtraction operations shown in (2.1)-(2.5). If two pixels are equal, their difference will

be equal to zero. Therefore, by only checking the results of these five subtraction

operations, we can determine the equality of the pixels that will be filtered without

performing additional comparison operations. For example, if the results of all the

equations shown in (2.1)-(2.5) are zero, following pixels become equal

p2=p1=p0=q0=q1=q2. If equations (2.1), (2.2), and (2.4) are zero, then following pixels

become equal p2=p1=p0=q0.

00 qp − (2.1)

01 pp − (2.2)

01 qq − (2.3)

02 pp − (2.4)

02 qq − (2.5)

The amount of simplification in the filtering equations depends on the DBF mode

and the pixels that are equal. We calculated both the amount of addition and shift

operations performed for filtering in each mode, and the amount of addition and shift

operations performed for filtering for each mode when different combinations of pixels

that will be filtered are equal. The results are shown in Tables 2.12 – 2.19. In these tables,

CB in category column denotes the subtraction operations performed before the filtering.

34

Table 2.12 The Amount of Computation Required by DBF Mode 0 For Different Equal

Pixel Combinations

C
at

eg
or

y Original If p0=q0 If p1=p0=q0=q1

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

CB 5 0 5 0 5 0
∆oi 4 2 2 1 0 0
p'0, q'0 2 0 2 0 0 0
Total 11 2 9 1 5 0

Table 2.13 The Amount of Computation Required by DBF Mode 1 For Different Equal

Pixel Combinations

C
at

eg
or

y Original
If p1=p0=q0 or

p0=q0=q1
If p1=p0=q0=q1

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

CB 5 0 5 0 5 0
p'0, q'0 6 4 5 5 0 0
Total 11 4 10 5 5 0

Table 2.14 The Amount of Computation Required by DBF Mode 2 For Different Equal

Pixel Combinations

C
at

eg
or

y Original If p0=q0 If p0=q0=q1
If p1=p0=

q0=q1
If p1=p0=q0

=q1=q2

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

CB 5 0 5 0 5 0 5 0 5 0
∆oi 4 2 2 1 2 1 0 0 0 0
∆q1i 4 3 2 2 1 1 1 1 0 0
p'0, q'0, q'1 3 0 3 0 3 0 1 0 0 0
c0 1 0 1 0 1 0 0 0 0 0
Total 17 5 13 3 12 2 7 1 5 0

35

Table 2.15 The Amount of Computation Required by DBF Mode 3 For Different Equal Pixel Combinations

C
at

eg
or

y Original If p0=q0 If p0=q0=q1 If p1=p0=q0=q1
If p1=

p0=q0=q1=q2
If p1=p0=

q0=q1=q2=q3

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

CB 5 0 5 0 5 0 5 0 5 0 5 0
p'0 3 2 3 2 2 3 0 0 0 0 0 0
q'0 2 2 2 2 2 2 2 2 0 0 0 0
q'1 2 1 2 1 2 1 3 2 0 0 0 0
q'2 3 2 3 2 3 2 3 2 3 2 0 0
(α>>2)+2 1 1 0 0 0 0 0 0 0 0 0 0
Total 16 8 15 7 14 8 13 6 8 2 5 0

Table 2.16 The Amount of Computation Required by DBF Mode 5 For Different Equal Pixel Combinations

C
at

eg
or

y Original If p0=q0 If p1=p0=q0
If

p1=p0=q0=q1
If p2=

p1=p0=q0=q1
If p3=p2=

p1=p0=q0=q1

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

CB 5 0 5 0 5 0 5 0 5 0 5 0
p'0 2 2 2 2 2 2 2 2 0 0 0 0
p'1 2 1 2 1 2 1 3 2 0 0 0 0
p'2 3 2 3 2 3 2 3 2 3 2 0 0
q'0 3 2 3 2 2 3 0 0 0 0 0 0
(α>>2)+2 1 1 0 0 0 0 0 0 0 0 0 0
Total 16 8 15 7 14 8 13 6 8 2 5 0

36

Table 2.17 The Amount of Computation Required by DBF Mode 6 For Different Equal Pixel Combinations

C
at

eg
or

y Original p0=q0 p1=p0=q0 p0=q0=q1
p1=p0=
q0=q1

p2=p1=p0=
q0=q1

p1=p0=q0=
q1=q2

p2=p1=p0=
q0=q1=q2

A S A S A S A S A S A S A S A S

CB 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0
∆oi 4 2 2 1 2 1 2 1 0 0 0 0 0 0 0 0
∆p1i 4 3 2 2 1 1 2 2 1 1 0 0 1 1 0 0
∆q1i 4 3 2 2 2 2 1 1 1 1 1 1 0 0 0 0
p'0, q'0, p'1, q'1 4 0 4 0 4 0 4 0 2 0 1 0 1 0 0 0
c0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Total 22 8 16 5 15 4 15 4 9 2 7 1 7 1 5 0

Table 2.18 The Amount of Computation Required by DBF Mode 7 For Different Equal Pixel Combinations

C
at

eg
or

y

Original p0=q0
p1=p0=q0 /
p0=q0=q1 /

p1=p0=q0=q1

p2=p1=p0=
q0=q1

p1=p0=q0=
q1=q2

p2=p1=p0=
q0=q1=q2

p3=p2=p1=
p0=q0=q1=

q2

p2=p1=p0=
q0=q1=q2=

q3

p3=p2=p1=
p0=q0=q1=

q2=q3

A S A S A S A S A S A S A S A S A S

CB 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0
p'0 2 2 2 2 2 2 0 0 2 2 0 0 0 0 0 0 0 0
p'1 4 1 3 2 3 2 0 0 2 1 0 0 0 0 0 0 0 0
p'2 3 2 3 2 3 2 3 2 3 2 3 2 0 0 3 2 0 0
q'0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0
q'1 2 1 2 1 2 1 2 1 0 0 0 0 0 0 0 0 0 0
q'2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 0 0 0 0
(α>>2)+2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 22 11 20 11 20 11 15 7 15 7 11 4 8 2 8 2 5 0

37

Table 2.19 The Amount of Computation Required by DBF Mode 4 For Different Equal

Pixel Combinations
C

at
eg

or
y Original If p0=q0 If p1=p0=q0

If
p1=p0=q0=q1

If p2=
p1=p0=q0=q1

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

of
Add.

of
Shifts

CB 5 0 5 0 5 0 5 0 5 0
∆oi 4 2 2 1 2 1 0 0 0 0
∆p1i 4 3 2 2 1 1 1 1 0 0
p'0, q'0, p'1 3 0 3 0 3 0 1 0 0 0
c0 1 0 1 0 1 0 0 0 0 0
Total 17 5 13 3 12 2 7 1 5 0

The number of addition and shift operations required by each DBF mode can be

obtained from the filtering equations shown in Figure 2.3. But, since modes 3, 5, and 7

have common parts in filtering equations, the results of one equation can be reused for

other equations. Therefore, we organized the filtering equations used in modes 3, 5 and 7

using data reuse in order to reduce the amount of computations. The filtering equations

used in mode 7 are shown in (2.6)-(2.11). Table 2.20 shows the organized filtering

equations and the number of addition and shift operations required by these equations.

The filtering equations used in modes 3 and 5 are also organized using data reuse.

The number of occurrences of different equal pixel combinations for DBF mode 6

obtained by using H.264 JM reference software version 14.0 for several video sequences

are shown in Table 2.21. In this table, the column Total shows the number of all

occurrences of DBF mode 6. In the simulations, eight CIF size videos are used and 30

frames are encoded for each video. I-frame period is set to 10 frames (IPPPPPPPPPIP…).

By using the subtraction operations shown in (2.1)-(2.5), we can only check the

equality of three pixels (p2 - q2) on each side of an edge. However, for modes 3, 5, and 7,

when BS = 4, DBF algorithm can access up to four pixels on each side of an edge, and

therefore p3 or q3 or both can be used in filtering calculations. Extra comparison

operations can be performed to determine the equality of pixels p3/q3 with the other

pixels that will be filtered for modes 3, 5, and 7. However, the simulation results obtained

38

by H.264 JM reference software version 14.0 for several video sequences showed that the

number of occurrences of mode 3 with p1=p0=q0=q1=q2=q3 and mode 5 with

p3=p2=p1=p0=q0=q1 is very low. The occurrence of mode 7 with

p3=p2=p1=p0=q0=q1=q2=q3 is quite high. Therefore, we propose that comparison of

p3/q3 with the other pixels that will be filtered is performed only for mode 7.

We determined the computation reduction achieved by the proposed technique for

H.264 DBF algorithm using H.264 JM reference software version 14.0 and the

information given in Tables 2.12 -2.19. As shown in Table 2.22, the amount of reductions

achieved in addition and shift operations ranges from 6% to 39% and 8% to 50%

respectively. The proposed technique, on the other hand, has to check if the results of

several subtraction operations are equal to zero or not. But this overhead is quite small

considering that checking whether a number is zero or not can be efficiently implemented

in hardware.

p'0=(p2+2p1+2p0+2q0+q1+4)>>3 (2.6)

p'1=(p2+p1+p0+q0+2)>>2 (2.7)

p'2=(2p3+3p2+p1+p0+q0+4)>>3 (2.8)

q'0=(q2+2q1+2q0+2p0+p1+4)>>3 (2.9)

q'1=(q2+q1+q0+p0+2)>>2 (2.10)

q'2=(2q3+3q2+q1+q0+p0+4)>>3 (2.11)

Table 2.20 The Amount of Computation Required by DBF Mode 7

Equations
Number of
Additions

Number of
Shifts

A = p0+q0+2 2 0
p'1=(p2+p1+A)>>2 2 1
p'0=(2p’1-p2+q1)>>3 2 2
p'2=(2(p3+p2)+p’1+2)>>3 3 2

q'1=(q2+q1+A)>>2 2 1

q’0=(2q’1-q2+p1)>>3 2 2
q’2=(2(q3+q2)+q’1+2)>>3 3 2

Total 16 10

39

Table 2.21 Number of Occurrences of Different Equal Pixel Combinations for DBF Mode 6

Video QP
p2=p1=p0=q0

=q1=q2

p2=p1=p0=q0=q1
or

p1=p0=q0=q1=q2
p1=p0=q0=q1

p1=p0=q0
 or

p0=q0=q1
p0=q0

Total

Number Percent Number Percent Number Percent Number Percent Number Percent

Foreman
28 26123 11.05% 9102 3.85% 1842 0.78% 17531 7.41% 9825 4.15% 236477
35 36212 17.22% 12222 5.81% 1437 0.68% 13950 6.63% 6364 3.03% 210289
42 48944 24.01% 12714 6.24% 1026 0.50% 17100 8.39% 5512 2.70% 203824

Akiyo
28 33082 33.97% 7744 7.95% 488 0.50% 6369 6.54% 1530 1.57% 97380
35 42881 42.40% 9199 9.09% 318 0.31% 5792 5.73% 1390 1.37% 101144
42 50355 45.88% 10753 9.80% 346 0.32% 10821 9.86% 1179 1.07% 109763

Mother
Daughter

28 35466 30.70% 5617 4.86% 945 0.82% 7074 6.12% 2649 2.29% 115516
35 42439 36.59% 8537 7.36% 535 0.46% 7305 6.30% 2152 1.86% 115988
42 52986 44.01% 9392 7.80% 432 0.36% 11308 9.39% 1408 1.17% 120392

Football
28 14406 5.26% 10023 3.66% 1015 0.37% 13919 5.08% 7588 2.77% 274053
35 52003 13.37% 26813 6.90% 1570 0.40% 22974 5.91% 6507 1.67% 388825
42 101730 22.66% 30105 6.71% 1836 0.41% 36445 8.12% 6927 1.54% 448948

Bus
28 8619 6.00% 3869 2.69% 692 0.48% 6555 4.56% 4899 3.41% 143638
35 21322 14.47% 8600 5.84% 658 0.45% 7615 5.17% 3087 2.09% 147383
42 63013 28.80% 15244 6.97% 869 0.40% 19470 8.90% 4011 1.83% 218779

Mobile
28 15357 12.03% 5210 4.08% 978 0.77% 9645 7.56% 5633 4.41% 127646
35 21678 19.66% 5869 5.32% 678 0.61% 7639 6.93% 3375 3.06% 110274
42 25517 24.16% 6959 6.59% 424 0.40% 7764 7.35% 2176 2.06% 105620

Soccer
28 11711 6.34% 5509 2.98% 768 0.42% 8677 4.70% 5855 3.17% 184637
35 39792 18.97% 14674 7.00% 1077 0.51% 13261 6.32% 4659 2.22% 209748
42 99686 35.69% 18762 6.72% 1405 0.50% 28753 10.30% 6348 2.27% 279284

Ice
28 100016 42.46% 13125 5.57% 1643 0.70% 17351 7.37% 4879 2.07% 235574
35 102303 48.19% 14089 6.64% 1221 0.58% 15209 7.16% 3620 1.71% 212292
42 107071 50.45% 12060 5.68% 759 0.36% 16546 7.80% 2823 1.33% 212228

40

Table 2.23 shows the number of comparisons of p3/q3 with the other pixels that

will be filtered, the amount of addition reductions achieved by the proposed technique,

and the percentage of comparison overhead to the amount of addition reductions. As it

can be seen from the table, the overhead of comparing p3/q3 with the other pixels that

will be filtered is much smaller than the amount of addition reductions achieved by the

proposed technique.

Table 2.22 Computation Reduction Results

Video QP
Addition Shift

Total Reduc. Percent Total Reduc. Percent

Foreman
28 7504838 903375 12.04% 2706474 453966 16.77%
35 6341801 1055606 16.65% 2371653 520408 21.94%
42 6043722 1293325 21.40% 2330406 635053 27.25%

Akiyo
28 3230526 853418 26.42% 1218346 423397 34.75%
35 3126663 1028670 32.90% 1210204 505048 41.73%
42 3251718 1220752 37.54% 1275602 600120 47.05%

Mother
Daughter

28 3813739 897367 23.53% 1414588 447827 31.66%
35 3575747 1051759 29.41% 1373804 520664 37.90%
42 3554944 1279287 35.99% 1395284 633134 45.38%

Football
28 11185206 684795 6.12% 3996661 343872 8.60%
35 14058053 1688599 12.01% 5276546 827260 15.68%
42 14587141 2707295 18.56% 5661659 1322879 23.37%

Bus
28 5294142 348248 6.58% 1825543 175631 9.62%
35 5071890 643220 12.68% 1839661 316397 17.20%
42 6925371 1601917 23.13% 2658301 782325 29.43%

Mobile
28 4500104 525377 11.67% 1556662 264521 16.99%
35 3813736 615855 16.15% 1348916 306365 22.71%
42 3428735 687133 20.04% 1271056 339669 26.72%

Soccer
28 6518356 454296 6.97% 2307204 227567 9.86%
35 6710928 1137576 16.95% 2523192 557117 22.08%
42 8589680 2434607 28.34% 3353835 1191758 35.53%

Ice
28 7166804 2374575 33.13% 2714576 1176426 43.34%
35 6374752 2388316 37.47% 2440427 1180183 48.36%
42 6305002 2462723 39.06% 2437715 1220809 50.08%

41

Table 2.23 Comparison Overhead

Video QP
Comparison

Overhead
Addition

Reduction
Percent

Foreman
28 8766 903375 0.97%
35 8846 1055606 0.84%
42 10040 1293325 0.78%

Akiyo
28 11182 853418 1.31%
35 11352 1028670 1.10%
42 12416 1220752 1.02%

Mother
Daughter

28 13042 897367 1.45%
35 13622 1051759 1.30%
42 15968 1279287 1.25%

Football
28 5240 684795 0.77%
35 10814 1688599 0.64%
42 17292 2707295 0.64%

Bus
28 2768 348248 0.79%
35 5204 643220 0.81%
42 11314 1601917 0.71%

Mobile
28 5234 525377 1.00%
35 6774 615855 1.10%
42 6956 687133 1.01%

Soccer
28 3610 454296 0.79%
35 8534 1137576 0.75%
42 19404 2434607 0.80%

Ice
28 31300 2374575 1.32%
35 31032 2388316 1.30%
42 34312 2462723 1.39%

42

3 CHAPTER III

LOW POWER H.264 INTRA PREDICTION HARDWARE DESIGNS

H.264 intra prediction algorithm has a very high computational complexity. In this

chapter, we propose a novel technique for reducing the amount of computations

performed by H.264 intra prediction algorithm and therefore reducing the power

consumption of H.264 intra prediction hardware significantly without any PSNR and bit

rate loss. The proposed technique performs a small number of comparisons among

neighboring pixels of the current block before the intra prediction process. If the

neighboring pixels of the current block are equal, the prediction equations of H.264 intra

prediction modes simplify significantly for this block. By exploiting the equality of the

neighboring pixels, the proposed technique reduces the amount of computations

performed by 4x4 luminance, 16x16 luminance, and 8x8 chrominance prediction modes

up to 60%, 28%, and 68% respectively with a small comparison overhead. We also

implemented an efficient 4x4, 16x16 and 8x8 intra prediction hardware architectures

including the proposed technique using Verilog HDL. We quantified the impact of the

proposed technique on the power consumption of these hardware architectures on a

Xilinx Virtex II FPGA using Xilinx XPower, and it reduced the power consumption of

4x4, 16x16 and 8x8 hardware architectures up to 18.6%, 8.3% and 21.5% respectively.

43

The proposed technique is applicable to H.264 4x4 luminance, 16x16 luminance

and 8x8 chrominance prediction modes. The technique performs a small number of

comparisons among neighboring pixels of the current block before the intra prediction

process. If the neighboring pixels used for calculating the predicted pixels by an intra 4x4

prediction mode are all equal, the predicted pixels by this mode also become equal.

Therefore, the prediction equations simplify to a constant value and prediction

calculations for this mode become unnecessary. Furthermore, if the neighboring pixels

used for calculating the predicted pixels by an intra 16x16 or an intra 8x8 prediction

mode are equal, the prediction equations used by this mode simplify significantly.

The simulation results obtained by H.264 reference software, JM 14.0 [35], for

several video sequences showed that this technique reduces the amount of computations

performed by H.264 intra 4x4, 16x16 and 8x8 prediction modes up to 60%, 28%, and

68% respectively with a small comparison overhead. The proposed technique, for each

MB, requires 12 and 24 comparisons for intra 4x4 and intra 8x8 prediction modes

respectively. Since intra 4x4 and intra 16x16 prediction modes operate on the same MB,

the comparison results for intra 4x4 prediction modes are also used for intra 16x16

prediction modes.

Several techniques are reported in the literature for reducing the computational

complexity of H.264 intra prediction algorithm [36,37,38,39]. These techniques reduce

the amount of computation for H.264 intra prediction algorithm by trying selected intra

prediction modes rather than trying all intra prediction modes. However, these techniques

have a drawback of PSNR and bit rate loss and they require significant amount of pre-

computation.

We also designed efficient H.264 4x4, 16x16 and 8x8 intra prediction hardware

architectures including the proposed technique. The hardware architectures are

implemented in Verilog HDL. The Verilog RTL codes are verified to work at 50 MHz in

a Xilinx Virtex II FPGA. The impact of this technique on the power consumption of these

hardware implementations on a Xilinx Virtex II FPGA is quantified using Xilinx XPower

tool. The proposed technique reduced the power consumption of 4x4, 16x16 and 8x8

hardware architectures up to 18.6%, 8.3% and 21.5% respectively.

44

Several hardware architectures for H.264 4x4 intra prediction algorithm are

reported in the literature [40,41,42,43]. However, they do not report their power

consumption and they do not implement the proposed technique.

3.1 H.264 Intra Prediction Algorithm Overview

Intra prediction algorithm predicts the pixels in a MB using the pixels in the

available neighboring blocks. For the luma component of a MB, a 16x16 predicted luma

block is formed by performing intra predictions for each 4x4 luma block in the MB and

by performing intra prediction for the 16x16 MB. There are nine prediction modes for

each 4x4 luma block and four prediction modes for a 16x16 luma block. A mode decision

algorithm is then used to compare the 4x4 and 16x16 predictions and select the best luma

prediction mode for the MB. 4x4 prediction modes are generally selected for highly

textured regions while 16x16 prediction modes are selected for flat regions.

There are nine 4x4 luma prediction modes designed in a directional manner. A 4x4

luma block consisting of the pixels a to p is shown in Figure 3.1. The pixels A to M

belong to the neighboring blocks and are assumed to be already encoded and

reconstructed and are therefore available in the encoder and decoder to generate a

prediction for the current MB. Each 4x4 luma prediction mode generates 16 predicted

pixel values using some or all of the neighboring pixels A to M as shown in Figure 3.2.

The examples of each 4x4 luma prediction mode for real images are given in Figure 3.3.

The arrows indicate the direction of prediction in each mode. The predicted pixels are

calculated by a weighted average of the neighboring pixels A-M for each mode except

Vertical, Horizontal and DC modes.

The prediction equations used in each 4x4 luma prediction mode are shown in

Figure 3.4 where [x, y] denotes the position of the pixel in a 4x4 block (the top left, top

right, bottom left, and bottom right positions of a 4x4 block are denoted as [0, 0], [0, 3],

[3, 0], and [3, 3], respectively) and pred[x, y] is the prediction for the pixel in the position

[x, y].

45

Figure 3.1 A 4x4 Luma Block and Neighboring Pixels

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels A-M are available. If pixels E,

F, G and H have not yet been encoded and reconstructed, the value of pixel D is copied to

these positions and they are marked as available for DC mode. The other prediction

modes can only be used if all of the required neighboring pixels are available [1,3].

Available 4x4 luma prediction modes for a 4x4 luma block depending on the availability

of the neighboring 4x4 luma blocks are given in Table 3.1.

Figure 3.2 4x4 Luma Prediction Modes

46

Figure 3.3 Examples of Real Images for 4x4 Luma Prediction Modes

pred[0, 0] = A pred[0, 0] = I
pred[0, 1] = B pred[0, 1] = I
pred[0, 2] = C pred[0, 2] = I
pred[0, 3] = D pred[0, 3] = I
pred[1, 0] = A pred[1, 0] = J
pred[1, 1] = B pred[1, 1] = J
pred[1, 2] = C pred[1, 2] = J
pred[1, 3] = D pred[1, 3] = J
pred[2, 0] = A pred[2, 0] = K
pred[2, 1] = B pred[2, 1] = K
pred[2, 2] = C pred[2, 2] = K
pred[2, 3] = D pred[2, 3] = K
pred[3, 0] = A pred[3, 0] = L
pred[3, 1] = B pred[3, 1] = L
pred[3, 2] = C pred[3, 2] = L
pred[3, 3] = D pred[3, 3] = L

(a) 4x4 Vertical Mode (b) 4x4 Horizontal Mode

47

pred[x, y] = (A + B + C + D + I + J + K + L + 4) >> 3
If the left and the top neighboring
pixels are available

pred[x, y] = (I + J + K + L + 2) >> 2
Else If only the left neighboring
pixels are available

pred[x, y] = (A + B + C + D + 2) >> 2
Else If only the top neighboring
pixels are available

pred[x, y] = 128 Else
(c) 4x4 DC Mode

pred[0, 0] = A + 2B + C + 2 >> 2 pred[0, 0] = A + 2M + I + 2 >> 2
pred[0, 1] = B + 2C + D + 2 >> 2 pred[0, 1] = M + 2A + B + 2 >> 2
pred[0, 2] = C + 2D + E + 2 >> 2 pred[0, 2] = A + 2B + C + 2 >> 2
pred[0, 3] = D + 2E + F + 2 >> 2 pred[0, 3] = B + 2C + D + 2 >> 2
pred[1, 0] = B + 2C + D + 2 >> 2 pred[1, 0] = M + 2I + J + 2 >> 2
pred[1, 1] = C + 2D + E + 2 >> 2 pred[1, 1] = A + 2M + I + 2 >> 2
pred[1, 2] = D + 2E + F + 2 >> 2 pred[1, 2] = M + 2A + B + 2 >> 2
pred[1, 3] = E + 2F + G + 2 >> 2 pred[1, 3] = A + 2B + C + 2 >> 2
pred[2, 0] = C + 2D + E + 2 >> 2 pred[2, 0] = I + 2J + K + 2 >> 2
pred[2, 1] = D + 2E + F + 2 >> 2 pred[2, 1] = M + 2I + J + 2 >> 2
pred[2, 2] = E + 2F + G + 2 >> 2 pred[2, 2] = A + 2M + I + 2 >> 2
pred[2, 3] = F + 2G + H + 2 >> 2 pred[2, 3] = M + 2A + B + 2 >> 2
pred[3, 0] = D + 2E + F + 2 >> 2 pred[3, 0] = J + 2K + L + 2 >> 2
pred[3, 1] = E + 2F + G + 2 >> 2 pred[3, 1] = I + 2J + K + 2 >> 2
pred[3, 2] = F + 2G + H + 2 >> 2 pred[3, 2] = M + 2I + J + 2 >> 2
pred[3, 3] = G + 3H + 2 >> 2 pred[3, 3] = A + 2M + I + 2 >> 2

(d) 4x4 Diagonal Down Left Mode (e) 4x4 Diagonal Down Right Mode

pred[0, 0] = M + A + 1 >> 1 pred[0, 0] = M + I + 1 >> 1
pred[0, 1] = A + B + 1 >> 1 pred[0, 1] = I + 2M + A + 2 >> 2
pred[0, 2] = B + C + 1 >> 1 pred[0, 2] = B + 2A + M + 2 >> 2
pred[0, 3] = C + D + 1 >> 1 pred[0, 3] = C + 2B + A + 2 >> 2
pred[1, 0] = I + 2M + A + 2 >> 2 pred[1, 0] = I + J + 1 >> 1
pred[1, 1] = M + 2A + B + 2 >> 2 pred[1, 1] = M + 2I + J + 2 >> 2
pred[1, 2] = A + 2B + C + 2 >> 2 pred[1, 2] = M + I + 1 >> 1
pred[1, 3] = B + 2C + D + 2 >> 2 pred[1, 3] = I + 2M + A + 2 >> 2
pred[2, 0] = M + 2I + J + 2 >> 2 pred[2, 0] = J + K + 1 >> 1
pred[2, 1] = M + A + 1 >> 1 pred[2, 1] = I + 2J + K + 2 >> 2
pred[2, 2] = A + B + 1 >> 1 pred[2, 2] = I + J + 1 >> 1
pred[2, 3] = B + C + 1 >> 1 pred[2, 3] = M + 2I + J + 2 >> 2
pred[3, 0] = I + 2J + K + 2 >> 2 pred[3, 0] = K + L + 1 >> 1
pred[3, 1] = I + 2M + A + 2 >> 2 pred[3, 1] = J + 2K + L + 2 >> 2
pred[3, 2] = M + 2A + B + 2 >> 2 pred[3, 2] = J + K + 1 >> 1
pred[3, 3] = A + 2B + C + 2 >> 2 pred[3, 3] = I + 2J + K + 2 >> 2

(f) 4x4 Vertical Right Mode (g) 4x4 Horizontal Down Mode

48

pred[0, 0] = A + B + 1 >> 1 pred[0, 0] = I + J + 1 >> 1
pred[0, 1] = B + C + 1 >> 1 pred[0, 1] = I + 2J + K + 2 >> 2
pred[0, 2] = C + D + 1 >> 1 pred[0, 2] = J + K+ 1 >> 1
pred[0, 3] = D + E + 1 >> 1 pred[0, 3] = J + 2K + L + 2 >> 2
pred[1, 0] = A + 2B + C + 2 >> 2 pred[1, 0] = J + K+ 1 >> 1
pred[1, 1] = B + 2C + D + 2 >> 2 pred[1, 1] = J + 2K + L + 2 >> 2
pred[1, 2] = C + 2D + E + 2 >> 2 pred[1, 2] = K + L + 1 >> 1
pred[1, 3] = D + 2E + F + 2 >> 2 pred[1, 3] = K + 3L + 2 >> 2
pred[2, 0] = B + C + 1 >> 1 pred[2, 0] = K + L + 1 >> 1
pred[2, 1] = C + D + 1 >> 1 pred[2, 1] = K + 3L + 2 >> 2
pred[2, 2] = D + E + 1 >> 1 pred[2, 2] = L
pred[2, 3] = E + F + 1 >> 1 pred[2, 3] = L
pred[3, 0] = B + 2C + D + 2 >> 2 pred[3, 0] = L
pred[3, 1] = C + 2D + E + 2 >> 2 pred[3, 1] = L
pred[3, 2] = D + 2E + F + 2 >> 2 pred[3, 2] = L
pred[3, 3] = E + 2F + G + 2 >> 2 pred[3, 3] = L

(h) 4x4 Vertical Left Mode (i) 4x4 Horizontal Up Mode

 Figure 3.4 Prediction Equations for 4x4 Luma Prediction Modes

Table 3.1 Availability of 4x4 Luma Prediction Modes

Availability of Neighboring 4x4
Luma Blocks

Available 4x4 Luma Prediction
Modes

None available DC
Left available, Top not available Horizontal, DC, Horizontal Up

Top available, Left not available
Vertical, DC, Vertical Left, Diagonal
Down-Left

Both available All Modes

There are four 16x16 luma prediction modes designed in a directional manner.

Each 16x16 luma prediction mode generates 256 predicted pixel values using some or all

of the upper (H) and left-hand (V) neighboring pixels as shown in Figure 3.5. Vertical,

Horizontal and DC modes are similar to 4x4 luma prediction modes. Plane mode is an

approximation of bilinear transform with only integer arithmetic. The examples of each

16x16 luma prediction mode for real images are given in Figure 3.6. The prediction

equations used in 16x16 luma prediction modes are shown in Figure 3.7 where [y, x]

denotes the position of the pixel in a MB (the top left, top right, bottom left, and bottom

49

right positions of a MB are denoted as [0,0], [0,15], [15,0], and [15,15], respectively), p

represents the neighboring pixel values and Clip1 is to clip the result between 0 and 255.

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels are available. The other

prediction modes can only be used if all of the required neighboring pixels are available

[1,3]. Available 16x16 luma prediction modes for a MB depending on the availability of

the neighboring MBs are given in Table 3.2.

Figure 3.5 16x16 Luma Prediction Modes

Figure 3.6 Examples of Real Images for 16x16 Luma Prediction Modes

50

Table 3.2 Availability of 16x16 Luma Prediction Modes

Availability of Neighboring 16x16
Luma Blocks

Available 16x16 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC
Top available, Left not available Vertical, DC
Both available All Modes

pred[x, 0] = p[-1, 0] pred[0, y] = p[0, -1]
pred[x, 1] = p[-1, 1] pred[1, y] = p[1, -1]
pred[x, 2] = p[-1, 2] pred[2, y] = p[2, -1]
pred[x, 3] = p[-1, 3] pred[3, y] = p[3, -1]
pred[x, 4] = p[-1, 4] pred[4, y] = p[4, -1]
pred[x, 5] = p[-1, 5] pred[5, y] = p[5, -1]
pred[x, 6] = p[-1, 6] pred[6, y] = p[6, -1]
pred[x, 7] = p[-1, 7] pred[7, y] = p[7, -1]
pred[x, 8] = p[-1, 8] pred[8, y] = p[8, -1]
pred[x, 9] = p[-1, 9] pred[9, y] = p[9, -1]
pred[x, 10] = p[-1, 10] pred[10,y] = p[10, -1]
pred[x, 11] = p[-1, 11] pred[11, y] = p[11, -1]
pred[x, 12] = p[-1, 12] pred[12, y] = p[12, -1]
pred[x, 13] = p[-1, 13] pred[13, y] = p[13, -1]
pred[x, 14] = p[-1, 14] pred[14, y] = p[14, -1]
pred[x, 15] = p[-1, 15] pred[15, y] = p[15, -1]

(a) 16x16 Vertical Mode (b) 16x16 Horizontal Mode

[] [] [] 516,11,,
15

0

,
15

0

,

,,

>>

+−+−= ∑∑

== yx

ypxpyxpred

If the left and the top neighboring
pixels are available

[] [] 48,1,
15

0

,

,

>>

+−= ∑

=y

ypyxpred

Else If only the left neighboring pixels
are available

[] [] 481,,
15

0

,

,

>>

+−= ∑

=x

xpyxpred

Else If only the top neighboring pixels
are available

[] 128, =yxpred
Else //If the left and the upper
neighboring pixels are not available

(c) 16x16 DC Mode with x=0..15 and y=0..15

51

[] () ()()()
[] []()

()
()

() [] []()

() [] [](),,
7

0

,

,,
7

0

,

6,18,1*1

1,61,8*1

632*5

632*5

1,1515,1*16

5167*7*1,

,

,

ypypyV

xpxpxH

Vc

Hb

ppa

ycxbaClipyxpred

y

x

−−−+−+=

−−−−++=

>>+=

>>+=

−+−=

>>+−+−+=

∑

∑

=

=

(d) 16x16 Plane Mode with x, y = 0..15

Figure 3.7 Prediction Equations for 16x16 Luma Prediction Modes

For the chroma components of a MB, a predicted 8x8 chroma block is formed for

each 8x8 chroma component by performing intra prediction for the MB. The chroma

component of a MB and its neighboring pixels are shown in Figure 3.8. There are four

8x8 chroma prediction modes which are similar to 16x16 luma prediction modes. A mode

decision algorithm is used to compare the 8x8 predictions and select the best chroma

prediction mode for each chroma component of the MB. Both chroma components of a

MB always use the same prediction mode. The prediction equations used in 8x8 chroma

prediction modes are shown in Figure 3.9 where [x, y] denotes the position of the pixel in

a MB (the top left, top right, bottom left, and bottom right positions of a MB are denoted

as [0,0], [0,7], [7,0], and [7,7], respectively), p represents the neighboring pixel values

and Clip1 is to clip the result between 0 and 255.

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels are available. The other

prediction modes can only be used if all of the required neighboring pixels are available

[1,3]. Available 8x8 chroma prediction modes for a MB depending on the availability of

the neighboring MBs are given in Table 3.3.

52

Figure 3.8 Chroma Component of a MB and its Neighboring Pixels

Table 3.3 Availability of 8x8 Luma Prediction Modes

Availability of Neighboring 8x8
Luma Blocks

Available 8x8 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC
Top available, Left not available Vertical, DC
Both available All Modes

predc[x, 0] = p[-1, 0] predc[0, y] = p[0, -1]
predc[x, 1] = p[-1, 1] predc[1, y] = p[1, -1]
predc[x, 2] = p[-1, 2] predc[2, y] = p[2, -1]
predc[x, 3] = p[-1, 3] predc[3, y] = p[3, -1]
predc[x, 4] = p[-1, 4] predc[4, y] = p[4, -1]
predc[x, 5] = p[-1, 5] predc[5, y] = p[5, -1]
predc[x, 6] = p[-1, 6] predc[6, y] = p[6, -1]
predc[x, 7] = p[-1, 7] predc[7, y] = p[7, -1]

(a) 8x8 Vertical Mode (b) 8x8 Horizontal Mode

53

[] [] [] 34,11,,
3

0

,
3

0

,

,,

>>

+−+−= ∑∑

== yx

ypxpyxpredc

If p[x, –1] with x = 0..3, and p[–1, y]
with y = 0..3 are available

[] [] 22,1,
3

0

,

,

>>

+−= ∑

=y

ypyxpredc

Else If p[–1, y] with y = 0..3 are
available and p[x, –1] with x = 0..3
are not available

[] [] 221,,
3

0

,

,

>>

+−= ∑

=x

xpyxpredc

Else If p[x, –1] with x = 0..3 are
available and p[–1, y] with y = 0..3
are not available

[] 128, =yxpredc
Else //If p[x, –1] with x = 0..3, and
p[–1, y] with y = 0..3 are not available

(c) 8x8 DC Mode with x=0..3 and y=0..3 (Block 0 in Fig. 3.8)

[] [] 321,,
7

4

,

,

>>

+−= ∑

=x

xpyxpredc

If p[x, –1] with x = 4..7 are available

[] [] 22,1,
3

0

,

,

>>

+−= ∑

=y

ypyxpredc

Else If p[–1, y] with y = 0..3 are
available

[] 128, =yxpredc
Else //If p[x, –1] with x = 4..7, and p[–1,
y] with y = 0..3 are not available

(c) 8x8 DC Mode with x=4..7 and y=0..3 (Block 1 in Fig. 3.8)

[] [] 22,1,
7

4

,

,

>>

+−= ∑

=y

ypyxpredc

If p[–1, y] with y = 4..7 are available

[] [] 221,,
3

0

,

,

>>

+−= ∑

=x

xpyxpredc

Else If p[x, –1] with x = 0..3 are
available

[] 128, =yxpredc
Else //If p[x, –1] with x = 0..3, and p[–1,
y] with y = 4..7 are not available

(c) 8x8 DC Mode with x=0..3 and y=4..7 (Block 2 in Fig. 3.8)

[] [] [] 34,11,,
7

4

,
7

4

,

,,

>>

+−+−= ∑∑

== yx

ypxpyxpredc

If p[x, –1] with x = 4..7, and p[–1, y]
with y = 4..7 are available

[] [] 22,1,
7

4

,

,

>>

+−= ∑

=y

ypyxpredc

Else If p[–1, y] with y = 4..7 are
available and p[x, –1] with x = 4..7
are not available

54

[] [] 221,,
7

4

,

,

>>

+−= ∑

=x

xpyxpredc

Else If p[x, –1] with x = 4..7 are
available and p[–1, y] with y = 4..7
are not available

[] 128, =yxpredc
Else //If p[x, –1] with x = 4..7, and
p[–1, y] with y = 4..7 are not available

(c) 8x8 DC Mode with x=4..7 and y=4..7 (Block 3 in Fig. 3.8)

[] () ()()()
[] []()

()
()

() [] []()

() [] [](),,
3

0

,

,,
3

0

,

2,14,1*1

1,21,4*1

516*17

516*17

1,77,1*16

5167*7*1,

,

,

ypypyV

xpxpxH

Vc

Hb

ppa

ycxbaClipyxpred

y

x

−−−+−+=

−−−−++=

>>+=

>>+=

−+−=

>>+−+−+=

∑

∑

=

=

(d) 8x8 Plane Mode with x, y = 0..7

Figure 3.9 Prediction Equations for 8x8 Chroma Prediction Modes

3.2 Proposed Computational Complexity and Power Reduction Technique

The proposed technique exploits equality of neighboring pixels for simplifying the

prediction calculations done by H.264 intra prediction modes. The technique is applied to

H.264 4x4 luminance, 16x16 luminance and 8x8 chrominance prediction modes.

Intra 4x4 modes use 13 neighboring pixels for prediction calculations. The

proposed technique for intra 4x4 modes is based on the equality of the neighboring pixels

A, B, C, D, E, F, G, H, I, J, K, L, M of the currently processed 4x4 block. Each intra 4x4

prediction mode uses some of these neighboring pixels to predict a 4x4 block. H.264 4x4

intra prediction modes and the neighboring pixels they use for prediction calculations are

55

shown in Table 3.4. The prediction equations of a 4x4 intra prediction mode simplify to a

constant value if the neighboring pixels used by this mode are all equal.

Table 3.4 4x4 Intra Modes and Corresponding Neighboring Pixels

4x4 Intra Modes Neighboring Pixels

Vertical A, B, C, D

Horizontal I, J, K, L

DC A, B, C, D, I, J, K, L

Diagonal Down Left A, B, C, D, E, F, G, H

Diagonal Down Right A, B, C, D, I, J, K, L, M

Vertical Right A, B, C, D, I, J, K, M

Horizontal Down A, B, C, I, J, K, L, M

Vertical Left A, B, C, D, E, F, G

Horizontal Up I, J, K, L

The prediction equation used by DC mode is given in equation (3.1). If neighboring

pixels A, B, C, D, I, J, K, L are equal, we can substitute A (one of the neighboring pixels)

in place of every neighboring pixel in equation (3.1). Therefore, in this case, the equation

(1) simplifies to A as shown in (3.2).

pred[y, x] = [(A+B)+(C+D)+(I+J)+(K+L)+4] >> 3 (3.1)

pred[y, x] = [8A+4] >>3 = A (3.2)

This is the case for other prediction modes as well. For example, as shown in Figure 3.4,

DDL mode uses A, B, C, D, E, F, G, H neighboring pixels in its prediction equations.

The prediction equation for the pixel [0, 0] is given in equation (3.3). If neighboring

pixels A, B, C, D, E, F, G, H are all equal, all prediction equations of DDL mode

simplifies to a constant value as shown in (3.4).

pred[0, 0] = A + 2B + C + 2 >> 2 (3.3)

pred[0,0] = [4A+2] >>2 = A (3.4)

56

Since, in this case, all predicted pixels by DDL mode will be the same and equal to

one of the neighboring pixels, the calculations done by DDL prediction mode become

unnecessary. Therefore, during 4x4 intra prediction, the calculations done by DDL mode

can be avoided by only comparing a few neighboring pixels at the beginning of the

prediction process. During 4x4 intra prediction, the calculations done by the other

prediction modes can be avoided in the same way by comparing the neighboring pixels

used by the prediction equations of these modes. Therefore, this technique can

significantly reduce the computational complexity with a small comparison overhead.

The number of 4x4 intra prediction modes with equal neighboring pixels in a frame

varies from frame to frame. We analyzed CIF sized Foreman, Akiyo and

Mother&Daughter frames at 28, 35 and 42 QP values using JM 14.0 to determine how

many prediction modes have equal neighboring pixels. The percentages of 4x4 modes

that have equal neighboring pixels for each frame are given in Table 3.5. The percentage

of prediction modes with equal neighboring pixels vary from 14% to 89%. The

percentage increases with higher QP values. Vertical, Horizontal, Horizontal up, DC,

DDL and Vertical left modes typically have more than 50% equal neighboring pixels.

DDR, Horizontal down and Vertical right have relatively lower percentage with a typical

value of more than 25%.

Table 3.6 shows the amount of computation performed by the prediction equations

of each 4x4 intra mode in terms of number of addition and shift operations. Vertical and

Horizontal modes require no computation. The prediction equations of the other modes

include only addition and shift operations. Vertical right, Horizontal down and Vertical

left modes have large amount of computation. A total of 884183 addition and 529181

shift operations are performed by the H.264 4x4 intra prediction algorithm for a CIF

(352x288) frame.

Based on this information and the information given in Tables 3.5 and 3.6, we

calculated the computation reduction achieved by the proposed technique for CIF size

Foreman, Akiyo and Mother&Daughter frames. As shown in Table 3.7, the computation

reduction ranges from 28% to 60%. The proposed technique, on the other hand, has an

overhead of only 74882 comparisons for a CIF (352x288) frame.

57

Table 3.5 Percentage of 4x4 Intra Prediction Modes with Equal Neighboring Pixels

 4x4 Intra Modes QP = 28 QP = 35 QP = 42

F
or

em
an

VERT 50.17% 68.75% 84.31%
HORZ/HORZ_UP 47.76% 65.74% 79.51%
DC 29.34% 48.93% 68.77%
DDL 40.94% 61.10% 80.26%
DDR 14.08% 21.26% 24.61%
VERT_RIGHT 14.55% 21.61% 25.02%
HORZ_DOWN 14.47% 21.89% 24.78%
VERT_LEFT 41.56% 61.58% 80.51%

A
k

iy
o

VERT 65.01% 75.14% 85.89%
HORZ/HORZ_UP 66.19% 78.82% 87.06%
DC 48.94% 62.52% 76.69%
DDL 56.66% 67.52% 81.06%
DDR 28.54% 34.00% 35.05%
VERT_RIGHT 28.88% 34.20% 35.31%
HORZ_DOWN 29.25% 34.44% 35.50%
VERT_LEFT 57.20% 67.93% 81.66%

M
ot

h
er

 D
au

gh
te

r VERT 57.58% 74.23% 87.58%
HORZ/HORZ_UP 62.06% 77.90% 89.13%
DC 43.62% 60.24% 78.31%
DDL 48.33% 65.75% 82.04%
DDR 29.20% 37.03% 37.50%
VERT_RIGHT 29.34% 37.34% 37.86%
HORZ_DOWN 30.59% 38.01% 38.19%
VERT_LEFT 48.82% 66.16% 82.51%

Table 3.6 Computation Amount of 4x4 Intra Modes

Modes
Number of
Addition

Number of Shift

DDL 21 14
DDR 21 14
VERT_RIGHT 26 16
HORZ_DOWN 26 16
VERT_LEFT 25 15
HORZ_UP 15 9
DC (Left Avail.) 4 1
DC (Top Avail.) 4 1
DC (Both Avail.) 8 1

58

Table 3.7 Intra 4x4 Modes Computation Reduction Results

 QP
Addition Reduction Shift Reduction

Number Percent Number Percent

F
or

em
an

28 246939 27.93% 146816 27.74%

35 365863 41.38% 216263 40.87%

42 459269 51.94% 269710 50.97%

A
k

iy
o

28 386890 43.76% 229707 43.41%

35 461728 52.22% 273099 51.61%

42 521463 58.98% 306887 57.99%

M
ot

h
er

D

au
gh

te
r 28 359883 40.70% 214067 40.45%

35 469840 53.14% 278673 52.66%

42 539033 60.96% 317345 59.97%

Intra 8x8 chrominance modes use 17 neighboring pixels for prediction calculations

and intra 16x16 luminance modes use 33 neighboring pixels for prediction calculations.

Therefore, the probability of all the neighboring pixels of an intra 8x8 or an intra 16x16

mode being equal is much smaller than that of an intra 4x4 mode. Therefore, as shown in

Figure 3.10, we divide the neighboring pixels of intra 16x16 and intra 8x8 modes into

four pixel groups (H1, H2, H3, H4, V1, V2, V3, V4) and check the equality of the

neighboring pixels in each group separately.

Figure 3.10 Four Pixel Groups of Neighboring Pixels of a MB

59

We analyzed CIF sized Foreman, Akiyo and Mother Daughter frames at 28, 35 and

42 QP values respectively using JM 14.0 to determine how many 16x16 luminance and

8x8 chrominance four pixel groups have equal pixels. The percentages of 16x16

luminance and 8x8 chrominance four pixel groups that have equal pixels for each frame

are given in Tables 3.8 and 3.9 respectively. There are 396 MBs in CIF sized frame, but

378 MBs have horizontal groups H1, H2, H3, H4 and 374 MBs have vertical groups V1,

V2, V3, V4. For intra 16x16 luminance modes, the percentage of four pixel groups with

equal pixels ranges from 43% to 77% and it is typically greater than 50%. For intra 8x8

chrominance modes, the percentage ranges from 73% to 90% and it is typically more

than 80%.

Table 3.10 shows the amount of computation performed by the prediction

equations of each 16x16 and 8x8 intra mode in terms of number of addition and shift

operations. Vertical and Horizontal modes require no computation. The prediction

equations of the DC mode include only addition and shift operations. Plane mode have

large amount of computation, and as shown in Figure 3.7, it uses multiplication in the

prediction equations. But the multiplication operation can be replaced with addition and

shift operations [40,43]. Therefore, a total of 121631 addition and 106067 shift

operations are performed by the H.264 16x16 intra prediction algorithm for a CIF

(352x288) frame, and a total of 30778 addition and 106067 shift operations are

performed by the H.264 8x8 intra prediction algorithm for a CIF (352x288) frame.

The proposed technique simplifies both 16x16 and 8x8 DC and plane mode

prediction equations significantly. As shown in (3.5), 16x16 DC mode prediction

equations add the upper and left neighboring pixels with a constant value and divide the

result by 32. The part of the prediction equation using the neighboring pixels in H1 group

is shown in equation (3.6). If the neighboring pixels in H1 group are equal, in this part of

the prediction equation, instead of adding the four neighboring pixels in the H1 group,

one of the neighboring pixels can be shifted by 2 as shown in (3.6). In this way, three

addition operations are replaced with one shift operation. This is the case for the other

four neighboring pixel groups as well. Whenever the four pixels in a group are equal,

three addition operations are avoided by doing one shift operation. A similar computation

reduction is achieved for 16x16 plane mode as well.

60

Table 3.8 Percentage of 16x16 Intra Prediction Modes with Equal Neighboring Pixels

 QP = 28 QP = 35 QP = 42

F
or

em
an

H1 45.96% 61.36% 68.43%
H2 46.21% 65.15% 72.22%
H3 47.22% 62.12% 71.97%
H4 43.94% 62.12% 71.46%
V1 46.97% 58.59% 65.15%
V2 45.20% 58.33% 65.91%
V3 45.71% 56.06% 67.17%
V4 43.69% 56.57% 62.37%

A
k

iy
o

H1 61.36% 63.38% 70.45%
H2 58.33% 64.65% 71.46%
H3 58.59% 66.67% 71.21%
H4 57.83% 60.86% 70.71%
V1 61.87% 65.91% 70.96%
V2 58.59% 67.93% 71.46%
V3 58.84% 67.93% 70.20%
V4 61.11% 69.70% 71.21%

M
ot

h
er

 D
au

gh
te

r

H1 48.99% 65.15% 74.49%
H2 52.53% 67.93% 71.46%
H3 49.24% 65.91% 74.49%
H4 47.47% 64.39% 68.18%
V1 51.77% 65.66% 74.49%
V2 58.59% 71.97% 76.52%
V3 57.32% 70.45% 76.77%
V4 60.10% 74.24% 77.53%

pred[y,x] = (∑ (p[x’,-1]+p[-1, x’])+16) >> 5, with x’ = 0, 1, …,15

 = (p[0,-1]+ p[1,-1]+…+p[15,-1] + p[-1,0]+ p[-1,1]+…+p[-1,15]+16)>>5 (3.5)

p[0,-1]+p[1,-1]+p[2,-1]+p[3,-1] = 4*p[0,-1] = p[0,-1]<<2 (3.6)

61

Table 3.9 Percentage of 8x8 Intra Prediction Modes (Chroma CB, CR) with Equal

Neighboring Pixels

 QP = 28 QP = 35 QP = 42

F
or

em
an

Cb

H1 78.03% 84.85% 87.37%
H2 78.79% 85.35% 87.12%
V1 79.04% 85.86% 86.11%
V2 78.54% 84.85% 86.87%

Cr

H1 83.33% 85.35% 84.60%
H2 84.60% 85.35% 87.12%
V1 86.62% 85.10% 85.10%
V2 83.59% 85.35% 85.10%

A
k

iy
o

Cb

H1 73.23% 79.55% 82.07%
H2 74.75% 81.31% 84.34%
V1 75.51% 78.79% 84.09%
V2 77.53% 79.55% 83.33%

Cr

H1 78.03% 83.08% 85.10%
H2 80.81% 83.59% 86.87%
V1 80.05% 83.08% 87.37%
V2 79.80% 81.57% 86.11%

M
ot

h
er

 D
au

gh
te

r

Cb

H1 84.85% 84.09% 80.30%
H2 80.05% 82.32% 84.09%
V1 81.57% 86.36% 87.37%
V2 83.59% 87.37% 87.63%

Cr

H1 82.83% 85.10% 86.36%
H2 85.10% 86.62% 88.38%
V1 82.83% 86.62% 89.14%
V2 85.61% 86.62% 89.90%

Table 3.10 Computation Amount of Intra 16x16 and Intra 8x8 Modes

MODES
Intra 16x16 Intra 8x8

Number of
Addition

Number
of Shift

Number of
Addition

Number
of Shift

PLANE 307 296 89 82
DC (Left Available) 16 1 8 2
DC (Top Available) 16 1 8 2
DC (Both Available) 32 1 24 4

62

Plane mode prediction equations, however, are more complex than DC mode

prediction equations. Plane mode has two calculation steps as shown in Figure 3.7. The

first step calculates a, b, c parameters from the neighboring pixels of the current MB, and

only 16% of the total plane mode calculations are performed in the first step. The second

step calculates the predicted pixels from a, b, c parameters and 84% of the total plane

mode calculations are performed in the second step. The predicted pixel values by the

plane mode are the weighted sum of a, b and c parameters. If b or c or both are equal to

zero, the plane mode prediction equations simplify significantly. Therefore, the proposed

technique also checks whether b and c parameters are equal to zero or not before the

second step, and in this way, it avoids many additional unnecessary calculations with an

additional small comparison overhead.

Based on the information given in Tables 3.8, 3.9, and 3.10, we calculated the

computation reduction achieved by the proposed technique for intra 16x16 and intra 8x8

prediction modes for CIF-sized Foreman, Akiyo and Mother Daughter frames. As shown

in Tables 3.11 and 3.12, the computation reduction ranges from 28% to 68%.

H.264 intra 4x4 prediction equations and intra 16x16 prediction equations use the

same neighboring pixels at MB boundaries. Since the proposed technique checks the

equality of these neighboring pixels for intra 4x4 modes, these equality results are re-used

for checking the equality of four neighboring pixel groups for intra 16x16 modes, and

therefore, 3008 1-bit comparisons are performed for intra 16x16 DC and plane modes. In

addition, 714 comparisons are performed for checking the equality of parameters b and c

to zero for 16x16 plane mode. The proposed technique, on the other hand, requires

3x4x2=24 comparison operations for checking the equality of four neighboring pixel

groups for intra 8x8 prediction calculations of the current Cb and Cr chrominance blocks.

Therefore, it has an overhead of 5226 comparisons for intra 8x8 prediction modes.

63

Table 3.11 Intra 16x16 Computation Reduction Results

 QP
Addition Reduction Shift Reduction

Number Percent Number Percent

F
or

em
an

28 16183 13.30% 9403 8.87%

35 19662 16.17% 10764 10.15%

42 21831 17.95% 11786 11.11%
A

k
iy

o 28 28865 23.73% 20182 19.03%

35 30204 24.83% 20608 19.43%

42 30950 25.45% 20604 19.43%

M
ot

h
er

D

au
gh

te
r 28 25660 21.10% 17911 16.89%

35 34543 28.40% 24566 23.16%

42 33779 27.77% 22875 21.57%

Table 3.12 Intra 8x8 (Chroma CB, CR) Computation Reduction Results

 QP
Addition Reduction Shift Reduction

Number Percent Number Percent

F
or

em
an

 Cb

28 19347 47.60% 11293 36.69%

35 24624 60.58% 15847 51.49%

42 26018 64.01% 17055 55.41%

Cr

28 23379 57.52% 14688 47.72%

35 26925 66.24% 18113 58.85%

42 27771 68.33% 18885 61.36%

A
k

iy
o

Cb

28 19712 48.50% 12035 39.10%

35 21863 53.79% 13650 44.35%

42 24893 61.24% 16277 52.89%

Cr

28 21746 53.50% 13557 44.05%

35 23199 57.08% 14678 47.69%

42 25498 62.73% 16591 53.91%

M
ot

h
er

 D
au

gh
te

r

Cb

28 20844 51.28% 12318 40.02%

35 23833 58.64% 15046 48.89%

42 25751 63.36% 17022 55.31%

Cr

28 21327 52.47% 12706 41.28%

35 25386 62.46% 16496 53.60%

42 27618 67.95% 18482 60.05%

64

3.3 Proposed Intra Prediction Hardware Architectures

The proposed hardware architecture for implementing H.264 4x4 intra prediction

algorithm and the proposed technique is shown in Figure 3.11. Three local neighboring

buffers, top neighboring buffer, left neighboring buffer and reconstructed pixel

neighboring buffer are used to store the neighboring pixels in the previously coded and

reconstructed neighboring 4x4 luma blocks in the current MB. After a 4x4 luma block in

the current MB is coded and reconstructed, the neighboring pixels in this block are stored

in the corresponding local buffers. Nine parallel datapaths are used to calculate the

predicted pixels. Each datapath is used to calculate the predicted pixels by a different 4x4

intra prediction mode and they are optimized for performance and power consumption.

Thirteen registers are used to store the neighboring pixels (A, B, C, D, E, F, G, H, I,

J, K, L, M) for the current 4x4 block. When a new 4x4 block comes, neighboring pixel

registers are loaded with the current neighboring pixels (A, B, C, D, E, F, G, H, I, J, K, L,

M) in four cycles. 12 8-bit comparators are used to check for the equality of the

neighboring pixels. During register load, comparisons among neighboring pixels are

performed and prediction modes with equal neighboring pixels are determined. Based on

the comparison results, a disable signal is generated and sent to the datapaths used for

implementing the prediction modes with equal neighboring pixels.

Nine 4x32 register files are used to store the predicted pixels for nine 4x4 intra

prediction modes. When a datapath implementing a prediction mode is disabled, the

corresponding predicted pixel register file is loaded with one of the neighboring pixels.

The proposed hardware architecture for implementing H.264 16x16 intra prediction

algorithm and the proposed technique is shown in Figure 3.12. Two local neighboring

buffers are used to store previously coded and reconstructed neighboring pixels same as

the ones used in intra 4x4 hardware. After loading the next MB, the neighboring pixels

are loaded to their corresponding locations. Horizontal and vertical prediction register

files are loaded with corresponding neighboring pixels without any prediction

calculation. After the neighboring pixels are loaded, DC and plane mode modules start

calculating the pixel predictions in parallel. Since intra 4x4 blocks located on upper and

65

left boundaries of a MB uses the same neighboring pixels with 16x16 intra modes, the

comparison results obtained for neighboring pixels of intra 4x4 blocks can be reused for

intra 16x16 DC and plane modes. Therefore, 16x16 intra prediction hardware architecture

does not include a comparison hardware.

The proposed hardware architecture for implementing H.264 8x8 intra prediction

algorithm and the proposed technique is shown in Figure 3.13. 8x8 intra prediction

hardware architecture includes a comparison hardware for checking the equality of the

neighboring pixels in four pixel groups before starting the prediction calculations. When

a new MB arrives, the equality check of the neighboring pixels is done while the

neighboring pixels are loaded to the corresponding neighboring buffers. After the

neighboring pixels are loaded, 8x8 intra prediction modules start calculating the pixel

predictions.

Figure 3.11 4x4 Intra Prediction Hardware Architecture

66

D
C

A
D

D
R

E
S

 G
E
N

E
R

A
T
O

R
 A

N
D

 C
O

N
T
R

O
L
 U

N
IT

P
L
A
N

E

H
O

R
IZ

O
N

T
A
L

V
E

R
T
IC

A
L

Figure 3.12 16x16 Intra Prediction Hardware Architecture

All of the intra prediction hardware architectures are synthesized to a

2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using Mentor Graphics

Precision RTL 2005b. The resulting netlists are placed and routed to the same FPGA at

50 MHz using Xilinx ISE 8.2i. Table 3.13 shows FPGA resource usages of H.264 intra

4x4, 16x16, and 8x8 hardware architectures. The columns labeled I show the resource

usages of original H.264 intra prediction hardware architectures and the columns labeled

II show the resource usages of H.264 intra prediction hardware architectures including

the proposed technique.

67

D
C

2x32 Reg.

File

2x32 Reg.

File

4x8 Reg.

File

32

8

A
D

D
R

E
S

 G
E

N
E

R
A

T
O

R
 A

N
D

 C
O

N
T
R

O
L
 U

N
IT

176x8 Top

Neighboring Buf.

8x8 Left

Neighboring Buf.

P
L
A

N
E

16x32 Reg.

File

32

32

H
O

R
IZ

O
N

T
A

L

32

V
E

R
T
IC

A
L

32

COMPARISON UNIT

32 32

32

Figure 3.13 8x8 Intra Prediction Hardware Architecture

Table 3.13 FPGA Resource Usages of Original Intra Prediction Hardware and Intra

Prediction Hardware with Proposed Technique

Resource
Intra 4x4 Intra 16x16 Intra 8x8

I II I II I II

Function
Generators

2448 2514 1330 1423 958 994

DFFs 359 361 179 187 119 126

Block
SelectRAMs

2 2 2 2 2 2

Clock
Frequency

50 MHz 50 MHz 50 MHz 50 MHz 50 MHz 50 MHz

68

3.4 Power Consumption Analysis

The power consumption of intra prediction hardware on a Xilinx Virtex II FPGA is

estimated using Xilinx XPower tool. In order to estimate its power consumption, timing

simulation of the placed and routed netlist of intra prediction hardware is done using

Mentor Graphics ModelSim SE. Foreman, Akiyo and Mother&Daughter frames are used

as inputs for timing simulations and the signal activities are stored in VCD files. These

VCD files are used for estimating the power consumption of intra prediction hardware

using Xilinx XPower tool.

The power consumptions of the proposed hardware implementations on a Xilinx

Virtex II FPGA at 25 MHz are shown in Tables 3.14 - 3.22 for different QP values and

video frames. As shown in the tables, the proposed power reduction technique reduces

the power consumption of the intra 4x4, 16x16 and 8x8 prediction hardware up to 18.6%,

8.3%, 21.5% respectively.

Since intra prediction hardware will be used as part of an H.264 video encoder,

only internal power consumption is considered and input and output power consumptions

are ignored. Therefore, the power consumption of an intra prediction hardware can be

divided into three main categories; signal power, logic power and clock power. Signal

power is the power dissipated in routing tracks between logic blocks. Logic power is the

amount of power dissipated in the parts where computations take place. Clock power is

due to clock tree used in the FPGA.

There are several reasons for the differences between the computation reduction

percentages shown in Tables 3.7, 3.11, 3.12 and the power reduction percentages shown

in Tables 3.14 – 3.22. The first reason is the power consumption overhead for the

comparisons performed before the prediction process. For intra 4x4 prediction hardware,

there are at most 12 comparisons among 13 neighboring pixels. For intra 8x8 prediction

hardware there are 12 comparisons among 16 neighboring pixels. These comparison

operations add some power consumption overhead to 4x4 and 8x8 intra prediction

hardware architectures. On the other hand, intra 16x16 prediction hardware does not have

comparison overhead. In addition, intra 16x16 and intra 8x8 hardware have extra logic

69

overhead to handle the division of the neighboring pixels for 16x16 and 8x8 prediction

modes into four pixel groups for equality checking and this additional logic results in a

power consumption overhead.

The second reason is the clock power. Since we did not do clock gating in the

FPGA for the disabled datapaths, the datapaths for all prediction modes are supplied with

clock regardless of the equality of the neighboring pixels. Therefore, as shown in Tables

3.14 – 3.22, this implementation of the power reduction technique does not reduce the

clock power.

The third reason is that even if the datapath of a prediction mode is disabled,

address generator, control unit, neighboring registers and local neighboring buffers

consume power for writing the predicted pixels for that prediction mode into the

corresponding register file.

Table 3.14 Power Consumption Reduction of Intra 4x4 Prediction Hardware (QP=28)

F
ra

m
es

C
at

eg
or

y Power (mW)

4x4 Intra
Prediction
Hardware

4x4 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 35 33 5.71%
Logic 29.32 26.62 9.21%
Signal 55.15 46.90 14.95%
Total 119.47 106.52 10.84%

A
k

iy
o

Clock 35 33 5.71%

Logic 28.55 25.18 11.82%

Signal 50.98 39.89 21.74%
Total 114.53 98.07 14.37%

M
ot

h
er

D

au
gh

te
r Clock 35 33 5.71%

Logic 28.37 25.16 11.31%

Signal 50.58 40.17 20.57%
Total 113.95 98.33 13.70%

70

Table 3.15 Power Consumption Reduction of Intra 4x4 Prediction Hardware (Q=35)

F
ra

m
es

C
at

eg
or

y Power (mW)

4x4 Intra
Prediction
Hardware

4x4 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 35 33 5.71%
Logic 28.80 25.56 11.24%
Signal 53.58 42.34 20.98%
Total 117.37 100.89 14.04%

A
k

iy
o

Clock 35 33 5.71%
Logic 28.32 24.51 13.47%
Signal 50.23 37.12 26.11%
Total 113.55 94.62 16.67%

M
ot

h
er

D

au
gh

te
r Clock 35 33 5.71%

Logic 28.10 24.16 11.95%
Signal 49.53 36.06 24.58%
Total 112.63 93.22 15.77%

Table 3.16 Power Consumption Reduction of Intra 4x4 Prediction Hardware (Q=42)

F
ra

m
es

C
at

eg
or

y Power (mW)

4x4 Intra
Prediction
Hardware

4x4 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 35 33 5.71%
Logic 28.50 24.84 12.85%
Signal 52.27 39.32 24.78%
Total 115.77 97.16 16.08%

A
k

iy
o

Clock 35 33 5.71%
Logic 28.07 23.96 14.63%
Signal 49.11 34.83 29.09%
Total 112.18 91.79 18.18%

M
ot

h
er

D

au
gh

te
r Clock 35 33 5.71%

Logic 27.77 23.62 14.95%
Signal 48.60 34.00 30.04%
Total 111.37 90.62 18.63%

71

Table 3.17 Power Consumption Reduction of Intra 16x16 Prediction Hardware (QP=28)

F
ra

m
es

C
at

eg
or

y Power (mW)

16x16 Intra
Prediction
Hardware

16x16 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 18.3 19.5 -6.56%
Logic 19.48 18.27 6.21%
Signal 38.76 36.16 6.71%
Total 76.54 73.93 3.41%

A
k

iy
o

Clock 18.3 19.5 -6.56%
Logic 18.82 17.27 8.24%
Signal 36.69 34.02 7.28%
Total 73.81 70.79 4.09%

M
ot

h
er

D

au
gh

te
r Clock 18.3 19.5 -6.56%

Logic 17.54 15.92 9.24%
Signal 35.13 32.36 7.88%
Total 70.97 67.78 4.49%

Table 3.18 Power Consumption Reduction of Intra 16x16 Prediction Hardware (QP= 35)

F
ra

m
es

C
at

eg
or

y Power (mW)

16x16 Intra
Prediction
Hardware

16x16 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 18.3 19.5 -6.56%
Logic 17.68 16.17 8.54%
Signal 36.89 34.16 7.40%
Total 72.87 69.83 4.17%

A
k

iy
o

Clock 18.3 19.5 -6.56%
Logic 18.82 17.27 8.24%
Signal 34.89 31.53 9.63%
Total 72.01 68.3 5.15%

M
ot

h
er

D

au
gh

te
r Clock 18.3 19.5 -6.56%

Logic 16.54 14.72 11.00%
Signal 34.51 31.16 9.71%
Total 69.35 65.38 5.72%

72

Table 3.19 Power Consumption Reduction of Intra 16x16 Prediction Hardware (QP= 42)

F
ra

m
es

C
at

eg
or

y Power (mW)

16x16 Intra
Prediction
Hardware

16x16 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 18.3 19.5 -6.56%
Logic 16.13 14.22 11.84%
Signal 35.89 33.16 7.61%
Total 70.32 66.88 4.89%

A
k

iy
o

Clock 18.3 19.5 -6.56%
Logic 15.93 14.37 9.79%
Signal 33.65 29.55 12.18%
Total 67.88 63.42 6.57%

M
ot

h
er

D

au
gh

te
r Clock 18.3 19.5 -6.56%

Logic 14.88 12.62 15.19%
Signal 32.91 28.52 13.34%
Total 66.09 60.64 8.25%

Table 3.20 Power Consumption Reduction of Intra 8x8 Prediction Hardware (QP=28)

F
ra

m
es

C
at

eg
or

y Power (mW)

8x8 Intra
Prediction
Hardware

8x8 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 9.2 10.8 -17.39%
Logic 14.86 12.86 13.46%
Signal 30.86 25.96 15.88%
Total 54.92 49.62 9.65%

A
k

iy
o

Clock 9.2 10.8 -17.39%
Logic 13.88 12.01 13.47%
Signal 29.33 23.79 18.89%
Total 52.41 46.6 11.09%

M
ot

h
er

D

au
gh

te
r Clock 9.2 10.8 -17.39%

Logic 13.54 11.87 12.33%
Signal 28.36 22.16 21.86%
Total 51.1 44.83 12.27%

73

Table 3.21 Power Consumption Reduction of Intra 8x8 Prediction Hardware (QP=35)

F
ra

m
es

C
at

eg
or

y Power (mW)

8x8 Intra
Prediction
Hardware

8x8 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 9.2 10.8 -17.39%
Logic 13.65 11.21 17.88%
Signal 29.86 23.13 22.54%
Total 52.71 45.14 14.36%

A
k

iy
o

Clock 9.2 10.8 -17.39%
Logic 12.69 10.86 14.42%
Signal 27.92 19.09 31.63%
Total 49.81 40.75 18.19%

M
ot

h
er

D

au
gh

te
r Clock 9.2 10.8 -17.39%

Logic 12.21 10.15 16.87%
Signal 26.87 18.11 32.60%
Total 48.28 39.06 19.10%

Table 3.22 Power Consumption Reduction of Intra 8x8 Prediction Hardware (QP=42)

F
ra

m
es

C
at

eg
or

y Power (mW)

8x8 Intra
Prediction
Hardware

8x8 Intra Pred.
Hardware with

Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 9.2 10.8 -17.39%
Logic 12.83 10.31 19.64%
Signal 28.67 21.32 25.64%
Total 50.7 42.43 16.31%

A
k

iy
o

Clock 9.2 10.8 -17.39%
Logic 11.69 10.03 14.20%
Signal 26.11 17.23 34.01%
Total 47 38.06 19.02%

M
ot

h
er

D

au
gh

te
r Clock 9.2 10.8 -17.39%

Logic 11.34 9.56 15.70%
Signal 25.78 15.99 37.98%
Total 46.32 36.35 21.52%

74

4 CHAPTER IV

LOW POWER H.264 INTRA MODE DECISION HARDWARE DESIGNS

H.264 intra prediction algorithm generates a prediction for a MB based on spatial

redundancy [1,4]. H.264 intra prediction algorithm achieves better coding results than the

intra prediction algorithms used in previous video compression standards. However, this

coding gain comes with a significant increase in computational complexity. H.264 intra

prediction algorithm uses 9 4x4 luma, 4 16x16 luma, and 4 8x8 chroma modes. The luma

component of each MB in a frame has 16 4x4 blocks and each 4x4 block can be coded

with one of 9 different 4x4 prediction modes. The same MB can also be coded with one

of 4 different 16x16 prediction modes. Therefore, in order to choose the best mode for

the luma component of a MB, intra predictions for 148 different prediction modes are

calculated.

H.264 Joint Model (JM) reference software encoder implements two different intra

mode decision algorithms; Lagrangian Rate Distortion Optimization (RDO) based mode

decision and Sum of Absolute Transformed Difference (SATD) based mode decision

[35]. Lagrangian RDO based mode decision algorithm selects the prediction mode that

minimizes the Lagrangian cost function shown in (4.1). Distortion (D) and rate (R) for

each prediction mode are determined by encoding the current block using this prediction

mode and calculating the distortion and rate. λ is calculated based on Quantization

Parameter (QP). This technique has extremely high computational complexity.

75

RDJ λ+= (4.1)

SATD based intra mode decision algorithm also selects the prediction mode that

minimizes the Lagrangian cost function shown in (4.1). However, it estimates distortion

as SATD and rate as the number of bits used for encoding the prediction mode. This

SATD based cost function is defined as

RSATDJ SATD λ4+= (4.2)

SATD based intra 16x16 mode decision algorithm used in JM software calculates

the cost of each intra 16x16 mode and selects the mode with minimum cost. For each

intra 16x16 mode, the SATD value for a MB is calculated as follows: For each 4x4 block

in a MB, denoted as (0,…,15) in Figure 4.1, find residue block by subtracting predicted

block from current block, and apply Hadamard Transform (HT) to each 4x4 residue block

as illustrated in Figure 4.2. Form a 4x4 DC block, as shown in Figure 4.1, by extracting

DC coefficients (upper leftmost coefficient, shown as gray in Figure 4.1) of each

transformed 4x4 block and dividing them by 2, and apply HT to this 4x4 DC block. Add

the absolute values of all AC coefficients and Hadamard transformed and scaled DC

coefficients.

Figure 4.1 Formation of DC Block for Intra 16x16 Prediction Modes

76

Figure 4.2 SATD Calculation for Each 4x4 Block

 Intra 4x4 mode decision algorithm calculates the cost of each 4x4 mode for each

4x4 block denoted as 0,…,15 in Figure 4.1 and chooses the mode with the minimum cost

for each 4x4 block. After the best modes are selected for all 4x4 blocks, the costs of the

best modes for all 4x4 blocks are added to determine the total cost of the current MB.

This cost is compared with the cost of the best 16x16 mode to decide the intra mode for

the luma component of this MB. The Intra 8x8 mode decision algorithm is very similar to

intra 16x16 mode decision algorithm except that a 4x4 DC block is not formed.

The computational complexity of the SATD based mode decision algorithm is also

high. As it is shown in Figure 4.3, only 11% of all the addition operations performed for

intra search are performed for intra prediction and 89% are performed for intra mode

decision. Intra prediction shown in Figure 4.3 is implemented using only addition and

shift operations as explained in [40,43,44]. Intra mode decision shown in Figure 4.3

includes residue operations (subtractions are counted as additions), HT operations, and

addition of absolute values.

In this thesis, we propose a novel computational complexity and power reduction

technique for H.264 intra mode decision. The proposed technique reduces the number of

additions and shifts performed by 16x16 and 8x8 intra prediction algorithms by 80% and

it reduces the number of additions performed by SATD based 4x4, 16x16 and 8x8 intra

mode decision algorithms used in H.264 JM reference software encoder by 46%, 64%

and 62% respectively for a CIF size frame by using fixed predicted block patterns of intra

modes and distribution property of HT and by slightly modifying intra 16x16 and 8x8

plane mode prediction equations used for cost calculation by SATD based 16x16 and 8x8

intra mode decision algorithms.

77

 16x16

prediction

1.2%

4x4 prediction

9.4%

 8x8 mode

decision

12%

 16x16 mode

decision

24%

8x8 prediction

0.4%

 4x4 mode

decision

53%

Figure 4.3 Addition Operations Performed by Intra Prediction and Mode Decision

Several techniques are proposed in the literature to reduce the computational

complexity of H.264 intra mode decision. In [45], a new cost function and rate predictor,

and a technique similar to the technique proposed in this thesis are proposed only for

intra 4x4 mode decision. Selective intra mode decision techniques proposed in

[36,37,38,40,46,47] calculate only the cost of the intra modes likely to be selected by the

mode decision and select one of these intra modes at the expense of PSNR loss. The

proposed technique can be used together with these selective mode decision techniques

for further reducing computational complexity of H.264 intra mode decision.

4.1 Hadamard Transform

HT is a linear transform and HT of a 4x4 block Z is defined as:

HZHT **= (4.3)

78

where

−−

−−

−−
=

1111

1111

1111

1111

H (4.4)

If we write block Z explicitly then, Equation (4.3) becomes:

−−

−−

−−

−−

−−

−−

1111

1111

1111

1111

1111

1111

1111

1111

15141312

111098

7654

3210

zzzz

zzzz

zzzz

zzzz

 (4.5)

Only binary shift and integer addition/subtraction operations are used in HT. HT

defined in (4.5) can be implemented with 64 additions using the fast HT algorithm shown

in Figure 4.4 [48].

As part of H.264 intra mode decision hardware, we designed a high speed HT

hardware based on this fast HT algorithm. The designed hardware is two-stage pipelined

to improve clock frequency and has 16 adders/subtractors. It finishes HT operations of a

4x4 block in 4 clock cycles.

4.2 Proposed Computational Complexity Reduction Technique

HT is a linear operation and it can be applied before subtraction operation as shown

in (4.6). H, C, P are the Hadamard matrix, current 4x4 block, predicted 4x4 block

respectively and the Hadamard matrix is shown in (4.4). In this way, two HTs are

performed instead of one. However, this decreases the computational complexity of

SATD based H.264 intra mode decision. Since the predicted blocks have regular patterns,

HTs of the predicted blocks (H*P*H) can be calculated with a small amount of

computation. In addition, since, HT of the current block (H*C*H) is common to all intra

modes, once HT of the current block is found it can be used for all intra prediction

modes.

79

Figure 4.4 Fast HT Algorithm for a 4x4 Block

() ()HPHHCHHPCHT *****)(* −=−= (4.6)

A similar technique is proposed only for intra 4x4 mode decision in [45,48]. In this

thesis, we generalized this technique for the mode decision of all intra prediction modes,

we showed that this technique reduces the number of residue calculations required for

intra mode decision as well and we applied this technique to 16x16 and 8x8 plane modes

by proposing a small modification in the prediction equations used for calculating the

cost of the 16x16 and 8x8 plane modes for intra mode decision.

80

4.2.1 HT of Predicted Blocks by Intra 4x4 Modes

The predicted block patterns of horizontal, vertical and DC prediction modes and

the result of performing HT for these predicted block patterns are shown in Figure 4.5.

HT of a 4x4 block can be calculated with 64 addition operations [45]. On the other hand,

as shown in Figure 4.5, HT of a 4x4 block predicted by vertical or horizontal modes can

be calculated with 8 addition and 4 shift operations and HT of a 4x4 block predicted by

DC mode can be calculated with only 1 shift operation.

() () () ()

 −+−+−−−−++++

 →

0000

0000

0000

4444 pnmkpnmkpnmkpnmk

pnmk

pnmk

pnmk

pnmk

Vertical

HT

()
()
()
()

−+−

+−−

−−+

+++

→

0004

0004

0004

0004

pnmk

pnmk

pnmk

pnmk

pppp

nnnn

mmmm

kkkk

Horizontal

HT

→

0000

0000

0000

00016 p

pppp

pppp

pppp

pppp

DC

HT

Figure 4.5 Hadamard Transform of Vertical, Horizontal and DC Modes

The predicted block pattern of DDL mode is shown in (4.7) where k-s are defined

in [1]. HT of this predicted block, shown as TDDL in (4.8), can be efficiently calculated

if equations in Table 4.1 are pre-calculated. TDDL can be calculated by using pre-

calculated values as shown in Table 4.2. The predicted block pattern of DDR mode is

shown in (4.9) where k-s are defined in [1]. HT of this predicted block, shown as TDDR

in (4.10), can be efficiently calculated if equations in Table 4.3 are pre-calculated. TDDR

81

be calculated by using pre-calculated values as shown in Table 4.4.The predicted block

pattern of VR mode is shown in (4.11) where k-s are defined in [1]. HT of this predicted

block, shown as TVR in (4.12), can be efficiently calculated if equations in Table 4.5 are

pre-calculated. TVR can be calculated by using pre-calculated values as shown in Table

4.6.

The predicted block pattern of HD mode is shown in (4.13). HT of this predicted

block is given in (4.14). Since this mode is similar to VR, we do not give explicit

equations. The predicted block pattern of VL mode is shown in (4.15). HT of this

predicted block is given in (4.16). Since this mode is similar to VR, we do not give

explicit equations. The predicted block pattern of HUP mode is shown in (4.17) where k-

s are defined in [1]. HT of this predicted block, shown as THUP in (4.18), can be

efficiently calculated if equations in Table 4.7 are pre-calculated. THUP can be

calculated by using pre-calculated values as shown in Table 4.8.

82

=

srqp

rqpn

qpnm

pnmk

DDL

 (4.7)

=

s+2r-3q+4p-3n+2m-ks-2r+q-n+2m-ks+q-n-ks-q-n+k

s-2r+q-n+2m-k s+2r-q-4p+n-2m-ks-3q+3n-ks+q-n-k

s+q-n-ks-3q+3n-ks+2r+q-4p-n-2m+ks-2r-q-n+2m+k

s-q-n+ks+q-n-ks-2r-q-n+2m+ks+2r+3q+4p+3n+2m+k

TDDL

 (4.8)

=

kqrs

mkqr

nmkq

pnmk

DDR

 (4.9)

=

p-2n+3m-s-2r+3q-4kp+2n-m+s-2r+q-p-m+s-qp+m+s-q-

p-2n+m-s+2r-q p+2n-m-s+2r-q-4kp-3m+s+3q-p+m-s+q-

p-m+s-qp+3m-s-3qp-2n-m+s-2r-q+4kp+2n+m+s-2r-q-

p-m-s+qp+m-s+q-p-2n-m-s+2r+qp+2n+3m+s+2r+3q+4k

TDDR

 (4.10)

83

=

srqy

nmkx

tsrq

pnmk

VR

 (4.11)

=

t+p-y-xt-p+2r+2m-y-xt+p-2s+2n-y-x+2q-2kt-p+2s-2n+2r-2m+y-x+2q-2k

t+p-2s-2n+2r+2m-y+x-2q-2k t-p+2s+2n-y+x-2q-2kt+p-2r-2m+y+x-t-p+y+x-

t-p-2s+2n+2r-2m-y-x-2q+2kt+p+2s-2n-y-x-2q+2kt-p-2r+2m+y-x-t+p+y-x-

t-p-y+xt+p+2r-2m-y+xt-p-2s-2n-y+x+2q+2kt+p+2s+2n+2r+2m+y+x+2q+2k

TVR

 (4.12)

=

tsyx

rqts

mkrq

pnmk

HD

 (4.13)

=

p-n+y+x-p+n-y+2t-2r+2m-x-2s+2q-2kp-n-y-2t+2r-2m+x-2s+2q-2kp+n+y-x-

p-n+y-2r+x+2q-p+n-y-2t+2m-x+2s-2kp-n-y+2t-2m+x+2s-2kp+n+y+2r-x+2q-

p-n+y+2t+2m-x-2s-2kp+n-y+2r-x-2qp-n-y-2r+x-2qp+n+y-2t-2m+x-2s-2k

p-n+y-2t-2r-2m-x+2s+2q+2kp+n-y-xp-n-y+xp+n+y+2t+2r+2m+x+2s+2q+2k

THD

(4.14)

84

=

ytsr

xpnm

tsrq

pnmk

VL

 (4.15)

=

y+x-q-ky-x+2s+2n-q-ky+x-2t+2p-2r-q-k+2my-x+2t-2p+2s-2n+2r-q-k+2m

y-x+2t+2p-2s-2n+2r+q-2m-ky+x-2t-2p+2r+q-k+2m-y-x+2s+2n-q-ky+x-q-k

y+x+2t-2p-2s+2n+2r-q+2m-ky-x-2t+2p+2r-q+k+2m-y+x+2s-2n-q+ky-x-q+k

y-x-q+ky+x+2s-2n-q+ky-x-2t-2p-2r+q+k+2my+x+2t+2p+2s+2n+2r+q+k+2m

TVL

 (4.16)

=

ssss

ssrq

rqpn

pnmk

HUP

 (4.17)

=

m-k2r-2p+m-2q+2n-k2r+2p-m+2s-2q+2n-km+2s-k

2r+m-2q-k2p+m-2n-k2p-m+2s+2n-k2r-m+2s+2q-k

2p-m-2n+k2r+m-2q-k2r-m+2s+2q-k2p+m+6s-2n+k

2r-2p-m-2q+k+2nm-km+2s-k2r+2p+m+6s+2q+k+2n

THUP

 (4.18)

85

Table 4.1 Pre-calculated Values for DDL Prediction Mode

Equations
Number of

Addition/Subtractions
Number of Shift

() pa 41 = 0 1

() nqa +=2 1 0

() nqa −=3 1 0

() () () ()nqnqnqa +=+++= 324 1 1

() () () ()nqnqnqa −=−+−= 325 1 1

() ()rma += 26 1 1

() ()rma −= 27 1 1
ska +=)8(1 0
ska −=)9(1 0

Total 8 5

Table 4.2 DDL Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Addition/Subtractions
Number of Shift

[] () () () ()86410,0 aaaaTDDL +++= 3 0

[] () () ()3971,0 aaaTDDL −+= 2 0

[] () ()282,0 aaTDDL −= 1 0

[] () ()393,0 aaTDDL −= 1 0

[] []1,00,1 TDDLTDDL = 0 0

[] () () () ()21861,1 aaaaTDDL −−+= 3 0

[] () ()952,1 aaTDDL += 1 0

[] () ()283,1 aaTDDL −= 1 0

[] []2,00,2 TDDLTDDL = 0 0

[] []2,11,2 TDDLTDDL = 0 0

[] () () () ()86212,2 aaaaTDDL +−−= 3 0

[] () () ()7393,2 aaaTDDL −−= 2 0

[] []3,00,3 TDDLTDDL = 0 0

[] []3,11,3 TDDLTDDL = 0 0

[] []3,22,3 TDDLTDDL = 0 0

[] () () () ()14683,3 aaaaTDDL −+−= 3 0
Total 20 0

86

Table 4.3 Pre-calculated Values for DDR Prediction Mode

Equations
Number of

Additions/Subtractions
Number of Shifts

() ka 41 = 0 1

() mqa +=2 1 0

() mqa −=3 1 0

() () () ()mqmqmqa +=+++= 324 1 1

() () () ()mqmqmqa −=−+−= 325 1 1

() ()rna += 26 1 1

() ()rna −= 27 1 1
spa +=)8(1 0
spa −=)9(1 0

Total 8 5

Table 4.4 DDR Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Additions/Subtractions
Number of Shifts

[] () () () ()86410,0 aaaaTDDR +++= 3 0

[] () () ()9731,0 aaaTDDR −−= 2 0

[] () ()282,0 aaTDDR −= 1 0

[] () ()933,0 aaTDDR −= 1 0

[] []1,00,1 TDDRTDDR −= 1 0

[] () () () ()86211,1 aaaaTDDR −−+= 3 0

[] () ()952,1 aaTDDR += 1 0

[] () ()823,1 aaTDDR −= 1 0

[] []2,00,2 TDDRTDDR = 0 0

[] []2,11,2 TDDRTDRR −= 1 0

[] () () () ()86212,2 aaaaTDDR +−−= 3 0

[] () () ()9733,2 aaaTDDR −+= 2 0

[] []3,00,3 TDDRTDDR −= 1 0

[] []3,11,3 TDDRTDDR = 0 0

[] []3,22,3 TDDRTDDR −= 1 0

[] () () () ()86413,3 aaaaTDDR −+−= 3 0
Total 24 0

87

Table 4.5 Pre-calculated Values for VR Prediction Mode

Equations
Number of

Additions/Subtractions
Number of Shifts

() xya +=1 1 0

() xya −=2 1 0

() tpa +=3 1 0

() tpa −=4 1 0

() () ()315 aaa += 1 0

() () ()426 aaa += 1 0

() () ()317 aaa −= 1 0

() ()24)8(aaa −= 1 0

()nka += 2)9(1 1

()nka −= 2)10(1 1

()sqa += 2)11(1 1

()sqa −= 2)12(1 1

() ()119)13(aaa −= 1 0

() ()119)14(aaa += 1 0

() ()1210)15(aaa += 1 0

() ()1210)16(aaa −= 1 0

()rma += 2)17(1 1

()rma −= 2)18(1 1

Total 18 6

88

Table 4.6 VR Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Additions/Subtractions
Number of Shifts

[] () () ()517140,0 aaaTVR ++= 2 0

[] () ()7151,0 aaTVR += 1 0

[] () ()1752,0 aaTVR −= 1 0

[] ()73,0 aTVR = 0 0

[] ()70,1 aTVR −= 1 0

[] () ()5171,1 aaTVR −= 1 0

[] () ()7152,1 aaTVR −= 1 0

[] () () ()517143,1 aaaTVR −−= 2 0

[] ()60,2 aTVR = 0 0

[] () ()8181,2 aaTVR −= 1 0

[] () ()1662,2 aaTVR += 1 0

[] () () ()818133,2 aaaTVR −−= 2 0

[] () () ()181380,3 aaaTVR ++= 2 0

[] () ()6161,3 aaTVR −= 1 0

[] () ()1882,3 aaTVR −= 1 0

[] ()63,3 aTVR −= 1 0
Total 18 0

Table 4.7 Pre-calculated Values for HUP Prediction Mode

Equations
Number of

Additions/Subtractions
Number of Shifts

() mka −=1 1 0

() mka +=2 1 0

() ()pna += 23 1 1

() ()pna −= 24 1 1

() ()rqa += 25 1 1

() ()rqa −= 26 1 1

() sa 27 = 0 1

() ssaa 647)8(=+= 1 1

() ()72)9(aaa += 1 0

() ()52)10(aaa += 1 0

() ()61)11(aaa += 1 0

Total 10 6

89

Table 4.8 HUP Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Additions/Subtractions
Number of Shifts

[] () () ()83100,0 aaaTHUP ++= 2 0

[] () ()721,0 aaTHUP −= 1 0

[] ()12,0 aTHUP = 0 0

[] () ()4113,0 aaTHUP += 1 0

[] () () ()8320,1 aaaTHUP −+= 2 0

[] () ()591,1 aaTHUP −= 1 0

[] () ()612,1 aaTHUP −= 1 0

[] () ()413,1 aaTHUP += 1 0

[] []1,10,2 THUPTHUP = 0 0

[] () ()391,2 aaTHUP −= 1 0

[] () ()412,2 aaTHUP −= 1 0

[] []2,13,2 THUPTHUP = 0 0

[] () ()720,3 aaTHUP −= 1 0

[] () () ()73101,3 aaaTHUP −−= 2 0

[] () ()4112,3 aaTHUP −= 1 0

[] ()13,3 aTHUP = 0 0
Total 15 0

4.2.2 HT of Predicted Blocks by Intra 16x16 and 8x8 Horizontal, Vertical and DC

Modes

In addition to the computation reduction achieved for HT of a 4x4 block, since a

MB is partitioned into 4x4 blocks for HT as shown in Figure 4.6, the proposed technique

significantly reduces amount of computations required for intra 16x16 and 8x8 mode

decisions by data reuse. For intra 16x16 vertical mode, the predicted pixels in the 4x4

predicted blocks 0, 2, 8, and 10 are the same as shown in (4.19) and HT of this block is

shown in (4.20). HT of the predicted block 0 can be reused for predicted blocks 2, 8, and

10 as well. The same is true for the other vertical predicted 4x4 blocks in the same

column. For intra 16x16 horizontal mode, the predicted pixels in the 4x4 predicted blocks

0, 1, 4, and 5 are the same as shown in (4.21) and HT of this block is shown in (4.22).

Therefore, HT of the predicted block 0 can be reused for predicted blocks 1, 4, and 5 as

well. The same is true for the other horizontal predicted 4x4 blocks in the same row. For

90

DC mode, the predicted pixels in all the 4x4 predicted blocks are the same as shown in

(4.23) and HT of this block is shown in (4.24). Therefore, HT of the predicted block 0,

shown in (4.24), can be reused for all the other 4x4 DC predicted blocks.

====

3210

3210

3210

3210

10820

hhhh

hhhh

hhhh

hhhh

BBBB

 (4.19)

() () () ()

 −+−+−−−−++++

====

0000

0000

0000

hhhh4hhhh4hhhh4hhhh4

HT(B10)HT(B8)HT(B2)HT(B0)

3210321032103210

 (4.20)

====

3333

2222

1111

0000

vvvv

vvvv

vvvv

vvvv

10820 BBBB

 (4.21)

()
()
()
()

−+−

+−−

−−+

+++

====

000vvvv4

000vvvv4

000vvvv4

000vvvv4

)5()4()1()0(

3210

3210

3210

3210

BHTBHTBHTBHT

 (4.22)

91

Figure 4.6 16x16 MB and its Neighboring Pixels

() 516

15...0

15

0
>>

++=

===

∑
=i

ii vhpwhere

pppp

pppp

pppp

pppp

BB

 (4.23)

()

==

0000

0000

0000

00016

)15(...0

p

BHTBHT

 (4.24)

92

Intra 16x16 mode decision algorithm also includes applying HT to 4x4 DC blocks

formed by DC coefficients of HT of each 4x4 block shown in Figure 4.6. We propose to

apply the same technique to 4x4 DC blocks as well. After HT is applied to current block

(C) and predicted block (P), a 4x4 DC block is formed by DC coefficients of HT of C and

a 4x4 DC block is formed by DC coefficients of HT of P as shown in (4.6). Then, HT is

applied to these 4x4 DC blocks and the results are subtracted. 4x4 DC blocks formed by

DC coefficients of HT of predicted blocks by intra modes have the same block patterns as

the HT of predicted blocks themselves. For example, 4x4 DC block formed by DC

coefficients of HT of predicted block by vertical mode is shown in (4.25) and its HT is

shown in (4.26). It has 4 nonzero elements same as the HT of predicted block itself.

Horizontal mode is similar to vertical mode. 4x4 DC block formed by DC coefficients of

HT of predicted block by horizontal mode is shown in (4.27) and its HT is shown in

(4.28). 4x4 DC block formed by DC coefficients of HT of predicted block by DC mode is

shown in (4.29) and its HT is shown in (4.30). It has 1 nonzero element same as the HT

of predicted block itself. Therefore, HT of 4x4 DC blocks for each intra 16x16 prediction

mode can be calculated with small amount of computation by using the proposed

technique.

Intra 8x8 Vertical, Horizontal and DC modes are very similar to corresponding

intra 16x16 modes except that no 4x4 DC block is formed. Therefore, similar

computation reductions are achieved for intra 8x8 Vertical, Horizontal and DC modes.

++++++++++++

++++++++++++

++++++++++++

++++++++++++

×

1514131211109876543210

1514131211109876543210

1514131211109876543210

1514131211109876543210

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

4

 (4.25)

93

()

()

()

()

()1514131211109876543210

1514131211109876543210

1514131211109876543210

1514131211109876543210

hhhhhhhhhhhhhhhh16

hhhhhhhhhhhhhhhh16

hhhhhhhhhhhhhhhh16

hhhhhhhhhhhhhhhh16

0000

0000

0000

−−−−++++−−−−+++=

++++−−−−−−−−+++=

−−−−−−−−+++++++=

+++++++++++++++=

=

T

Z

Y

X

where

TZYX

DCHT

(4.26)

++++++++++++

++++++++++++

++++++++++++

++++++++++++

×

15141312151413121514131215141312

111098111098111098111098

3210321032107654

3210321032103210

vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

4

(

4.27)

()

−−−−++++−−−−+++

++++−−−−−−−−+++

−−−−−−−−+++++++

+++++++++++++++

×

=

000vvvvvvvvvvvvvvvv

000vvvvvvvvvvvvvvvv

000vvvvvvvvvvvvvvvv

000vvvvvvvvvvvvvvvv

16

1514131211109876543210

1514131211109876543210

1514131211109876543210

1514131211109876543210

DCHT

(4.28)

=

pppp

pppp

pppp

pppp

DC

16161616

16161616

16161616

16161616

 (4.29)

()

=

0000

0000

0000

000256 p

DCHT

 (4.30)

94

4.2.3 HT of Predicted Blocks by Intra 16x16 and 8x8 Plane Mode

Plane mode is the most complex prediction mode and it constitutes almost 90% of

addition and 100% of shift operations performed by 16x16 and 8x8 intra predictions.

Plane mode first calculates a, b, c parameters from the neighboring pixels of the current

MB. It then calculates the predicted pixels using a, b, c as shown in (2.7.d). If the

following two small modifications are made in plane mode equations, HT of a block

predicted by plane mode can be calculated with a very small amount of computation;

Clip1 in (4.31) is removed (Clip1 is a function which clips the predicted pixel value

between 0 and 255) and right shift by 5 in (4.31) is changed to divide by 32. The new

plane mode equation shown in (4.32) is only used for calculating the cost of 16x16 and

8x8 plane modes for intra mode decision. If plane mode is selected by mode decision, the

actual predicted pixels will be calculated using a, b, and c.

[] () ()()()5167*7*1, >>+−+−+= ycxbaClipyxpred (4.31)

[] () ()() 32/167*7*, +−+−+= ycxbayxpred (4.32)

Modified plane mode equation shown in (4.32) simplifies HT of 16x16 plane mode

significantly. Equation (4.33) shows HT of 16x16 plane mode.

Using the modified equation given in (4.32), we can calculate the cost of the plane

mode by only using a, b, c parameters without calculating actual predicted pixels.

Therefore, the number of additions and shifts performed by 16x16 and 8x8 intra

prediction algorithms for intra mode decision is reduced by approximately 80%. As

shown in (4.33) for modified plane mode, HT of predicted blocks 1,…,15 are exactly the

same as HT of predicted block 0 except DC coefficient. Therefore, HT of predicted block

0 can be reused for all other predicted 4x4 blocks.

In addition, proposed technique can be applied to 4x4 DC block formed by DC

coefficients of HT of predicted block by plane mode as well. 4x4 DC block formed by

DC coefficients of HT of predicted block by plane mode is shown in (4.34) and its HT is

shown in (4.35). As shown in (4.34) and (4.35), HT of plane mode as well as HT of its

DC block can be found easily once a, b, c parameters are calculated.

95

++++++++++

++++++++++

++++++

++++++

×

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-256104c104b16a8b-016b-256c041b0416a8b-016b-256104c24b-16a8b-016b-256104c88b-16a

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-256c04b04116a8b-016b-25640c40b16a8b-016b-25640c24b-16a8b-016b-25640c88b-16a

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-25624c-104b16a8b-016b-25624c-40b16a8b-016b-25624c-24b-16a8b-016b-25624c-88b-16a

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-25688c-104b16a8b-016b-25688c-40b16a8b-016b-25688c-24b-16a8b-016b-25688c-88b-16a

32

1

(4.33)

++++++++−++−

++++++++−++−

+−++−++−−+−−

+−++−++−−+−−

×

25610410416256104401625610424162561048816

2564010416256404016256402416256408816

2562410416256244016256242416256248816

2568810416256884016256882416256888816

32

1

cbacbacbacba

cbacbacbacba

cbacbacbacba

cbacbacbacba

 (4.34)

−

−

−−+++

00016

0000

00032

16032128448

c

c

bbcba

 (4.35)

96

4.3 Computation Reduction for Residue Calculations

Residue calculations require more subtraction operations than the addition operations

required by intra prediction. The proposed technique also significantly reduces the number

of residue calculations in intra mode decision algorithm. The residue calculation is only

needed for the nonzero elements in the HT of a predicted block. As shown in Figure 4.5,

since HT of a 4x4 block predicted by DC prediction mode has only 1 nonzero element,

only 1 residue calculation is needed and 15 subtraction operations are avoided for this 4x4

block. Similarly, since HT of a 4x4 block predicted by vertical and horizontal prediction

modes have only 4 nonzero elements, 12 subtraction operations are avoided for each 4x4

block for vertical and horizontal prediction modes. In addition, as shown in (4.33), since

HT of a 4x4 block predicted by modified plane mode has 5 nonzero elements, 11

subtraction operations are avoided during residue calculations for each 4x4 block.

4.4 Computation Reduction Results

We quantified the computation reductions achieved by the proposed technique for the

SATD based intra mode decision algorithm used in H.264 JM software encoder version

14.0 [35]. For 4x4 modes the computation amounts for a 4x4 block and for 16x16 and 8x8

modes the computation amounts for a 16x16 MB are shown in Table 4.9. The columns

labeled I show the amount of computation performed by the original SATD mode decision

and the columns labeled II show the amount of computation performed by the SATD mode

decision using the proposed technique. Since current block HT is common for both intra

16x16 and 4x4 mode decision, the results of the current block HT for intra 16x16 mode

decision are reused for intra 4x4 mode decision. The results show that the proposed

technique significantly reduces the computational complexity of SATD based intra 4x4,

16x16 and 8x8 mode decision algorithms.

97

Table 4.9 Computation Reductions for Intra Prediction Modes

 Prediction Modes

Hadamard Transform Residue

Addition Shift Subtraction

I II I II I II
In

tr
a

4x
4

Vertical 64 8 0 4 16 4

Horizontal 64 8 0 4 16 4

DC 64 0 0 1 16 1

Diagonal down left 64 28 0 5 16 16

Diagonal down right 64 32 0 5 16 16

Vertical right 64 36 0 6 16 16

Horizontal down 64 36 0 6 16 16

Vertical left 64 36 0 6 16 16

Horizontal up 64 25 0 6 16 16

Total 576 209 0 43 144 105

In
tr

a
16

x1
6

Vertical 1088 40 16 36 256 52

Horizontal 1088 40 16 36 256 52

DC 1088 0 16 17 256 1

Plane 1088 3 16 26 256 69

Current block HT 0 1088 0 0 0 0

Total 4352 1171 64 115 1024 174

In
tr

a
8x

8

Vertical 256 16 0 8 64 16

Horizontal 256 16 0 8 64 16

DC 256 0 0 4 64 4

Plane 256 7 0 9 64 20

Current block HT 0 256 0 0 0 0

Total 1024 295 0 29 256 56

We also quantified the impact of the proposed modifications for the 16x16 and 8x8

plane mode equations on the rate-distortion performance of the SATD based intra mode

decision algorithm used in H.264 JM reference software encoder version 14.0. Rate

distortion curves and average PSNR comparison of the original SATD mode decision and

the SATD mode decision using modified plane mode equations for several CIF size

benchmark video frames are shown in Figures 4.7 and 4.8, and Table 4.10. The average

98

PSNR values shown in Table 4.10 are calculated using the technique described in [49]. The

proposed plane mode equation modifications don’t affect the PSNR for Football, they

increase the PSNR slightly for Foreman and Mother&Daughter, and they decrease the

PSNR slightly for other video frames shown in Table 4.10.

Figure 4.7 Rate Distortion Curves of the Original SATD Mode Decision and SATD Mode

Decision with Proposed Technique for Mother&Daughter (M&D), Crew and Foreman

99

Figure 4.8 Rate Distortion Curves of the Original SATD Mode Decision and SATD Mode

Decision with Proposed Technique for Soccer, Football and Mobile

Table 4.10 Average PSNR Comparison of the Original SATD Mode Decision with

Proposed Technique

VIDEO FRAME
Original

(dB)
Proposed

Technique (dB)
Difference

(dB)
MOBILE 30.638 30.634 -0.004
MOTHER&DAUGHTER 36.804 36.815 0.011
FOREMAN 35.279 35.303 0.024
FOOTBALL 31.980 31.980 0
CREW 36.157 36.122 -0.035
HARBOUR 31.580 31.579 -0.001
SHORTCIF 31.828 31.822 -0.006
SOCCER 32.461 32.448 -0.013
AKIYO 37.253 37.226 -0.027

100

4.5 Proposed 16x16 Intra Mode Decision Hardware Architectures

We designed two different hardware architectures for H.264 16x16 intra mode

decision. The first hardware architecture, shown in Figure 4.9, implements the original

SATD intra mode decision algorithm used in H.264 JM software encoder. The second

hardware architecture, shown in Figure 4.10, includes the proposed computational

complexity and power reduction technique.

H.264 16x16 intra mode decision hardware consists of two parts; the first part

generates predicted blocks by each prediction mode in parallel and the second part

calculates SATD cost for each prediction mode using the predicted blocks. The main

differences between two architectures are the residue operation and simplification of HT

because of fixed prediction block pattern of each intra mode. The first hardware

architecture first performs the residue operation and then performs HT. The second

hardware architecture, on the other hand, first performs HT and then performs residue

operation.

As shown in Figure 4.9, three local buffers are used to store the inputs to intra mode

decision hardware; 352x8 top neighboring buffer, 16x8 left neighboring buffer and 256x8

current block buffer. Horizontal predicted block (16x8), vertical predicted block (16x8),

DC predicted block (1x8), and plane predicted block (256x8) are used to store the predicted

blocks by the corresponding intra prediction modes. Residue block (256x8) is used to store

the difference between the current MB and the predicted MB. Top neighboring buffer,

plane predicted block, current block, and residue block are implemented as Block

SelectRAMs, and other buffers are implemented as Distributed SelectRAMs.

Whenever a new MB arrives, the intra prediction module starts to calculate prediction

values for each mode in parallel. After intra prediction is finished, the mode decision

hardware starts to process each mode by subtracting predicted block from current block.

HT is applied to residue block and absolute values of resulting AC coefficients are added.

Then, HT is applied to the 4x4 DC block formed by DC coefficients and the resulting

coefficients are added. HT module in Figure 4.9 implements the fast HT algorithm

described in section 4.1.

101

As shown in Figure 4.10, the proposed hardware for SATD intra mode decision with

proposed computational complexity and power reduction technique has the same intra

prediction search hardware except that the size of the buffer used for storing the predicted

block by plane mode is reduced from 256x8 to 3x8. Since this hardware calculates the

SATD cost using only a, b, c parameters, it stores only a, b, c parameters.

After intra prediction, HT is applied to predicted blocks by each prediction mode.

Since HT of horizontal, vertical, DC and plane prediction modes simplify significantly

using the proposed technique, HT module in Figure 4.10 is much simpler than HT module

in Figure 4.9. After HT, AC coefficients of predicted blocks by each prediction mode are

subtracted from corresponding AC coefficients of transformed current block. HT is applied

to DC coefficients of both current block and predicted blocks by each prediction mode

again. Then, DC coefficients of predicted blocks by each prediction mode are subtracted

from corresponding DC coefficients of current block. Finally, absolute values of AC and

DC coefficient differences are added to find SATD cost.

4.6 Power Consumption Analysis

The power consumption of 16x16 intra mode decision hardware including proposed

technique on a Xilinx Virtex II FPGA is estimated using Xilinx XPower tool. In order to

estimate its power consumption, timing simulation of the placed and routed netlist of 16x16

intra mode decision hardware is done using Mentor Graphics ModelSim SE. Foreman,

Akiyo and Mother&Daughter frames are used as inputs for timing simulations and the

signal activities are stored in VCD files. These VCD files are used for estimating the power

consumption of 16x16 intra mode decision hardware using Xilinx XPower tool.

The power consumption of 16x16 intra mode decision hardware implementation on a

Xilinx Virtex II FPGA at 25 MHz is shown in Table 4.11 for different video frames at QP

= 42. As shown in the table, the proposed power reduction technique reduces the power

consumption of 16x16 intra mode decision hardware up to 39.2%.

102

Figure 4.9 Proposed Hardware for Original Intra 16x16 Mode Decision

103

Figure 4.10 Proposed Hardware for Intra 16x16 Mode Decision with Proposed Technique

104

Table 4.11 Power Consumption Reduction of Intra 16x16 Mode Decision Hardware

(QP=42)

F
ra

m
es

C
at

eg
or

y Power (mW)

Intra 16x16
Mode Decision

Hardware

Intra 16x16 Mode
Decision Hardware

with Power Red. Tech.

Reduction
Percent.

F
or

em
an

 Clock 51.6 41.1 20.35%
Logic 38.19 23.46 38.57%
Signal 83.65 44.52 46.78%
Total 173.44 109.08 37.11%

A
k

iy
o

Clock 51.6 41.1 20.35%
Logic 35.43 21.66 38.87%
Signal 81.83 41.98 48.70%
Total 168.86 104.74 37.97%

M
ot

h
er

D

au
gh

te
r Clock 51.6 41.1 20.35%

Logic 34.73 19.85 42.84%
Signal 78.69 38.92 50.54%
Total 165.02 99.87 39.48%

105

5 CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed low power hardware designs for DBF, intra prediction

and intra mode decision parts of an H.264 video encoder. The proposed hardware

architectures are implemented in Verilog HDL and mapped to Xilinx Virtex II FPGA. We

performed detailed power consumption analysis of FPGA implementations of these

hardware designs using Xilinx XPower tool. We also measured the power consumptions of

DBF hardware implementations on a Xilinx Virtex II FPGA by measuring the average

currents before DBF hardware is running on the FPGA and while DBF hardware is running

on the FPGA. There is a good match between estimated and measured power consumption

results which shows that power estimation results obtained by using Xilinx XPower tool

are very accurate.

We worked on decreasing the power consumption of FPGA implementations of these

H.264 video compression hardware designs by reducing switching activity using Register

Transfer Level (RTL) low power techniques. We applied several RTL low power

techniques such as clock gating and glitch reduction to these designs and quantified their

impact on the power consumption of the FPGA implementations of these designs.

We proposed novel computational complexity and power reduction techniques which

avoid unnecessary calculations in DBF, intra prediction and intra mode decision parts of an

106

H.264 video encoder. We quantified the computation reductions achieved by the proposed

techniques using H.264 JM software encoder version 14.0. We applied these techniques to

these hardware designs and quantified their impact on the power consumption of the FPGA

implementations of these designs.

As a future work, the impact of the computational complexity and power reduction

technique proposed for H.264 DBF on the power consumption of FPGA implementations

of H.264 DBF hardware designs can be quantified. The computational complexity and

power reduction technique proposed for H.264 intra prediction can be extended for the

cases where some of the neighboring pixels are equal or there is a small difference between

the neighboring pixels. The neighboring pixels used in intra prediction calculations can be

divided into small groups in order to increase the likelihood that the neighboring pixels in a

group are equal. The equivalence check between neighboring pixels in a group can be

performed between most significant bits of these pixels in order to reduce the

computational complexity even further at the expense of PSNR loss.

The proposed computational complexity and power reduction techniques can be

applied to other parts of an H.264 video encoder such as motion estimation. Power

consumption analysis of ASIC implementations of the proposed hardware designs can be

performed and the impact of the proposed computational complexity and power reduction

techniques on the power consumption of the ASIC implementations of the proposed

designs can be quantified using Synopsys PrimePower tool.

107

6 BIBLIOGRAPHY

[1] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, "Draft ITU-T

Recommendation and Final Draft InternationalStandard of Joint Video Specification, ITU-T

Rec. H.264 and ISO/IEC 14496-10 AVC," May 2003.

[2] Thomas Wiegand and Heiko Schwarz Ralf Schäfer, "The emerging H.264/AVC standard,"

Heinrich Hertz Institute, Berlin, EBU Technical Review 2003.

[3] I. Richardson, H.264 and MPEG-4 Video Compression.: Wiley, 2003.

[4] G. J. Sullivan, G. Bjøntegaard, and A. Luthra T. Wiegand, "Overview of the H.264/AVC

Video Coding Standard," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 560–576, July 2003.

[5] Anthony Joch, Faouzi Kossentini, Antti Hallapuro Michael Horowitz, "H.264/AVC

Baseline Profile Decoder Complexity Analysis," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 13, no. 7, pp. 704-716, July 2003.

[6] P.E. Ross, "Beat the heat," IEEE Spectrum, vol. 41, no. 5, p. 38–43, May 2004.

[7] The International Technology Roadmap for Semiconductors. (2005 Edition) [Online].

http://www.itrs.net/Links/2005ITRS/Home2005.htm

[8] C.A. Papachristou, M. Nourani and M. Spining, "A Multiple Clocking Scheme for Low-

power RTL Design," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 7, no. 2, pp. 266 – 276, June 1999.

108

[9] G.E. Tellez, A. Farrahi and M. Sarrafzadeh, "Activity-driven Clock Design for Low Power

Circuits," IEEE/ACM International Conference on Computer-Aided Design, pp. 62-65,

November 1995.

[10] L. Benini, P. Siegel and G. De Micheli, "Saving Power by Synthesizing Gated Clocks for

Sequential Circuits," IEEE Design & Test of Computers, vol. 11, no. 4, pp. 32 – 41, 1994.

[11] A. Raghunathan, S. Dey and N.K. Jha, "Register Transfer Level Power Optimization with

Emphasis on Glitch Analysis and Reduction," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 18, no. 8, pp. 1114 – 1131, August 1999.

[12] Seteven J. E. Wilton, Su-Shin Ang and Wayne Luk, "The Impact of Pipelining on Energy

per Operation in Field-Programmable Gate Arrays," International Conference on Field-

Programmable Logic and Applications, pp. 719-728, August 2004.

[13] L. Benini, G. De Micheli and E. Macii, "Designing Low-power Circuits: Practical Recipes,"

IEEE Circuits and Systems Magazine, vol. 1, no. 1, pp. 6 – 25, 2001.

[14] K.J.R. Liu , An-Yeu Wu, A. Raghupathy and Jie Chen, "Algorithm-based Low-power and

High-performance Multimedia Signal Processing," Proceedings of the IEEE Volume 86, pp.

1155 – 1202, June 1998.

[15] A. Acquaviva, L. Benini and B. Ricco, "An Adaptive Algorithm for Low-power Streaming

Multimedia Processing," Design, Automation and Test in Europe, pp. 273 – 279, March

2001.

[16] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh, Tu-Chih Wang, Te-Hao Chang, Liang-Gee

Chen, "Architecture Design for Deblocking Filter in H.264/JVT/AVC," in International

Conference on Multimedia and Expo, pp. I - 693-6 vol.1, July 2003.

[17] T. C. Wang, Y. W. Huang, H. C. Fang and L. G. Chen, "Parallel 4x4 2D Transform and

Inverse Transform Architecture for MPEG-4 AVC / H.264," IEEE ISCAS, 2003.

[18] Tu-Chih Wang, Yu-Wen Huang, Hung-Chi Fang, Liang-Gee Chen, "Performance Analysis

of Hardware Oriented Algorithm Modifications in H.264," Multimedia and Expo ICME, pp.

601-604, July 2003.

[19] W.T. Staehler, E.A. Berriel, A.A. Susin and S. Bampi, "Architecture of an HDTV

Intraframe Predictor for a H.264 Decoder," 14th Int. Conference on VLSI-SoC, pp. 228 –

109

233, October 2006.

[20] Y. W. Huang, B. Y. Hsieh, T. C. Chen and L. G. Chen, "Hardware Architecture Design for

H.264/AVC Intra Frame Coder," IEEE ISCAS, pp. 269-272, April 2004.

[21] Y. W. Huang, T. C. Chen, C. H. Tsai, C. Y. Chen, T. W. Chen, C. S. Chen, C. F. Shen, S. Y.

Ma, T. C. Wang, B. Y. Hsieh, H. C. Fang, L. G. Chen, "A 1.3TOPS H.264/AVC Single-

Chip Encoder for HDTV Applications," IEEE ISSCC, pp. 586 – 588, February 2005.

[22] T. A. Lin, T. M. Liu and C. Y. Lee, "A Low Power H.264/AVC Decoder," Int. Symposium

on VLSI Technology, System and Applications, April 2005.

[23] T. M. Liu, T. A. Lin, S. Z. Wang, W. P. Lee, K. C. Hou, J. Y. Yang and C. Y. Lee, "A 125-

µW, Fully Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile Applications,"

IEEE Journal of Solid-State Circuits, pp. 161 – 169, February 2006.

[24] T. M. Liu and C. Y. Lee, "Memory-Hierarchy-Based Power Reduction for H.264/AVC

Video Decoder," IEEE Int. Symposium on VLSI Design, Automation and Test ,pp. 1 – 4,

April 2006.

[25] Mustafa Parlak and Ilker Hamzaoglu, "Low Power H.264 Deblocking Filter Hardware

Implementations," IEEE Transactions on Consumer Electronics, vol. 54, no. 2, pp. 808 -

816, May 2008.

[26] Mustafa Parlak, Yusuf Adibelli and Ilker Hamzaoglu, "A Novel Computational Complexity

and Power Reduction Technique for H.264 Intra Prediction," IEEE Transactions on

Consumer Electronics, vol. 54, no. 4, pp. 2006-2014, November 2008.

[27] Peter List, Anthony Joch, Jani Lainema, Gisle Bjøntegaard and Marta Karczewicz

"Adaptive Deblocking Filter," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 614-619, July 2003.

[28] Mustafa Parlak and Ilker Hamzaoglu, "An Efficient Hardware Architecture for H.264

Adaptive Deblocking Filter Algorithm," NASA/ESA Conference on Adaptive Hardware and

Systems, pp. 381-385, June 2006.

[29] Mustafa Parlak and Ilker Hamzaoglu, "A Low Power Implementation of H.264 Adaptive

Deblocking Filter Algorithm," NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 127-133, August 2007.

110

[30] Shih-Chien Chang, Wen-Hsiao Peng, Shih-Hao Wang and Tihao Chiang "A Platform Based

Bus-interleaved Architecture for De-blocking Filter in H.264/MPEG-4 AVC," IEEE

Transactions on Consumer Electronics, vol. 51, no. 1, pp. 249-255, February 2005.

[31] Chao-Chung Cheng and Tian-Sheuan Chang "An Hardware Efficient Deblocking Filter for

H.264/AVC," International Conference on Consumer Electronics,pp. 235 – 236, January

2005.

[32] Heng-Yao Lin, Jwu-Jin Yang, Bin-Da Liu and Jar-Ferr Yang, "Efficient Deblocking Filter

Architecture for H.264 Video Coders," IEEE International Symposium on Circuits and

Systems, pp. 2617-2620, May 2006.

[33] G. Khurana, A.A. Kassim, Tien Ping Chua, M. B. Mi, "A Pipelined Hardware

Implementation of in-loop Deblocking Filter in H.264/AVC," IEEE Transactions on

Consumer Electronics, vol. 52, no. 2, pp. 536-540, May 2006.

[34] Versatile Platform Baseboard for ARM926EJ-S User Guide, May 2004. [Online].

http://www.arm.com

[35] Joint Video Team of ITU-T VCEG and ISO/IEC MPEG. Joint Model Reference Software,

Version 14.0. [Online]. http://iphome.hhi.de/suehring/tml

[36] Feng Pan, Xiao Lin, S. Rahardja, K.P. Lim, Z.G. Li, Dajun Wu, Si Wu, "Fast Mode

Decision Algorithm for Intraprediction in H.264/AVC Video Coding," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 15, no. 7, p. 813 – 822, July 2005.

[37] I. Choi, J. Lee and B. Jeon, "Fast Coding Mode Selection With Rate-Distortion

Optimization for MPEG-4 Part-10 AVC/H.264," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 16, no. 12, p. 1557 – 1561, December 2006.

[38] An-Chao Tsai, A. Paul, Jai-Ching Wang and Jhing-Fa Wang, , "Efficient Intra Prediction in

H.264 Based on Intensity Gradient Approach," ISCAS 2007, pp. 3952 – 3955, May 2007.

[39] Ling-Jiao Pan and Yo-Sung Ho, "A Fast Mode Decision Algorithm for H.264/AVC Intra

Prediction," IEEE Workshop on Signal Processing Systems, pp. 704 – 709, October 2007.

[40] Yu-Wen Huang, B. Y. Hsieh, T. C. Chen and L. G. Chen, "Analysis, Fast Algorithm, and

VLSI Architecture Design for H.264/AVC Intra Frame Coder," IEEE Trans. on Circuits

and Systems for Video Technology, vol. 15, no. 3, pp 378 – 401, March 2005.

111

[41] Genhua Jin, Jin-Su Jung and Hyuk-Jae Lee, "An Efficient Pipelined Architecture for

H.264/AVC Intra Frame Processing," IEEE ISCAS, pp. 1605 – 1608, May 2007.

[42] Ilker Hamzaoglu, Ozgur Tasdizen and Esra Sahin, "An Efficient H.264 Intra Frame Coder

System Design," IFIP/IEEE International Conference on VLSI-SoC, pp. 200 – 205, October

2007.

[43] Esra Sahin and Ilker Hamzaoglu, "An Efficient Hardware Architecture for H.264 Intra

Prediction Algorithm," DATE, April 2007.

[44] Ilker Hamzaoglu, Ozgur Tasdizen and Esra Sahin, "An Efficient H.264 Intra Frame Coder

System," IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 1903 - 1911,

November 2008.

[45] C. H. Tseng, H. M. Wang and J. F. Yang, "Enhanced Intra-4x4 Mode Decision for

H.264/AVC Coders," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 8, pp. 1027-1032, August 2006.

[46] Changsung Kim and C. C. J. Kuo, "Feature-Based Intra-/InterCoding Mode Selection for

H.264/AVC," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,

no. 4, pp. 441 - 453, April 2007.

[47] Jia-Ching Wang, Jhing-Fa Wang, Jar-Ferr Yang and Jang-Ting Chen, "A Fast Mode

Decision Algorithm and Its VLSI Design for H.264/AVC Intra-Prediction," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 17, no. 10, pp. 1414 -

1422 , October 2007.

[48] H.-M. Wang, C.-H. Tseng, and J.-F. Yang, "Computation Reduction for Intra 4x4 Mode

Decision with SATD Criterion in H.264/AVC," IET Signal Processing, vol. 1, no. 2, pp.

121 - 127, September 2007.

[49] G. Bjontegaard, "Calculation of average PSNR differences between RD curves," 13th Video

Coding Experts Group Meeting, VCEG-M33 2001.

