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Abstract—Brain Computer interfaces are systems that allow
the control of external devices using the information extracted
from the brain signals. Such systems find applications in rehabil-
itation, as an alternative communication channel and in multime-
dia applications for entertainment and gaming. In this work, a
new approach based on the Time-Frequency (TF) distribution of
the signal power, obtained by autoregressive methods and the use
Hidden Markov models (HMM) is developed. This approach take
into account the changes of power on different frequency bands
with time. For that purpose HMM’s are used to modeling the
changes in the power during the execution of two different motor
tasks. The use of TF methods involves a problem related to the
selection of the frequency bands that can lead to over fitting (due
to the course of dimensionality) as well as problems related to the
selection of the model parameters. These problems are solved in
this work by combining two methods for feature selection: Fisher
Score and Sequential Floating Forward Selection. The results
are compared to the three top results of the BCI competition
IV. It is shown here that the proposed method over perform
those other methods in four subjects and the average over all
the subjects equals the one obtained by the winner algorithm of
the competition.

Keywords: Brain Computer Interfaces, HMM, AR-Models,
Feature Selection.

I. INTRODUCTION

A Brain Computer Interface (BCI) is a system that provides
an alternative communication way for people who suffered
a disease or an accident that compromises the ability to
perform motor tasks. Also, applications for healthy subjects
in areas of multimedia and gaming started to incorporate
this technologies in the last years[1]. BCI’s make use of the
brain signals to control external devices that help the subject
to communicate and interact with the environment. Most of
the current approaches to BCI are based on the comparison
of the values of power of the EEG during the execution of
imaginary motor tasks. However, the well known phenomena
of Event Related Synchronization and Event Related De-
synchronization [2],[3] provides more information that can
be employed to improve the performance of the BCI’s. This
information is related not only to the difference of power of
the signals but the time change of them on different frequency
bands. For this, algorithms that take into account the change of
the signal on time as Hidden Markov Models (HMM) [4],[5]
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have been used in combination with features that describe
the temporal behavior of the EEG signals [6],[7]. Although
the Time-Frequency analysis of the EEG signals have shown
good results in previous works [8],[9],[10],[11],[12] in BCI
applications, a combination of the time-frequency power dis-
tribution of the signals and algorithms that take into account
the changes in the distribution have not been reported. One
possible reason for this is that the selection of the parameters
of the models (states, Gaussian mixtures, etc. in HMM)
along with the selection of the frequency bands becomes
problematic. In this work we make use of the Time-Frequency
distribution of the power of the signals, using Autoregressive
Models for calculation of the Power Spectral Density (PSD)
and HMM for classification of two different motor tasks. The
problem of selection of parameters is solved by combining
two methods for selection of features. The first method is
used to select the most representative features and fix the
Model Order Parameters (states, Gaussian mixtures, type of
transition matrix). The second method is used to incorporate
new features (power in selected frequency bands) that increase
the performance by using cross validation on the training
data. The final results presented, are based on the system’s
performance using two unseen test sessions.

In this document, the work above presented is described.
First a short description of the methods employed is shown.
Next, an explanation of how those methods were used, the
results obtained and the comparisons with others methods is
given. Finally, the conclusion and future work are presented.

II. METHODS

A. Dataset description

In this work the Dataset IIb of the BCI competition IV
[13], which consist in bipolar EEG recordings over C3, Cz
and C4 in 9 subjects, was used. The cue based BCI paradigm
consisted on two classes, represented by the imagination of
the movement of left hand and right hand. The scheme of
the sessions is depicted in Figure 1. At the beginning of each
trial a fixation cross appear and remain in the screen until 3th
second, then the cue is presented and the subject is requested
to perform the imaginary movement of the corresponding
hand. The dataset contains five sessions, two of them without
feedback. In this work only the session with feedback was
employed for training because the methods presented here



Fig. 1. Time scheme for the experimental setup

(a) (b)

Fig. 2. a.) Montage used to extract the signal on C3, C4 and Cz, b.) EOG
Channels

make use of the temporal behavior of the EEG signals and this
behavior is modified due to the feedback influence [14]. For
testing, the provided data involve only sessions with feedback.
The available EEG signals (Figure 2a) where filtered between
0.5 and 100Hz and a notch filter at 50Hz was used. EOG
recordings are also available and the electrode montage is
shown in Figure 2b. The EOG recordings can be used to reduce
the interference caused by the ocular movements during the
time period that the session last. For more information about
the dataset specifications see [15].

B. Preprocessing:

1) EOG artifact reduction: In order to reduce the EOG in-
terference in the EEG signal, linear regression was employed.
In this approach for EOG artifact reduction, the recording
signal is modeled as the summation of the actual EEG signal
and the noise, represented by a linear combination of the EOG
signals [16], as shown in equation (1).

YTXM = STXM + UTXNbNXM (1)

where T represent the time points, M the number of EEG
channels and N the number of EOG (U ) channels. Then
the original EEG signal can be found to be S = Y − U.b.
This problem is solved by finding the coefficients that explain
how the EOG signal is propagated (volume conduction) to
each of the points in the scalp where the measurement is
done. Assuming that the EOG and the actual EEG signals are
independent, the coefficients can be found by equation (2):

b = Cov(UTU)−1Cov(UTY ) (2)

2) Spectral Filtering: The data was sampled a 250Hz and
originally filtered between 0.5Hz and 100Hz. A notch filter
was also employed in order to eliminate the 50Hz interference.

In addition to this, the bandwidth of the signals was reduced
to the interest components (6Hz to 35Hz) using a 6th order
Chebyshev Type II filter. The lower frequency was selected in
order to help to minimize the effect of the EOG activity which
contains components at low frequencies.

C. Feature Extraction

1) Power Spectral Density Estimation using AR param-
eters: The well known phenomena of Event Related Syn-
chronization/Desynchronization provide useful information for
identification of motor tasks. The PSD of the signal is cal-
culated by parametric methods which involve the calculation
of autoregressive models of the signal. In this work the
Burg method was used because in contrast to the Yuller -
Walker method, the former provides always a stable model,
minimizing the error on backward and forward direction [17].
The PSD is estimated as the frequency response of the AR
model which is estimated according to (5):

x(n) =

p∑
k=1

akx(n− k) + u(n). (3)

Where, n represents the discrete time index, p is the model
order, ak is the kth coefficient of the model and u(n) is the
system input or noise function. Then calculating Z-Transform
we obtain:

H(z) =
X(z)

U(z)
=

(
1−

p∑
k=1

akz
−k

)−1

(4)

Given this, the power spectrum can be obtained by evalu-
ating H(z) on the unit circle where z = exp(jw),[18].

D. Feature Selection

To select the band of frequencies which provide more
information about the oscillatory brain activity related to the
two mental tasks realized by the Subjects, the training dataset
was analyzed calculating the degree of separability of the
frequency components during the realization of imaginary
motor activity. For this purpose, two methods, Fisher Score
and Sequential Floating Forward Selection, were employed.

1) Fisher Ratio: The Fisher criterion, which is a measure
of the class separability for two classes [19] is introduced. The
separability between class i and class j is determined by:

Fisher(f,t,i,j) =
(m(i,f,t) −m(j,f,t))

2

σ2
(i,f,t) + σ2

(j,f,t)

. (5)

Where m(i,f,t) and m(j,f,t) correspond to the inter trial
average of the PSD at time t and frequency f for each class
where i 6= j, σ2

(i,f,t) and σ2
(i,f,t) are, as well, the inter trial

variances of the PSD for each class. For a two-class problem,
this produces two matrices (one for each class) from where the
Fisher ratio (as indicator of the separability between classes)
can be selected for a specific frequency component as well as
for a specific time instant.



Fig. 3. Hidden Markov Model

2) Sequential Floating Forward Selection: SFFS (see [20])
is a method for feature selection in which new features are
added (to a selected set of features) according to a cost func-
tion. From the unselected features, the one which maximizes
the value of the cost function is selected and included in the
set. This method is differentiated from Sequential Forward
Selection (SFS) in the sense that the meaningless feature can
be removed in each iteration. The algorithm will add a new
feature until the number of features currently selected equals
the number of features requested by the user.

E. Classification: Hidden Markov Models

An example of a Hidden Markov Model (HMM) is depicted
in Figure 3. A HMM is a finite automaton which contain a
discrete number of states Q emitting a feature vector X at each
time point, the distribution of the output at each time point
depends on the current state. Given that this kind of models
are generative, it is necessary to determine the joint proba-
bility over observation and labels, which requires all possible
observation sequences to be enumerated. In order to make
the inference problem tractable, conditional independence is
assumed, meaning that the future states are independent from
the past states given that the current state is known.

The problem is then to find the parameters of the model
that maximize the log-likelihood of the observation given
those parameters. The parameters are the transition matrix A,
for which each entry ai,j represent the probability to pass
from state i to state j, the vector of initial probabilities Π
which represent the probability of qi to be the initial state
q0. Finally, distribution of the data on each stated is modeled
using Gaussian mixtures in this work.

For classification, a HMM is trained for each of the possi-
bles classes, where each new sequence of data (EEG features)
is evaluated and the output class is defined by the model with
higher probability to generate the observed sequence of data.
For more information on HMM’s the reader is referred to [21]

III. RESULTS

The EOG interference was minimized by using Linear
Regression. The coefficients were calculated using the signals
at the beginning of each session which involves the execution
of eye movement and intervals with close eyes and open eyes,
as described in [16]. This provides information that permit
to establish the propagation of the EEG signals on the scalp.
Also, given that the EOG signals are large in magnitude, the

interference of EEG in the EOG recordings can be neglected
[16]. Next, each of the signals obtained from the electrode
montage in Figure 2a, was filtered between 6 and 35Hz and the
PSD was calculated using a sliding window of 1 second length
with overlapping of 80%. The frequency resolution was set to
0.25Hz by selecting a FFT of 1024 points in the calculation of
the frequency response of the AR-Model and the order of the
models was set to 10 referring to previous works [22],[18]. By
doing this, a representation on time and frequency is obtained
making possible to observe in which frequencies the power of
the signal is concentrated for a specific time interval.

Fig. 4. Fisher Ratio (Time vs Frequency) and Average across time for each
frequency component

Once the PSD of the signal is obtained it is necessary
select the features which provide more information for dis-
crimination between the four classes. Initially the Fisher Ratio
(FR) is calculated according to the Equation (8). The resultant
matrices for electrodes C3 and C4 are shown in Figure 4
for subject 8. The time average of the FR is used to select
the frequencies for which the separability of the signal is the
highest (See Figure 4). The spectrum of the signal was divided
in non-overlapping frequency bands form 9 - 35Hz and then
those frequency bands coinciding with the frequency values
with higher separability (according to the FR), are preselected.
This initial set of features is used to select the Model Order
parameters for the HMM. The Model order parameters (MOP)
make reference to the determination of the number of mixtures
used to describe the distribution of the data on each state, the
number of states and the type of model (ergodic or right). The
last option establish restrictions over the transition matrix. In
the case of the right model, transitions to previous estates
are forbidden while in a ergodic model there is no such
restrictions. The MOP were selected using 3X3 Folds Cross
validation on the preselected features, then 2/3 of the data was
used each time as training data and 1/3 as test data. This is
repeated 3 times changing the number of states, the number
of Gaussian Mixtures and the type of model. The Model with



Subject Zheng Yang Chin et al. Huang Gan et al. Damien Coyle et al. Proposed Method.
1 0.40 0.42 0.19 0.46
2 0.21 0.21 0.12 0.27
3 0.22 0.14 0.12 0.19
4 0.95 0.94 0.77 0.93
5 0.86 0.71 0.57 0.88
6 0.61 0.62 0.49 0.64
7 0.56 0.61 0.38 0.54
8 0.85 0.84 0.85 0.71
9 0.74 0.78 0.61 0.75

Average 0.60 0.58 0.46 0.60

TABLE I
COMPARISON WITH THE RESULTS OF THE BCI COMPETITION IV (KAPPA VALUES)

the set of MOP that provides the higher average accuracy was
selected. Figure 5 shows the final frequency bands selected for
each subject for the signals measured over C3 and C4.

Fig. 5. Selected frequency bands for each subject

After this process, the MOP are fixed and the remaining
features obtained by taking the average power in the frequency
band previously defined are processed using SFFS. The size of
the final set of features was limited to six, to avoid over fitting
due to the course of dimensionality. This process is done for
two HMM one corresponding to the modeling of signals for
each motor task.

The results obtained are compared to the three top results
of the BCI Competition IV dataset 2b. For this, according
to the methodology employed in the competition the Kappa
values [23] were calculated. The results are shown in Table
I, where the best results appear in bold. It is possible to see
that our proposed method over perform all the other works
in 4 subjects and the average performance equals the highest
obtained in the competition

Also the accuracy across time was calculated for each
subject in each of the two testing sessions. Figure 6 shows
that the higher accuracy for the majority of the subjects is
obtained at the end of the trial. This was expected, because
for training the models the data from second 4 up to the end of
the trial were used. Those results are summarized in table II,
where the highest accuracy across time and the time at which
is achieved are shown.

IV. CONCLUSION

In this work the changes in the power of the EEG signals
were employed for classification of two motor tasks. The main
idea is that the well known phenomena of ERD/ERS can be

Fig. 6. Accuracy Vs Time for each subject

Subject Max Acc Time [sec]
1 73% 7.0
2 64% 6.0
3 59% 7.4
4 97% 7.4
5 94% 7.4
6 82% 7.4
7 77% 7.2
8 85% 7.4
9 88% 6.6

TABLE II
TIME POINTS OF MAXIMUM ACCURACY FOR EACH SUBJECT

modeled by algorithms that take into account the change of
the input signal. For that a HMM’s were employed looking
for modeling those changes. The results showed that this
method is suitable for this task and is also comparable with
the methods currently used. Although HMM has been used
before, in this work we show that the use of the TF AR-
Power estimation and the proper selection of the changes of
these estimations on specific frequency bands (by combining
two feature selections methods) can provide good results. One
important point is that time points where (in the trial time line)
the maximum accuracy is obtained. As shown in Table II in 7
out of the 9 subjects the best accuracy is obtained at the end
of the trial, which in cases where not continuous output is
required represent an advantage over others methods based on
static classifiers because the time for best performance is ”a
priori” known. This work leaves the door open to a discussion



related to the selection of the MOP. Future work will be
concentrated to determinate the number of states according
to Neurophysiologic information which should lead to a better
understanding of the definition of state in terms of the behavior
of the EEG signals and in agreement with the medical theory.
In respect to the selection of the general model, (a HMM
for modeling the EEG signals for each of the two tasks) in
this work the brain is modeled as a unified system in the
way that the MOP for each of the two models (left and right)
include signals from different regions. Our future work will
also include revision of more specifics models where each
region can be modeled independently and relationships found
in those specific models could also be exploited with more
general type of graphical models.
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