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Abstract

Crowd constitutes a critical component in many virtual eonment and
entertainment applications. In this thesis, we proposd&ausito solve two distinct
problems in crowd simulation domain; automatic camerarcband adaptive behavioral
modeling. As the basis of our methods, we develop a framewbi&h uses information
theoretical concepts to automatically construct anadyticaps of crowd’s locomotion,
which are called behavior maps. The developed framewortaguma probabilistic

model of the scene to build behavior maps.

In the first part of this thesis, we propose a novel automainseara control technique
which utilizes behavior maps to find interest points whigbresent either characteristic
behaviors of the crowd or novel events occurring in the sc&€he camera is updated

accordingly to display selected interest points.

In the second part of this thesis, we propose a novel betsviaydel which uses
behavior maps to control agents’ behavior adaptively wigbra-crowd interaction
formulations. Our model can be integrated into crowd sinougaand enhance their

behavioral complexity. We made comparative analyses gbtegented behavior model

with measured crowd data and two agent-based crowd simslato
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KALABALIK S IMULASYONLARI ICIN BILISIM KURAMI TABANLI
YAKLASIMLAR

Cajatay Turkay

EECS, Yiksek Lisans Tezi, 2009

Tez Danismani: Yar. Do¢. Selim Balcisoy

Anahtar Kelimeler: Kalabalik Siiiasyonu, Bilisim Kurami, Otomatik kamera kontiol

Davranis Modellemesi

Ozet

Kalabaliklar, pek cok sanal ortam vglence uygulamalarinignemli bir elemanidir.
Bu tezde, kalabalik siiflasyonu kapsaminda otomatik kamera koritra uyarlamall
davranissal modelleme problemleri icidziimler onerilmistir. Yontemlerimizin
temelinde, bilisim kurami kavramlarini kullanan ve kalh@in hareketlerinin analitik
haritasini otomatik olarak yaratan bir cati bulunmaktédretilen bu haritalara davranis
haritalari adi verilmistir ve bu haritalariretilmesi i¢in olasilik tabanli bir model

gelistirilmigtir.

Tezin ilk bdlumiinde, davranis haritalarinémg belirli ilgi noktalari bulan ve bu
noktalari gpstermek icin gncellenen yeni bir otomatik kamera tegngelistiriimistir.
Bu ilgi noktalari, ya kalabafjin karakteristik davranislarini ya da sahnede gergekle

orijinal olaylari ghstermektedir.

Tezin ikinci Bluminde, karakter bazli kalabalik sitasyonlari icin kalabaliktaki
karakterlerin davranislarini kalabalik - karakter etgim fornmulasyonlari ile
tanimlamak icin davranis haritalarini kullanan yenidavranis modelnerilmistir. Bu

model, herhangi bir kalabalik siitatoriine eklenerek, bu sighatorin daha karmasik

davranislar ortaya ¢ikarmasina imkaglsanaktadr.
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Chapter 1

INTRODUCTION

Crowd constitutes a critical component in many virtual eowment and entertain-
ment applications. Today it is common to have crowded via@ironments in massive
multiplayer online games, crowd simulations and movie \pseralizations. In order to
increase the feeling of presence in a virtual environmémetenvironment should contain
virtual crowds which must be simulated realistically andids@ably. In this thesis, we
propose methods to solve two distinct issues in crowd siiamaomain. First of these
issues is the automatic camera control methods and secerid tihre adaptive behavioral
modeling for crowd simulations.

The core element of our methods is a framework which usesnr#ton theoretical
concepts to automatically construct analytical maps ofvdf® locomotion. The frame-
work includes a probabilistic model developed in order te iormation theory quan-
titites, and the framework includes structures to producaydical maps representing

crowd’s locomotion, which are calldeehavior maps

Efficient camera control is essential to perform navigaéiod monitoring tasks in a vir-
tual environment, therefore camera control has always aeénteresting problem for the
graphics community. A recent survey by Christie and Olivigrdrovides a comprehen-
sive taxonomy of motivations and methods in camera confiralditional camera control
techniques based on user input, character follow-up optsadio not provide camera con-
trol suitable for complex scenes with hundreds of animatedacters. Hence, we need
a tool which monitors the entire virtual environment, expkinterest points and toggles
the camera between them to improve user experience whilerexgp a crowded virtual
environment. To aid users through navigational tasks irowded scene, an automated

camera should build a cognitive model on where the usmrld like to look at Such

1



an automated camera should provide sufficient informatmahiasight about the scene
being monitored. Our motivation is to find quantitative meas to determine where a

user draws her attention in an animated crowded scene.

In order to improve a virtual environment’s realism, crowadgst be simulated believ-
able in terms of their appearance and behavior. Recent aglvangraphics hardware
address the issue of photo-realistic rendering of crowdswdy¥er, due to the complex
nature of human behavior, realistic behavior of agentsowdrsimulations is still a chal-
lenging problem. Previous approaches either propose lagjolutions with high level
formulations [41] - which can simulate large numbers of agé&wever not suitable for
creating complexity in the crowd or ii) low-level scripteshmplex agent-based methods -
which are computationally expensive and requiring experdind effort in the production
phase [22]. In this study, we are proposing an analyticahtgased behavioral model
that integrates global knowledge about crowd formatioa latal, agent-based behavior

control. Principal elements of our behavioral model are;

¢ Analytical representations of crowd’s activities, whick auilt by using a statistical

model based on information theory.
¢ An agent definition responsive to behavior map values.

e Agent-crowd interaction formulations in order to contrgleats locally by using

analytic crowd representation.

When integrated into an existing crowd simulator, we belidha our model creates a
simulation with agents behaving in realistic, variable anthplex manners, without the

need for low-level scripting.

Our methods and models developed for crowd simulations eantbgrated into ex-
isting applications which involve virtual crowds and thegngprovide valuable tools to
enhance virtual environment applications. Our methodsncake critical contributions
in urban visualizations and urban design tools. In addjttbry can be integrated into
massive multiplayer games to increase the reality of the@mment and to enhance user

experience by providing automatic navigation tools.



1.1 Outline of the thesis

This thesis propose methods to solve two distinct problentsawd simulation domain.
Methods to produce analytical maps of crowd’s activitiess presented. These maps are
used to develop an automatic camera control technique aptiael behavioral modeling

methods for crowd simulations.

The thesis continues with reviewing the literature in retfields. As two distinct prob-
lems are handled in this thesis, related studies are rediewe/o distinct categories. First
part of Chapter 2 looks into automatic camera control stugéfrmed in a number of
different computer graphics related fields. This chaptealiies with a detailed analysis

of behavioral modeling approaches that have been propogbd literature.

In Chapter 3, our crowd analysis framework is explained irailedVe begin by in-
troducing information theory quantities that will be usedour methods. Secondly, we
present our probabilistic model which uses agents in thevdras random variables to
perform information theory computations. Finally, we oduce the notion of behavior

maps and give details on their construction and interpoetat

Automatic camera control technique based on interest pailiected from behavior
maps to aid navigation in a large crowded environment arereavin Chapter 4. This
chapter first introduces the theoretical foundations of siudies on automatic camera
control. We then present our camera control algorithm ardldp techniques to produce

an automatic camera for crowd simulations.

In Chapter 5, we present our behavioral model based on behadps for agent-
based crowd simulations. We begin by proposing a generiatagpresentation to access
behavior maps. Secondly, a set of agent-crowd interactamdlations are introduced

and finally, we define certain analogies used in our behawooael.

Chapter 6 presents the results obtained from both of theestu@iur automatic camera
control technique is examined under certain scenariostamerformance is discussed.
Our behavioral model is tested with a number of comparateaarios concerning real-

world data and two different crowd simulation systems.

3



Finally, Chapter 7 provides conclusive remarks on the stuanel results. In this chap-

ter, possible future study directions are discussed.



Chapter 2

RELATED WORK

Both of automatic camera control and behavior modeling fowds fields involve exten-

sive literatures. Therefore, we will review these fieldsssafely.

2.1 Automatic Camera Control

Several aspects of camera control paradigm have beendindree literature, we will try

to review studies in which the expressiveness of the cansdravéstigated. There have
been notable studies in manipulating the camera with réspddferent user preferences.
Blinn introduced an algebraic approach [4] to place certhjeds at specified locations
in the scene. Gleicher et al. proposdough the lensamera control [9], in which

the user chooses feature points and their desired locadi®iseen from the lens of the
camera. Due to the difficulty of the problem, there were atisnto put some constraints
and perform higher level camera contrdhe Virtual Cinematographdsy He et al. [10]

proposed film idioms, each of which decodes cinematograptpertise and responsible
for particular scene organizations. They organize thesenislin finite state machines to
compose shots and transitions. All of these techniquesreegupert users or predefined

constraints and not suitable for dynamic and crowded scenes

A different group of researchers are interested in findingsnees to evaluate the visual
quality of the view and manipulate camera parameters toigeeahe best available shot
[16, 1, 20]. Most of these algorithms focus on viewing a stngbject and aim to find
the best view on a sphere around this object. Although thevees on a sphere is not
directly applicable, the idea of finding a good view is relg@v@ our problem. In some of

these studies, information theory based metrics have prtavee successful. The most



notable metric in this category is calle@wpoint entropyproposed by ¥zquez et al. [44]
which expresses the amount of information in a selected.viéwy define their metric as
the ratio of the projected area of each surface to the total afrall the surfaces projected
to the view sphere. An extension of this work for time varyiadumes is done by Ji et al.
[15]. They find best views of a volume data in each frame by eaing viewpoint entropy
measure and do a smooth transition between good views agtiohes. A recent and
interesting study by Kwon et al.[19] determines camerarpatars for a single animated
character. They proposedotion areawhich is the total area swept by the joints of the
character projected onto the view plane. By maximizing thagiom area, they achieve
to display the motion of a single animated character effeti One application where
the camera is manipulated automatically to capture somet®ve done by Stoev et al.
[38]. They developed an automatic camera control mechafaswisualizing historical
data where the timing and location of events are pre-defiféry maximize both the
projected area and the normalized depth of the scene tot sepmod view as camera

moves between pre-defined locations.

2.2 Behavioral Modeling for crowds

An overall idea of the challenges and improvements in crawdigition can be obtained
in [40]. There are several behavioral models proposed iritdr@ature and a survey by
[17] covers most of these studies. There have been manyestodi agent-based crowd
models to create human-like behaviors. Seminal works of Bégrused behavioral mod-
els considering local rules [28] and create emergent flgckii] behaviors. There is con-
siderable work on agent-based crowd simulators incorpgyasychological models and
sociological factors. In [21], they model social group analnd related behaviors. Their
main focus is a layered framework to reflect the natural paié human-like decision
making process. [29] tried to improve the quality of agertdwor by adding theories
from psychology. In their work, they tried to produce moralisic collision avoidance
responses. [22] developed virtual human agents with imesit beliefs, knowledge and
perception to create a realistic crowd behavior. In [25ythssigned psychological roles
and communication skills to agents to produce diverse aaltstie behaviors. In a more
recent work, [24] created an improved model by using psyajioal and geometrical

rules with a social and physical forces model. [12] propaaeddaptive crowd behavior



simulation, where he defines a static behavior context Iaj#ren the behavior context
is altered with a predefined event, the new context adaptiaeibits certain behavior in
agents. However, this scheme is not suitable for dynamic@mwients. There are studies
which model the virtual environment as maps to guide agdmbaviors. [33] mod-
eled the environment with topological, perception and padips to generate autonomous
agents. [8] used adaptive roadmaps, which evolve with thawmyc nature of the environ-
ment. In [39], they assign situations and behaviors diydotenvironment rather than the
agents themselves. The concept of behavior maps have beémumbotics and vision
field. [7] defined behavior maps as encoding context infoionaif the environment, and
use these maps to autonomously navigate a robot on rougintei3] used behavior maps
to encode probabilities of moving in a certain direction aspacified location and used
these maps to track trajectories of people and to detect alfesin people’s behaviors.

In their study, they used expectation maximization al¢pons to detect anomalies.

We integrated theories from behavioral modeling and boebisleas from studies rep-
resenting the environment with guidance maps. To comp@setimaps, we employed
guantities from information theory. Information theorywhaeen introduced into com-
puter graphics field by [44] which expresses the amount ofmétion in a selected view.
In a recent study, [42] used information theory based foatihs to automatically con-

trol the virtual camera in a crowded environment.



Chapter 3

INFORMATION THEORY BASED CROWD ANALYSIS

In this section we will introduce the information theoryrrawork which constitutes the
core of our automatic camera control and behavioral modefiathods. We will begin by
introducing the information theory quantities we haveizgi in this framework, we will
continue with proposing the probabilistic model developedrder to use information
theory quantitites, and finally, we will explain how the poged structures are used to
produce analytical maps representing crowd’s activitMdsch are calledehavior maps

An overall figure displaying our information theory framaka@an be seen in Figure 3.1.

3.1 Information Theory Quantities

Information theory deals with quantification of informatiolt has been used in a wide
range of areas such as computer science, physics, biolagyataral language process-
ing. The key measure in information theoiryformation entropywhich defines our cur-
rent understanding of information, is proposed by ShanB@h [Let X be discrete ran-
dom variable which takes values from sewith probability distributiorp(z) = Pr[X =
x],x € x. Entropy,H (x) of random variable X can be defined by:

H(z) == p(x)logp(x) (3.)

TEX
Entropy is a measure of uncertainty of a random variableradviges us with an insight

about how likely a system produces diverse outcomes. Namsiystem with low entropy

tends to yield same outcomes in successive tries.

Another critical concept for our measurement&igliback — Leibler diver gence (KL)

[18]. Take two probability mass functiongrf) p(z) andg(x), divergence betwegmmfs

8
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Figure 3.1: Behavior map construction. 1) List of agents itsaeted by our model from
the crowd simulator. 2) Activities of the crowd are mappedhe underlying grid to
form the current distribution function of the activitiestbe crowd 3) Older distributions
are merged with a temporal filter. Entropy mapof the scene is built by calculations
on mergedomfs from (t — An to t). 5) Expectance maps formed by calculating KL
divergence between the probabilistic model and the cudisiribution. 6)Density map
is formed by calculating the current densities on a specélt &) Behavior maps are

blended with user-defined weights to construct combinedsmap

p(z) andg(z) is given by:

.T
D(pllg) == p(x log ) (3.2)
rEX

which is a non-symmetric metric expressing the differenesvien two probability dis-
tributions. Given therue distributionp(z) of data, KL measures the loss of information
if we useq(x) instead ofp(z) while coding a sample. For further reading on information

theory, please refer to [6].



3.2 Probabilistic Model

In this section, we introduce a probabilistic model wherthispatial and temporal dimen-
sions of crowd’s activities are taken into consideratioat A = {a,, as, ..., a, } be the set

of agents present in a simulation, wheregepresents a single agent. Physical properties
of an agent can be described@s= {u,v : u,7 € R?} whereu defines the position
andv defines the velocity of agemt. All the agents’ movements are projected onto the
same plane and the calculations are done on a 2D map, so kb#sefvectors are iR?.

We classify the activity of an agent by: the location the dgemn, the direction of the
agent’s movement and the speed the agent is moving withef@iitpmf structures are
used to capture these characteristiémfs for direction and speed values and how this

values are mapped into the correspondings are explained below ;

o Pi(x)=Pr(X =2x),z€{0,1,..,n}
Values of random variable X in thismfis found by quantizing the normalized
velocity vectors (belonging to an agem) into one ofn categories{T is categorized

by function;

0 (7) = {{{74 a, O>/(27T/n)J neN, 0<n<2r) (3.3)

which finds the angle betweenand (1,0) in a 2D Cartesian coordinate system
and finding which interval this angle is in. The valueroéffects the quantization

resolution.

o Piz(x) =Pr(X =2),2€{0,1,..,n}
Assuming that| ¢ || is in the rangéa, 0], i.e. the agents move with a speeddnd],

function
0 if |7]<a

@) = 7] /m] ifa<|d|<b (3.4)
n ifb<|| 7
calculates which value will the random variable X will takepending on the mag-
nitude of velocity vector. The value in the above definition is dependent on the
values ofa, b andm. If the rang€a, b] is large,n can be made lower by quantizing

this range withm.

10
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Figure 3.2: Two types opmf used in our model. Notice that = 4 for both of the

distributions.

The abovepmt are illustrated in Figure 3.2. We merge these pats into a single
pmf Py, with a user defined constamj which distributes importance to direction or speed
distributions, as:

Py = aP; + (1-— Ot)P”g” (3.5)

This combination provides the user with a degree of flextipilo choose which of
these distributions to put emphasis on. Asis taking samples over a period of time, a
Gaussian shaped filter is applied to control the importaneango temporally cumulated
distributions. Let; andt, be two time steps wheng — ¢; = nAt andn € N*, temporal

filter is applied as;

PR = NPP + MNP 4 A P (3.6)
1 —(n—p)?
Ap = e 2 ,u=0 (3.7)
ov2rm

where,n is defined asistorical depthdefining the maximunageto consider, whileage
meaning the time passed from the moment the distributior lo@eurred. At defines
the time interval between two adjacent frames. Theonstants are aging coefficients
and they are calculated by using Gaussian distributiontifom¢3.7) withy = 0. These

values can be interpreted as a Gaussian filter applied inaexhgomain. By changing

11



the variance of the distribution function (i.e. by changirfy, importance given to older
distributions are manipulated. Choosing a lower variangegjiess importance to older
distribution, making the model highly adaptable to curremanges but leaving it more
prune to noise. On the other hand, a higher variance createslal that slowly evolves

over time; i.e. only large changes have effect on the modelediately.

Having this temporal probabilistic model in hand, we neeeiiend our model to cover
the spatial characteristics of activities. To accompligk,ta 2D gridG is placed on the
scene.GG containsw rows andh columns, where each cell is a square with side lenhgth
The grid is adjusted to cover all the extent of the scene, atetvery activity on the scene
takes place inside this sampling grid. We combine the teaipoodel we have developed
with this grid to end-up with a 2D map carrying temporal dirsien. We define the state

of the gridG at timet as,

G'={gf;; 0<i<w, 0<j<h}

gt _ {Pﬁ(t_nAt)_)(t_At), Pﬁt,}

Every cell,g;?’j in grid G contains twopm§; one extending back time steps from
timet — 1, and the other characterizing the distribution at tim#/ith this definition, we
categorize activities depending on their spatial charasties. The spatial categorization
process works by assigning the agent to the corresponging his spatial categorization
finalizes our probabilistic model which takes both the spathd temporal properties of
activities into consideration. At each time step, an agens assigned to a cell in grigf
and agent'si,., is transformed byy, ¢ given in equations 3.3 and 3.4, to be included as
samples in probability distributions associated with. In this manner, the probabilistic

distributions are computed and evolve over time.

3.2.1 Behavior Maps

Behavior maps are analytical representations of crowdisibes which span over the
whole virtual environment and monitor agents’ locomotiamidg the simulation. A be-
havior map,B, is a 2D grid, consisting ofv rows andh columns, where each cell is

associated with the corresponding cellirto access to thems in this cell.
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The information theory quantities, probability distrilmrt functions and the temporal
filter mechanism are utilized to construct the behavior mapscalled asntropyand
expectance maplin addition to these maps, we also build a density map stgpivia
density of agents and finally, create a combined version ege¢hmaps to give user a

control over behavior map construction.

3.2.1.1 Entropy Map

Entropy measures the uncertainty of a random variable ctrwotion of an agent is con-
sidered as the random variable, entropy values represembaignitude of predictability
of crowd’s movements. Entropy values denote whether ageot® independently or in
a group. Locations with smaller entropy values denote whgents move with similar
velocities. Conversely, locations with higher entropy esluepresent disorder in agents’
locomotion. To build an entropy may;, we begin by considering a random variable,
X, (i,j indicating location o), drawn according tpmf (P, "2, . Then,E can
be defined as;

E'={H(X;;) : 0<i<w, 0<j<h} (3.8)

, WwhereH (X ;) is the entropy ofX; ; as defined in Equation 3.1. Figure 3.3 illustrates
how agents’ locomotion determine entropy map values. Mdtat entropy values are

lower in zones where crowd has similar locomotion.

Historical
Probabilistic Model
Agents (A") pnA) — (t-A0) Entropy Map, E
o, o Sl—|—
$ |
f &ft T l l N
IIK.N. —>% -1l !
Nefernsy 09
s ) R J

Figure 3.3: Crowd’s movement and corresponding entropy nadyes. Selected zone

indicates lower entropy values
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3.2.1.2 Expectance Map

Probability distribution of crowd’s activities defines ttlearacteristics of locomotion that
are likely to occur at specific locations. We define the dsition of crowd’s locomotion

from time (¢t — nAt) to (t — At) by pmf pg(t*nAtP(tht)

introduced in Equation 3.6 and
the current distribution of crowd’s locomotion at timey P.'. We use these twpmf in
Equation 3.2 to calculate KL divergence values. These gatoastitute the second type

of behavior map calledxpectance mageExpectance maj L is defined as;

KLt — {(D(Pﬁ(t—nAt)—(t—At)||Pat))l_7j -0 S i< w, 0 S] < h} (39)

KL values indicate the difference between the currentithstion and the cumulative
distribution of crowd’s locomotion. Use of KL divergencelwes to indicatesurpriseis
proposed in [13], where they use KL divergence values toodescsurprisingevents in
video. They employed a principled approach to prove that K& powerful measure to
represensurprise We use KL values to indicate unexpected, surprising crawcohé-
tions. In an expectance map, cells with high KL values desotprisingactivities taking
place at those locations. At cells with lower KL values thatestof the crowd remain
asexpected Figure 3.4 displays that expectance values are high atidosawhere the

current distribution is not “similar” to historical dishuition.

3.2.1.3 Density Map

In addition to information theory based mapsjensity mapF, is also included in our
model. This map indicates how crowded a specific locationlnsorder to produce a

measure that is less prune to noise, the temporal filter a@eiim®.7 is also applied oA'.

»J

where f is a function giving the number of agents on location between time steps
(t — nAt) and(t — At).
3.2.1.4 Combined Behavior Map

Each behavior map produced so far addresses differenttaspehe activities of crowd
and as a result, each map has certain effects on an agenéigitsehTherefore, agents

should access all the maps and behave in response to allmf e build acombined
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Figure 3.4: Crowd’s movement, historical distribution, reunt distribution and corre-

sponding expectance map values. Selected zone indicaggpentied event, where there
is high KL values

behavior mapwhich is a convex combination of entropy, expectance anditlemaps
This map can be formulated by;

t t t t
C" = {w * €;; +wa kKl ; + w3 x f; ;

(3.11)
:ngn<1,w1—l—w2+w3:1,O§j<h}

, Where eachw; represents user-defined weight values to determine theilmaidn of
each map in the combined version.
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Chapter 4

AUTOMATIC CAMERA CONTROL

In this study, we propose a novel automated camera conttbhigue for large and
crowded virtual environments on top of the scene analyaméwork introduced in Chap-
ter 3. This framework can be included into game engines ovatyal environment sys-
tem to automatically aid camera control by using the behraniaps we have developed.
These behavior maps give us quantitative answers to quesiidhat are the charac-
teristic behaviors of the crowd?”and “Where are the novel events happening in the
scene?’ Utilizing the calculatecentropy map camera makes a tour over zones which
display characteristic behaviors of the crowd. And, in aafsa novel event, by analyz-
ing theexpectance mapamera moves to the location of this novel event and caphere t

moment of surprise.

4.1 Conceptual Foundations

The notion ofinterest pointss very suitable for our camera control problem. We borrow
the idea of interest point from computer vision domain. Ibigefly “..any point in the
image for which the signal changes two dimensionally.” [30ur understanding of an
interest point in this work have to be more extensive thas dleffinition. Unlike a static
image, a scene full of dynamic objects; or specifically, abtars as in crowd simula-
tion, carries both spatial and temporal characteristicsddfine interest points in such a
multi-dimensional domain, more comprehensive terms coitoeglay, namelysaliency,

novelty andsurprise.

Saliency and novelty are essential terms to understand heweasceive information

and guide our attention while we are viewing visual imagessafient feature can be
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briefly described as a spatial point standing out to be “cBff#’ then its surrounding [45].
Salient features have been shown to attract human attebtistudies in neurophysiology
and vision [14]. In other words, a salient point can be intetgd asywhere you would like
to look atin a visual image. But saliency alone is not adequate to angwseguestion
on a temporally dynamic scene. Novelty complements sgliamtéemporal dimension
and defines an event which have never occurred or occurssesioovel[36]. Novelty
detection works as follows: a model of the system is formed laasis by examining the
behavior of the system over time. Having this base model ndhaurrent status of the
system is evaluated and examined if any novel event is extidiovelty detection can be
interpreted as detecting salient features on temporal otoritt et.al combine these two
complementary terms and come up with the notioswfprise[13]. They define surprise
as the change in the observer’s belief after the currentsiatobserved. To calculate
the surprise of a system modeled with distribution M, Kutlba Leibler divergence (3.2)
between prior distributior? (M) and posterior distributio?(M |D) is measured after
current data is presented. They worked on video images to detect sungnmints and

proved that these points correlate with human viewer’s egeaments.

4.2 Camera Control Methods

The entropy and expectance maps are utilized to controlaheera. At each time step,
an interest point is determined either from entropy or etquame map is chosen and the
camera is toggled to display this interest point. The carcensrol algorithm is described
in Appendix B. Figure 4.1 displays how interest points areceld to update camera

accordingly.

Capturing unexpected events: In the first phase of the algorithmy, threshold value
which is an adaptive threshold, is calculated. It is foundstoyingn lastkl,,., values,
wheren is thehistorical depthvalue we have mentioned before. L€} be the mean of
thesekl,,.. values, anar}, be the standard deviation;, is calculated byr{, = uf, —
or,;- The maximum expectance valud,,. is selected and compared witly. If the
selected value is larger than this threshold, it is markeahasaterest point, which can be

interpreted as aalientlocation where there is@ovelevent.
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Figure 4.1: Interest point selection for camera control

Displaying characteristic behaviors of crowd: If there is nokl value marked as an
interest point attention can be drawn to locations where the charactevesnmoreto-
gether i.e. cells with lower entropy values. Under these condgjaamera makes a tour
over low entropy zones, until sonmovelevent occurs. To have a continuous tour over
low entropy points, our method keeps track of the alreadyedgoints. At the beginning
of the entropy tour, cell with the lowest entropy value is 1 and in each step of the
entropy tour, camera starts to search unvisited zones ireitgiborhood beginning with
the direction of crowd movement. And entropy values are kbg@@gainst the adaptive
threshold value, which is also an adaptive threshold, calculated the sanyeawa!,,
usinge; ; values. Visited nodes are kept in a stack, in order to notsd same zones
again. Whenever a point from expectance map is chosen, tlhedvwede stack is cleared

to make camera ready for a new tour.

Camera placement: After one point of interest is computed, a good view to thi;ipo

have to be calculated. We use a three-parameter camera mbadl represents the
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Figure 4.2: Given a fixed field of view and viewing angle3, the camera should be
placed appropriately to cover a square zone with sidetsrgeted at point. Firstyp’ is
recovered by findingl andr geometrically. Final positiop’ is found by incorporating

pre-calculated angle

camera with its position, aim direction/ and up-vectorii Whereﬁ,fﬁ € R3. The
camera placement problem is shown in Figure 4.2. Aftes found ,0 angle is calculated
to make the camera look in the direction which is found to bstfrequent direction of
crowd movement in the underlying grid. Final position of tteanerap is computed by
rotatingp’ with 6 degrees on the calculated circle. The second parameter chmera,

[, is determined by usingand P. Finally, camera’s up vectof, is adjusted properly
that the camera never turns upside down through its intatipol. Using and the current
aim vector of the camera a quaterni@is built to interpolate the camera rotation using
SLERP, proposed by Shoemake in [35]. While the camera is mgtatimoves from its
current position to the calculated positipfollowing a quadratic Bezier curve for smooth

translation.
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Chapter 5

BEHAVIORAL MODEL FOR CROWD SIMULATIONS

Interactions with a crowd are important psychological dastwhich determine how hu-
mans behave [2], however “agent-crowd” interactions ateconsidered by agent-based
crowd simulators. In these simulators, an agent interattts ather agents and with the
environment. In order to formulate agent-crowd interaican analytic representation
which displays both of the spatial and temporal dynamicsroivd is required in our

model.

Agent-based behavioral models use rule sets to mimic cepeiisonality properties
like aggressiveness, shyness etc. As stated in [34], paligostructure can be static but
its behavioral output changes greatly under specific cistantes. Therefore, an agent
should reflect its personality differently under differeonditions. Such a representation
should contain intrinsic properties that are altered ipoese to dynamic and static sim-
ulation elements which should also contain a dynamic crapdasentation. As agents’
intrinsic properties are altered in response to the dynamorditions, there should be

formulations to determine agents’ behavior accordinglghese internal changes.

Our proposed behavioral model is foundedo@havior mapsntroduced in Chapter 3
which represent activities of the crowd. To utilize behaviamps, we borrow ideas from
behavioral mapping technigues used in psychology resedrslse technigues involve
place-centered maps, which keep track of behavior of iddads within a specific space
and time. These maps display how and when a place is beindate@d(37]. The second
element of our behavioral model is a generic agent reprasentwhich can access be-
havior maps and modify its intrinsic properties. We finatyyrhulate how agents respond

and behave according to their intrinsic properties andWiehanaps within the limits of
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the crowd simulator’s capabilities. Consequently, we achagents behaving adaptive to

current simulation conditions.

Beneath all this high level structure, we utilize a multi-aigeavigation system to solve
agent-agent and agent-environment interactions throoljeion detection and path plan-

ning algorithms. Our model can extend any existing ageseth@arowd simulator.

Our model provides global knowledge on crowd’s activitied anables the crowd sim-
ulator to incorporate agent-crowd interactions to modggrts’ behavior. Behavior maps
constitute the foundation of our model. They record anditally represent crowd’s
activities. Second element of our model is a generic ag@nésentation to access behav-
ior maps. The final element in our model is a set of formulaitmlink the underlying
crowd simulator with behavior maps. We customize the agemteisentation to fit into
the current crowd simulator’s features before develophaseé formulations. Prior to
performing tests and using our model in crowd simulatiomades, we define certain
analogies between analytical maps, agent representattbagent-crowd interaction for-

mulations. Figure 5.1 illustrates the overall structurewf model.

5.1 Agent Representation

Agent based crowd simulators have access to several matgines and animation sets
which define behavioral output types. These types can range lbasic behaviors like
changing direction, to complex behaviors like spreadingusders to clear its path. The
feature set of the crowd simulator and the underlying agedehdefine the complexity

of agent behavior. In our behavioral model, we need a gergent representation to

fit into any type of agent based crowd engine. Our agent reptagson includes two
properties, ippehavior statevhich enables interaction between agents and behavior maps
and ii) behavior constantto determine agents’ behaviors in combination with behavio

State.

Behavior statef, is the behavior map cell value assigned to an agent. Agentiseo
same cell of the map share the same behavior state. As benaapvalues are altered

temporally and spatially, these values are used in agemtecinteraction formulations
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Figure 5.1: Overall structure of our model. 1)Locomotionagents is extracted from
crowd simulator to produce behavior maps. 2) Agents argasdia specific cell value. 3)
Agent’s intrinsic properties are modified with behavior nvapue. 4) Agents are handled
by crowd simulator to determine their physical properti@sAgent list is updated in the

next time step

to adaptively control agents’ behavior. Behavior constafitare agent specific values
which are evaluated as personality attributes. Each featuan agent which we want to
control adaptively is paired with a behavior constant. Byigaseg an f value, behav-

ioral complexity of an agent is extended and by varyjngalues, responses of agents to
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behavior map values are varied. Behavior constants can bedesjas a mechanism to
create complexity and variation in crowd. To wrap up thesecepts with an example,
assume a crowd simulator where agents have the feature afisggewhich we denote as
po. In our representation, a behavior constgptdefines how easy an agent sweats. And
[ values adaptively control when and where an agent will sw€aé agent representa-
tion is extended to include these properties, in additiophgsical properties, which are

position,u, and velocity:

a; = {U,U, ﬁa <f0>p0> ’ <fnapn> : ﬁ) fn € [07 1]\7 TL} (51)

pn 1S @ symbolic representation to indicate a feature assatiaitha;. A single(f,, p,)
pair represents,, is controlled byf,. Notice that for each{f,, p,) pair, a formulation

should be developed to define hginand f,, values controp,,.

5.2 Agent - Crowd Interactions

Our behavior model introduces agent-crowd interactiots agent based crowd simula-
tors. In order to integrate our model, we first need to custertiie agent definition given
in Equation 5.1 according to the capabilities of the crowdwator. This representation

is then accompanied with formulations to define how agentsllesbehavior map values.

In this study, we use Reciprocal Velocity Obstacles (RVO)tiragent navigation sys-
tem introduced in [43]. We extended this system by implemgrdomposite agentsro-
posed in [11]. A composite agent;, is a special agent equipped with a proxy agent,
to model a number of emergent behaviors realistically. Apragent is a virtual agent,
which is visible to all agents in the simulation except itsquda;. r; moves according to
a;'s preferences. For example,df wants to move in a certain direction, is placed in
that direction to clea#;’s path. With this mechanism; can display particular behaviors.

The featuresp,,, of the underlying simulation system can be listed as;

e d: Distance between proxy agent’s positiofju|, anda;’s positionu. The longer

the distance, the further, can proceed with less collisions.

e s : Radius of the circular areg occupies. The larger the area, the easjeran

move.
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Figure 5.2: A composite agent, its associated proxy agent and certain features of

agent representation

¢ 4, This is thepreferred velocityf an agent;. Itis the optimal velocity that would
bring the agent to its goal. At each time step of the simutatigis calculated with
respect to agent’s goal and then modified by the navigatistesydue to collision
and path following constraints. We modify’s direction with a normalized velocity
vector,v;,, which is calculated with respect to behavior map valugss calculated
as a vector leading to lower entropy zones found as a resatlotal search on

behavior map.
e m : Indicates agent speed.

¢ ) : Indicates safety factor which is the range considered lggamt while calculat-
ing possible future collisions. With a high safety factor,agent considers a higher
number of possible collisions and behaves more careful h@wther hand, with a
lower safety factor the agent becomes reckless and caestidhigher possibility

of making collisions.

After stating the features of the underlying simulator, veéirte customized version of

the agent representation proposed in Equation 5.1:

a; = {type,u, v,ri, 3, (fo,d) , {(f1,5) , (fo, Up) ,
<f37m> ) <f47§> : ﬁp € Rz;fnaﬁadas € R}

wheretype indicates whether the agent is a composite or proxy agech Egalue with

(5.2)

their associated feature is given as pairs. A figure to riéustthe customized agent defi-

nition can be seen in Figure 5.2. The next step is developieagdrmulations to include
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behavior state}, and behavior constants, values. The formualations are determined by
considering the anologies related to behavior maps and hsidering the requirements
of the final simulation. We develop formulations to represagent-crowd interactions

for agenta; as:

B = kB;;
= Vo dunaw + duin
s = \/m Smaz t Smin
By = @+ BB To8 Mimas + Mimin) 5.3)

(=%

=V f4ﬁ 5ma:c + 5mm

wherek is a constant to normalize values,B, ; is the current behavior map value at cell
{i,j} and @) is the optimal velocity leading to agent’s goal. Each propéas a user-
definedmin andmax value to keep the values in a certain range. Certain featdres o
agents with their associatgdvalues and the effect of the formulations are illustrated in

Figure 5.3.

Vp

Figure 5.3: Effect off and values to their associated agent features

Static Maps In addition to the dynamic behavior maps computed autostiby anal-
ysis of activities of agents, our model also allows “temfigratatic behavior maps”.
These maps are user-defined maps, which can be utilized reease the probability of

certain behaviors in specific locations of a virtual envimamt. Designers can create
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static maps, convert them into any type of behavior map aed fikem into the simula-
tion to effect how agents behave. These static maps can alsgdd to define certain
events in the simulation. To illustrate, a static expeatama@p consisting of high values
(high surprise level) can be toggled in a predefined timedaterthe effect of heavy rain

which can be regarded as “unexpected”.

5.3 Analogies for Crowd Simulations

We define analogies between the interpretations of analyhaps withf values in order
to produce realistic crowd simulations. We interpret thalgiical maps of our model as

seen in Table 5.1.

Table 5.1: Analytical maps and their interpretation

Analytical Map | Behavioral Interpretation

Entropy Predictability
Expectance Surprise
Density Population

In the simulation, our agents can have aggressivenessraraiéfulness properties. To
create certain agents which are aggressive and carefulelate features of agents and
formulations withf and $ values. In Table 5.2, these behavior types with their rdlate

features and values are listed.

Table 5.2: Behavior types, related features gn@lues associated with these features

Behavior Type  Feature f

Carefulness ) fa

Aggressivenessd, s, v,,m  fo, f1, fa, f3
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Figure 5.4: Carefulness is determined dgnd this chart shows the relation between
values, f, and the resulting values. Notice that; (F), fs (F) and g, (C) values are
proportional withd, however3, (KL) values are inversely proportional with §,,;, and

Omaz are user-defined values

The interpretations of behavior maps are used to define hemwtagespond to them.
In areas with high entropy, where agents’ locomotions arerde, agents become more
careful to avoid collisions, and they become more aggressivget through these re-
gions as quickly as possible. As the expectance map indithgéelevel ofsurprisein a
specific location, aggressive agents do not panic and behawe goal-oriented by pre-
serving their optimal velocity;;, and enlarge, d andm values in order to display their

aggressiveness. On the other hand, {ghvalues make an agent less careful. Notice

Low KL High KL Low KL
(surprise zone)

Figure 5.5: Responses of agents to expectance map
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that, while carefulness is proportional to entropy valuess inversely proportional to
expectance values. Thereforg, values should be chosen with respect to the behavior
map. Figure 5.4 displays the relation betweggn 5 values per behavior map type and

0 values where values determine carefulness. Responses to density magbaydsow
agents react to populated areas. Less aggressive ageitsi@weded places and theij

is modified to lead them to less populated zones.

Figure 5.5 illustrates how agents respond to expectanceanapcro level. In this
figure, a; is an aggressive agent anglis a calm agent. In time interval, a; anda,
behave identical. Iri,, they enter a high KL zonea; responds by enlarging and d
values to keep it$, as close as possible to optimal. Howewer,mimics a panicking
behavior and behaves in an unexpected mannets,Atgents return to their initial state.

Notice that at the end af, a, proceeds further.
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Chapter 6

RESULTS

We run a number of tests to demonstrate our model’'s perfarenan a system with Intel
QuadCore 2.8 GHz and Nvidia GeForce GTX-280. We run two diffeisets of tests
for evaluating the performance of automatic camera coranol behavioral model for
crowd simulations. We begin with the tests for automatic eantontrol, followed by the
set of tests to evaluate our behavioral modeling system. migemented two different
rendering platforms to visualize our results. One platferonks on OpenGL with simple
models and environment to provide easily observable iestithe other platform works
on DirectX and it provides a virtual environment with detadilmodels and a complex
environment. This module enables us to evaluate our methalstate of the art crowd

rendering system.

6.1 Tests for Automatic Camera Control

We tested the effectiveness of the developed automaticreacoatrol techniques on a
number of different scenarios. We implemented a real-tinogvd simulation environ-

ment using a modified version of OpenSteer library [26]. @gtg are grouped into two
categories; showing the characteristic properties oftbed and displaying novel events

occurring in the simulation.

Displaying characteristic behaviors of crowd: In our first test scenario, crowd move-
ment forms patterns over time while no unexpected eventasroog. Hence, expectance
map contains low values below the adaptive threshold andn&thod chooses interest
points among low values from the entropy map. Storing wis#tenes in a stack enables

the camera to make a complete tour over the low entropy zdinisseen in Figure.6.2-1
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Figure 6.1: A sample screenshot from our test environmeaiteedishot shows selected

viewing angle.

that camera follows a path over low entropy zones which spwads to locations where
the crowd moves in an apparent pattern. The thresholdindgpamesm prevents the cam-
era from considering vague patterns in the scene, thus ¥@ifalse positive zones are

avoided.

Table 6.1: Expectance map values of a cell where a scriptedpacted event occurs at

t,. Value of? modifies temporal filter

t to i3

c>=0,1 0,292 0,046 0,021
c>=1,0 0,314 0,164 0,06
c?=5,0 0,306 0,245 0,167

Capturing unexpected events: As it can be seen in Figure 6.2-2, whenever there is a
high value in expectance map, camera moves to that locatiorediately and retains its
position until a new unexpected event occurs or the currgatest point loses its impor-
tance over time. The duration, attention span, for the saraetdéo remain interesting
(to illustrate, duration betweefy—ts in Figure.6.2) is dependent on the temporal filter

parameters we are applying in our model. If we set the tenhfitiea to give higher im-
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Figure 6.2: Example of moving camera with accompanyingyamimaps from time;

to t14. The circles represent visited points at the indicated t#teps. 1) There is no
unexpected event. Camera makes a tour over low entropy zowkeafeer all the low
entropy zones are visited, restarts the tour. This tourla@yspcharacteristic behaviors
of the crowd. 2) At timef; number of characters enter the scene from pdirind this

is interpreted as an unexpected event and the camera inelgdj@es to the location
of the event. 3) Between time stefgsandtg characters keep entering from A and this
activity becomes a pattern in the scene, so the point is terfareted as a surprising event
anymore. The camera continues its tour over low entropy i an updated entropy

map.

portance to past distributions, the attention span is Ioagéhe unexpected event effects
the underlying model slowly. In Table 6.1 we investigafé values of the same interest
point over a period of time for different? values of the temporal filter. Higher variance
values creates a filter which also takes older distributinttsaccount. The results show
that with increasing variance, the corresponditig values decrease more slowly. The
variance of the temporal filter can be modified to suit the se#dhe application. Fig-
ure 6.2-3 displays how the camera behaves after an unexipeatait vanishes. As the
stack for visited nodes is cleared at this instant, camengesito the location with lowest

entropy value to start a new tour.

31



Camera placement: To view the computed point properly, camera is placed to icove
the entire area of interest. The direction of most dominemwd motion at the inspected
location is chosen as the view angle. In Figure 6.1, the ssledewing setting can be
observed. The camera looks in the direction of characteremewt to give more insight
about how the crowd behaves. This view selection mechargsnibe accompanied with

other metrics which can be user defined entities based omaeaitographic concepts.

For different sampling grid resolutions, the behavior of ouethod varies. While
smaller resolutions provide better analyses for captumngyo events, a higher resolu-
tion performs better for detecting macro events. If the eizzsingle cell of the sampling
grid is large i.e. the resolution of the grid is low, a largenher of activities are stored in

a single cell, so micro events have minor effects on the dhaisdribution of a cell.

6.2 Tests for Behavior Modeling

Formulations in our behavioral model constitute of sim@&alations, therefore we ob-
served that integration of our model into a crowd simulatoesinot bring significant
computational overload. The number of agents which canrhalated with our model

is limited by the crowd simulator we use in our simulations.our tests, we use com-
bined maps introduced in Section 3.2.1.4. We observe thatlag values for each map
performed successfully in most of the scenarios. Howeveighis of each behavior map

can be adjusted according to the effect which a designersatantreate. Our model

Figure 6.3: In this screenshot, red diamonds indicate agye agents
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Figure 6.4: a) Chart showing flow vs. width of room exit b) Sas®ot of a real-world
scenario c¢) Screenshot from our test environment with lggsessive agents d)Clogging

occurs when agents are more aggressive

and the underlying crowd simulator require a number of patars to be set before per-
forming a test. We build a GUI-based editor to interactiveiter behavior constants
and crowd simulator parameters. This authoring tool ersatble designer to disperge
values over the agents to create variation in crowd inteelgt The physical properties
of the environment, goals and roadmaps are handled by thel@ionulator. Results of
the following tests can be found in the accompanying vide@creenshot from our test

environment can be seen in Figure 6.3.

Test-1 We perform a test to prove the validity of our approach by agarmson with
a real world scenario. We used room evacuation videos aradptatiuced by [31] in
Research Centefilich, Germany and made available in [23]. These videos oredbke
flow of 60 students while evacuating a room with a variable exith. \We measure the

flow of our agents with the formuld = AN/At, whereN is the number of agents adxt
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is calculated as the difference between the evacuatiorstohhe first and the last agent.
As the video incorporates students evacuating the roomlygalra set low aggressiveness
to our agents. Screenshots from our test environment, te\and the resulting flow/{
vs. width of the room exit chart can be seen in Figure 6.4. Weenke that our results
are consistent with the real world case. We made furtheregwdth this scenario setting
and instead of adding calm agents, we add aggressive agémthée room. Agents are
competing more to get out quickly in this case, as a resugigitag occurred through the

exit (Figure 6.4).

Test 2 - Comperative Test

Flocking Model

Figure 6.5: A comparative screenshot for RVO, Reynolds amarmdel.

Test - 2 We made comparison tests with two agent-based crowd sionslat he first
one is the flocking model developed by Reynolds [26] and thersgis the RVO library,
which we also used as the underlying navigation library is plaper [43]. These compar-
ative tests incorporate a scenario where four groups oftageaik through at a piazza.
Throughout these test, we create a crowd with vafiedlues in our crowd simulator and
this creates diversity in crowd’s behaviors. In other medagients do not respond to the

dynamics of the crowd and behave identically.

Test - 3 We run the same scenario from Test - 2 incorporating a cromgisbng of i)

only calm (not aggressive) agents ii) 10% aggressive agemsii) agents with various
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Figure 6.6: Our behavioral model increases agent diveesity complexity of crowd

behavior(left to right: calm, few aggressive, diverse agen

f values. Figure 6.6 displays the results of these tests. \Wehsg only by varying
the dispersion off values, our model is capable of creating diverse and reafissults

without requiring any additional scripting or editing affo

Test - 4 We adopt a scenario where two groups of agents move towauniscther.
This scenario highlights the function of entropy maps. Bethese groups meet, they do
not display aggressive behavior as they produce a behadprzane with low entropies.
However, when these groups meet, there is a high level ofdks@nd entropy values
increase. This variance in crowd formation adaptively rfiediagents’ responses and

they start behaving aggressive.

Figure 6.7: A screenshot from the concert scenario. Notove &ggressive agents pro-

ceeded to front rows and how calm agents avoided crowded.area
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Test -5 To present the effects of density maps, a concert scenatesigned where all
the agents’ destination is the stage. Aggressive agent®tdavoid crowded areas and
their level of aggressiveness is proportional to densityil@ other hand, less aggressive
agents avoid crowded zones and stay away from the stage.aifexiod of time the front

rows are packed with aggressive agents. This effect candreiséigure 6.7.
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Chapter 7

CONCLUSION & FUTURE WORK

In this study, we proposed an automatic camera control agprand an adaptive be-
havioral modeling method for crowd simulations. As the cofdhese solutions, we
developed a set of analytical maps, called behavior mapishvare produced by moni-
toring and analyzing the locomotion of agents in a virtualhat. In order to build these
maps, we first developed a probabilistic model to handle sy@comotion as a random
variable and use this random variable to construct anatyajss which keeps track of the
crowd temporally and spatially. This probabilistic modekhen utilized in the calcula-
tions based on information theory quantities namely, mfation entropy and Kullback
- Leibler Divergence. As a result of these calculations,tao§®&ehavior maps are con-
structed. These maps were then utilized in our methods tonaatic camera control and

behavioral modeling for crowd simulations.

As the first part of our studies, we have presented a novehaito camera control
technique for crowded scenes which monitors the entireesaad improves user experi-
ence. Our automatic camera control approach provideswsatifferent tools: i) A tour
over the crowded scene in which the characteristic behawabthe crowd are displayed.
i) Monitoring of activities in the scene and capturing adton at the moment a novel
event occurs. We tested our method in a crowd simulationremwient to evaluate its

performance under different scenarios.

Our method can easily be integrated into existent cameraatianodules in computer
games, crowd simulations and movie pre-visualization iappbns. It provides some
parameters like the resolution of the grid and the span aftimporal filter; which can be

modified to adapt to the needs of the application into whiahnoethod is integrated. As
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a future work, we will integrate certain cinematographicstoaints into our automatic
camera control approach to create a camera providing merahy pleasing results.
However, due to their subjectiveness, cinematographistcaints are harder to model

analytically.

As the second phase of our studies, we presented a novetiaabbehavioral model
which automatically builds behavior maps to control agebé&havior adaptively with
agent-crowd interaction formulations. The presented Wiehal model can be integrated
into existing agent-based crowd simulators and improveoneplexity of resulting crowd
behavior. In most of the crowd simulators, low-level s@ipte developed to drive com-
plex agent behaviors. The analytical maps produced in owteirere utilized to control
these behaviors automatically. An important advantagénefproposed model lies in

reducing the time spent on creating agents displaying skvbehaviors.

We did a comparative analyses of the presented behaviorimathemeasured crowd
data and two agent-based crowd simulators. We also runadevell-known test scenar-

ios to demonstrate the performance of our model.

As a future work, we will expand the scope of behavior map tangon methods with
different quantities from information theory and relateglds. These maps can broaden
our model with new interpretations and results. In this pape only integrated our
model into agent-based simulators and used behavior magmtool individual agents.
We will try to integrate our model into simulators which selerowd simulations with
global approaches [41]. We believe that our analytical md@pslso provide information

to control crowds globally.
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Appendix A

Class Diagram for Information Theory Framework

¥ _number0fBins
‘,{‘“’ _numberOfSampl..
& _values
= Methods
~CHistogram
AddObservation
CHistogram(+ 1.
Imit
Mumber0OfBins (+...
Mumberdfsample .
Reset
Values [+ Loverl .

L3R 2F X O 2 O

Figure A.1: Class diagram showing the most important classembers and methods of

| CGrid2D F3
Clazs
= Fields
@ _cells
= Methods
¥ ~CGrid2D
¥ Cells{+ 1overlo...
% CGrid2D
W Init
W Reset
" ccell & " ClnformationThearyMod... (7 |
Class Clazs
= Fields # Fields
& _directionHistogr. = Methods
&? _veladityHistogra... ¥ ~CInformationTheoryMadule
= Methods ¥ CinformationTheoryMaodule
W ~CCell W FeedData
W CcCell W GetResults
% DirectionHistogra .. W GridColorsCombined
W Resst W GridColorsDensity
W VelocityHistograms % GridColorsEnt
W GridColomsKL
W Init
—_— ¥ PerformUpdate
CHistogram<T> E3 ¥ PresetMaps
b tcckid ¥ Reset
W Update
= Fields

information theory module.
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' CInformationTheoryUtils

Class

= Methods
¥ ~CInformationTheoryUtils
W CaloulateEntropy OfFMF

% CalculsteKLDivergence

% CInformationThearyUtils
% ClearHistogram

% DumpHistogram

¥ EvaluatsHotPoint

¥ MergeHistograms

W ProcessAgentData

¥ ReturnMostFrequentItemId
¥ ReturnPMFofHistogram

' cutils

Class

= Fields

E  angleMapping
= Methods
~CUtils
Clitils
DumpVector
Find&ngleBetweenVectors
FindDistanceBetweenPoints
FindMinMax
FindRotationQuaternion
FindSmallestangleBetweenVectars
HSLtoRGE
HSWVtoRGE
Hue 2 RGHB
Intersectlines
IntersectVectors
IsElementOfyector
LoadPresetMap
MapPositionToGrid (+ 1 overload)
MapvalueToColor(+ 1 overload)
MapValueToColorEntropy
MapValueToColorFarEntropyMap
MapValueToColomL
QuantizeVector
QuantizevelocityMagnitude
ReturnGridCoardinate0fD
ReturnWarldcoordinateOf GridD
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Appendix B

Automatic Camera Control Algorithm

Algorithm 1 Automatic Camera Control

1

N NNNNNRRRERRRERRRRPR
OR®NRE OQOXXNOOAR®NRO

WNNN
© © N

31:
32:

)

t<—20
inEntropyTour «— false Il to identify if we are in entropy tour
CleartourStack I to keep track of already visited points
ip — (0,0) // init interest point
loop
forall a; € A do
UpdateG accordingly /fupdate current probabilities
end for
Build KL andE maps
klyaew — max(kl; ;)
Calculater},
if rél < klpnee then
ip < (i, 7)
CleartourStack
mnEntropyTour «— false
else
Calculater!
if inEntropyTourthen
forall e;; € neighborhood(ip),e; ; ¢ tourStack do
if €5 < Té then
ip — (i, )
end if
end for
else
Z.p A <€mm[la]]>
mEntropyTour < true
end if
end if
New camera positiop’ and orientation’ are calculated and start interpolation
t—t+ At
UpdateG accordingly /fadd current prob. to history
end loop
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Appendix C

Quaternion Class And C++ Code For Slerp

class CQuaternion

{

public:

float X,Y,Z,W;

CQuaternion(void) : X(0),Y(0),Z(0),W(1) }

CQuaternion(const float NewX,const float NewY,const float Ki@onst float NewW);
CQuaternion(CVector3 Axis,float Angle);

CQuaternion & operator () (const float NewX,const float New¥gt float NewZ);
CQuaternion & operator () (const float NewX,const float NewNgt float NewZ,const
float NewW);

CQuaternion & operator () (CQuaternion & Other);

CQuaternion & operator () (CVector3 Axis,float Angle);

CQuaternion & operator = (CQuaternion & Other);

CQuaternion & operator ();// Conjuguate

CQuaternion & SetValues(float NewX,float NewY,float NewZ flb@wW);

bool operator == (CQuaternion & Other);

bool operator != (CQuaternion & Other);

CQuaternion operator - ();

CQuaternion operator + (CQuaternion & Other);

CQuaternion operator - (CQuaternion & Other);

CQuaternion operator * (CQuaternion & Other);

CQuaternion & operator += (CQuaternion & Other);

CQuaternion & operator -= (CQuaternion & Other);

CQuaternion & operator *= (CQuaternion & Other);

CQuaternion & operator /= (float & Scalar);
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CQuaternion & operator *= (float & Scalar);

CQuaternion & SetEuler(float Yaw, float Pitch, float Roll);
CQuaternion & Normalize(void);

float GetLength (void);

CMatrix33 GetMatrix33(void);

I

CQuaternion Slerp(const CQuaternion & From, const CQuate&i®o, float Interpola-
tion)

{

CQuaternion Temp;

float omega, cosO, sinO;

float scaleO, scalel;

cosO = DotProduct(From, To);

if (cosO j 0.0)

{

cosO = -cosO;

Temp = -To;

}

else

{

Temp = CQuaternion(To);
}

if (1.0 - cosO)> 1le — 6)
{

omega = (float)acos(cosO);

sinO = sinf(omega);

scale0 = sinf((1.0F - Interpolation) * omega) / sinO;
scalel = sinf(Interpolation * omega) / sinO;

}

else

{
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scale0 = 1.0F - Interpolation;

scalel = Interpolation;

}

return From*scaleO + Temp*scalel ;

}

48



Appendix D

Camera Control Implementations

In this piece of codeposition directionandupVectorare the three vectors defining the
state of our camera in the virtual worldargetLeftand targetRightparameters are the
boundaries of the area that needs to be covered by our cafogrnglerepresents the

field of view of the camerastareAnglemanipulates the height of the camera ad

gleOnPositionCircladetermines the desired orientation of the camera.

void CCameraUltils::FindCameraVectors

( CVector3 *position, CVector3 *direction, CVector3 *upVect€Vector3 targetlLeft,
CVector3 targetRight, float fovAngle, float stareAngle, floagl@OnPositionCircle )

{

CVector3 targetPoint = (targetLeft + targetRight) / 2;

CVector3 templ = CULtils::IntersectVectors(targetPoirdresAngle, targetlLeft, stareAn-
gle - fovAngle / 2);

CVector3 temp2 = CULtils::IntersectVectors(targetPoirattesfngle, targetRight, stareAn-
gle + fovAngle / 2);

/] Take the higher of intersections

if (templ.Y > temp2.Y)

{

*position = temp1,;

}

else

{

*position = temp2;

}

/l Find length of cam-to-target
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templ = targetPoint - *position;

float camToTargetLength = templ.Length();

float targetToUplntersectLength = camToTargetLength f(stereAngle);
CVector3 upVecPlanelntersection;

upVecPlanelntersection.X = targetPoint.X -
targetToUplIntersectLength * cosf(angleOnPositionCjicle
upVecPlanelntersection.Z = targetPoint.Z -
targetToUplIntersectLength * sinf(angleOnPositionCiycle
upVecPlanelntersection.Y = 0;

float positionRadius = abs(positionX - targetPoint.X);

position=>X = targetPoint.X - positionRadius * cosf(angleOnPositio);
position=>Z = targetPoint.Z - positionRadius * sinf(angleOnPositiamn{&);
*direction = targetPoint - *position;

*up\Vector = *position - upVecPlanelntersection;

}
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