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Abstract 
 
 
 
 

The rise of mobile technologies in the last decade has lead to vast amounts of location 
information generated by individuals. From the knowledge discovery point of view, this 
data is quite valuable as it has commercial value, but the inherent personal information in 
the data raises privacy concerns. There exist many algorithms in the literature to satisfy the 
privacy requirements of individuals, by generalizing, perturbing, and suppressing data. The 
algorithms that try to ensure a level of indistinguishability between trajectories in the 
dataset, fail when there is not enough diversity among sensitive locations visited by those 
users.  

We propose an approach that ensures location diversity named as (c,p)-
confidentiality, which bounds the probability of visiting a sensitive location given the 
background knowledge of the adversary. Instead of grouping the trajectories, we 
anonymize the underlying map structure. We explain our algorithm and show the 
performance of our approach. We also compare the performance of our algorithm with an 
existing technique and show that location diversity can be satisfied efficiently. 
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Özet 
 
 
 
 

Son yıllarda, seyyar teknolojilerin yükselişi, büyük miktarlarda kişisel mekan 
bilgisinin ortaya çıkmasına yol açtı. Bilgi keşfi noktasından bakıldığında, ticari değer 
içerdiği için çok değerli olan bu veri, yapısında var olan, kişisel bilgiler nedeniyle gizlilik 
çekincelerini ortaya çıkardı. Literatürde kişilerin gizlilik gereksinimlerini genelleme, bozma 
ve baskılama metotlarıyla karşılamayı amaçlayan bir çok algoritma bulunmakta. Bu 
tarzdaki, kullanıcılar arasında belirli bir ayrılamazlık seviyesi yakalamaya çalışan 
algoritmalar, kullanıcıların ziyaret ettiği mekanlar arasında yeterli çeşitlilik olmadığında 
başarısız olmaktadırlar.  

 Bu çalışmada mekan çeşitliliğini sağlayan bir yöntem önerilmektedir. (c,p)-
gizliliği adı verilen yöntem, kullanıcıların hassas mekanları ziyaret etme olasılığını 
saldırganın arka plan bilgisine göre sınırlamaktadır. Bu yöntem rotaları anonimleştirmek 
yerine, altta yatan haritayı anonimleştirmektedir. Çalışmada algoritma açıklamasının yanı 
sıra, yaklaşımımızın başarımı da gösterilmektedir. Aynı zamanda algoritmamızın başarımı 
var olan bir teknik ile karşılaştırılmakta ve mekan çeşitliliğinin verimli bir şekilde 
sağlanabildiği ortaya konmaktadır. 
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1. INTRODUCTION 
 
 
 
 

Recent advances in mobile technologies revolutionized human life radically. The 

need for enhanced abilities of stationed devices for people who change places frequently 

has initiated the development of various mobile devices. Mobile phones, pagers, GPS 

devices, PDAs are no longer considered as luxury items; on the contrary they are parts of 

our everyday life.  

 

As these devices are carried by their owners everywhere, they collect the location 

information, along with time stamps, forming spatio-temporal data. From the research and 

commercial point of view, this data is priceless. One example is the transport authority of a 

city that tries to model the behavior of the vehicles. This model can be used to regulate the 

traffic flow and to avoid traffic jams in certain areas, using data mining techniques. 

 

Although collecting personal spatio-temporal data has important applications, it does 

not come for free. The transport authority may not be trusted. Information about location 

and time for a person is highly confidential, and thus it is subject to privacy concerns. For 

instance, a person in the dataset may not want others to know that he or she stops by a 

nightclub frequently.  

 

One obvious method to protect the privacy of individuals is to remove personal 

identifiers, such as name or car plate and publish the rest of the data. In this case, an 

adversary (someone who tries to capture information about an individual in the dataset) can 

see trajectories (a series of spatio-temporal points that belongs to an individual) in the 

dataset, but he or she cannot know which trajectory belongs to whom. However, this 

method has been proven to be insufficient due to the existence of external public resources 

1 



[3]. An adversary may look up the home and work addresses of an individual from a public 

telephone directory and try to find a frequent trajectory between these two locations to 

identify the individual. 

 

To overcome this problem, a technique called k-anonymity has been proposed by [1], 

[2] and [4]. Although this technique was proposed for tabular data, extensions for spatio-

temporal data have been proposed in the literature (see Section 2.2). k-Anonymity for 

spatio-temporal data ensures that for each trajectory in the data set there are at least k – 1 

indistinguishable trajectories. This means that given a k-anonymization, an adversary can at 

best map any person to a group of k trajectories. Achieving optimal k-anonymity with 

minimum distortion has been proven to be NP-Hard in [9] and [10], so various methods 

based on heuristics have been proposed in the literature (see Section 2.1) to k-anonymize a 

dataset via generalizations and suppressions. On the other hand, k-anonymity introduces 

some problems. First of all, grouping k trajectories and then generalizing them to the 

selected group representative is problematic. The group representative often goes through 

regions that cannot be passed, such as buildings, lakes, etc. Consider the trajectories in the 

Figure 1.1. Two trajectories going upwards in parallel roads are grouped with k requirement 

of 2, and the midpoints of grouped locations have been released instead of the real 

trajectories. Notice that the new trajectory goes through ponds, which is impossible. If an 

adversary has knowledge about the map of the area, he or she would notice that this is not a 

valid generalization and can easily map the points in the lake to the nearby roads and 

therefore can learn more than the anonymization itself permits.  
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Figure 1.1 A 2-anonymous but infeasible generalization. 

 

Second problem of k-anonymity is that it does not enforce diversity in the sensitive 

information within the equality groups. In Figure 1.2, one might consider the nightclub as a 

sensitive region. There are two trajectories that move along the same road and are grouped 

to provide 2-anonymity. As for each trajectory, there are exactly k-1 indistinguishable 

trajectories in the dataset, without any modifications, the data can safely be released as it is. 

However, as both trajectories stop by the nightclub, an adversary would be sure that a 

person he or she knows to be in the dataset visits the nightclub. 
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Figure 1.2 2-Anonymous generalization that lacks diversity of sensitive location visits.  

 

Yet another problem of using k-anonymity for trajectory anonymization is the 

required level of distortion. Without making a distinction on the locations visited, every 

single point of the trajectory is considered in the generalization procedure to from groups of 

k identical trajectories. Needless to say, the anonymized data is over-generalized. In spite of 

the fact that the visits to the non-sensitive areas are not vulnerable, they are generalized to 

satisfy k-anonymity and thus information content is lost unnecessarily. For instance, in 

Figure 1.2, points other than the visit to the nightclub are not sensitive but have to be 

grouped. 

 

In this thesis, we propose a technique that relies on map anonymizations, instead of 

trajectory anonymizations. Our technique addresses the shortcomings of k-anonymity 

explained above.  We model the map as a graph where nodes correspond to the locations 

that can be stopped at, and edges correspond to the roads connecting vertices indicating the 

direction of the road. Unlike k-anonymity, which makes no distinction among the nodes, 

we specify two types of nodes: Sensitive and Non-Sensitive nodes. Non-Sensitive nodes are 

considered as public areas and disclosing that someone stops by these nodes does not cause 

privacy violation. On the other hand, someone stopping by a sensitive node is considered as 

4 



a sensitive information and should be protected. Examples for sensitive nodes are  

nightclubs, religious or political organizations, hospitals, etc.. 

 

We assume that the sensitive nodes on the map have already been specified by the 

data owner. Based on that, we generate groups around these sensitive nodes in order to 

create a super node that satisfies our privacy metric. This super node replaces nodes and 

edges in this group. We introduce privacy parameter p to measure the level of privacy 

protection of the individuals and introduce a parameter c that limits the background 

knowledge of the adversary. Using these parameters we introduce our privacy definition: 

(c,p)-confidentiality. To be more precise, p corresponds to the probability that a trajectory 

stops at a sensitive node in the group using a specific path. Parameter c corresponds to the 

maximum number of vertices before and after the sensitive node. Visiting those nodes 

affects the probability of stopping at the sensitive node. Probability is calculated given the 

current state of the traffic around the sensitive node.  

 

Our contribution can be summarized as follows: 

 

1- We propose a technique that, unlike k-anonymity, addresses the map inconsistency 

problem as it purely works on the map rather than trajectories. The released data is 

composed of the nodes in the map and therefore we always generate generalizations 

that are consistent with the real world map.  

2- Unlike k-anonymity, our technique addresses the diversification problem by 

introducing the notion of sensitive and non-sensitive nodes. Instead of constraining 

on the number of individuals following a path, we ensure that the probability of 

stopping at a sensitive node is bounded by the privacy parameter. 

3- Unlike previous approaches, we apply generalizations only on thereabouts of private 

locations. 

4- Our approach can be used in many spatio-temporal applications. For instance, it can 

release rules for online systems (such as suppressing some routes) and it can 

generalize and suppress trajectories for offline applications. 

5- The complexity of our technique is independent of the density of users. 

5 



6- Given that the statistics regarding the state of the traffic are taken from a public 

source,  our technique generates anonymizations resistant to minimality attacks [17], 

which are made by adversaries who also know the anonymization algorithm. 

 

   The rest of the thesis is organized as follows: In Chapter 2, we present the previous 

research in anonymization. We formulate the problem in Chapter 3. In Chapter 4, we give a 

detailed explanation of our methodology. In Chapter 5, we experimentally evaluate the 

performance of the proposed algorithm, and also compare it with the k-anonymity 

approach. Finally, Chapter 6 is dedicated to the conclusion and future work. 
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2. BACKGROUND AND RELATED WORK 
 
 
 
 

This chapter is organized as follows: First, we dwell upon the general notion of 

anonymity for tabular data in Section 2.1. Then, we proceed to the anonymity notion in 

spatio-temporal data in Section 2.2. After that, we consider works in spatio-temporal data 

in two sub-sections: Section 2.2.1 is dedicated to the previous work on privacy issues 

regarding Location Based Services (LBS) and finally, Section 2.2.2 explains the related 

work on releasing static spatio-temporal data. 

 
 

2.1 Anonymization of Tabular Data 
 
 
 

Removing personal identifiers from the microdata (raw data to be published [5]) for 

data release has been shown to be insufficient for privacy protection [1]. Other attributes 

such as age, race, sex, etc. can be used to link identities of individuals, to records in the 

dataset. 

 

Definition 2.1 - Quasi-identifiers (QI) are the set of attributes that are not personally 

identifying, but lead to identification of individuals through linkage of some public 

resources is called   

 

 The k-anonymity concept has been proposed as a solution to the problem of linkage 

through QI in [1], [2] and [4]. The approach ensures that for each record there are at least k-

1 other indistinguishable records in the data, with respect to the selected quasi-identifiers. 
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Definition 2.2 - An equivalence class is a set of tuples such that they are indistinguishable 

with respect to a set of attributes.        

 

Definition 2.3 - A Table T is k-anonymous with respect to a set of attributes QI if and only 

if for each equivalence class E, formed with respect to QI, |E| ≥ k.  

 
Table 2.1 – A public dataset. 

Name Age  Sex Zip Code 
Ben Brown 16 M 44106 
Rose East 25 F 44107 
George Pry 20 M 44107 
Helen West 30 F 44106 

      
Table 2.2 – A dataset without personal identifiers. 

Age  Sex Zip Code Disease 
16 M 44106 Cancer 
25 F 44107 Flu 
20 M 44107 Cancer 
30 F 44106 Cold 

 

Table 2.1 shows an example public dataset with no sensitive information. Using Age, 

Sex and Zip code, attributes which are non-sensitive, one can map the tuples in Table 2.2 to 

specific individuals in Table 2.1, even if Table 2.2 does not contain any personal 

identifiers. 

 

Table 2.2 shows an example dataset to be released. It is not k-anonymous as the Age 

attribute is distinct for each tuple when k=2. Table 2.3 shows a 2-anonymous version of the 

dataset in Table 2.2. First two tuples and the last two tuples, form equivalence classes, each 

containing two tuples, and thus the table satisfies the k-anonymity requirement. 

 
Table 2.3 – 2-anonymous version of the dataset in Table 2.2. 

Age  Sex Zip Code Disease 
[16-20] M 4410* Cancer 
[16-20] M 4410* Cancer 
[25-30] F 4410* Flu 
[25-30] F 4410* Cold 
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Achieving optimal k-anonymity with minimal distortion has been proven to be NP-

Hard in [9], and [10]. There are many methods proposed in the literature based on 

heuristics. In [2] and [4], Samarati et al. propose heuristics to achieve k-anonymity via 

generalizations and suppressions. Their work assumes generalization hierarchies for QI 

attributes that specify which value can be generalized to which. The proposed technique 

tries to reach optimal k-anonymization with minimal distortion. Iyengar employs a genetic 

algorithm to find a near-optimal solution to this problem in [7]. The proposed technique 

makes a distinction between various usages of the anonymized data, such as classification 

or regression. To achieve better results, the anonymization procedure is altered according to 

the targeted usage. Later, a simulated-annealing based procedure is proposed by Winkler 

[8]. Wang et al. propose a fast and scalable, classification specific, bottom-up 

anonymization scheme in [42]. While methods mentioned above try to generalize the data 

in a bottom up fashion (from the most specific to the least specific value), Fung et al. 

specialize the data in a top-down fashion (from the least specific to the most specific value) 

in [6]. In [12],  LeFevre et. al. use the same methodology of [2] and [4], which is called 

Full-Domain Generalization. They use a domain generalization graph, which is used to 

move in the search space of possible generalizations of singular attributes. 

 

To address shortcomings of standard k-anonymity some new classes of algorithms 

have been proposed. LeFevre et al. introduce a new multidimensional model for k-

anonymity and an efficient greedy algorithm to achieve k-anonymity [11]. They partition 

the multi-dimensional space into non-overlapping regions, each containing at least k tuples. 

This way, they consider all attributes in the quasi identifier at the same time.  

 

Machanavajjhala et al. addresses the lack of diversity of sensitive information in the 

notion of k-anonymity and show that the released data is very likely to leak information 

when all anonymized tuples share the same sensitive value [13]. They also show that with 

enough background information, which is again very likely to exist, an attacker may deduce 

more information than expected with the same background knowledge.  They propose a 

method called l-diversity to overcome these problems. 
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Definition 2.4 - A Table T is l-diverse with respect to a set of attributes QI if and only if in 

each equivalence class E, the probability of occurrence of the most frequent sensitive value 

is less than 1/l.  

   

Notice that, although Table 2.3 is 2-anonymous, it is not l-diverse when l=2. The first 

equivalence class has no diversity among the sensitive attribute field, as both tuples share 

the disease of cancer. Thus, an adversary will discover that someone he or she knows to be 

at the age of 16 and to be in the dataset has the disease cancer even if the table is 2-

anonymous. On the other hand, the anonymization in Table 2.4 satisfies both 2-anonymity 

and 2-diversity. 

 

In [14], Truta et al. similarly point out to the lack of attribute disclosure (disclosure of 

not the identity, but sensitive information of the record) shortcoming of k-anonymity and 

introduce the p-sensitive k-anonymity method. Li et al. in [15] have defined t-Closeness, 

which is the extension of l-diversity. They enforce that the distribution of a sensitive value 

in an equivalence class should be close to the distribution of the sensitive value in whole 

data within a threshold.  In [16], Wong et al. provide the concept of (α , k) anonymity, 

which enforces that the ratio of sensitive attributes in a group does not exceed the threshold 

α, while satisfying k-anonymity. Nergiz et al. point out to the inability of previous privacy 

metrics to preserve the privacy of an individual when the existence or non-existence of an 

individual in a dataset is private information [19]. The work ensures that, no person should 

be known to be in the dataset, with certainty greater than δ. Our approach mainly addresses 

the questions raised in [13] and [14] in the spatio-temporal domain. While diversifying the 

sensitivity of nodes like in [13], we limit the probability of an individual to stop at a 

sensitive location. 

 
Table 2.4 – 2-anonymous and 2-diverse version of the dataset in Table 2.2. 

Age  Sex Zip Code Disease 
[16-25] * 4410* Cancer 
[16-25] * 4410* Flu 
[20-30] * 4410* Cancer 
[20-30] * 4410* Cold 
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2.2 Anonymization for Spatio-Temporal Data 
 
 
 

The concept of anonymity has been used in spatio-temporal data mining frequently. 

Although spatio-temporal data can be represented in the tabular format, it cannot be 

anonymized in the same manner, due to the fact that records depend on each other and 

depend on geographical features. Hence the existing techniques need to be extended. The 

literature on spatio-temporal data anonymity can be reviewed in two subsections: (1) 

Location Based Services (LBS), (2) Static Data Release (SDR). 

 

LBS are the services provided to users, using the location information gathered by 

mobile devices. Asking for the nearest hospital is an example among many uses of LBS. By 

the nature of the system, LBS providers service users online and therefore need to work on 

streaming data. The goal of privacy preserving LBS is to provide service to the user, 

without learning the exact position of the individual.  

 

SDR applications work on already collected, static data. The goal is to publish a 

trajectory dataset, while keeping identities of the people in the dataset private. 

 

 Our work has no restrictions on the type of application; we yield rules for LBS 

systems, and modify the dataset to be released in the SDR systems, hence it is applicable to 

both scenarios. 
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2.2.1 Anonymity in Location Based Services 
 
 

k-Anonymity concept has been extensively studied in LBS literature. Obfuscation is 

one of the techniques to satisfy k-anonymity. Gruteser et al. ensures k-anonymity through 

spatial and temporal cloaking, which means reducing preciseness of spatio-temporal 

information and adding uncertainty into sensitive information of the user [20]. They require 

k users to exist in the same area to provide service. Gedik et al., on the other hand, require 

not just k users, but k users that make requests to exist in the same area, to forward a 

request to the service provider [21]. They propose an algorithm called CliqueCloak that 

performs spatio-temporal cloaking and lets user to supply his or her Quality of Service 

(QoS) choice and privacy level. Bettini et al. has the same interpretation of k-anonymity 

with [20], but unlike [20] and [21], they do not consider every location as sensitive and 

present Location-Based Quasi-Identifiers (LBQIDs) that are defined by some constraints 

[22]. They consider the LBQIDs and history of the users’ behavior in their approach. 

Distributed scenarios have been studied in the literature as well. Privé is a framework that 

is proposed by Ghinita et al. which provides k-anonymity through a decentralized trusted 

server [23]. Doing so, they reduce the risk of being disclosed and reduce the bottleneck 

created by a single service point.  

 

In [24], Mokbel et al. propose a framework called Casper, which acts as a 

personalized privacy provider and a query processor. They represent the area as a grid and 

organize it in a pyramid structure to perform cloaking in a bottom-up fashion. Like [24], 

Divanis et al. represent the area as a grid in [25]. They make a distinction between safe and 

unsafe routes (frequent for the user but not frequent for others) of the user. They provide k-

anonymity by obfuscation, when a request is made in an unsafe route for a user. Cheng et 

al. propose an imprecise query engine that evaluates cloaked location information in [26]. 

In [27], Duckham et al. introduce a framework that seeks a balance between the QoS and 

the privacy requirements of users. Unlike [24] and [25], they model the spatial region as a 

graph, like we do.  

12 



Anonymity via suppression and perturbation are also popular methods in the 

literature. In [28], Gruteser et al. make a distinction between sensitive and non-sensitive 

areas which is similar to our work. They try to avoid disclosure of visits to sensitive areas. 

They have three methods: (1) Completely suppressing location updates in sensitive areas, 

(2) Reducing the frequency of location updates, (3) Releasing the request only when it is 

indistinguishable from k sensitive areas the user has visited before. In [29], Beresford et al. 

propose the mixed-zone concept. Mixed zones are regions which act as black-box zones. 

The trajectory behavior inside these zones are masked. Moreover, there is no link between 

the trajectories entering and exitting the zone, so that an adversary is less certain about the 

identity of a trajectory. This is a blurring approach parallel to ours, but the main difference 

is that we do not break the ties between entering and exiting trajectories. They also provide 

a sensitivity classification of locations like us, but we differ with the generalization 

procedure. [30] by Hoh et al. is a similar work to [29]. Instead of suppressing, they perturb 

trajectories and force them to cross each other. The approaches in [29] and [22] work fine 

in high-density areas, but fail in low-density areas, since trajectories rarely get close to each 

other. The density of users in the area does not affect our approach as it focuses on  

obfuscating the geographical area instead of the trajectories. 

 
 

2.2.2 Anonymity in Static Data Release 
  
 

Compared to the literature on LBS anonymity, privacy preserving static trajectory 

publication is almost an untouched area.  

 

Clustering approach is one of the most popular techniques in anonymization. In [31], 

Domingo-Ferrer et al. propose different grouping techniques based on the dimensionality of 

the data. They do not project the multi-dimensional data into single dimension and 

therefore achieve higher utility unlike the works [32], [33] and [34]. Aggarwal et al. 

propose another clustering method. They propose release of the cluster centers instead of 

grouped tuples [35]. Byun et al. propose another clustering method that works in O(n2) 

[36]. Based on a different clustering technique that exploits the inherent uncertainty in 

13 



spatio-temporal points, Bonchi et al. group trajectories that are close to each other, in [37]. 

They generalize the grouped trajectories and suppress the outlier points. Nergiz et al. on the 

other hand, propose a method to generalize clustered trajectories using a generalization 

based approach, while maximizing the utility metric called: Log-Cost Metric in [38]. 

 

In [39] Hoh et al. propose a suppression based method that fixes the shortcoming of 

[22] and [29], with a new privacy metric called time-to-confusion. They specify an path 

cloaking algorithm that ensures satisfaction of time-to-confusion metric. In [40], Terrovitis 

et al. consider privacy preservation in vertically partitioned spatio-temporal data (e.g. one 

site holds the head of the trajectory and the other holds the tail). They do not distinguish 

between sensitive and non-sensitive nodes. The goal in this work is to limit the prediction 

of the tail of the trajectory with some predefined probability threshold, given the head. 

They use suppression to satisfy this probability. Their goal of limiting the conditional 

probability mentioned is similar to our goal of limiting the ratio of the trajectories that stop 

by a sensitive node, given the trajectory.                                       

 

Obfuscation is a method that has been widely deployed in the literature 

[20],[21],[22],[23],[24],[25],[26] and [27]. All of these works are in LBS context. To the 

best of our knowledge, ours is the first work that uses spatial region obfuscation in SDR 

context. This is mainly because of the fact that SDR literature has focused on trajectory 

anonymization, rather than location anonymization.  

 

It is in the nature of LBS systems to focus on region, as they do not see the whole 

trajectory while serving a client. They focus on a single location update received from the 

user and the area that the request has been made in. On the contrary, SDR related 

algorithms have advantage of accessing the complete data. We approach the problem from 

an LBS point of view, while exploiting the advantages of complete world knowledge. 
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3. PROBLEM FORMULATION 
 
 
 
 

In this chapter we give a detailed explanation of the definitions and notations we 

have used throughout the thesis. 

 
 

3.1 Notation 
 
 
 
Definition 3.1 – G is the graph model used to represent the underlying geographical area, 

which can be considered as a representation of the map. 

 

G = (V, E) 

 

Definition 3.2 – A vertex v (called node or point throughout the thesis as well) is a 2D 

structure that corresponds to a point in the spatial region.  

 

v = [x,y] 
 

Definition 3.3 – The set of vertices V consist of locations where user location information 

is sampled. These are the points of interest, on which users can stop. 

 

V = {v1, .. , vf}, |V| = f 
 

Definition 3.4 – E is the set of edges that connect vertices in V. 
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E = {e1, .. , er}, |E| = r 
Definition 3.5 – Each directed edge e, connects two vertices, indicating the direction of the 

road. 

 

ei = [vx -  vy] s.t. vx ,vy ∈ V and there is a link from vx to vy 

 

Figure 3.1 Graph representation of the geographical area. 

 

Definition 3.6 - A sensitive node correspond to a location where stopping by may be 

considered as a privacy breach. 

 

Definition 3.7  - Set S is the collection of sensitive nodes.

 

S ={v1, .. , vt}, |S| = t such that S V,  vi ∈ S, vi is sensitive. 
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Figure 3.1 shows a graph representation of the geographical area. Numbered nodes 

are connected via edges. Undirected edges correspond to two directed edges, which means 

that there is a two-way connection between two vertices. We mark vertex 14 to denote that 

it is a sensitive node.  

 
Figure 3.2 Example grouping for the example in Figure 3.1. 

 

Definition 3.8  - A group g is a connected subgraph of G.  

 

ga = (Va, Ea) where  

Va  V,  

Ea  E s.t. ei ∈ Ea and ei= [vx -  vy]then vx ∈ Va and  vy ∈ Va, 

and ga is connected 
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Definition 3.9 - Gr is the set of discrete groups in G. 

 

Gr = {g1, .. , gc}, |Gr| = c 
 

Definition 3.10  - Given Gr, generalization of graph G, G’ with respect to Gr is a new 

graph in which all nodes belong to the group gi has been replaced by a super node ni 

representing gi and edges are modified accordingly.  

 

G’=(V’,E’) with respect to Gr = {g1, .., gc} is a generalization of G=(V,E) s.t. 
V’=(V-∪iVi)+ ∪i ni, E’=(E – ∪iEi )+A+B,  

where A={[vx -  ni] | [vx -  vy]∈ E  vy∈V’  vx∈V  vx V’ },  
B={[ni- vx] | [vy -  vx]∈E  vy∈ V’  vx∈V  vx V’ },  

y ∈ {1..c} 

 

Figure 3.2 depicts an example grouping on the map in Figure 3.1. Due to a probable 

violation of privacy, vertex 14 is generalized (the method is going to be explained in 

Chapter 4) to g1. We denote the set of sensitive nodes S in a group g using the dot (.) 

notation (e.g. g.S for group g). This instance can be summarized as follows:  

 

g1 = (V1, E1) 

V1={12, 13, 14, 15} 

E1={[12-13], [13-15], [15-14], [14-12], [12-14], [14-15], [15-13], [13-12]} 

 g1.S={14} 

 

Definition 3.11 - An Entrance to a group ga, in a generalization G’, is defined as a node 

that is not in g but has an outgoing link to a node in g. 

 

Vertex v is an entrance node iff  e ∈ Ε, s.t. e =[vx-v] where v ∈ Va, vx ∈ V and vx Va 
 

Definition 3.12 - An Exit from a group g, in a generalization G’, is defined as a node that is 

not in g but has an incoming link from a node in g. 

 
Vertex v is an exit node iff e ∈ Ε, s.t. e =[v-vy] where v ∈ Va, vy ∈ V and vy Va 
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Definition 3.13 – En is the set of entrances to the group ga, in a generalization G’. It is 

denoted by the dot notation (e.g. g.En for group g). 

 

En ={v1, .. , vh}, |En| = h, s.t. En  Va, vi ∈ En, vi is an entrance node 
 

Definition 3.14 – Ex is the set of exits from the group g, in a generalization G’. It is 

denoted by the dot notation (e.g. g.Ex for group g). 

 

Ex ={v1, .. , vz}, |Ex| = z, s.t. Ex Va, vi ∈ Ex, vi is an exit node 
 

According to the definitions above, for the example in Figure 4, the Ex and En sets 

are formed as follows: 

 
g1.En ={12, 15} and g1.Ex ={15} 

 
Definition 3.15 -A Route specifies an adversary’s view of a trajectory’s movement in the 

group. Since, the group is an obfuscation mechanism, an adversary may only deduce the 

entrance and the exit of a trajectory in and out of the group. Therefore a group may have 

four types of routes: 

 

1. A trajectory enters from an entrance and exits from an exit. 

2. A trajectory enters from an entrance but does not exit. 

3. A trajectory starts inside the group and therefore does not enter the group but exits 

from an exit. 

4. A trajectory starts and then ends in the group, therefore neither enters nor exits. 

 
r=<v1, v2> s.t. (v1 = null v1 ∈ Εn) ⋁ (v2 = null v2 ∈ Εx) 

 

Definition 3.16 - R is the set of all routes in group g, in a generalization G’. It is denoted by 

the dot notation (e.g. g.R for group g). 

 
R ={r1, .. , rd}, |R| = d 
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Considering the example in Figure 5, route list g1.R is the following: 

 

g1.R={ <12, 15>, <15, 15>, <12, null>, <15, null>, <null, 15>, <null, null>} 

 

For instance a trajectory following the vertices 11 12 13 is considered to be 

taking the route <12,null> as the trajectory enters the group from vertex 12 and stops at 

vertex 13 and thus, does not exit the group. Likewise, a trajectory following the vertices 

15 13, is considered to be taking route <null,null> as it neither enters the group, nor exits 

the group. 

 
Figure 3.3. Entrance and exits of group g1. 

 

Definitions regarding trajectories are similar to the definitions in [39].  

 

Definition 3.17 - A point p in the spatio-temporal domain is a triple with two dimensions 

for spatial representation and one dimension for temporal representation.  

 

p=[x,y,t] 
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For the sake of simplicity, we do not show the time dimension in the figures 

throughout the thesis and show 2D figures, which are easier to comprehend.  

 

Definition 3.18 - A trajectory tr is an ordered series of spatio-temporal points. A point is 

referred using dot notation (e.g. tr.pi for trajectory tr). 

 

tri = {p1 , .. , pm}, |tri| = m 

 

Definition 3.19- A trajectory dataset T is collection of trajectories: 

 

T = {tr1 , .. , trn}, |T| = n 

 
 
 

3.2 Problem Definition 
 
 
 

We assume that we have the graph representation of the geographical area as 

explained in Section 3.1. For the SDR context, we have a static and complete trajectory 

dataset without personal identifiers. For LBS context, we assume that the  background 

information about user movements on the map is obtained.  

 

  Our adversary model can be considered as a strong one. The knowledge of the 

adversary is listed below: 

 

1. The adversary knows which points are considered sensitive in the map. 

2. The adversary has background information about the target individual, such as home 

and work addresses, so that it is possible for him or her to identify the target despite 

the fact that there are no personal identifiers on trajectories. 

3. The adversary has background information about general user behavior on a map 

(See definition 3.20), just as the data owner. This might be public information, or the 

adversary might have gained this information simply by observation.  
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Definition 3.20 – Strong Adversary Background: Given a trajectory the adversary can 

guess the probability of the trajectory stopping at a node. Thus, adversary has the following 

prior belief: 

 

P(a trajectory t ∈ T stops at a vertex v ∈ V | t) 

 

 In the ideal case each single location the trajectory visits, affects the probability of 

stopping at a point. However, not every point has a significant effect on the probability. A 

node far away from a set of possible stopping locations will not contribute much on 

adversary’s belief on the exact stopping location. In this work we assume that for a 

trajectory, probability of stopping at a vertex v, given the whole trajectory is equal to 

probability of stopping at a vertex given the portion of the trajectory that is close to v: 

 

P(a trajectory t ∈ T stops at a vertex v ∈ V | t)  P(a trajectory t ∈ T stops at a vertex  

v ∈ V | t) where each point t.pi ∈ t is ‘close’ to v 

 

 The closeness measure (called c from now on) is a parameter to our algorithm. We 

consider the vertices that are within c nodes distance from the target node (without 

considering the direction of the edges). Collections of these vertices and the edges that 

connect them form the neighborhood of the target node. We assume that only the vertices 

in the neighborhood of the target node v are effective on an adversary’s posterior belief on 

an individual stopping at v.  

 

Definition 3.21 – c-Neighborhood of a group g is gc = (Vc,Ec) such that vi ∈ Vc is at most c 

hops away from v, where v is the initiating vertex in g and c is a positive integer. Initiating 

vertex is the vertex that grouping starts with. 

 

 Figure 3.4 shows g1
2 which is the 2-neighborhood of g1. We assume that the portion 

of a given trajectory in this neighborhood effectively changes adversary’s posterior belief 
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and therefore we do not consider the rest of the trajectory in our calculations. We now 

revisit the definition of the background knowledge of the adversary after this assumption. 

 

Definition 3.22 – Effective Adversary Background: Given the portion of the trajectory in a 

neighborhood of a target node, the adversary knows the probability of the owner of the 

trajectory stopping at the target node. Here we assume that the adversary has information 

only on the statistics of the neighborhood of the target node. 

 
Figure 3.4 2-Neighborhood of group g1. 

 

Definition 3.23 – A Path pti in a c-neighborhood gc is a series of locations belonging to a 

portion of a trajectory in the neighborhood. A path may or may not enter the corresponding 

group g. The potion of the trajectory within the group g is replaced with the route it is 

taking. All paths in a c-neighborhood form the set Ptc. Given a group g1 and c-

neighborhood g1
c: 

 

  Pt1
c = {pt1, .. , ptn} , |Pt1

c| = n, 

pti = {a1, .. , am} where  aq = v∈V1
c or aq  is a route in g1.  
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Definition 3.24 – An equivalence class eq is the set of trajectories in a c-neighborhood gc 

that follow the same path in gc. All equivalence classes in a c-neighborhood gc
 form the set 

Eqc. Given a group g1 and c-neighborhood g1
c: 

 

Eq1
c = {eq1, .. , eqn} , |Eq1

c| = n, 

eqi = {tr1, .. , trm} where each trx  follow the same path pti ∈  Pt1. 

 

 Considering all trajectories that enter into the c-neighborhood of the target vertex v in 

a group g, we define a new term called probability of disclosure for paths and for groups.  

These effectively change the posterior belief of the adversary given a generalization, thus 

we try to bound these probabilities in the following sections. 

 

Definition 3.25 – Probability of disclosure of a path, pt in c-neighborhood gc, considering a 

target vertex v, is the ratio of the size of the equivalence class belonging to trajectories that 

take pt and that stop at v, to the size of the equivalence class belonging to trajectories that 

take pt and that stop at some location in the group g. 

 

Definition 3.26 – Probability of disclosure of a group is the biggest probability of 

disclosure of a path in the c-neighborhood of that group. 

 

    Given the above-mentioned capabilities of the adversary, the goal of this work is 

protecting a user’s privacy via bounding the probability of disclosure of the group that he 

or she visits with user defined level of privacy called p. Now we are ready to define (c,p)-

confidentiality. 

 

Definition 3.27 - Given a graph G (with sets S and Gr), a trajectory dataset T and given 

events A and B, (c,p)-confidentiality is satisfied iff P(A|B) ≤ p and therefore  

P(AB)/P(B) ≤ p where A is the event that a trajectory t ∈ T stops a vertex v ∈ Vi & v is 

sensitive, B is the event that t follows path ptj and t stops in g, gi ∈ Gr with corresponding 
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gi
c and ptj ∈ Pti, p is a user determined level of privacy and c is the user defined measure of 

closeness. 

 

Definition 3.28 – Problem of (c,p)-confidentiality: Given a graph G (with sets S and Gr) 

and a trajectory dataset T, find a generalization G’ of G satisfying (c,p)-confidentiality. 
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4. GENERALIZATION & SUPPRESSION SCHEME 
 
 
 
 

   The main methods used to satisfy (c,p)-confidentiality  is generalization and 

suppression. However, there are four phases of the algorithm: 

 

1. Collection of Statistics: The collection of statistics from internal or external data. 

2. Generalization: Enlarging groups when the (c,p)-confidentiality  is not satisfied.  

3. Suppression: Trashing paths and corresponding trajectories, when (c,p)-

confidentiality  cannot be satisfied. 

4. Output: Modification of the trajectory dataset in SDR context and release of rules 

in LBS context. 

 

The utility mechanism to measure the success of the procedure is simply the level of 

generalization, in other words it is the average group size. The rate of the suppressed 

trajectories is a supporting indication of the information content. The goal is to satisfy the 

privacy condition with minimum average group size. Suppression mechanism acts as a fuse 

to ensure that utility is kept within an acceptable range, and we do not generalize too much. 

 
 

4.1 Collection of Statistics 
 
 
 

The algorithm needs some background information to base calculations on. Given a 

group and the c-neighborhood, we need to calculate probability of disclosure of each path. 

This information may be gathered from a trajectory dataset, or through observation.  
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For the SDR context, the statistics can be obtained from the data itself. As the data is 

static and complete, before running the algorithm the data owner may extract such statistics 

from the data and use it. In LBS case, we do not have such a complete dataset. The data 

may be collected offline from a training data or it may be gathered from external sources. 

 

As most algorithms seek utility along with anonymity, they try to find the 

generalization that is minimal. While trying to maximize utility, the choices of the 

algorithm may leak information to the adversary. An algorithm is minimality attack 

resistant if information leakage is independent of the public availability of the algorithm, 

which is defined in detail in [17]. In our work, if background statistics are gathered from an 

external source, or some portion of the data is used as training data, then there is no relation 

between the anonymized data and the choices of algorithm. Hence our approach is 

minimality attack resistant when external background information is used.  

 
 

4.2 Generalization Procedure 
 
 
 

The goal of anonymization is to limit the probability of disclosure of each path in the 

c-neighborhood of a group. The nodes are grouped to satisfy this condition. Adding 

neighboring nodes to the group further blurs the information seen by the adversary. 
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4.2.1 The Algorithm Flow 
 
 

The algorithm starts by collecting the sensitive nodes in the graph G to form the set S. 

For each sensitive node in the set S, a group with a single node (the initiating node) is 

Input: G, S, Gr = {}, Cutoff_Limit, User Stats St 
Output: G’ 
Anonymize() 
Begin 
 
 For each vi ∈ S  
 
        Create a new group g; 

            Add vi to g; 
         GetNeighborhood(c); 
            GetRoutes(g);  //Figure 4.2 

 GetEquivalenceClasses(St);  //Figure 4.7 
         

           While !Check_cp_Confidentiality(g, S, St) & !willBeSuppressed(Cutoff) 
         //Figures 4.5 and 4.8 

         
   Vertice tobeAdded = get_Neighboring_Vertex();     

       Add tobeAdded  to g; 
     GetRoutes(g); 

     GetEquivalenceClasses(St); 
 
     End While 

 
 End For 

       
      If LBS then 
          ReleaseRules(Gr);   //Figure 4.13 

            else 
          G’ =ModifyDataset(G, Gr);  //Figure 4.11 

         End If      
  

      return G’; 
 
End 
 

Figure 4.1 Pseudocode for Anonymization. 
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formed (see Figure 4.1). Given the entrances and exits to the group, the sets En and Ex are 

generated (see Figure 4.2). The c-neighborhood of the group is determined according to the 

given c value and the equivalence classes are obtained from the user statistics based on the 

sets En and Ex (see Figure 4.7). For each equivalence class in the c-neighborhood, (c,p)-

confidentiality  is tested for the given p value (see Figure 4.5). If there is no violation of 

(c,p)-confidentiality, then the group is released as a super-node in the graph. If some path 

violates (c,p)-confidentiality  then a neighboring node is added into the group as well 

(which node is added is going to be explained in Section 4.2.2), and the algorithm performs 

same checks for the new group with the new node (see Section 4.3 for a relaxed version 

based on suppression). Note that another sensitive node may be added into the group. In 

this case, the algorithm checks (c,p)-confidentiality for each path and each sensitive node in 

the group. However, the neighborhood of the group is the same as the neighborhood of the 

initiating sensitive node.  
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Input: Group g 
Output: Route List R 
GetRoutes() 
Begin 
        Clear R; 
        For each en ∈ En of g 
    For each ex ∈ Ex of g 
  Create a new route r with entrance en and exit ex; 
  Add r to R; 
           End For 
         End For 

 
        For each en ∈ En of g 
       Create a new route r with entrance en with no exit; 

           Add r to R; 
        End For 
 
        For each ex ∈ Ex of g 
  Create a new route r with exit ex with no entrance; 
  Add r to R; 
        End For 
 
       Create a new route r with no entrance and no exit; 
       Add r to R; 
       return R; 
    End 
 

Figure 4.2 Pseudocode for generating routes. 
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Figure 4.3 Group g’ with just one vertex and two trajectories. 

Figure 4.3 depicts an example generalization using the graph in Figure 3.1, with p 

value of 0.5 and c value of 2. The only sensitive vertex is vertex 14 and it is grouped as g’. 

There are two trajectories passing over this node: t1 and t2. Trajectory t1 just passes by, but 

t2  stops in the group (on vertex 14).  Table 4.1 shows the paths in the c-neighborhood and 

the ratios of sensitive stops to any stops in the group for each path in the c-neighborhood. 

Notice that there is a single path in this example. As this path violates (c,p)-confidentiality  

(1.0 > 0.5), the group has to be generalized. 

 
Table 4.1 Equivalence class of group g’ shown in Figure 4.3. 

Paths 
Stops at a 

sensitive node Stops in group Ratio 
11,12,<14,14>,15 1 1 1 

 

Based on the selection criteria, lets assume that vertex 12 is added to the group to 

form g’’, as shown in Figure 4.4. Table 4.2 shows the new paths in the c-neighborhood and 

corresponding statistics. As t2 stops on vertex 12 and the route <14,14> is eliminated with 
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the new group layout, (c,p)-confidentiality  is satisfied for the corresponding path and the 

group is released.  

 
Figure 4.4 Group g’’ after inclusion of vertex 12. 

 
Table 4.2 Group g’’ after the addition vertex 12. 

Paths 
Stops at a 

sensitive node Stops in group Ratio 
11,<12,14>,15 1 2 0.5 
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4.2.2 Node Selection 
 
 
There are two approaches to select which node to add into the group.  

 

1. Breadth First Search (BFS) Method  

2. Violating Routes Method 

 

Breadth First Search Method traverses all nodes in a c-neighborhood using BFS 

approach, starting from the private node that is considered to be at the centre of the group. 

The goal is to position the node as the physical centre as well.  Figure 4.6 shows the order 

of nodes to be included into the group in order to satisfy (c,p)-confidentiality using BFS 

approach.  

 

Input: Group g, Sensitive Nodes List S, Statistics about user behavior St  
Output: true if (c,p)-confidentiality is satisfied, false otherwise 
Check_cp_Confidentiality() 
Begin 
 boolean isValid = true; 
 For each eqi ∈ Eq  

 
If (ratio of number of people who are in eqi and stops in a sensitive node to 
the number of people who are in eqi and stops in g ) ≥ p then  

   
  isValid = false; 
  Mark eqi as a violating equivalence class; 

   
                 End if 

 
 End For 

 
   return isValid; 
 

    End 
Figure 4.5 Pseudocode for Checking (c,p)-confidentiality. 
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A violating route in a group is a route that a path with probability of disclosure greater 

than p uses. The goal of Violating Routes Method is to get rid of routes that are 

problematic, by adding nodes before the entrance or after the exit. A violating route in the 

c-neighborhood violates (c,p)-confidentiality in the next iteration if not modified. We 

enclose this route with new entrance and exits that are taken into the group using the paths 

in the c-neighborhood that use the problematic routes. Lets assume that p value is 0.2 and c 

is again 2 for the graph in Figure 4.4. As p is not satisfied the next node to be included is 

either node 11 or node 15 to enclose the route r = <12, 14>. 

 

 
Figure 4.6 BFS vertex inclusion order. 

 

Input: User Stats St 
Output: Equivalence classes Eq 
GetEquivalenceClasses() 
Begin 

Get portions of trajectories in the neighborhood; 
Group portions that follow identical locations in the same order and use 
same routes when they are in the group; 
return all equivalence classes;  

End 
 

Figure 4.7 Pseudocode for Equivalence Class generation. 
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4.3 Suppression Procedure 
 
 
 

   Suppression mechanism is useful in the following situations: 

 

1. There may be some small sub-graphs that are not connected to the main graph. To 

be more precise, the algorithm may run out of nodes to be added to the group, 

before (c,p)-confidentiality is satisfied.  

2. The group might have included all points in the c-neighborhood but might not 

have satisfied (c,p)-confidentiality yet. 

3. The group may grow enormously because of a small number of paths violating 

(c,p)-confidentiality, hammering down utility of the generalized data. 

 

When there is no room for the group to grow, as (c,p)-confidentiality is not satisfied, it 

is compulsory for the algorithm to suppress these violating equivalence classes and 

corresponding trajectories. Thus, any trajectory taking that path is removed from the 

released data in the SDR case. This does not mean a privacy violation for the users that are 

removed because the adversary does not know whether that user was in the raw dataset or 

not. On the other hand, in the LBS case, any request made in the suppressed routes is not 

forwarded to the service provider (See Section 4.4.2 for the system behavior in LBS 

context). 
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The data owner may want to release a group, which does not satisfy (c,p)-

confidentiality. A group may violate (c,p)-confidentiality  but it might be close enough, so 

that when an acceptable number of paths are suppressed then (c,p)-confidentiality  is 

satisfied.  

 

Input: cutoff_limit 
Output: true if violation is less than the cutoff_limit, false otherwise 
 
willBeSuppressed() 
Begin 
    
       Sum_of_All_Stops = 0; 
       Sum_of_Sensitive_Stops = 0; 
 

        For each eqi ∈ Eq  
 

     Sum_of_All_Stops += nb. of people who are in eqi and stops in g; 
     Sum_of_Sensitive_Stops += nb. of people who are in eqi  and stops in a 
        sensitive node ; 

                 End For 
 
        If   p – (Sum_of_Sensitive_Stops / Sum_of_All_Stops ) ≤ cutoff_limit 
           or 
       there is no room for the group to grow 
        then 

 
 If SDR then 

      For each eqi ∈ Eq and eqi is marked as violating; 
                 Remove all t ∈ T that are in eqi;; 
      End For 
   
 End If 
 

  return true;  
      
        End if 
        return false; 

   End 
 

Figure 4.8 Pseudocode for checking if Cutoff Limit is satisfied. 
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The user-defined range that (c,p)-confidentiality can be ensured via suppression is 

called Cutoff Limit (See Figure 4.8). If, the probability of disclosure of a path plus Cutoff 

Limit, is smaller than or equal to p, then the group is released after all violating routes have 

been suppressed (all trajectories in the corresponding equivalence class in SDR context).  

 
Figure 4.9 Group g’ with one vertex and three trajectories. 

 

We change the example in Figure 4.3 a little bit and add a new trajectory t3 that is 

identical to t1 to visualize the suppression operation. We use Cutoff Limit of 0.2. 

Considering paths in the c-neighborhood of g’, we will obtain Table 4.3, which violates 

(c,p)-confidentiality . As, p = 0.5 and 0.5 + 0.2 < 1.0, we cannot suppress the violating 

paths and need to generalize the group. 

 
Table 4.3 Ratio of sensitive stops to any stops in the group g’ in Figure 4.9. 

Paths 
Stop at a 

sensitive node Stop in group Ratio 
11,12,<14,14>,15 2 2 1 

 

When vertex 12 is added to the group to form g’’, Table 4.4 is obtained from the 

group illustrated in Figure 4.10. This time the violation is rate is 0.66, and 0.5 + 0.2 > 0.66, 
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which means the suppression rate is satisfied. The algorithm suppresses this path and all 

trajectories that exist in the corresponding equivalence class.  

 
Figure 4.10 Group g’’ with after addition of vertex 12. 

 

Table 4.4 2 Routes of group g’’ shown in Figure 4.10. 

Paths 
Stop at a sensitive 

node Stop in group Ratio 
11,<12,14>,15 2 3 0.66 

 
 
 

4.4 Output 
 
 
 

The output of the algorithm is different based on the type of the application. The 

methodology for SDR is explained in Section 4.4.1 and the methodology for LBS is 

explained in Section 4.4.2. 
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4.4.1 SDR Output 
 
 

As SDR systems work on complete and static data, we anonymize the raw data 

according to the anonymized graph. Since all trajectories follow nodes in the graph, all the 

algorithm needs to do is to modify points in trajectories according to generalization 

performed. 

 

In each trajectory, we search for a series of nodes that correspond to a route in some 

group, in the generalized map. All the nodes in the series found are removed and replaced 

by a single node that corresponds to the specific group. The timestamp is set to the 

timestamp of the first node replaced, which indicates the time of entrance to the group. 

 

The example in Figure 4.12 shows a trajectory following a path on the graph, which 

is depicted in Figure 3.1. Vertices 12, 13 and 15 belong to g1, they are replaced with the 

group g1. The timestamp is set to the timestamp of vertex 12 as it is the moment of entering 

into the group. If the trajectory starts within the group, then the timestamp is set to the 

timestamp of the first node visited in the group. 

 

The algorithm ensures that for each group, probability of disclosure is smaller or 

equal to the user determined value p based on the background information used, which is 

determined by the parameter c. 
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Figure 4.12 Trajectory generalization. 

 
 
 
 
 
 
 
 
 

Input: Graph G, Group List Gr 
Output: Graph G’ 
ModifyDataset() 
Begin 
    
 For each t ∈ T 
        For each g ∈ Gr  

   For each series of points in t that are in g 
    Replace the series with a new point n=[x,y,t] where 

x and y represent the centre of gr anf t is the timestamp 
of first node visited in g; 

   End For 
End For 

End For 
return G; 
 

    End 
 

Figure 4.11 Pseudocode for modifying the trajectory data in SDR context. 
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4.4.2 LBS Output 
 
 

There are two types of requests a LBS provider may receive in the anonymized map: 

Requests made in a grouped node and requests made in a non-grouped node. The requests 

that are made in a non-grouped node do not raise any privacy concerns. On the other hand, 

requests made in a grouped node may be problematic if there are some suppressed paths in 

the group. 

 

 
 

The goal of LBS systems is to service a user as the request arrives given the privacy 

constraints. As LBS provider cannot guess the location of the next request from a specific 

user, it can only act based on what has been received so far. Consider a user that has 

followed a portion of a suppressed path in the c-neighborhood of the sensitive node and this 

portion (which is a path itself) is not suppressed. In this case the algorithm suppresses 

requests made by this user, although he or she is not in a suppressed path. This is because 

there is a chance that this user visits the remaining vertices on this path while getting 

service during the trip. 

Input: Group List Gr 
Output:  
ReleaseRules() 
Begin 

Suppress each request made in a path that is marked; 
End 
 

Figure 4.13 Pseudocode for LBS rule generation. 
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Figure 4.14 LBS suppression example. 

 

  

The Figure 4.12 depicts an example of a trajectory travelling along the group g1 

where c = 2. The trajectory starts at vertex 11, at time t = 0. It goes forward making a 

request at each node visited. It enters the group using the vertex 12, stops there and makes a 

service request at time t =1. The path pt this trajectory taken so far is pt ={11, <12,null>} 

which is not suppressed. This user may go on and exit from vertex 15, taking the path 

pt’={11, <12,15>, 16}, which is suppressed. Although path {11, <12,null>} is not 

suppressed we need to suppress requests made in this path as the user may exit from vertex 

15 and end up in a suppressed path getting service all the way, which is a violation of 

privacy. 
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5. PERFORMANCE EVALUATION 
 
 
 
 

We have simulated our approach by coding in Java and using Eclipse as our IDE. The 

tests were run on a MacBook Pro with Intel Core 2 Duo Processor and 2GB memory. 

 
 

 
5.1 Map Structure 

 
 
 

We used OpenStreetMap (OSM) [43], as the source of map structure. We have 

downloaded map of Milano with the following coordinates: Minimum latitude:"45.54665", 

Minimum Longitude:"9.17288", Maximum latitude:"45.55799", Maximum longitude: 

"9.19472". We parsed the XML file and extracted vertex and edge information in 

accordance with our graph definition. There are 4073 nodes and 4321 edges in the graph. 

 

We have drawn the map using Java to visualize the actions of the approach. The dots 

correspond to the nodes in the map and the lines correspond to the edges that connect the 

nodes. Figure 5.1 shows the map we used to evaluate our approach.  
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Figure 5.1 Milano map visualized using Java. 

 
 

5.2 Trajectory Data 
 
 
 

We generated a synthetic dataset of 3000 trajectories. To begin with, we ran Floyd- 

Warshall all-pairs shortest path algorithm [44] on Milano map, in order to obtain shortest 

path from any node in the graph to any other node. Then, we picked two random nodes: n1 

and n2 in the graph. If they are connected (there exists a road from the first node to second 

node), we picked all the nodes on the shortest path from n1 to n2 and created a trajectory. 

Obviously, all trajectories follow the nodes and edges of the graph. The Figure 5.2 shows 

sample trajectories on the map that are represented by connected empty circles. Sensitive 

nodes are shown as big standalone dots. 
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Figure 5.2 Milano map with sensitive nodes and trajectories. 

 

The trajectories are assumed to be stopping on the start and the end points and a 

trajectory is generated such that it stops on a node with 1/6 probability. 

 

 
Figure 5.3 A group with sensitive and non-sensitive nodes. 
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Figure 5.3 shows an example grouping where vertex 112 is a sensitive node and the 

other three vertices in the rectangle are grouped. These four nodes are going to act as a 

super-node in the anonymized map. 

 
 
 

5.3 Experiments 
 
 
 

To measure the performance of our approach, we randomly picked 36 nodes and 

marked them as sensitive nodes.  

 

We took three different p values: 0.5, 0.33 and 0.25 to see the performance of our approach 

when the privacy level gets stricter. We used c values: 3, 6 and 9 to see the effect of an 

increase in the background knowledge of the adversary. Finally, we have used two Cutoff 

Limit values: 0.1 and 0.05 

 
 

5.3.1 Effect of the values of c, p and Cutoff Limit 
 
 
 As explained in Section 3.2, there are three parameters in our algorithm: c, p and the 

Cutoff Limit. In this set of experiments, we show the effect of a change in one of these 

parameters using the violating routes node selection approach.   

 

Parameter p adjusts the desired level of privacy in the resulting anonymization. When 

we reduce p, privacy protection of the individuals increase as percentage of the number of 

people taking a path decrease. Parameter c determines the level of background knowledge 

of the adversary. As c increases, the neighborhood of the target node enlarges and 

adversary becomes more powerful as he or she is capable of considering far away nodes. In 

Figure 5.4, we show the effect of the change in parameters c, p and Cutoff Limit on the 

average group size, which is the utility metric we use. 
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Figure 5.4 Average group sizes for the parameters c, p and Cutoff Limit. 

 

In all cases a decrease in p results in an increase in the average group size. Notice 

that, p=0.5 means at most 1 out of 2 trajectories on a path that stop in the group, can stop 

on a sensitive node, whereas p = 0.2 means that at most 1 out of 5 trajectories that stop in 

the group taking a path, can stop on a sensitive node, which is more restrictive. 

 

Similarly, increase in c results in an increase on the average group size in all cases. 

As the c-neighborhood is widened, number of equivalence classes increase. Thus the 

algorithm needs to consider more options and needs to add more nodes into the group. 

 

 Finally, as the Cutoff Limit increases, the algorithm is able to stop the operation 

earlier and can suppress more trajectories. Therefore the average group size decreases. In 

the extreme case when Cutoff Limit is 100, the algorithm needs to satisfy (c,p)-

confidentiality for all paths in the c-neighborhood and is not allowed to make a shortcut. 

 
 

47 



 
Figure 5.5 Time performance for the parameters c, p and Cutoff Limit. 

 
 Figure 5.5, shows the time performance of the algorithm given the parameters. 

Increase in Cutoff Limit result in a decrease in the time required because the algorithm is 

more free to suppress trajectories rather than adding vertices to the group and spending 

time. The difference becomes more obvious when both c and p increase. 

 

The increase in background knowledge of the adversary clearly forces the algorithm 

to spend more time to satisfy (c,p)-confidentiality. The bigger the c-neighborhood is, the 

bigger the number of paths to be considered and equivalence classes to be formed. As this 

number increases, time requirement of the algorithm increases as well. This makes sense, 

as we are facing a thougher adversary and we need more resources to satisfy the privacy 

requirement of an individual. 

 

Similary as p gets stricter, the algorithm needs more time. When p is smaller, the 

number of paths that violate (c,p)-confidentiality increases and the algorithm has to add 

more nodes to the group which takes more time. This again makes sense as the data owner 

is more conservative and desires a higher level of privacy. Again we need more time to 

satisfy the needs of the user.  
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Figure 5.6 Suppression rate comparison for the parameters c, p and Cutoff Limit. 

 
 Figure 5.6 shows the percentage of the number trajectories that are suppressed to the 

number of all trajectories that enter the group. This is an indication of the utility achieved. 

As the Cutoff Limit increases, the algorithm is allowed to suppress more routes and hence 

the suppression rate increases. Similarly when p is stricter, (c,p)-confidentiality is satisfied 

by suppressing more trajectories.  

 

There is no clear relation between the value of c  and the percentage of the 

trajectories suppressed because c affect this value both negatively anf positively. Increase 

in c, broadens the group and decreases the suppression amount required. On the other hand, 

the increase in the number of paths, forces algorithm to suppress more trajectories.  

 
 

5.3.2 BFS vs. Violating Routes  
 
 

We compare the performances of two node selection approaches that have been 

discussed in Section 4.2.2.  
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Figure 5.7 Average group size comparison of BFS and Violating Routes approaches. 

 
Figure 5.7 shows average group sizes for each c value. The average group size is 

shown against the corresponding p value and Cutoff Limit. In all cases, Violating Routes 

approach performs better than BFS approach as it satisfies (c,p)-confidentiality using fewer 

nodes, which preserves utility. This makes sense, since Violating Routes approach works on 

the problematic routes, whereas BFS approach only tries to surround the sensitive node 

with non-sensitive nodes geographically. 

 
Increases in c and p values, increase the group sizes as explained before, but it also 

widens gap between performances of two approaches more significant.  
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Figure 5.8 Time performance comparison of BFS and Violating Routes approaches.   

 

Figure 5.8 shows the time performances of two approaches. When the width of the c-

neighborhood is small, BFS approach performs better than Violating Routes approach. This 

is because of the fact that the group can satisfy (c,p)-confidentiality easily. BFS can find the 

node that Violating Routes would choose as the number of candidates is small. When the c-

neighborhood grows, the number of candidates to choose from grows as well. Although 

BFS makes a decision within a small period of time, Violating Routes makes correct 

choices and uses less time overall, by adding a smaller number of nodes into the group as 

shown in Figure 5.8.   
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Figure 5.9 Suppression rate comparison of BFS and Violating Routes.  

 

Figure 5.9 shows the suppression rate comparison of BFS and Violating Routes 

approaches. In almost all cases BFS approach seems to suppress fewer trajectories. As BFS 

adds more vertices into the group, it needs less suppression, but the difference is not so 

significant.  

 

When we consider the results so far, node selection method represents a trade-off 

between suppression and generalization. If BFS is chosen, then generalization (average 

group size) rate increases and if Violating Routes is chosen, then the suppression rate 

increases. However we are going to use Violating Routes approach in the rest of the 

experiments as the main utility metric we use is the average group size. 
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5.3.3 (c,p)-confidentiality  vs. k-anonymity 
 
 

We have mentioned the inability of k-anonymity to satisfy the diversity of the visited 

sensitive places throughout the thesis. We seek the answer to the question: “Is k-anonymity 

able to satisfy (c,p)-confidentiality?” and compare the performances of the two methods: 

(c,p)-confidentiality and k-anonymity.   

 

First, we give a definition of k-anonymity for spatio-temporal data. The methods used 

in [37] and [38] offer k-anonymity via clustering trajectories. As mentioned earlier, our 

approach does not need to perturb trajectories that move on non-sensitive areas. Thus 

distortion rate is smaller. Hence, it is unfair to compare our approach against such methods. 

Rather we adopt a definiton similar to [21].  

 

Definition 5.1 - A group g1 is k-anonymous if for each path in g1
c that enters g1, there exists 

none or there exists at least k trajectories that stop in the group g1 taking that path. 

 

eqi ∈ Eq, and corresponding pti  that enters the group g  

|eqi| = 0 or nb. of trz ∈eqi s.t. trz stop in g  ≥ k 

 

Notice that in [21], authors require k users to perform requests in the region to satisfy 

k-anonymity (k users that do not make requests is not enough). Similarly k users that exist 

in the group is not enough in our approach, and we need k users that stop in the group. 

 

We use the c and p values selected in Section 5.3.1 and test them against k values of 

2, 4, 6 and 8. Figure 5.10 shows the average group size needed to achieve (c,p)-

confidentiality and k-anonymity for given parameters c,p and Cutoff Limit.  
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Figure 5.10 Average group size comparison of (c,p)-confidentiality  vs. k-anonymity. 

 

The required average group size increases exponentially for k-anonymity. It fills up 

its quota of nodes that can be added into the group, which is restricted by c-neighborhoods 

of the groups. For c = 9, the average group size stays the same while k increases. This is 

because there is no available node to be added into the group within the c-neighborhood 

and algorithm suppresses the violating paths. This effect can be seen in Figure 5.11, which 

shows the suppression rates. However, the required number of nodes for (c,p)-

confidentiality seems to increase linearly and average group sizes are so small compared to 

the requirement of k-anonymity.  

 

We show the suppression rates of (c,p)-confidentiality and k-anonymity for the given 

parameters in Figure 5.11. Obviously k-anonymity suppresses a lot more than (c,p)-

confidentiality. Especially when c-neighborhood is wide and Cutoff Limit is low, k-

anonymity needs to suppress more than 60% of the trajectories, whereas the suppression 

rate of (c,p)-confidentiality does not exceed 30% in the extreme case.  
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Figure 5.11 Suppression comparison of (c,p)-confidentiality vs. k-anonymity. 

 

Figure 5.12 shows the results of the tests where we check if k-anonymous sets satisfy 

(c,p)-confidentiality. This is going to show the value of k that is needed to satisfy the 

requirement of given c and p. We show the percentage of trajectories that stop in the group 

and violate (c,p)-confidentiality . This percentage is used as the measure of closeness to 

satisfy (c,p)-confidentiality. The figure clearly depicts that k-anonymity is not able to 

satisfy (c,p)-confidentiality.  

 

 

 

 

 

 

 

55 



     
     c = 3       c=6 
 

’ 

           c =9        
 

Figure 5.12 Percentage of trajectories that violate (c,p)-confidentiality in k-anonymous sets. 

 

Given loose values of c, p and Cutoff Limit, as k increases, k-anonymity gets close to 

satisfying (c,p)-confidentiality. For instance, when c = 9, p = 50 and Cutoff Limit = 0.05, 

10-anonymity satisfies (3, 50)-confidentiality. However, the group size of 55 and 

suppression rate of 60% to satisfy the constraint makes it infeasible to use k-anonymity for 

location diversity because the data is distorted so much. Needless to say, the decrease in p 

results in more violation as it is harder to satisfy (c,p)-confidentiality with a stricter level of 

privacy. 
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Figure 5.13 Time comparison of (c,p)-confidentiality and k-anonymity.  

 

Figure 5.13 compares time performances of k-anonymity and (c,p)-confidentiality. 

Both approaches require more time as their constraints are restricted. As k-anonymity gets 

close to the upper bound of nodes, its time requirement stabilizes. Nevertheless, time 

requirement of (c,p)-confidentiality increases linearly, just as the average group size.  

 

All tests in this section show that k-anonymity is insufficient to provide location 

diversity. On the other hand, (c,p)-confidentiality has proven to be successful in ensuring 

location diversity within very small time periods and small average group sizes.  
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6. CONCLUSIONS AND FUTURE WORK 
 
 
 
 

In this thesis, we point out to the importance of diversity, in privacy preserving 

spatio-temporal data mining. We show that existing privacy preservation mechanisms such 

as k-anonymity, fail to capture information leaks mentioned in Chapter 1. We propose an 

approach called (c,p)-confidentiality, that protects the privacy of the users by diversification 

of  locations. 

 

We have make a binary distinction of locations. Nodes are either sensitive or non-

sensitive. This is for the sake of simplicity and this distinction can be extended without 

losing generality (such as sensitivity rates). We limit the probability of users that stop on a 

sensitive node with probability p. We model the map as a graph and generalized the nodes 

to form super-nodes which satisfy (c,p)-confidentiality. For the outlier trajectories that 

violate (c,p)-confidentiality,  we use suppression method.  

 

We consider paths taken by the users in a c-neighborhood as equivalence classes. The 

c-neighborhoods are determined by the parameter c. We provide a block-box abstraction 

for the movements of trajectories inside a group. Only thing known for a trajectory moving 

inside a group is its route that corresponds to, the entrance and exit vertices within the 

group. 

 

We use two node selection procedures, to decide on which node to include in the 

group while generalizing. The method that tries to enclose problematic routes has 

performed better than the BFS approach which tries to geographically centralize the 

sensitive node in the group.  

 

Focusing on anonymizing the map, instead of the trajectories gives us the advantage 

of distorting just the sensitive portions of the trajectory in SDR context, rather than 
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perturbing all clustered trajectories like in [36].  Also, focusing on the map proves our 

algorithm to be independent of the density of trajectories in the dataset. As works in [29] 

and [30] tries to perturb/suppress trajectories that are in close proximity to each other, they 

fail in low-density areas unlike our approach. 

 

We point out to the infeasible generalizations released by k-anonymity that do not 

consider geographical structure and the inherent lack of diversity of the k-anonymous 

groups. Then, we tested our approach against k-anonymity with a similar definition to [21] 

and the results have shown that k-anonymity alone is insufficient to provide (c,p)-

confidentiality  and causes information leaks. In terms of utility and time performance, 

(c,p)-confidentiality  is more efficient. It generates smaller groups that satisfy (c,p)-

confidentiality  within negligible time periods. Thus, it keeps utility high and computation 

costs very low. The trajectory trash rate supports these results as well. Another advantage 

of our algorithm is that, it is minimality attack resistant when the statistical background 

information used is independent of the anonymized data. This ensures that, the algorithm’s 

choices are independent of the data anonymized. Hence, it does not leak information to the 

adversary in this manner. 

 

Finally, our approach is adaptable to both Static Data Release context and Location 

Based Services, although the literature so far is split into two discrete areas. We anonymize 

the released data with the groups to be released, and we release rules for the LBS systems 

to restrict the places where a user can be provided with service. 

 

Future direction of this work can be focused on LBS context. Current state of the 

work suppresses each request made in a path that has the chance to end up in a suppressed 

path, even if it is not in a suppressed path for the time being. This method over suppresses 

requests and decreases utility. Some probabilistic methods that can limit the probability of 

ending in a suppressed path may have been used to overcome this problem. 

 

We also plan to enhance the adversary background knowledge definition in the future 

and face with a tougher version, in which the adversary is capable of calculating the 
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probability of disclosure for the c-neighborhood of each node within the c-neighborhood of 

the target node in the graph, whereas our current approach is target node centered. In this 

case, the approach will have to consider more constraints to protect the privacy of 

individuals, but is going to be more protective.  
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